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Abstract
AI systems are breaking into new domains and applications,
and it is pivotal to center humans in contemporary AI systems
and contemplate what this means. This discussion considers
three perspectives or human roles in AI as users, contributors,
and researchers-in-training, to illustrate this notion.

Introduction
The state of AI makes it essential for a growing AI research
community to consider what centering humans in AI in-
volves. As a starting point intended to generate discussion,
a subset of the many important roles humans take on in the
AI ‘ecosystem’ are considered. The discussion highlights AI
user, contributor, and researcher-in-training considerations.

User Perspectives
To exemplify the user role, consider three characteristics of
human reactions, including in emotion or cognitive model-
ing, to illustrate the complexities in human-AI model design.

Ambiguity in Expression: Human emotion states are
moderated by social and situational conventions (Alm
2012), and can be modulated through intervention (Kota,
Gali, and Nwogu 2020). Affect states tend to be expressed in
exaggerated ways in acted scenarios vs. more subtly in real-
istic contexts (Alm 2022), and emotional behaviors also vary
in intensity or meaning (e.g., prosody in language has both
emotive and grammatical functions). While there are promi-
nent trends in emotion expression (Ekman 2016), analysis
from ecologically valid elicitations indicate that variation in
expression is fundamental (Alm 2022), rather than irregular.

Subjectivity in Perception: People do not always agree
on how to interpret human behaviors (Alm 2011). This in-
sight highlights the need for engaging multiple interpreta-
tions in modeling (Davani, Dı́az, and Prabhakaran 2022). In-
terpersonal subjectivity appears guided by a core of shared
interpretation with a substantial periphery, where systematic
disagreements can occur (Hochberg et al. 2014; Alm 2022).

Accommodation in Interaction: Interlocutors accom-
modate to each other’s sociolinguistic and pragmatic cues
(Beaver and Denlinger 2022), or other features, e.g., a pre-
senter’s delivery mode may influence a listener’s expressions
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(Medina et al. 2018). Interaction partners can also align to
their visual cues time-wise (Wilkins and Nwogu 2020).

AI modeling should be cognizant of ambiguity in produc-
tion, subjectivity in interpretation, and accommodation with
convergence. Systems should, e.g., be trustworthy (Riedl
2019), accessible, socio-culturally inclusive and considerate.
Respecting users, AI must avoid the possibility of adversar-
ial use or putting users at risk for unexpected consequences.

Contributor Perspectives
Many AI systems are driven by data elicited from or labeled
by humans, and developers’ decisions impact others. Some
approaches may enhance the decision-making balance.

Interactive Machine Learning: Interactive methods
(Holzinger 2016; Tegen, Davidsson, and Persson 2021), in-
cluding active learning (Zhang, Strubell, and Hovy 2022),
machine teaching (Zhu 2015), and evolutionary model-
ing, show promise in broadening development contributions
(Amershi et al. 2014). While there are pros and cons to in-
teractive feedback in learning, example benefits include sus-
tainability and early intervention (Titung and Alm 2022).

Integrated and Mixed-initiative Frameworks: Using
an integrated feedback-data collecting framework (Titung
2022) can enhance human-inspired, continual learning flexi-
bility. Also, mixed-initiative paradigms (Alvarez et al. 2019)
can ensure that creativity flows both ways–inspiring individ-
uals (e.g., designers) and human-guided system adaptation.

The contributor role can equalize decisions, boost creativ-
ity, aid inspection, support efficiency, and help address bias
or privacy issues early. It must avoid risks of exposing peo-
ple to fatigue, frustration, stress, etc. (Llorà et al. 2005; Lars-
son, Font, and Alvarez 2022; Tornblad et al. 2018).

Researcher-in-Training Perspectives
AI is spreading across new domains, tasks, and uses. AI re-
search is multidisciplinary and benefits from multiple per-
spectives. In addition to improving and widening represen-
tation (Alm et al. 2024), there is also space and need for new
research training frameworks that expose students early to
AI training (Alm and Bailey 2022), and that include broader
skill sets and knowledge beyond traditional training. To con-
clude, in addition to users and contributors in AI, to center
humans, we must also consider how the next generation in
AI is prepared and ensure wide access to enter AI research.
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