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ARTICLE INFO ABSTRACT

Keywords: Critical Resolved Shear Stress (CRSS), fundamentally linked to the dislocation glide stress, is a
Critical stress crucial measure in dictating plastic deformation in metallic materials. A recent ab-initio predic-
Dislocations

Machine learning
Surrogate Neural Network
Wigner-Seitz cell

tive model for dislocation glide stress in Face-Centered Cubic (FCC) materials is developed which
accurately predicts available experimental data, considering the anisotropic continuum energy,
the atomistic misfit energy, and the minimum energy path for the intermittent motion of Shockley

partials. The CRSS of a material is predominantly controlled by six parameters, namely, lattice
constant, unstable/stable stacking-fault energies, and three anisotropic elastic constants for cubic
materials, which are inputs to the predictive model. In this work, a large material dataset is
produced incorporating properties of real materials and generating hypothetical combinations,
subsequently calculating the CRSS for each combination using the predictive model. The hypo-
thetical combinations of properties are employed to train a machine learning-based Surrogate
Neural Network (SNN), and the ones of real materials are utilized to validate the SNN model
yielding a 94% accuracy for 1,033 materials. The generated dataset is used to unravel the
sensitivity of each material parameter to the predicted CRSS establishing a general trend for the
FCC materials for the first time guiding the field in achieving superior mechanical properties.

1. Introduction

Critical Resolved Shear Stress (CRSS) determines yield strength which is one of the most important mechanical properties of a
material (Argon, 2007). The continuous deformation of the material at its yield point transforms it into its inelastic status, and this
threshold is dictated by the CRSS defined as the stress required for the onset of dislocation glide. In the compositional complexity of
materials, however, a comprehensive understanding of the CRSS has been yet unclear with respect to core-width and effect of
dislocation characters. Original treatments of the CRSS calculation utilized simple-cubic lattices (Nabarro, 1947; Peierls, 1940), and
performed integration for misfit energy based on the one-dimensional description, which is a limitation of Peierls-Nabarro model
(Schoeck, 2005). Meanwhile, an ab-initio framework for the CRSS suggested by Mohammed-Celebi-Sehitoglu (MCS) (Mohammed
et al., 2022), which is free of empirical parameters, has been recently proposed as a predictive alternative. It has uncovered that CRSS
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Fig. 1. Schematic of the ab-initio CRSS framework introduced by Mohammed-Celebi-Sehitoglu (MCS); For a given core structure of an extended

dislocation in FCC materials, BF = a/2[110] is the Burgers vector of full dislocation on a (111) plane, ETP = a/6[121] a leading partial, BTP =a/
6[211] a trailing partial, and d a stacking fault bounded by the two partials, where a given lattice constant a; The current study sets 60' mixed
character of dislocation as an instance in the given coordinate system; In the plot of the dislocation-density distribution p(x;), the leading partial is at
position x; = s, and the trailing partial is at x; = —s,, yielding the fault-width as d = s; + s, while the core-widths are &7p, £1p of the trailing and
leading partials respectively; Total energy (alluded to in the main text) of extended dislocation includes strain and misfit energies, which are based

on anisotropy interaction elastic energy and Wigner-Seitz (WS) cell definition, respectively.

results are consistent with previous experiments, including pure metals as well as high entropy alloys (HEAs). Upon sophisticated
consideration of the anisotropic continuum elastic energy and atomistic misfit energy employing the Wigner-Seitz cell Misfit (WS-M)
model the predictive framework calculates the CRSS of the extended dislocation through an energy minimization approach. The
anisotropic strain energy is obtained by employing the Eshelby-Stroh (E-S) framework that captures the coupled interaction between
the edge and screw components of the dislocation and yields an accurate estimate of the continuum energy. The core energy of the
dislocation is precisely captured with the WS-M model which incorporates exact atomic sites by being faithful to the two-dimensional
structure of the slip-plane. The equilibrium structure of the extended dislocation is obtained through an energy-minimization method
involving both energy components. The minimum energy path (MEP) for the glide of the extended dislocation is determined, sug-
gesting an intermittent motion of Shockley partials. The associated CRSS to the energy trajectory is obtained from the novel
Optimum-Energy-Trajectory (OET) approach which considers gradients of motion of the individual partials. Thus, the robustness of the
predictive framework makes it useful for the exploration of the large compositional space of Face-Centered Cubic (FCC) materials.

The introduced MCS framework (Mohammed et al., 2022) for the CRSS requires only six fundamental material properties (or
fingerprints) as input parameters: lattice constant, unstable/stable stacking-fault energies, and three elastic constants for cubic ma-
terials, all of which can be reliably obtained from first-principles calculations. Thus, the predictive model achieves precise prediction of
the CRSS, shown to be in excellent agreement with the experimental data, can be utilized to uncover the large compositional space
circumventing time-consuming expensive experiments, and provides a tool for rapid assessment of a material strength (Brenne et al.,
2020; Gengor et al., 2021; Li et al., 2020; Mohammed and Sehitoglu, 2020; Nohring and Curtin, 2020; Panchal et al., 2013; Ritchie,
2021; Sidharth et al., 2021). Although the proposed framework is necessary for materials design in a wide compositional space, ac-
curate material properties should be provided as input to the model for a precise prediction. For some complex materials, e.g.,
multi-principal element alloys, the input parameters are not readily available and require costly experiments or intensive atomistic
simulations for accurate determination (Celebi et al., 2022a; Chowdhury et al., 2015; Kibey et al., 2006; Li et al., 2014; Li et al., 2022;
Mohammed et al., 2022; Werner et al., 2021). In addition, the determination of the core structure of the extended dislocation and MEP
for glide remains a bottleneck since the validity of results should be examined for every single material with a low tolerance on the
minimization of total energy. Hence, an alternative methodology that bypasses this time-consuming process enabling immediate
prediction of the CRSS should be established.

As for an effective model that can readily predict material properties, machine learning (ML) has recently been utilized in material
design and optimization of properties (Abueidda et al., 2022; Abueidda et al., 2021a; Goli et al., 2020; Kollmann et al., 2020; You et al.,
2022). Learning from a large dataset via experiments or ab-initio calculations, ML has a time-effective advantage in predicting
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properties after learning. ML-based neural network models have also been used to surrogate the existing computational theories with
the obtained data (Abueidda et al., 2021b; Guo et al., 2020; Shahane et al., 2022). In this work, the Surrogate Neural Networks (SNN)
model for the CRSS prediction of mixed dislocation slip in FCC materials is developed using the datasets obtained from the novel
ab-initio predictive framework. The workflow of this study is broken into four steps: 1) Parametric study of the CRSS of FCC within
individual materials’ fingerprints, 2) Producing a large dataset of general FCC materials for the SNN, 3) Training and test of the SNN
model, and 4) High dimensional analyses of characteristics that dictate the CRSS. The current study establishes a novel triangular
trajectory as the MEP that implies the least resistance for the glide of Shockley partials. The large dataset of general FCC materials is
composed of hypothetical materials as training data with arbitrary combinations of the six parameters (lattice constant (a), unsta-
ble/intrinsic stacking-fault energies (yys, visf), and three elastic constants (Cy1, C12, C44) for cubic systems). Then, real materials are
used as test data employing their properties given in the literature. Subsequently, we perform a sensitivity analysis for a better un-
derstanding of the effect of the individual parameters on the predicted CRSS.

2. Methods and results
2.1. Analytical framework

Fig. 1 represents the schematic of the ab-initio predictive framework to calculate core widths, stacking-fault, and finally, Critical
Resolved Shear Stress (CRSS) of the extended dislocation. For current study, we focus on the CRSS of the mixed character of dislocation
as the overall material strength, since the framework has recently found the maximum CRSS upon analyzing the entire spectrum of
dislocation characters (Celebi et al., 2022b). This CRSS framework suggested by Mohammed-Celebi-Sehitoglu (MCS) (Mohammed
et al., 2022) incorporates sophisticated calculations of the anisotropic elastic interaction, the atomistic misfit energy, and the
energy-minimization of intermittent motion of Shockley partials. The dislocation density distributions (p(x;)) are derived from the
core disregistry distributions (f(x;)) of the leading (LP) and trailing partials (TP), respectively. Both the core disregistry distributions f
(x1) and dislocation density distributions p(x1) are defined as the following equations:

_ li li —if X1 =81, _ b_P ip

Jirla) =7 5 e ( b ) purlet) = ((xl s1)2+f:ip> @
o 1& IQ RYE AR - E Erp

frrlz) = 2 * n an ( Erp )7 prrl1) = T (()ﬂ +Sz)2 +§ZTP> @

where b, is the magnitude of the Burgers vector of partials, and the positions of LP and TP are at s; and —s, which determines the
stacking fault width d = s; + s». Eqns. (1) and (2) show that the core structure of the extended dislocation with several key parameters;
the core-width &;p and &5y of the LP and TP, and the stacking fault width d. The determination of these parameters is then based on the
energy-minimization. The MCS framework involves the minimization of the total energy (E,) of the extended dislocation in FCC
materials composed of the two energy components. Thus, Ey, is expressed as,

Ezo1al(§Lp~,§'rp~, 5175‘2) = Eszmin(fLP,frpa 5‘1’32) + Em[.&/il(fLPagTP7 51,32) 3

where Egyqin is the elastic strain-energy based on the anisotropic Eshelby-Stroh (E-S) formalism (Barnett and Lothe, 1974; Stroh, 1958),
and Epy is the misfit energy of the extended dislocation computed utilizing the Wigner-Seitz (WS) cell area misfit model that con-
siders the WS cell domain area at each atomic-site on the slip plane across which disregistry prevails. For the details of the elastic
strain-energy and misfit energy formalism, the reader may refer to elsewhere (Mohammed et al., 2022).

The total continuum strain energy Egyqin(Ep, E1p, S1,52) for the extended dislocation can be determined by computing the aniso-
tropic interaction coefficients. The total strain energy Eyqin(Erp, Erp, S1,52) consists of the self-interaction energies of the LP and TP

(such as ELL . and E22_. , respectively) and the interaction energy between the two partials (E12,..). Therefore, Egrqin(Erp, E1p, $1,52) is
expressed as,
Egvain(E1p,§1ps 51,52) = Eppagic + Egpugic + Eniusic “

All terms on the right-hand side are summed up with the elastic interaction energy between infinitesimal fractional dislocations
derived from the cores of the partials, and they are calculated as:
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where Kj1, K22, and K7, are the anisotropic interaction coefficients to be computed. As an example, the procedure to determine K;5 can
be briefly explained. We can consider the LP and TP separated by a certain distance R. The continuum strain-fields surrounding each
Shockley partial are determined and superposed based on the E-S formalism to determine the net strain-field. The strain energy density
is then numerically integrated to calculate the total strain-energy of interaction at the chosen separation distance R, and a core region
within radius 5b, around the center of each partial is excluded. By calculating the total strain-energy at varying R, the interaction
coefficient K5 is determined. The choice of 5b, does not affect K;» calculation since the gradient of change of total strain-energy is
conserved. The self-interaction coefficients K;; and Ky, can be similarly determined by considering the interaction between two
dislocations with the same Burgers vectors of them. For more detailed exposition of anisotropic interaction coefficients and the E-S
formalism, the reader is referred to elsewhere (Mohammed et al., 2022).

In order to formulate the misfit energy Emisi(Erp, E1p, 51,52) of the extended dislocation, the generalized stacking fault energy
(GSFE) curve is needed for each LP and TP. The GSFE curves for the LP and TP are represented as:
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where yys and yisf are unstable and intrinsic stacking fault energies, respectively. Based on Eqns. (1), (2), and (6), (7), the total misfit
energy Epyp; with the partitioned fault-energies for the individual Shockley partials can be rewritten as follows,

No —1
d 3 rmlin(s))as
1 n=—No m=—Mypax
Emisﬁz(fu’# gTP: 81, SZ) = T N (8)
2D o, Y m,n)
...... + Z ZVLP( LP(XE ' >)AA
n=—Ny m=0

where xgm‘") = (m?l + n?z) - €1, AA is the area of the WS cell, and Ly is the normalization length based on repeating dislocation

lines. A summation limit of My is chosen with a large number, in the order of 10%, to sufficiently converge the misfit energy Emissie (E1p,
Erp, $1,52). The misfit energy given by Eqn. (8) is calculated per unit length of the dislocation line. Consequently, four parameters (&;p,
&rp, §1,52) are determined based on the Eqn. (3) with respect to the equilibrium core-structure (£2,, £9,,59,59) at the ground state by
minimizing Eq

aEmml _ aEmml aEmml aEmml

=0; =0 =0; =0 9
0&1p 0pp 0s 0s> ©)

The minimization routine is implemented with fmincon in MATLAB. Details for the dependence of each energy component on the core-
parameters are found in the previous study (Mohammed et al., 2022). In the following sections, the equilibrium core-structure pa-
rameters (£2,, £9,,59,59) are used to determine the CRSS.

2.2. Minimum energy path (MEP) and critical resolved shear stress (CRSS)

In this work, the minimum energy path (MEP) is examined with the equilibrium core-widths (§gp, §0TP) to find the triangular tra-
jectory that allows the robust intermittent movement of Shockley partials but limits either trailing or leading partial while the other
moves. Therefore, the triangular trajectory can be more energetically favorable than the Fourier-series that was proposed in the
original work. The positions of Shockley partials (s1,s2) are described by the following equations along with the triangular trajectory,
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Fig. 2. The ab-initio calculation of Critical Resolved Shear Stress (CRSS) using set-up input parameters, (a) total energy landscape, and positions of
Shockley partial dislocations. The minimum energy path (MEP), the zig-zag, is denoted as the red line, (b) the enlarged representation for the
triangular MEP, the intermittent motion of partials is denoted. (c) the CRSS is calculated at the maximum slope of total energy along with the OET,
(d) stacking fault width d is in the zig-zag motion with Ad. These are the results for one of hypothetical materials, which has (a = 3.67 A, C;; = 285
GPa, C2 = 155 GPa, Cqq = 95 GPa, yys = 230 mJ/m?, yiss = 105 mJ/m?).

s =s) +% (Z‘+;Ck(l P(wa'))>

(10)

52_5g+\}§(—t+;Ck(1 _P(Cﬂ’j)))

where t is a path variable to parametrize the trajectory. P(Cp,j) is the triangular pulse generator and j is a pulse-variable, which are
defined as,

t t

j=—+C,— | =+GC, 11

J Cq+ " L%+-,J (11)
0 forj <0
J f .
ol or0<j<C,

PCu)=1{"] _. 12)
17] for G, <j<1
0 forj>1

where the lower bracket of |x| is a floor function |x|. = max{X € Z : X < x}, and the parameter combination (Ci,...,Cs,Cp,C,) defines
a shape for a triangular path of positions of Shockley partials. The cumulative total energy along with the path given in Eqn. (10) is
accordingly defined as the following objective function,
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Table I
Variable descriptions of parametric study on the CRSS for individual materials’ fingerprints. As one parameter is varying, the others are fixed with the
given values for simplicity. Corresponding results are depicted in Fig. 3.

Varying material constants Fixed material constants

Lattice constant, a Yus = 230 mJ/m? Yist = 105 mJ/m?> u = 65 GPa C44 = 95 GPa
Unstable stacking fault energy, yus a=362A Yist = 25 mJ/m? u=65 GF;a C44 = 95 GPa
Shear modulus, u = (Cy7 - C12)/2 Yus = 230 mJ/m? Yist = 105 mJ/m? a=3.62A Ca44 = 95 GPa
Elastic modulus, Cy44 Yus = 230 mJ/m? Yist = 105 mJ/m? a=362A u = 65 GPa
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Fig. 3. Results of the CRSS based on the analytic MCS framework for each parameter of (a) lattice constant a, (b) unstable stacking fault energy yus,
and the elastic moduli of (¢) u = (Cy; - C12)/2, and (d) Cy4. Each inset figure represents the relation between each parameter and the corresponding
equilibrium core-width of the trailing partial (£3,).

Epalh (Ch ceey Cm Cp: Cq) = EEloml (Sl (t[)7 Xz(t[), 52127 5(7)'12 ) (13)

The number of periodic functions is simply set to n = 1 sufficient to capture the MEP. The roles of path parameters such as t and (C;,C,,
C,) can be also understood with the equilibrium point found at t = 0 for (s9,s3) with C; = 0, which is the amplitude of triangular path.
Cp and C, are a peak position and a period of the triangular path, respectively. The triangular pulse generator P(C,,j) is demonstrated
with triangularPulse in MATLAB. The equilibrium parameters (&2, 75,59, 59) are employed along with the triangular trajectory
described by Eqn. (10), and the minimization routine in Eqn. (13) is implemented with fmincon and multiple initial points (MultiStart)
in MATLARB to find the corresponding MEP.
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Conventionally, the CRSS has been calculated using Peierls-Nabarro (PN) model (Joos and Duesbery, 1997; Nabarro, 1947; Peierls,
1940), taking only the misfit-energy based on one-dimensional simple-cubic row-summation. Thus, it is expressed as,

L dE i
CRSSPN =max| -——— (14)
b]: du

Epipe

where by is the magnitude of the full dislocation, (w) =3 »_  _y(f(md —u))d,y is the GSFE curve, f is the disregistry function

given by equation x, and d is interplanar spacing perpendicular to the dislocation line (i.e. along x; refer Fig. 1), respectively.
However, the PN model has the following limitations in the determination of the CRSS within extended dislocations: (i) the individual
Shockley partials are assumed to move simultaneously with a constant stacking fault width, (ii) the CRSS is assumed to be dependent
on the full Burgers vector by only, not on the partial Burgers vector by, and (iii) solely misfit-energy is considered based on the one-
dimensional simple-cubic row-summation. In this study, we adopt the optimum-energy-trajectory (OET) approach for the CRSS
prediction that resolves these challenges in their entirety based on total energy Eioq;(é1p,Eqp, S1,52). For more detailed coverage of the
OET approach and its derivation reader is referred to the original work suggested by Mohammed-Celebi-Sehitoglu (MCS) (Mohammed
et al., 2022). Following this approach, the CRSS is computed as,

1 i dEmml )

(SFip - s,(t) — SFrp - 5,(t)) b, dt (1>

CRSSycs = SFr - max<

where b, is the magnitude of the Burgers vector in Shockley partials, and SFr = (V - ﬁslip)(V . BF), SFip = (v- ﬁslip)@ . ELP), SFrp = (v -
ﬁslip) - BTP) are Schmid Factors (SFs) resolved in the full extended dislocation, leading, and trailing partials, ¥ is the unit vector along

uniaxial tensile load direction [132], and ng;, = 1/v/3[111] the normal vector to the slip plane, respectively.

Fig. 2 represents one example case obtained based on the framework with the triangular MEP described in Eqn. (10). The input
parameters are set as a = 3.67 A, C11 = 285 GPa, C;5 = 155 GPa, C44 = 95 GPa, yys = 230 mJ/m?, Yist = 105 mJ/m?. In Fig. 2(a), the
total energy contour, along with the positions of Shockley partials (s;,s2) is shown with the optimized MEP (red line). Based on the
minimization in Eqn. (9), the equilibrium core-widths (£%,, £%,) of Shockley partials yield &2 = 5.86 A, £, = 4.45 A, and their positions
(5(1’753) are (13.1 10\, 6.18 A) in Fig. 2(b), which results in the equilibrium stacking fault width dy = 19.2 A.In Fig. 2(c), the total energy
trajectory along with the MEP is plotted with respect to the path variable t. Then, the CRSS of the given input parameters finally yields
the CRSS = 11.5 MPa based on Eqn. (15), at the maximum derivative of total energy, which is resolved in its OET. In Fig. 2(d), the
intermittent zig-zag motion of Shockley partials implies a fluctuation in the stacking fault width during motion, d = dy + Ad, and the
magnitude of this fluctuation for the present case is Ad = 0.72 A as dictated by the input parameters. Especially, as the zig-zag stacking
fault variations Ad are highlighted in our previous reference, it is in contrast to a common knowledge that the partials of the extended
dislocation move together. We have the CRSS, core parameters (¢}, &7), stacking fault widths do, and Ad as the outputs from the MCS
framework with six material constants. In this study, we focus on the CRSS and how the material constants dictate it.

2.3. Parametric study on CRSS

To investigate the dependences of input parameters on the CRSS, we extend the range of study for each isolated parameter as the
others are fixed as constants, which are tabulated in Table I. For material stability, the combinations of input parameters are ensured to
have the conditions of i) C1; > 0; C13 > 0; Ca4 > 0, ii) C11 > Cy2, and iii) yys > 7isf, S0 that the simulated materials are theoretically
plausible. Fig. 3 represents the CRSS with the four representative variables, including lattice constant a, unstable stacking-fault energy
Yus, and the moduli of u = (Cy; - C12)/2 and Ca4. In Fig. 3(a), the CRSS exponentially decreases as a increases, and the other hypothetical
parameters are fixed as they are given in Table I. These hypothetical material constants are in the vicinity of the properties of real
materials such as Ni and Cu (see Table S1 in Supplementary materials). In contrast, the CRSS exponentially increases as y,s increases in
Fig. 3(b). The other parameters are fixed as well similarly in Table I. For the elastic moduli, we vary u and C44 instead of Cy;, C12, and
Cya, respectively, in Fig. 3(c) and (d). In the variation of u of Fig. 3(c), C44 is maintained as C44 = 95 GPa, whereas u = 65 GPa in Fig. 3
(d). The CRSS exponentially decreases as both moduli of u and C44 increase. Each parametric dependence on the CRSS arises mainly
from the variation of the core-widths of dislocation (inset figures), since the core-width of trailing partial (£2,) oppositely varies in each
case. The sensitivities of material constants show a comparable influence on the CRSS level (0~80 MPa) as each parameter changes.
The variations in the CRSS have also uncertainties regarding each parameter, although they are dependent on the choice of the
constants. The parametric study in this section is implemented with theoretically fixed other inputs to explore the individual pro-
pensities with the CRSS, although the properties of the practical materials are simultaneously changing in the complex interaction with
each other. Therefore, the pool of input parameters is additionally needed to study randomness for the general prediction of the CRSS
and the inverse design of novel FCC materials.

2.4. Data generation of hypothetical materials

To train the machine learning (ML) based prediction model of the CRSS, we generate the arbitrary combinations of six input
parameters. The pool of input parameters is asserted to have the condition of material stability i) C;1 > 0; C12 > 0; C44 > 0, ii) C11 > C12,
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Fig. 4. Equilibrium core-widths and CRSS of hypothetical materials’ fingerprints based on the MCS framework: (a) Core-widths of trailing versus

leading partial (&%, £2), The schematic of dislocation density is depicted in the schematic inset. (b) the CRSS versus the core-widths of trailing (£7,)

and leading partial (£2,) as a dual x-axis plot.

Hidden layers

Fig. 5. Schematic of the Surrogate Neural Networks (SNN). The SNN consists of fully connected input, hidden, and output layers. The connections of
the SNN include weights and biases to be optimized. A total of six materials’ fingerprints (or features) feed the SNN model; lattice constant (a), three
elastic constants (C;1, C12, C44), and unstable/intrinsic stacking fault energies (yys, yisr)- The output layer is targeted to the CRSS. Calculus of neural
networks is described in the text.

and iii) yus > vist, but we also consider iv) positive intrinsic stacking-fault energy only in this work, i.e. yisf > 0, since the materials with
the negative y;sr have metastability (Li et al., 2014; Li et al., 2022; Werner et al., 2021). Each input parameter is randomly generated in
the practical range of each property, and the pool of input stands for numerous hypothetical materials which may exist but remain
unknown. The range of lattice constant a is set to 2.88 A < a < 6.08 A based on the list of a value of cubic metals in the periodic table
(except Group 1 alkali metals). The range of elastic constants Cy1, C12, Ca4 is set to 80.5 GPa < Cy; < 599 GPa, 45.4 GPa < C;3 < 256
GPa, and 19.4 GPa < C44 < 267 GPa based on the stability conditions and the values of cubic metals which are available in the
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Table II

Ranges for searching hyperparameters of the SNN. All hyperparameters are set in
the common ranges. The range of optimizer is set with stochastic gradient
descent (SGD) and root mean squared propagation (RMSprop) with additional
momentum variable (m), and adaptive moment estimation (Adam). All opti-
mizers have a learning rate (a), and RMSprop and Adam have a Gamma decay
variable (IN).

The number of hidden layers 1~10

The number of neurons of each layer 1~ 100

Weight decay (1) of each layer 10°~107!

Optimizer SGD(a, m)
RMSprop(a, m, I')
Adam(a, m, I')

Learning rate (o) 103 ~10"

Momentum (m) m: 0.85 ~ 0.99

Gamma decay (I") I:0.85~ 0.99

literature (Simmons and Wang, 1971; Soderlind et al., 1993; Wills et al., 1992). The stacking-fault energies are less available with the
number of reported data (Alkan et al., 2018; Celebi et al., 2022a; Kibey et al., 2007), and we have 81.3 mJ/m? < Yus < 450 mJ/mz, and
2.1 mJ/m? < i < 330 mJ/m?. The pool of input parameters of hypothetical materials is made of 1000 sets, randomly chosen from
each parameter’s range above. The distributions of input data pool are represented within each parameter in Appendix A in Fig. A1. We
acquired 976 results from them, including the CRSS, the equilibrium core-widths, and the MEP of Shockley partials using the MCS
framework. This pool of 976 hypothetical materials data is represented in Table S2 in Supplementary Materials and applied to train the
ML model in Section 2.5.

Fig. 4 represents the correlations between the equilibrium core-widths (&%,, £2,) and the CRSS of 976 fingerprints of hypothetical
materials made of random input parameters. In Fig. 4(a), all the core widths of leading partial (£2,) are larger by 1.2 times on average
than the ones of trailing partial (£2,), which recalls the non-symmetricity of the core-widths for mixed dislocation dissociation (see
inset figure). It stems from the non-symmetric strain fields of the LP and TP due to the cubic anisotropy and the character of the
dislocations. In Fig. 4(b), the CRSS corresponding to £, of hypothetical materials are represented. The CRSS exponentially changes in
general as &9, varies, but the deviations are found at the low-to-middle level of the CRSS. This may come from the non-symmetricity of
core structures in the mixed dislocation character. For 60' mixed dislocation, the difference between £, and &7, becomes larger as &%,
increases. Therefore, using the MCS framework, we generate a number of the CRSS data that hold the non-symmetric character of 60°
mixed dislocation.

2.5. Surrogate Neural Networks (SNN)

In this work, we use the ML approach to model the CRSS of FCC materials with neural networks based on the MCS framework. Total
976 data of hypothetical materials’ fingerprints and their CRSS are applied to the Surrogate Neural Networks (SNN). In this step, the
SNN model is optimized using its hyperparameters. In Fig. 5, the schematic of the SNN is illustrated. The input layer consists of the six
material’s fingerprints (a, C11, C12, C44, Yus, and yisf) into each numerical neuron (node). Each layer is fully connected to the other with
the corresponding number of neurons, which have initial weights and activation functions to calculate the numeric in the next layer.
Then, all the hidden layers and the output layer repeat this calculation in the forward direction. Details of the general neural networks
can be found elsewhere (Goodfellow et al., 2016; Krose and Smagt, 2011; Miiller et al., 1995), and we summarize the calculus of neural
networks here. The forward propagation of the numeric can be represented as,

F =W (16)

where Wk is weight tensor, b bias vector, z* intermediate output in a layer k, respectively. y can be regarded as the output from
previous layer (k-1) or the input of current layer (k), which is transformed by activation function (f) based on the intermediate output
(25 as follows,

¥ =) 17)

and the final output layer calculates a loss (error) between prediction and ground truth for the target such as the CRSS. Based on the
loss, all the layers adjust back W* and b* between their neurons. Then, this back-propagation can be established as,

y y

WD w0 — (OS5 | y (18)
oW(I) y

i
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Table III
Hyperparameters for the optimized SNN. The number of neurons and
weight decays (1) are tabulated in each row.

The number of hidden layers 4
1st hidden layer 84, 1=2.67x107°
2nd hidden layer 45, 1=7.67x10"2
3rd hidden layer 60, 1=1.46x107°
4th hidden layer 91, 1=1.49x1073
Output layer 1, 1=1.30x10"*
Optimizer RMSprop(a, m, I')
Learning rate (o) o 2.41x10°4
Momentum (m) m: 0.89
Gamma decay (I") I: 0.96
10°+ ° Hypothetical materials (976) L9
2 ® Pure metals (12)
H > Binary alloys (31) ;S
@ é 103+ * High entropy alloys (14) 5 4
5z
A Z 10 E
=
B 1
> 10'F 3
Z
Z
xR0l i
v 10 s 2
z 3 RS . =941%
O g train
2 o
-1L = N i
10 R} =933%
! 10 10! 10 10° 10*
CRSS MPa Calculation
MCS [ b Based on Theory

Fig. 6. Prediction of CRSS using the optimized SNN model; CRSS of the SNN prediction versus the raw data from the MCS framework. Hypothetical
materials are used in training the SNN, and known materials are test datasets (red) including FCC pure metals, binary, and high entropy alloys.

where a is learning rate, and Loss is loss function to be defined, respectively. The weights ijl) and biases bgl) in the number of neurons in

previous (i) and current layer (j) are updated in an iteration L. In this work, we apply weight decay (1), which is a regularization variable
to better balance the model between overfitting and underfitting (Krogh and Hertz, 1992). Then, these whole forward- and
back-propagations (double arrows in Fig. 5) are implemented in repetition for the given number of epoch(s).

The SNN is then optimized with respect to the weights using hyperparameters such as the number of hidden layers, the number of
neurons and weight decay (1) of each layer, and optimizer and its variables. In this work, we search for the best optimizer among
stochastic gradient descent (SGD), root mean squared propagation (RMSprop), and adaptive moment estimation (Adam). Details of the
optimizers’ algorithms can be found elsewhere (Goodfellow et al., 2016). They have a common variable of learning rate («), which is
crucial to balance fitting losses. The other optimizers and their additional variables stand for adaptive modulation of a. RMSprop and
Adam have a gamma decay (I") that manipulates a moving average in gradients of the Loss by rescaling . Adam has also a momentum
(m) controller that can accelerate the minimization by considering past gradients of the Loss. SGD and RMSprop are also combined with
m in this work. Although common ranges of these hyperparameters have been studied well, the best choice of them in different
problems remains an empiricism. Therefore, we search for the optimum hyperparameters in the range given in Table II. The SNN
models in the searching loops were constructed using the Keras and TensorFlow (Abadi et al., 2016; Chollet, 2015). We optimized the
hyperparameters of the SNN models using the Optuna (Akiba et al., 2019). The activation functions for the hidden and output layers
are respectively defined as the rectified linear (ReLU) and linear units. The output loss function is chosen as mean-squared-error (MSE)
described in the following equation,

N

1 -
Loss = N Z o —73,) (20)

r=1
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Fig. 7. (a) 5-axis spider-chart representation of a single material’s “fingerprint” that consists of five continuum-atomistic properties: (a, i, C4, Yus,
and y;s); From the innermost to outermost regular pentagon, a varies from 2.88 A t06.08 A, u from 5.05 GPa to 274 GPa, C44 from 19.4 GPa to 267
GPa, vy, from 81.3 mJ/m? to 450 mJ/m?, and ;s from 2.10 mJ/m? to 330 mJ/m?. Tick of each axis is linearly spaced by gray regular pentagons
with a (0.53 10\), 1 (44.9 GPa), C44 (41.3 GPa), y,s (61.4 mJ/m?), and vist (54.7 mJ/m?); each material can be represented as a pentagon in this 5-axis
chart and the pentagon is color-coded with the predicted-CRSS corresponding to this fingerprint; the most inner and outer pentagons are respec-
tively the minimum and maximum of each property; a plot of FeNiCoCrMn with (a = 3.6 A, u = 34.5 GPa, C44 = 165 GPa, y,s = 439 mJ/m?, and Yist
= 8 mJ/m?) is shown. (b) Plot of the complete dataset generated from predictions of analytical MCS model (contains 1033 material-property
fingerprints and the corresponding CRSS). (c) Plot of material fingerprints (alluded to in the main text) exhibiting the highest and the lowest
CRSS predictions from the analytical MCS model. (d) Plot generated from SNN predictions (including all 1033 fingerprints from (c)); the developed
SNN model captures the predicted behavior from the analytical MCS model.

where N is the number of data, y, and y, are the predictions and ground truths for the target. The target output in the SNN modeling is
logarithmically scaled to consider the wide range of the GRSS (10”2 ~ 10* MPa). A total of 976 data are divided into training (90%,
878) and validation sets (10%, 98), and the losses for both sets are recorded. Here, the training set is utilized to minimize the Loss and
thus update W* and b* in each epoch. The validation set is not used for the update but is utilized to evaluate the model in each epoch. It
has different input and output data split by 10% from the total set, so the Loss of the validation set at the final epoch is used to search for
the SNN as the optimum. The optimum hyperparameters are selected at which the lowest validation Loss has been found. Within 1000
epochs as the maximum for all searching trials (300), the hyperparameters of the optimized SNN are constructed in Table III. Its
convergence of the MSE loss has been also monitored as depicted in Fig. B1 of Appendix B. Based on the optimum SNN, therefore, we
investigate its performance of predictions.

Fig. 6 represents the predictions of CRSS based on the optimized SNN. We calculate the accuracies of the SNN predictions based on
the coefficient of determination (RZ), which is defined as,

N 2
RR—1_ 20 —73) 21
ervzl(yr _y)z

where y is the average of ground truths for the CRSS. A total of 976 hypothetical FCC materials are inherent in the SNN model with
94.1% of high accuracy. The ground truths and SNN predictions of the CRSS are tabulated in Table S2 in Supplementary Materials.
However, it may not be generalizable for numerous real unknown materials. In this work, we implement the evaluation of the SNN
with a test set, which has independence from training and validation sets (hypothetical materials - 976). In order to test and generalize
the SNN into real materials, we acquired fingerprints of numerous FCC metals and alloys whose all six input parameters may be
compatibly available. Total 57 FCC samples, including 12 pure metals (Collard and McLellan, 1992; Kibey et al., 2007; Neighbours and
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Smith, 1954; Simmons and Wang, 1971), 31 binary alloys (Bandyopadhyay and Gupta, 1977; Celebi et al., 2022a; Leamy and War-
limont, 1970; Li et al., 2014; Siegel, 2005), and 14 high entropy alloys (Li et al., 2022), were investigated and solved into the analytic
MCS framework to compare to their predictions. Some pure metals have different reported unstable/intrinsic stacking fault energies
(yuss Visp) (Li et al., 2014). However, both the MCS and SNN models can yield different CRSS levels that correspond to different y,s and
vist- It implies that both the MCS and SNN models can encompass the discrepancies over the same materials by users. Each accuracy on
a different FCC class is listed in Table S3 in Supplementary Materials, and the overall accuracy is 93.3% on the test datasets of all FCC
metals and alloys. This indicates the high resolution of prediction of the CRSS in general FCC materials via the SNN.

3. Discussion

The current study demonstrates three points: 1) the availability of a large data acquisition of the CRSS as well as the parameters of
core structures such as &2, £2,, and stacking-fault widths do, and Ad from the novel ab-initio CRSS framework which have not yet been
found elsewhere, 2) the characteristics of which the combinations of materials’ fingerprints dictate the CRSS, and 3) the SNN model
that can rapidly predict the CRSS and have similar implications of their characteristics from the theory. The existing studies have
mainly demonstrated limited experimental or theoretical analyses for the CRSS and the mixed characters of dislocation slips. Based on
the analytic MCS framework, we showed the advancements in the CRSS as well as the properties of core structures (&5, £%), the
stacking-fault widths dy, and their variations Ad in the mixed character of dislocation. Especially, using hypothetically random
combinations of the fingerprints, we also found the magnitude of non-symmetricity of the equilibrium core-widths and the relationship
between the core-widths and the CRSS in Fig. 4. This may state the general characteristics of the mixed dislocation slip in FCC ma-
terials. Further calculations in the different mixed characters are available within the MCS framework.

With a large dataset of hypothetical materials’ fingerprints, we can also narrow down the combinations of the characteristics that
strongly dictate the CRSS. In Fig. 7, we illustrate the spider charts that consist of 5-axis with respect to five materials’ fingerprints (a, y,
Ca4, Yus, and visf). Thus, each material can be represented as a pentagon in this 5-axis chart, and the pentagon is color-coded with the
CRSS corresponding to its fingerprint. In Fig. 7(a), a middle level of CRSS and its material’s fingerprint are depicted for one of the high
entropy alloys (HEAs), FeNiCoCrMn. Its CRSS is 318.4 MPa based on the analytic MCS framework, and it has low lattice constant (a),
shear modulus (u), intrinsic stacking fault energy (yisf), and high unstable stacking fault energy (yys), as each value is alluded to in
figure. Fig. 7(b) and (c) can explain more details on the characteristics of the level of the CRSS. In Fig. 7(b), the CRSS (colors of
pentagons) increases with low a, u, and C44, and high ys. This is a similar trend verified with the simple combinations of parameters by
varying only 1 parameter at a time in Fig. 3, and we identify it in an extended large dataset with random hypothetical materials as well
as real ones. These distinct correlations between the CRSS and a, y, and Cy44 are uncovered in this work, while the dependence of only
yus Was known in general. Based on the parametric study in Fig. 3, we can deduce that the dependencies of a, u, and C44 on the CRSS
stem from the equilibrium core-widths (&2, £%). Specifically, the decreases in the elastic moduli y and Cy4 result in a narrower &, and
&%,, which are mediated by the strain energy between two partials and the misfit energy of the lattice slip plane. The lower elastic
moduli increase the repulsive strain energies in the interaction of two partials while they decrease the misfit energies, and hence the
dislocation cores become narrowly concentrated. The dependency of a on the CRSS is also similarly related to &, and &2,, but a can
derive the higher or lower repulsive strain energies in the interactions of two partials and misfit energies by a differently being spaced.
Then, this would correspondingly change &2, and £%,. With respect to yys, its dependency has been clear that its increase results in a
higher energy barrier to move the dislocation slip, which dictates the higher CRSS. The findings in this work also suggest the effect of
the narrower £, and &9, underlying behind this correlation.

The maximum (the reddest pentagon) and minimum (the bluest) CRSS and their fingerprints are depicted in Fig. 7(c). The
extremely low and high levels of CRSS are mostly covered with hypothetical materials. The maximum CRSS is 9755 MPa with a
hypothetical fingerprint of a = 3.16 A, u = 5.80 GPa, C44 = 32.9 GPa, vy = 430 mJ/m?, and yi¢ = 161 mJ/m?, while the minimum
CRSS is 0.0694 MPa with a hypothetical one of a = 5.67 A, u = 270 GPa, C44 = 150 GPa, y,s = 105 mJ/m?, and Yist = 37.6 mJ/m?.
Therefore, the HEA FeNiCoCrMn is at the middle level of CRSS in the given scale since it has low a, i, and high vy, but high C44, which
generally reduces the CRSS. Based on the consideration of the core-structures, the hypothetical material with the maximum CRSS and
the HEA FeNiCoCrMn have much narrower £, and &7, (0.632 A, 0.418 A) and (2.96 A, 2.10 A), respectively, rather than the one with
the minimum CRSS (60.1 A, 56.3 A). Therefore, the core-widths £2, and &2, mediated CRSS behavior is confirmed with the reduced
materials’ fingerprints. Also, because of the widely selected fingerprints in randomness, the characteristics of their combinations
dictating CRSS may also hold for the general FCC materials. Hence, this analysis can stand for the inverse design of the CRSS in large
compositional ranges of novel FCC materials.

For the rapid prediction of the CRSS, which is almost instant after learning, we showed the optimized SNN in the high accuracies in
Fig. 6. This is comparative with the analytic MCS framework itself mostly taking hours at every single material, because of its low
tolerance and manual validity of the MEP of Shockley partials. In Fig. 7(d), we also represent the spider-chart of the SNN predictions of
CRSS with respect to five fingerprints. In this high-dimensional space, the SNN covers well the characteristics that come originally from
the analytic MCS framework. It is also given the higher CRSS with the combinations of low a, i, and C44, and high y,s. Therefore, with
the purpose of the design of mechanics and materials for the CRSS in FCC materials, the SNN model can readily guide us to investigate
the material’s fingerprints corresponding to the target CRSS without heavy computations. To design the CRSS higher than the HEA
FeNiCoCrMn (318.4 MPa), for instance, one may expect numerous potential materials with smaller a, u, and/or C44 based on the
spider-chart without any sophisticated consideration of the core-widths, and the strain and misfit energies. They can be experimentally
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tailored even with small changes in solute concentration in FeNiCoCrMn (Tian et al., 2013). Then, one can instantaneously guess their
accurate CRSS using the SNN rather than the analytic framework. With the properly trained SNN providing instant forward functional
evaluations, uncertainty quantification and sensitivity analysis can be studied as well in the future. We note that the SNN in this study
aims at the CRSS only as an output for a simple purpose. One may further extend the procedures to the parameters of core structures
égp, and Z,‘OTP, and stacking-fault widths dy, and Ad with various mixed characters of dislocation slips. It is also a worthwhile work in the
future to apply the similar approach combined with the modified MCS frameworks such as for both HCP and FCC materials and for
low-to-finite temperatures.

4. Conclusion

In conclusion, the current study demonstrates a machine learning (ML) model of critical resolved shear stress (CRSS) of mixed
dislocation slip based on a large dataset acquired from novel ab-initio frameworks. The following conclusions are drawn from the
study:

a Triangular trajectories describe that the intermittent motions of dislocations occur for all materials. Their minimum energy paths
(MEPs) give us a clear zig-zag nature of leading and trailing of Shockley partials movement, and therefore the stacking fault width
variations. Depending on the material constants, the amplitude of zig-zag can be largely varied.

b Alarge dataset has been constructed using the analytic frameworks, including more than 1000 of the CRSS and the corresponding

materials’ fingerprints such as lattice constant a, unstable/intrinsic stacking-fault energies yys, yisr, and three elastic moduli Ci;,

Ci2, and Cy44. Dataset comprises hypothetically random combinations of the materials’ fingerprints, and it may generally rule out

the characteristics of dislocation slips in FCC materials.

Dataset also has the other outputs of equilibrium core widths for leading and trailing partials (&2, £,), and equilibrium stacking-

fault widths dy, and their variations Ad in the triangular MEPs. The parameters of the equilibrium states have been determined with

respect to the total energy landscape in the ab-initio frameworks. The similar procedure to this study can be further extended to
these parameters as well.

d The core-widths (&5, &%) of Shockley partials have non-symmetricity that &2, is generally larger by 1.2 times than £9,, since the
non-symmetric strain fields result from the cubic anisotropy and the mixed character of dislocation. The CRSS exponentially de-
creases as the £, increases, but it scatters in the low-middle level of the CRSS, probably because of the non-symmetricity of the core
widths.

e ML-based Surrogate Neural Networks (SNN) have been modeled to readily predict the CRSS. The SNN is trained with a large dataset
of hypothetical materials (976) and optimized using multiple hyperparameters. The optimized SNN is then tested with the real
materials (57), including pure metals, binary, and high entropy alloys (HEAs). The SNN results in high accuracies on both hy-
pothetical (94.1%) and real materials (93.3%).

f The CRSS exponentially increases as a, shear modulus u = (Cy1;1 - C12)/2, and Ca4 decrease and/or vy,s increases for general FCC
materials. These correlations are mediated by the change of (¢2,, £2,) and it stems from the changes of repulsive strain energy and
misfit energy. The real materials, including the HEAs such as FeNiCoCrMn, are at the middle level of CRSS with the range of 10! ~
102 MPa. These characteristics are precisely demonstrated in the optimized SNN without any calculations of core-widths and
energies.
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Appendix A. Input data pool of hypothetical materials

The pool of input parameters has the condition of material stability i) C1; > 0; C12 > 0; Ca4 > 0, ii) C11 > Cyo, iii) yus > visr, and iv)
positive intrinsic stacking-fault energy y;sf > 0. Each input parameter is randomly generated in the practical range of each property,
and the pool of input stands for numerous hypothetical materials which may exist but remain unknown. In Fig. A1, the range of lattice
constant a is set to 2.88 A < a < 6.08 f\, elastic constants Cy7, C12, C44 to 80.5 GPa < C1; < 599 GPa, 45.4 GPa < C1, < 256 GPa, and
19.4 GPa < Cy44 < 267 GPa, and stacking-fault energies yys, yisf to 81.3 mJ/m? < yus < 450 mJ/m?2, and 2.1 mJ/m? < yi¢ < 330 mJ/m?.
The pool of input parameters of hypothetical materials is made of 1000 sets, but we acquired 976 results out of them, including the
CRSS, the equilibrium core-widths, and the OET of Shockley partials using the MCS framework.
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Fig. A1. Number of data distributions of input parameters used for the CRSS of hypothetical materials; (a) lattice constant, a, (b) unstable stacking
fault energy, yus, (¢) shear modulus, 4 = (Cq;1 — C12)/2, (d) elastic modulus, Cyq4.
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Appendix B. Convergence of loss function of neural networks

With the maximum searching iterations (300) for the ranges of hyperparameters tabulated in Table I, the optimum hyper-
parameters are selected at which the lowest validation Loss has been found using the Optuna (Akiba et al., 2019). Within the maximum
1000 epochs for all searching iterations, the hyperparameters of the optimized SNN are tabulated in Table III. Fig. B1 represents the

convergence of the MSE losses that are normalized by & SN (r — ¥,)* where ¥, is the average of ground truth. The normalized MSE

N T2
loss will be reduced to the form of % as a unit less feature. A total of 976 data are divided into training (90%, 878) and
N
validation sets (10%, 98), and the losses for both sets are recorded. At the final state of learning, the SNN has 1.17%, and 2.19% of
training and validation errors. This means the SNN may have less amount of errors in hypothetical materials and potentially unknown

data. Therefore, the optimized SNN has been balanced well between overfitting and underfitting.
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Fig. B1. Normalized loss function convergences for training and validation. Loss histories are obtained from the RMSprop optimizer based on the
hyperparameters tabulated in Table III of the main text.
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