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CLIMATOLOGY

Last Glacial Maximum pattern effects reduce climate

sensitivity estimates
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Here, we show that the Last Glacial Maximum (LGM) provides a stronger constraint on equilibrium climate sensi-
tivity (ECS), the global warming from increasing greenhouse gases, after accounting for temperature patterns.
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Feedbacks governing ECS depend on spatial patterns of surface temperature (“pattern effects”); hence, using the
LGM to constrain future warming requires quantifying how temperature patterns produce different feedbacks
during LGM cooling versus modern-day warming. Combining data assimilation reconstructions with atmospheric
models, we show that the climate is more sensitive to LGM forcing because ice sheets amplify extratropical cooling
where feedbacks are destabilizing. Accounting for LGM pattern effects yields a median modern-day ECS of 2.4°C,
66% range 1.7° to 3.5°C (1.4° to 5.0°C, 5 to 95%), from LGM evidence alone. Combining the LGM with other lines of
evidence, the best estimate becomes 2.9°C, 66% range 2.4° to 3.5°C (2.1° to 4.1°C, 5 to 95%), substantially narrow-

ing uncertainty compared to recent assessments.

INTRODUCTION
Equilibrium climate sensitivity (ECS) is the steady-state response of
global mean near-surface air temperature to a doubling of atmospher-
ic CO; from preindustrial levels. ECS is a focus of climate policy and
projections because it governs Earth’s long-term response to anthro-
pogenic greenhouse gas changes (I, 2). Recently, the World Climate
Research Programme’s 2020 climate sensitivity assessment, hereafter
“WCRP20” (1), updated the 66% “likely” range for ECS to 2.6° to
3.9°C (2.3° t0 4.7°C, 5 to 95%) with a central estimate of 3.1°C, which
informed the “likely” range of 2.5° to 4.0°C (2.0° to 5.0°C, “very likely”)
and central estimate of 3°C in the Intergovernmental Panel on Cli-
mate Change's Sixth Assessment Report (“IPCC AR6”) (2). This nar-
rowing of uncertainty compared to previous assessments was achieved
by quantitatively combining evidence from process understanding of
climate feedbacks, observations over the historical record (1870 to
present), and paleoclimate reconstructions of past cold and warm pe-
riods. Of these lines of evidence, paleoclimate data from the Last Gla-
cial Maximum (LGM), approximately 21,000 years ago, provide a
leading constraint on the upper bound of ECS (I-3).

Using paleoclimate data to constrain modern-day ECS requires
accounting for how climate feedbacks change across different climate
states (1, 2, 4-9). The standard assumption is that colder climates are
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less sensitive (i.e., have more-negative feedbacks) than warmer states
(1, 2, 5-9). However, the simple assumption that feedbacks change
with global mean temperature does not account for how feedbacks
depend on changing spatial patterns of sea-surface temperature
(SST), a phenomenon known as the SST “pattern effect” (10-15).

A robust understanding of the SST pattern effect has been devel-
oped in the context of recent warming. Over the past century, SSTs have
warmed more in the tropical west Pacific and less in the east Pacific and
Southern Ocean (12, 16, 17). SST changes in tropical regions of deep
convection (e.g., the west Pacific) produce strongly negative (stabiliz-
ing) feedbacks, whereas SST changes in regions with reflective low
clouds (e.g., the east Pacific) or sea ice produce relatively positive (desta-
bilizing) feedbacks (11-15, 18). This transient pattern of SST trends is
expected to reverse in the future as the tropical east Pacific and Southern
Ocean eventually warm at higher rates, producing more-positive feed-
backs and a more-sensitive climate at equilibrium (15, 19, 20). Accounting
for this transient pattern effect causes the historical record to become a
weak constraint on high values of ECS (I, 2, 16, 17, 21), leaving the
LGM as a leading constraint on the ECS upper bound (1).

However, pattern effects have not been accounted for in LGM evi-
dence for modern-day ECS (1-3, 5, 22). If the spatial pattern of SST
change in equilibrium at the LGM differs from the pattern of future
warming, then the climate feedbacks governing climate sensitivity
will differ as well. Continental ice sheets are responsible for approxi-
mately half of the total LGM forcing (3, 23, 24) and drive distinct cli-
mate responses from changes in topography, albedo, and sea level (23,
25-30), suggesting that patterns of SST change at the LGM may differ
substantially from those in response to a modern-day doubling of
CO,. Previous work acknowledged this possibility (1, 2) but did not
account for LGM pattern effects because no quantification had yet
been made. A key question is, would accounting for LGM pattern ef-
fects strengthen or weaken constraints on modern-day ECS?

Here, we quantify the LGM pattern effect and its uncertainty by
leveraging two recent advances. First, with the advent of paleoclimate
data assimilation (31I), spatially complete reconstructions of SST
and sea ice now exist for the LGM (3, 32-34), including estimated
uncertainties. Second, recent progress in quantifying pattern effects
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(16, 17) provides methods using atmospheric general circulation
models (AGCMs) to link SST patterns to climate feedbacks. These ad-
vances present an opportunity to compare SST changes at the LGM
with those expected under anthropogenic CO, forcing and to quan-
tify resulting differences in climate feedbacks and sensitivity. To assess
the robustness of our results, we use five AGCMs (sampling uncer-
tainty in how feedbacks relate to SST patterns) and four reconstruc-
tions (3, 32-34) of the LGM (sampling uncertainty in SST patterns).

Dependence of modern-day ECS on pattern effects
ECS and climate feedbacks are connected through the standard model
of global mean energy balance
AN =)AT + AF (1)
where N is the top-of-atmosphere radiative imbalance; A is the net
climate feedback (negative for stable climates); T is the near-surface
air temperature; and F is the “effective” radiative forcing, i.e., the
change in net downward radiative flux after atmospheric adjustments
to imposed perturbations but excluding radiative responses to chang-
ing surface temperature (1, 2). Differences (A) are relative to an equi-
librium reference state, e.g., the preindustrial period. When the
forcing is a CO, doubling (2xCO,) of preindustrial values, and the
climate system reaches equilibrium (AN = 0), the resulting AT is
referred to as the ECS
ECS = _AF2X /}\’2)( (2)
where AF is the effective radiative forcing (ERF), and A is the net
feedback for 2xCO,. More-negative values of A, indicate a less-
sensitive climate (lower ECS).
Here, we aim to quantify the difference in feedbacks (AM) operating
in the modern climate under 2xCO, (Ayy) and at the LGM (Argm)

AA =My — Mgu

Following recent research on pattern effects in the historical record
(1, 16, 17), we estimate Ay and Ay gy using AGCM simulations with SST
and sea-ice concentration (SIC) prescribed as surface boundary condi-
tions. We further evaluate the contributions to AA from pattern effects
and global mean temperature changes between the LGM and 2xCO,.

To infer the modern-day ECS from LGM evidence, Egs. 2 and 3
can be combined (1, 16) to yield

— AF,,

Mo + Ar

ECS = 4)

where A[ ., is the estimate of the unadjusted LGM feedback (deter-
mined using Eq. 1 applied to that state), which we take from previous
assessments (I1-3), and AA is estimated from our AGCM simulations.
The value of A\ depends on spatial patterns of LGM SST and SIC
anomalies, for which we use state-of-the-art reconstructions (3, 32—

34) based on data assimilation.

RESULTS

Using data assimilation reconstructions to quantify

pattern effects

Similar to Bayesian statistics, paleoclimate data assimilation (31) be-
gins with a “prior” estimate of the climate state from model ensembles.
Proxy data provide indirect climate observations that update the prior,
balancing relative error in the prior and the observations. This results
in a “posterior” state estimate, constrained by observations and ac-
counting for uncertainty in priors and data. Since the posterior is
sensitive to priors (35, 36), proxies, and methods, we sample this un-
certainty by using multiple reconstructions.

Figure 1 shows the four SST reconstructions (Materials and Meth-
ods) we use to quantify the LGM pattern effect. All four reconstruc-
tions have a prominent common feature: amplified extratropical
cooling in both the North Pacific and North Atlantic Oceans. While
the LGM reconstructions differ in other regions that are important for
climate feedbacks, e.g., the tropical Pacific (11-15) and Southern

LGM mean

o
ASST / |ASST

Fig. 1. Patterns of SST anomalies from data assimilation at the LGM compared to modern-day doubling of CO, (2xCO,). LGM reconstructions include (A) LGMR (32),
(B) Amrhein (34), (C) IgmDA (3), (D) Annan (33), and (E) shows the mean of the four LGM patterns. (F) Pattern of the multimodel mean from near-equilibrium 2xCO, simu-
lations in LongRunMIP (39), initialized from preindustrial control. To show SST patterns, local SST anomalies are divided by absolute values of global mean SST anomalies.
All panels show annual means. LGM reconstructions are infilled to modern coastlines (Materials and Methods).
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Ocean (19, 37, 38), their robust agreement in the northern extratropics
proves to be essential for the LGM pattern effect. The zonally consis-
tent maximum near 40°N in SST anomalies at the LGM is in strong
contrast to the near-equilibrium response to modern-day 2xCO,
(Fig. 1F and fig. S1) as simulated by climate models in LongRunMIP
(Materials and Methods) (39), suggesting the potential for feedbacks to
differ between LGM and 2xCO, climates. Using data-constrained pat-
terns to quantify how LGM feedbacks compare to feedbacks in 2xCO,
is an advance over past comparisons (all based on models), which have
produced conflicting results (text S1) (22, 23, 40-44). While our meth-
od overcomes the problem of unconstrained SST patterns from
coupled atmosphere-ocean simulations of the LGM, we still rely on
AGCMs to estimate feedbacks and their uncertainties.

We calculate net feedbacks using AGCMs with prescribed SST
and SIC. We first conduct AGCM simulations with a “baseline” pat-
tern representing the preindustrial climate, for which we use SST and
SIC in the Late Holocene (mean of 0 to 4000 years ago) from the
LGM Reanalysis (LGMR) (32). We then perform AGCM simulations
with SST and SIC (Materials and Methods) from 2xCO, in
LongRunMIP (39) and the four LGM reconstructions (3, 32-34)
(SST in Fig. 1; SIC in fig. S2). Last, we calculate global mean AN and
AT in each 2xCO, and LGM simulation relative to the baseline,
which yields net feedbacks as A = AN/AT using Eq. 1. All forcings are
held constant (AF = 0) at modern-day levels across our AGCM sim-
ulations; therefore, all changes in simulated top-of-atmosphere radi-
ation and feedbacks can be attributed solely to SST/SIC differences
(Materials and Methods).

We find that A,y is more negative (stabilizing) than Argy, indi-
cating that the climate system is more sensitive to LGM forcing
than to 2xCO; (Fig. 2). We use the LGMR pattern (Fig. 1A) in five
AGCMs (CAM4, CAM5, CAM6, GFDL-AM4, and HadGEM3-
GC3.1-LL) to evaluate uncertainty from atmospheric model phys-
ics, and we use all four LGM reconstructions (Fig. 1, A to D) in
CAM4 and CAMS5 to evaluate uncertainty from LGM patterns.
This approach is supported by the result that AGCMs tend to re-
produce observed relationships between SSTs and top-of-atmosphere
radiation when observed SST patterns are prescribed (45, 46). The
LGM pattern effect, A\ in Eq. 3, is negative across all five AGCMs
and all four LGM reconstructions. The five AGCMs produce a
mean A\ = —0.40 Wm > K (Fig. 2B; detailed results in tables S1
and S2). We also evaluate uncertainty in the 2xCO, pattern but
find that this is of secondary importance (Materials and Methods;
figs. S3 and S4). Our main result is that the climate is more sensi-
tive to LGM forcing than it is to modern-day 2xCO, forcing
(AM < 0), implying lower estimates of modern-day ECS by Eq. 4,
and this finding is robust despite uncertainties in atmospheric
physics and LGM reconstructions.

DISCUSSION

Physical mechanisms driving LGM pattern effects

For comparison with our feedbacks in AGCM:s driven by LGM recon-
structions, we examine previously published results (23) from AGC-
Ms coupled to mixed-layer “slab” oceans (Fig. 2), which allow SST
changes in response to imposed forcings but exclude changes in ocean
dynamics (47). These mixed-layer model versions of CESM1-CAM5
(23), CESM2-CAM6 (48), and CESM2-PaleoCalibr (49) (using a
modified CAM6), which differ from our AGCM experiments by in-
cluding forcings from ice sheets and greenhouse gases, also produce
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Fig. 2. LGM and 2xCO, climate feedbacks and LGM pattern effect (AL). Different
AGCM:s, all using the LGMR pattern for the LGM, are indicated by symbols; different
LGM patterns (in CAM5 and CAM4) are indicated by colors. Error bars for Annan and
LGMR represent first and fourth quartiles of ensemble members (Materials and
Methods); central values indicate ensemble mean. For comparison with AGCM results
using LGM data assimilation, the following feedbacks (in a mixed-layer ocean coupled
to AGCM) from previous studies are also included: CESM1-CAM5 (23), CESM2-CAM6
(48), and CESM2-PaleoCalibr (49) (modified version of CAM6). (A) Scatterplot of 2xCO,
feedbacks, Ay, versus LGM feedbacks, A gw, With Ao = A.gm sShown as dotted line. (B)
LGM pattern effect, AL = Lyx — Agm, Using feedbacks shown in (A), with AL =0 shown
as dotted line. Note that A includes SST pattern effects and contributions from tem-
perature dependence.

A) < 0. Although disagreements in simulated SST patterns compared
to proxy data suggest that free-running coupled models cannot reli-
ably estimate the value of AA, the coupled models point to mecha-
nisms driving AA that are consistent with the reconstructions and our
AGCM simulations. In this section, we begin by reviewing simula-
tions in coupled models that demonstrate the physical mechanisms
linking patterns of forcing, SST response, and climate feedbacks.
First, we compare zonal mean patterns of ERF and SST changes
from CESM1-CAMS5 simulations (23) under three forcing scenarios:
2xCO; forcing, LGM forcing (ice sheets and greenhouse gases), and
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LGM ice-sheet forcing alone (including coastline changes). The local-
ized ice-sheet forcing causes the amplified SST response in the north-
ern extratropics at the LGM compared to 2xCO, (Fig. 3, A to C).
Explaining the Northern Hemisphere’s response to LGM ice sheets
has been a focus of previous studies, which found that amplified SST
cooling in the northern extratropics is associated with changes in at-
mospheric stationary waves, driven by changes in ice-sheet albedo
and topography (23, 29, 30, 50). Differences in SST responses between
LGM and 2xCO, persist at quasi-equilibrium in a fully coupled
(atmosphere-ocean GCM) version of CESM1-CAM5 (Fig. 3C and
fig. S5). Comparing the fully coupled model’s response (Fig. 3C) to
LGM forcing with the data assimilation patterns (Fig. 3D) that we use
to quantify pattern effects supports the finding that LGM ice sheets
amplify SST cooling in the northern extratropics (23, 29, 30), but this
cooling pattern is more pronounced in proxy reconstructions. The
amplified cooling of extratropical SST, driven by ice-sheet forcing,
causes the LGM feedback to be less stabilizing than the feedback in-
duced by CO, forcing alone.

Decomposing A from our AGCM simulations into component
feedbacks (fig. S6), including results from direct model output and

Forcing in atmosphere-only GCM
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Fig. 3. Zonal mean patterns of ERF and SST anomalies. All anomalies are nor-
malized through division by global mean anomalies. (A to C) Model simulations in
CESM1-CAMS5 from Zhu and Poulsen (23). (A) ERF directly from three fixed-SST
simulations using AGCM with LGM greenhouse gas (GHG) and ice-sheet (Ice) forc-
ing, 2xCO,, and LGM ice-sheet forcing alone (including coastline changes) (23). (B)
Equilibrium SST patterns, corresponding to (A), in the coupled mixed-layer ocean
model. (C) Quasi-equilibrium SST patterns from fully coupled atmosphere-ocean
model, comparing LGM forcings (23) with abrupt-4xCO, forcing (88); no long-run
2xCO, simulation is available. Note vertical-axis scales. (D) Mean and range of SST
patterns from four data assimilation reconstructions (3, 32-34) of the LGM com-
pared to 2xCO, multimodel mean from LongRunMIP (39).
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from radiative kernels (Materials and Methods), shows that short-
wave cloud feedbacks are responsible for much of the negative value
of A\ and for much of the spread across AGCMs. The combined feed-
back from changes in lapse rate and water vapor also contributes to
negative values of AA. While shortwave clear-sky feedbacks from sea
ice and snow are also more positive for the LGM, cloud masking
strongly damps the impact of those LGM feedbacks. Accounting for
cloud masking (51, 52), feedbacks from surface albedo are more posi-
tive in 2xCO,, i.e., contribute a positive A}, offsetting the negative
total AA. Overall, our results align with the previous studies focused
on the historical record that emphasize cloud and lapse-rate feed-
backs in pattern effects (11, 13, 15, 20).

Spatial distributions of feedbacks (fig. S7) clarify the connection
between ice-sheet forcing, SST response, and cloud feedbacks. Where
the SST cooling from LGM ice sheets is amplified in the North Pacific
and North Atlantic, positive shortwave cloud feedbacks are promi-
nent because of increases in reflective low clouds (11-15, 18, 30).
Compared to 2xCO, simulations, LGM reconstructions have rela-
tively small SST anomalies in tropical ascent regions (fig. S1) where
feedbacks are most negative (11-14, 18, 37). However, tropical pat-
terns at the LGM differ across reconstructions, adding to the uncer-
tainty in the LGM pattern effect. Despite these differences in the
tropics, all four reconstructions produce a negative pattern effect due
to the robust amplification of cooling in the northern extratropics.
The role of the northern extratropics illustrates that pattern effects
are not always dominated by the tropical Pacific, distinguishing the
LGM pattern effect from the well-studied pattern effect of the his-
torical period. In summary, the LGM SST pattern produces a less-
negative global climate feedback compared to the 2xCO, SST pattern
and AL < 0.

Separating pattern effects from temperature dependence

of feedbacks

While our explanation for feedback differences between LGM and
2xCO, forcing focuses on SST pattern differences, we also estimate
how AM is affected by global mean temperature within our AGCM
simulations. Our main AGCM simulations (Fig. 2), which determine
our estimate of total AA, include not only the impact of SST patterns
on feedbacks (pattern effects) but also differences in feedbacks
caused by other asymmetries between LGM cooling and modern-
day warming under 2xCO, forcing (temperature dependence). We
consider that

INEIN) + Al

PatternOnly (5)
where Apatternonly is the feedback change due to different patterns of
SST anomalies and Ay is the feedback change due to different global
mean temperatures (T). Recent community assessments (I, 2) assume
that warmer climates are more sensitive (ALl > 0) (5-9, 41), which is
at odds with the total AA < 0 we find for the LGM in AGCMs and
coupled models (Fig. 2).

To separate pattern effects from temperature dependence, we per-
form additional “pattern-only” simulations in CAM4, CAMS5, and
CAMS6 using the LGMR and 2xCO, patterns. For these simulations,
we multiply local SST anomalies by constant scaling factors to yield
global mean ASST = —0.5 K with constant baseline SIC (Materials
and Methods). SST scaling preserves spatial patterns of anomalies but
forces global mean AT to be small and equal across simulations, i.e.,
A1 = 0 in the pattern-only simulations. We then repeat the feedback

40f11

$20T ‘ST ABIAl U0 S10°90UQIOS" MMM //:SANY WOIY papeo[uUMO(



SCIENCE ADVANCES | RESEARCH ARTICLE

calculations, computing AApatternonly 3s in Eq. 3. We estimate the
temperature dependence A)r as the residual difference between the
main and pattern-only AGCM simulations, rearranging Eq. 5 to
ANy~ AN — Alpatternonly (Materials and Methods). We note that ice-
albedo contributions to A\ could arise from SST patterns or tempera-
ture dependence, but our partitioning of AA treats sea ice as part of ALy

The magnitude and sign of A\ris found to be model dependent, in
agreement with recent multimodel assessments (22, 53), but Ay ap-
pears to be positive and directionally consistent with standard as-
sumptions (I, 2) for feedback temperature dependence. However,
AMpatternonly is negative and larger than A\ such that total AA < 0 in
each AGCM (fig. S8 and table S3). These results suggest that total AA
for the LGM is mostly attributable to SST pattern effects, and Aly
plays a smaller role over this range of climates. Recent assessments (1,
2) considered At for the LGM but did not account for the larger, op-
posing term, Alpatternonly- The substantial LGM pattern effect found
here motivates revising the LGM evidence for modern-day ECS.

Climate sensitivity accounting for LGM pattern effects

Constraining modern-day ECS with paleoclimate evidence requires
accounting for how forcings and feedbacks differ in paleoclimates
relative to the modern-day 2xCO; scenario (1, 2, 5). LGM inferences
of ECS begin with applying Eq. 1 to the LGM in equilibrium, estimat-

ing the unadjusted LGM feedback as [\, = %. ERFs (AF) in-

clude not only CO, but also ice sheets (including sea level) and,
depending on the timescale chosen for ECS (I-3, 5), additional
changes that have distinct impacts at the LGM: vegetation, dust, N,O,
and CH, (Materials and Methods). kiGM must then be adjusted for
differences in feedbacks (AM) relative to those operating in modern-
day 2xCO,, following Eq. 4.

Our results suggest that the LGM feedback is more positive than
the 2xCO, feedback because of the LGM ice-sheet forcing and result-
ing SST pattern. Failing to account for this difference in feedbacks
would lead to the inference of higher values of modern-day ECS from
the LGM, e.g., (54). Some past studies using fully coupled models
have considered these feedback differences indirectly by applying an
“efficacy” adjustment (55) to the LGM forcings. The efficacy frame-
work has led to disparate results for multiple reasons: changes in how
forcing is quantified (40, 41, 56) before ERF became standard (2), the
lack of data constraints on SST patterns simulated by fully coupled
models (22, 44, 57), and the behavior of intermediate-complexity
models with simplified cloud feedbacks (42, 43). Because efficacy is
equivalent to the ratio of feedbacks Ay/Aigm (58, 59), our results
could be framed as a median LGM-forcing efficacy of 1.7 (Materials
and Methods; tables S1 and S2), consistent with recent studies that
find LGM-forcing efficacy greater than 1 using ERF and fully coupled
models (23, 48, 49). However, the pattern effect framework we use
replaces the need for forcing efficacy (text S1) (59), aligns with
modern AGCM methods of quantifying feedbacks (60) and ERF
(61), and incorporates data from the latest reconstructions of
the LGM.

To demonstrate the impact of LGM pattern effects, we follow meth-
ods in WCRP20 (I) and focus on the 150-year timescale of climate
sensitivity (S) applicable to modern warming (Materials and Methods)
(1, 2). We use WCRP20 because that assessment uniquely allows up-
dates of individual parameters and quantitatively combines lines of
evidence, but our results would have the same directional impact on
other assessments (2, 3). We use forcing values from WCRP20 to

Cooper et al., Sci. Adv. 10, eadk9461 (2024) 17 April 2024

estimate the unadjusted LGM feedback, A; ,, in Eq. 4. However, given
emerging evidence (2, 3, 32, 62, 63) after WCRP20, we report results
using a global temperature anomaly for the LGM of ATigm=—6+1K
in addition to WCRP20’s value of —5 + 1 K. We implement our key
finding by revising the LGM AA to now include LGM pattern effects.
We assign a normal distribution to AA, N(p = —0.37, ¢ = 0.23)
Wm™* K™, reflecting spread across AGCMs and SST reconstructions
(Materials and Methods). Our assessment of A\ and its uncertainty
relies on AGCMs to estimate feedbacks from prescribed SST/SIC pat-
terns. We include additional uncertainty tests in figs. S4 and S9, dem-
onstrating that our general conclusions hold if the assumed & for A\ is
doubled.

Accounting for the LGM pattern effect reduces climate sensitivity
inferred from the LGM evidence (Fig. 4). With AT gm = —6 K, max-
imum likelihood for S from the LGM evidence alone becomes 2.0 K
(change of —1.3 K). Assuming a prior that is uniform in S from 0 to
20 K (Materials and Methods) for the LGM evidence alone (table S4),
we find a posterior median for modern-day ECS of 2.4 K, 66% “like-
ly” range 1.7 to 3.5 K (1.4 to 5.0 K, 5 to 95%). Combining the updated
LGM evidence with existing likelihoods for the other lines of evi-
dence (process understanding, historical record, and Pliocene) yields
revised Bayesian probability distributions for the two priors in
WCRP20: uniform in A (WCRP20’s “Baseline”) and uniform in S (a
robustness test).

The impact of the LGM pattern effect on the combined evidence is
most pronounced on the upper bound of S, which has been notori-
ously difficult to constrain (64). Assuming that ATigy ~ —6 + 1 K,
the median and 66% range from combining lines of evidence for S
becomes 2.9 K (2.4 to 3.5 K) with a uniform-A prior or 3.1 K (2.6 to 3.9K)
with a uniform-S prior. Corresponding 5 to 95% ranges are 2.1 to
4.1 K with uniform-A and 2.3 to 4.7 K with uniform-S. Accounting for
pattern effects in A\ for the LGM thus reduces the central estimate of
modern-day ECS by approximately 0.5 K and reduces the 66% range’s
upper bound by 0.6 and 0.9 K for the uniform-A and uniform-S pri-
ors, respectively, indicating substantially stronger constraints than
WCRP20 (I) even after allowing for more glacial cooling. While the
qualitative assessment in IPCC ARG (2) cannot be quantitatively up-
dated, these results suggest stronger constraints on modern-day ECS
than assessed there, as well.

Accounting for LGM pattern effects—enabled by recent advances
in LGM SST reconstruction using paleoclimate data assimilation and
in quantifying pattern effects using atmospheric models—provides a
tighter upper bound on modern-day ECS. While each line of evidence
will surely evolve as scientific understanding improves, the results
presented here demonstrate that pattern effects must be accounted for
when inferring modern-day climate sensitivity from paleoclimate pe-
riods that are substantially affected by non-CO; forcing.

MATERIALS AND METHODS

Data assimilation reconstructions of the LGM

We use four LGM reconstructions to quantify the LGM pattern effect,
sampling uncertainty across data assimilation methods and model
priors (35, 36). Osman et al. (32) produced the time-dependent
“LGMR” spanning the past 24,000 years; the SST and SIC fields that
represent the LGM in their reanalysis are time means spanning 19,000
to 23,000 years ago. Tierney et al. (3) produced the state estimate
“IgmDA” dataset. Both the LGMR and IgmDA use priors from
isotope-enabled simulations in iCESM1.2 and iCESM1.3 with
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A Likelihood from LGM evidence
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Fig. 4. Inference of modern-day climate sensitivity including the LGM pattern effect. Results from WCRP20 (7) with no LGM pattern effects and original assumption
of ATigm ~ N(p = =5, 6 = 1) K(gray) and with revised AT,em ~ N(—6, 1) K (black) based on IPCC AR6 (2). Revised climate sensitivity including LGM pattern effects from this
study (light and dark blue) assuming A ~ N(p = —0.37, 6 = 0.23) Wm™2 K~'. Climate sensitivity shown is effective sensitivity (S) representing 150-year response, as in
WCRP20 (7). (A) Likelihood functions for S based on only the LGM line of evidence. (B) Posterior probability density function (PDF) after combining LGM with other lines
of evidence, assuming a uniform-A prior (top) or a uniform-S prior (bottom). Outlier lines indicate 5th to 95th percentiles, dots indicate 66% "likely" range, and box indi-

cates 25th to 75th percentiles and median.

assimilation of seasonal and annual SST proxies in an ensemble Kal-
man filter; there are differences in the proxy databases and methods
between the two reconstructions. Annan et al. (33) also used an en-
semble Kalman filter but with a multimodel prior, including 19 en-
semble members from a wide array of climate models spanning
PMIP2 (launched in 2002) to PMIP4 (launched in 2017); they as-
similated annual SST proxies and land-temperature proxies; they also
applied an adjustment to the prior ensemble to pre-center the prior
around available proxy data. Amrhein et al. (34) fit the MITgcm ocean
model to seasonal and annual SST proxies (65) using least squares
with Lagrange multipliers by adjusting prior atmospheric fields from
a CCSM4 LGM simulation (66). While these approaches use a diver-
sity of DA methods, versions of CESM1-CAMS5 form the prior for two
of the reconstructions (3, 32), and the prior covariances could be bi-
ased by model errors. Moreover, archived proxy data are geographi-
cally inhomogeneous with strong preferences for the NH and tropics;
additional data could lead to greater SST agreement across recon-
structions outside of the NH.

Simulations with AGCMs

SST/SIC boundary conditions for the LGM, Late Holocene baseline,
and 2xCO, are prepared to maintain constant forcing, i.e., AF = 0 in
Eq. 1, across simulations. Topography is held constant, i.e., the LGM
ice sheets are not present in AGCM simulations because their impact
is already included as a forcing, and we are isolating feedbacks from
changing SST/SIC. For the LGM and Late Holocene datasets, we ad-
just for differences relative to modern coastlines using kriging and
extrapolation in polar regions. Details of sea-level adjustments are
provided in text S3.

The 2xCO, SST/SIC is the multimodel mean of 200 years from the
end of six 2xCO, simulations, initialized from preindustrial control
states, in LongRunMIP (39): CESM1.0.4 (years 2300 to 2500),
CNRM-CM6-1 (years 550 to 750), HadCM3L (years 500 to 700),

Cooper et al., Sci. Adv. 10, eadk9461 (2024) 17 April 2024

MPI-ESM-1.2 (years 800 to 1000), GFDL-ESM2M (years 4300 to 4500),
and MIROCS3.2 (years 1803 to 2003). These simulations are near equi-
librium but only represent an estimate of the true equilibrium SST
response to 2xCO,.

The Late Holocene, defined as the climatological mean of 0 to
4000 years ago in the LGMR (32), is used as the baseline SST/SIC for
all feedback calculations. This baseline represents a long-term mean
of the preindustrial climate, constrained by assimilation of proxy data.
After adjusting for modern sea level, the four LGM boundary condi-
tions and the 2xCO, boundary condition for SST are prepared by
adding the SST anomalies from each of the four reconstructions to the
Late Holocene baseline SST. Because of nonlinear behavior of sea ice,
the LGM and 2xCO, boundary conditions for SIC are not added to
the baseline as anomalies but rather are used directly (fig. S2).

We run simulations with the Late Holocene baseline, 2xCO,, and
LGMR in each of five AGCMs. We run simulations with all four of the
LGM reconstructions (LGMR, IgmDA, Amrhein, and Annan) in
CAM4 and CAMS5, sampling the spread in LGM feedbacks from dif-
ferent reconstructions in two AGCM:s that have distinct relationships
linking SST patterns to radiative feedbacks based on their respective
Green's functions (12, 18). Spin-up/analysis period/climatological
forcing for each AGCM is as follows: 5 years/25 years/2000 for
CESM1.2.2.1-CAM4 (67), CESM1.2.2.1-CAMS5 (68), and CESM2.1-
CAMBS6 (69) at 1.9° x 2.5° latitude-by-longitude resolution; 5 years/
25 years/2014 for HadGEM3-GC3.1-LL (70) at N96, ~135-km resolu-
tion; and 1 year/30 years/2001 for GFDL-AM4 (71) at C96, ~100-km
resolution. Parent coupled models of the AGCMs considered here
sample a wide range of climate sensitivities, from 2.95 to 5.54 K, and
the AGCMs span a wide range of pattern effects in the historical re-
cord, from 0.38 to 0.84 Wm™ K" (17).

To compute A, we take global means over the analysis periods
for net top-of-atmosphere radiative imbalance (N) and near-
surface air temperature (7). Differences are taken relative to the
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Late Holocene baseline, yielding effective feedbacks (72) as A = AN/
AT for LGM and 2xCO, simulations, given that AF = 0 in Eq. 1
by design.

To evaluate the impact of uncertainty in the 2xCO, pattern, we
also consider existing simulations of abrupt-4xCO, with 150-year re-
gressions (73) of AN versus AT, denoted as Asx(150yr), to estimate Ay
(results in figs. S3 and S4 and tables S1 and S2). Results are consistent
using either method of estimating A,y. To compute AA using A1 S0y1)>
we apply a timescale adjustment ({) to reconcile feedbacks from equi-
librium paleoclimate data with the feedback that applies to 150-year
effective sensitivity (S), as in WCRP20. We use the central estimate
from WCRP20 of { = 0.06, and Eq. 3 is modified to AA = Agx(150yr)/
(1+08) — hom

To investigate how spread across the ensemble members from the
two most recent LGM reconstructions affects our results, we run ad-
ditional simulations using CAM4 and CAMS5 with the quartiles of
ensemble members that produce the most negative and most positive
Mum in the LGMR (32) and Annan (33) reconstructions (error bars
in Fig. 2). To determine the SST/SIC boundary conditions for these
experiments, ensemble members in each dataset are initially ranked
by estimating A gm with CAMS5 Green’s functions (18) applied to SST
anomalies from each ensemble member. CAM4 Green’s functions
(12) produce similar rankings. Greens functions are only used for
ranking and discarded thereafter. We group the ensemble members
into quartiles based on rank, and the mean SST/SIC (only SST for the
Annan reconstruction) is computed across ensemble members in
each quartile. Mean SST anomalies representing the first and fourth
quartiles, the most and least negative feedbacks, are used in the addi-
tional AGCM simulations. Note that CAMS5 with the Annan ensem-
ble’s extreme negative Agm produces AA > 0. In this quartile, most
ensemble members have warming at the LGM over substantial por-
tions of the Southern Ocean (fig. S10). This suggests that A\ could be
positive if the Southern Ocean experienced warming at the LGM,
which appears unlikely based on SST proxies (3, 32, 65), reconstructed
deep-ocean temperatures (74), and proxy data indicating increased
Antarctic sea ice at the LGM (75).

Pattern-only simulations separating pattern and
temperature dependence

Feedback differences can be attributed to differences in SST patterns
and in global mean near-surface air temperature (I) such that A\ ~
AMpatternonly + AMr. To separate pattern and temperature impacts
on A), we conduct additional pattern-only simulations in CAM4,
CAMS5, and CAM6 with the LGMR and 2xCO, patterns. For these
simulations, we multiply local SST anomalies by constant scale fac-
tors, k, which are determined for each pattern so that the global mean
ASST is reduced to —0.5 K for both simulations. The constant scale
factor for a given pattern of anomalies is calculated from the global

mean ASST as k = % K and scaled patterns are then created as

ASSTca1ea = kKASST at e;gﬁlgrid cell. We hold SIC constant at the Late
Holocene baseline.

SST scaling preserves the spatial pattern of anomalies but forces
global mean AT to be small enough that feedback changes due to

temperature dependence are negligible (AAr ~ 0). We repeat the

—-0.5K
}LLGM

Eq. 3. While there is no existing method that directly isolates tem-
perature dependence in AGCM simulations, the temperature depen-
dence can be approximated as the residual difference between our

feedback calculations, computing AApaernonty & A5, K as in
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main and pattern-only simulations, rearranging Eq. 5 to Ahp ~ Ah
— AMpatternonly- In this framework, feedback changes due to sea ice are
included in temperature dependence.

We use this pattern-scaling method because it aligns with intuition
for pattern effects captured by Green’s functions (12, 18). We do not
use Green's functions to calculate the pattern-only feedbacks, but we
briefly discuss the Green’s functions framework here to explain the
pattern-only AGCM simulations. In the linear framework of Green’s
functions

= ASST,
Z()SST SST; + €y

= ASST,
ZMT SST, + €,

where j represents each grid cell, ASST; represents the full SST anoma-
ly at grid cell j, ON/0SST; represents the global mean top-of-atmosphere
radiative response to a unit increase in local SST at grid cell j, dT/9SST;
similarly represents the response of global mean near-surface air tem-
perature, and € represents changes that are independent of SST. Because
the feedback A = AN/AT, constant scale factors, applied as kASST, ap-
pear in the feedback calculation as A = (kAN)/(kAT) ifey = er=0and
SST patterns determine A. In this case, where SST patterns are the sole
control on A, scale factors cancel and have no effect on feedbacks or
pattern effects. By comparing feedbacks from scaled pattern-
only simulations with feedbacks from simulations with full SST
anomalies, we quantify feedback changes that cannot be explained
by SST patterns, which we attribute to feedback dependence on
global mean temperature. For example, temperature dependence
could arise from dN/dSST; changing with global mean temperature
or from sea ice appearing at lower latitudes as temperature decreases.

Feedback decomposition using model fields and

radiative kernels

Net A is calculated from changes in top-of-atmosphere radiation (AN)
divided by changes in global mean temperature (AT). AN can be sep-
arated into shortwave clear-sky (SWcs), longwave clear-sky (LWcs),
and cloud radiative effect (CRE)

AN = ANgys + ANp e + ANcre

Each component of the radiation is available from AGCM output,
and dividing all terms by AT vyields feedbacks for each component,
which sum to the net feedback. The total clear-sky feedback is the sum
of shortwave and longwave components. Because CRE is calculated as
all-sky radiation (N) minus clear-sky radiation, CRE is affected by
changes in noncloud variables.

With radiative kernels (51, 76), feedbacks can be decomposed into
contributions from temperature, moisture, and surface albedo. Cloud
feedbacks can be estimated by controlling for changes in noncloud
variables, and feedbacks from changing surface albedo can be adjust-
ed to account for overlying cloud cover, which we do here following
past studies (51). Radiative kernels are linearized around a specific
climate in a specific model, however, and are prone to errors when
applied to different climates and models. We use CAMS5 kernels (77),
convolving them with the monthly mean climatology of anomalies
in each AGCM simulation to produce feedbacks in figs. S6 and
S7 and zonal means in figs. S12 to S22 (described in text S5).
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HadGEM3-GC3.1-LL is not included in kernel analysis due to model
output limitations. GFDL-AM4’s 2xCO, simulation has error in the
kernel-derived clear-sky feedback equal to 15.6% of the actual feed-
back, exceeding the 15% threshold commonly used as a test of clear-
sky linearity (15, 76); all other simulations have clear-sky feedback
errors less than 10%. Residuals shown in fig. S6 are based on total
(all-sky) radiation: Aresidual = ANet — ZAj, Where Anet is the net feedback
from model output and XA, is the sum of each of the following kernel-
derived feedbacks: Planck, lapse rate, water vapor, surface albedo,
shortwave cloud, and longwave cloud.

Bayesian estimate of modern-day climate sensitivity

We follow methods (1) and code (78) provided by WCRP20 for calcu-
lating climate sensitivity, but we provide a summary of relevant meth-
ods here. ECS is the steady-state change in global mean temperature
(T) from a doubling of CO,, traditionally with ice sheets and vegeta-
tion assumed fixed. When inferring climate sensitivity that is relevant
to modern warming from paleoclimate evidence, changes in the pa-
leoclimate radiative budget that are distinct from feedback processes
in modern-day 2xCO; are treated as forcings; this is typically accom-
plished by separating “slow” timescale changes as forcings (e.g., ice
sheets) from “fast” timescale changes as feedbacks (5). WCRP20 ap-
plies this framework by focusing on effective climate sensitivity (S),
i.e., the 150-year system response.

Relative to WCRP20, our key update only affects AM for the
LGM. However, given evidence (2, 3, 32, 62, 63) published after
WCRP20 showing LGM cooling centered on —6°C instead of —5°C,
we report our main results using both assumptions for AT gy (Fig. 4
and fig. S4).

To estimate S, we use a modified version of WCRP20’s energy
balance for the LGM

— (~0.57AF,, + AF")
Ja A (6)

1+¢

ATigy =

which determines Ay, and § = —AF,,/A,x. We substitute our AM,
which includes pattern and temperature dependence. Other than
testing a colder ATy, the parameters are unchanged from WCRP20
with the following normal distributions: modern-day forcing from
2xCO; AF ~ N(p =4.0,0 =0.3) Wm™% total non-CO, LGM forc-
ing of AF' ~ N(—6.15, 2) Wm ™2 (consisting of —3.2 Wm ™2 from ice
sheets, —1.1 from vegetation, —1.0 from dust aerosols, —0.28 from
N,0, and —0.57 from CHy); the timescale transfer parameter from
ECS to the 150-year feedback of { ~ N(0.06, 0.2); and LGM tempera-
ture change ATigm ~ N(=5, 1) °C, or revised ATigm ~ N(—6, 1)
°C. In WCRP20, AA = AAr = —aATigm/2, with a ~ N(p = 0.1,
6=0.1) Wm K>

Quantification of non-CO, ERF from ice sheets (including sea
level), dust and other aerosols, vegetation, and other greenhouse gases
represents substantial uncertainty. As noted in (23), estimates of the
ERF for each component of LGM forcing still need to be constrained,
and the uncertainty in radiative effects especially due to dust/aerosols
(79, 80) and vegetation changes may be underestimated in WCRP20.
Future paleoclimate research on dust and other aerosols (81-83) and
vegetation (84, 85) could improve the estimates used here and in pa-
leoclimate modeling (86, 87). Recent assessments (I1-3) discuss how
dust and other aerosols, vegetation, and non-CO, greenhouse gases
also act as feedbacks on fast timescales, and some studies (3, 54) have
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calculated a version of climate sensitivity that assumes equivalency in
these feedbacks (and in feedbacks from SST patterns) between the
LGM and modern-day CO, leading to higher values of ECS (3). In
the IPCC ARG6 (2) framework for modern-day ECS, these biogeo-
physical and non-CO, biogeochemical changes are presented as feed-
backs (central value of —0.01 Wm™2 K~'). However, AR6 does not
address how to account for the LGM’s distinct dust/aerosol and vege-
tation changes when estimating modern-day ECS from LGM evi-
dence, and this accounting should be a topic of future research.

From the AGCM results in this study, we incorporate pattern ef-
fectsin A\ of Eq. 6, assigning a revised AL~ N(—0.37,0.23) Wm™ K.
The revised distribution for AA in our study is based on propagating
uncertainty, estimated as spread across AGCMs and LGM recon-
structions. To combine uncertainty, we assume that within CAMS,
GFDL-AM4, and HadGEM3, the spread in AMA from different LGM
reconstructions would be the same as in CAM4 and CAM5. We add
the differences in AA from each pattern in CAM4 and CAMS5, where
differences are computed relative to AA using the LGMR pattern, to
the results from the remaining three AGCMs. The effect is to treat er-
rors as arising independently in reconstructions and AGCMs. We in-
clude A) from extreme quartile simulations using ensemble members
from Annan and LGMR as part of the combined sample. There are
eight simulations from CAM4 and eight from CAM5 that determine
spread from LGM patterns. Note that the spread from LGM patterns
is similar between CAM4 and CAMS5 (Fig. 2).

With the combined sample, we perform bootstrap resampling (de-
scribed in text $4) with 10° iterations and a sample size of 19 (equal to
the number of actual AGCM simulations). The mean over all iterations
is AA = —0.37 (95% range: —0.47 to —0.26) Wm K}, and mean sam-
ple standard deviation (SD) = 0.23 (95% range: 0.15 to 0.31) Wm™2 K},
which informs our assigned p and o, respectively. In fig. S4, we include an
uncertainty test by doubling 6 to 0.46 Wm™ K™, Using the same boot-
strap method, we calculate forcing efficacy (55) for the LGM, which is
equivalent to the ratio of feedbacks Ax/ALGm, to have a median value of
1.7 (95% range: 1.5 to 2.0), mean value of 2.1 (95% range: 1.6 to 2.6),
and sample SD of 1.1 (95% range: 0.6 to 1.4). Efficacy is strongly af-
fected by division of small values of Ajgym; hence, CAM6 becomes an
outlier in the efficacy calculation. We report the median in the main
text to reduce the outlier impact.

Calculations for LGM likelihoods and Bayesian probability density
functions (PDFs) for S follow the Monte Carlo methods in WCRP20
(1, 78). Likelihoods are independent of the prior, but combining the
likelihoods with a prior is required to create posterior PDFs that com-
bine lines of evidence. We show results for both priors in WCRP20: the
Uniform(—10, 10) Wm ™2 K} prior on A (their Baseline) and the Uni-
form(0, 20) °C prior on S (robustness test, using a prior that is more
conservative regarding the possibility of high climate sensitivity).

Supplementary Materials
This PDF file includes:
Supplementary Text

Figs.S1to S22

Tables S1to S4
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