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Transfer Learning with CNN Models for Brain-Machine Interfaces
to command lower-limb exoskeletons: A Solution for Limited Data*
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Member, IEEE, E. lafiez, Member, IEEE, J.L. Contreras-Vidal, Fellow, IEEE, and J. M. Azorin,

Senior Member, IEEE

Abstract—This study evaluates the performance of two
convolutional neural networks (CNNs) in a brain-machine
interface (BMI) based on motor imagery (MI) by using a small
dataset collected from five participants wearing a lower-limb
exoskeleton. To address the issue of limited data availability,
transfer learning was employed by training models on EEG
signals from other subjects and subsequently fine-tuning them
to specific users. A combination of common spatial patterns
(CSP) and linear discriminant analysis (LDA) was used as a
benchmark for comparison. The study's primary aim is to
examine the potential of CNNs and transfer learning in the
development of an automatic neural classification system for a
BMI based on MI to command a lower-limb exoskeleton that can
be used by individuals without specialized training.

Clinical Relevance— BMI can be used in rehabilitation for
patients with motor impairment by using mental simulation of
movement to activate robotic exoskeletons. This can promote
neural plasticity and aid in recovery.

[. INTRODUCTION

Electroencephalography (EEG) is a widely used
neuroimaging technique for recording brain activity in brain-
machine interfaces (BMI). Many EEG studies have employed
analytical tools based on machine learning to uncover relevant
information to classify different mental states [1]. These tools
depend on data preprocessing and feature extraction that are
typically designed by trained professionals with knowledge of
neuroscience.

Data-driven approaches, specifically deep learning
frameworks, have the potential to discover relevant features
without the need for feature engineering. These methods have
demonstrated promise in the development of automatic neural
classification systems that can be used by individuals without
specialized training [2]. Furthermore, deep learning networks
have been successfully applied to transfer functions, enabling
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models to adapt from source domains to different target
domains, this procedure is known as transfer learning [3].

BMI can serve as a rehabilitation tool for patients with
motor impairment, such as by using the mental task of motor
imagery (MI) - the imagination of a movement without
physical execution - to trigger powered robotic exoskeletons.
The receipt of motion-related feedback while performing MI
can promote neural plasticity, potentially leading to recovery

(410t1].

In terms of BMI based on M1, the state-of-the-art is divided
between traditional machine learning approaches, which rely
on spatial, temporal and/or spectral features, and deep learning
frameworks. Traditional methods such as the combination of
common spatial patterns (CSP) and linear discriminant
analysis (LDA) or support vector machines (SVM) have
shown the highest results [5]. In contrast, deep learning
frameworks utilizing convolutional neural networks (CNNs)
have been proven to be the most efficient. These frameworks
typically use raw EEG or filtered and/or normalized signals as
input data [2].

The primary aim of this study is to evaluate the
performance of two convolutional neural networks (CNN)
using a small dataset collected from five participants. The EEG
data was obtained while the participants performed MI of gait
wearing a lower-limb exoskeleton since the final goal is to
control the device by using the BMI. To tackle the issue of
limited data availability, transfer learning was employed [12].
This involved training models on EEG signals from other
subjects, and subsequently fine-tuning them to specific users.
In addition, a combination of CSP and LDA was used as a
benchmark for comparison.

II. MATERIAL AND METHODS

A. Subjects

In this study, five healthy subjects participated (mean age:
24.4+2.07). These subjects did no report movement
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impairments or known diseases and had no prior experience
with BMI. All participants were informed about the
experiments and provided written informed consent in
accordance with the Helsinki Declaration. The study was
approved by the Responsible Research Office of Miguel
Hernandez University of Elche (Spain).

B. Equipment

EEG signals were recorded using the Starstim R32 device
(Neuroelectrics, Spain) at a sampling rate of 500 Hz. Ground
and reference electrodes were placed on the right earlobe. 27
electrodes were positioned over a cap, following the 10-10
international system for electrode placement, including F3,
FZ, F4, FCS, FC3, FC1, FCZ, FC2, FC4, FCe, CS5, C3, Cl,
CZ, C2, C4, Co, CPS5, CP3, CP1, CPZ, CP2, CP4, CP6, P3,
PZ, and P4.

All participants wore the H3 exoskeleton (Technaid,
Spain), a powered hip-knee-ankle exoskeleton designed to
emulate human walking. They also used crutches for walking
stability, and were assisted by a technician holding the
exoskeleton from the back to prevent any risk of loss of
balance. H3 was controlled with commands sent from the
computer via Bluetooth. Fig. 1 shows the experimental setup.

Starstim R32

Laptop for
recording

Figure 1. Experimental setup. The subject is depicted standing still while
wearing the H3 exoskeleton with crutches and a Starstim R32 cap that
records the EEG signal.

C. Experimental protocol

Each subject participated in five experimental sessions.
During each session, they wore the exoskeleton and performed
22 trials. Each trial consisted of a sequence of mental tasks, as

illustrated in Fig. 2. The status of the exoskeleton was varied
among trials by a researcher. During half of the trials the
exoskeleton was walking, and during the other half it remained
standing still. This design enabled subjects to train four
different strategies that can be used to define the classes used
in the classification models designed for closed-loop control:
1) Being relaxed while remaining stationary, which could be
used to keep the exoskeleton stationary; 2) Performing MI
while remaining stationary, which could be used to send a
MOTION command to the exoskeleton; 3) Performing MI
while walking, which could be used to maintain the gait of the
exoskeleton; and 4) Being relaxed while walking, which could
be used to send a STOP command.
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Figure 2. Sequence of tasks for each trial. Participants were not required
to perform any mental task during the initial 15 seconds, as this time was
allocated for the estimation of parameters for all preprocessing
algorithms. Auditory cues in the form of beeps instructed participants
when to commence each mental task, with the subsequent 4 seconds of
signal being disregarded for subsequent analysis to prevent the presence
in the classes of any related evoked potentials to the cues.

D. Preprocessing

Signals were first downsampled to a rate of 200 Hz. Then,
a Notch filter was applied at 50 Hz to eliminate power line
noise. Based on previous studies that have employed deep
learning frameworks for identifying MI, three additional
preprocessing steps were implemented [2]. These procedures
were performed in real time, with signals split into 2-second
segments (epochs) and with a 0.5-second overlap between
each segment, allowing for individual analysis of each epoch.
These steps included:

1. Common Average Reference (CAR), which involved
averaging measures from all electrodes and subtracting this
value from each electrode at each time point. This helped to
reduce noise that is common to all electrodes, creating an
electrically neutral reference [6].

2. Butterworth band-pass filters were applied at two different
frequency bands: 8-40 Hz, which focused solely on the alpha
and beta bands associated with MI; and 1-100 Hz, which
broadened the spectrum. Filters were implemented by state
variables to allow its use sample by sample, avoiding any over
oscillation in the processing epochs.

3. Normalization of the signal using the maximum visual
threshold method, which involved estimating the maximum
amplitude of all electrodes at each epoch, averaging this value
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with previous epochs, and using it to normalize the signals
[7].
E. Neural network frameworks

This study utilized two CNNs that have been specifically
designed to work with EEG data: EEGNet [8], and
DeepConvNet [9]. Table I provides the number of parameters
for each framework and how many need to be adjusted. The
DeepConvNet and EEGNet architectures both utilize 1D
convolutional filters to extract features in the spatial and
temporal domains. By using pooling layers to downsample the
data, a variety of frequency ranges are taken into account.
However, the DeepConvNet is more intricate in design and
requires a longer training period compared to the EEGNet.

To achieve the best results for our dataset, a variety of
hyperparameters were explored as seen in Table II. When it
came to batch size, only values that were a power of 2 were
considered. Dropout and learning rate values were selected
based on the recommendations of the developers of the
frameworks. Finally, the number of epochs was not increased
beyond 80 as overfitting was observed.

TABLE L PARAMETERS OF THE NEURAL FRAMEWORKS
Total Trainable Non-trainable
parameters parameters parameters
EEGNet 2130 2050 80
DeepConvNet 236177 235427 750
TABLE II. CHOICE OF HYPERPARAMTERS

Batch size [32, 64, 128, 256]

Dropout rate [0.4,0.5]

Learning rate [0.0001, 0.001]

Number epochs [20, 80]

F. Benchmark

The signals were preprocessed slightly differently for the
benchmark approach compared to neural network models. To
start, they were downsampled to a frequency of 200 Hz and a
Notch filter was applied at 50 Hz, in line with the other
methods. Then, four state variables based band-pass filters
were applied at frequencies of 5-10 Hz, 10-15 Hz, 15-20 Hz,
and 20-25 Hz, as previously established in our prior research
[7]. The subsequent step entailed calculating CSP for each
frequency band. The goal of CSP is to compute spatial filters
that linearly transform the signals from each channel, in order
to maximize the differences between two mental tasks, in this
case, between motor imagery of gait and blank minded state.
The signals from 27 electrodes were filtered, and only the 8
most discriminant were selected as features. The log-variance
was computed for all of them, resulting in a vector of 32
features, (8 x 4 frequency bands). LDA was then trained with
these features to distinguish between two classes: MI and
blank minded state.

III. RESULTS

In training neural networks, three different approaches
were assessed:

1. Subject-independent training, which involved training
the model with data from all subjects except one, and then
testing it with all trials of the remaining subject.

2. Subject-dependent training, which involved training
the model with data from all subjects except one and then fine-
tuning it with the remaining subject. This approach consisted
of one independent leave-one-out cross-validation analysis per
session of that subject, with the model pre-trained on data from
other subjects and re-trained on each step of cross-validation.

3. Hybrid, which closely resembled the previous method,
but with the distinction that when re-training the model with
data from the subject, only the weights of the last three layers
were updated, while the remainder of the model remained as it
had been trained through subject-independent training.

Two tests were conducted, one for stationary trials (static
data) and one for walking trials (motion data). The best results
for EEGNet were found with a batch size of 128, a dropout
rate of 0.5, a learning rate of 0.0001, and 80 epochs for static
data; and a batch size of 32, a dropout rate of 0.4, a learning
rate of 0.001, and 80 epochs for motion data. The optimal
parameters for DeepConvNet were different, with a batch size
of 256, a dropout rate of 0.4, a learning rate of 0.001, and 20
epochs for static data; and a batch size of 128, a dropout rate
0f 0.4, a learning rate of 0.0001, and 80 epochs for motion data.

Table III compares the accuracy of the two neural
frameworks and the three training approaches to the
benchmark model trained on a subject-dependent basis. The
accuracy was measured as the percentage of correctly
classified epochs, and it is presented as the average and
standard deviation among sessions.

IV. DISCUSSION

In general, both EEGNet and DeepConvNet frameworks
demonstrated higher accuracy when they were re-trained with
data from individual subjects, resulting in an increase of
accuracy between 9 and 12% compared to subject-independent
training.

When analyzing static data, EEGNet and DeepConvNet
performed better when all layers were fine-tuned for a specific
subject, as opposed to only fine-tuning the last three layers.
The performance of the model varied greatly among subjects,
indicating that the model works better when adapted to a
specific individual. EEGNet trained in a subject-dependent
manner yielded the best results, followed by the benchmark
model and closely by DeepConvnet trained in a subject-
dependent manner too. Notably, for subject S3, who had the
lowest results with the benchmark model at 59.48%, EEGNet
trained in a subject-independent manner was able to achieve
the same level of accuracy. This suggests that the model
benefits from having information from other participants and
it may be a potential solution for dealing with BMI illiteracy
[10], allowing all users to effectively use a BMI.

As with static data, the trend for motion data was similar.
The benchmark model exhibited a superior level of accuracy
compared to both networks when they were trained in a
subject-independent manner. However, when the networks
were fine-tuned for each individual subject, regardless of
whether all layers of the last three were fine-tuned, their
effectiveness was comparable or even superior to the
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TABLE III.

ACCURACY OF THE DIFFERENT METHODOLOGIE AVERAGED BY SUBJECT (S1-S5)

STATIC DATA s s2 s3 S4 S5 Avg.
Benchmark 68.9+4.96  82.92+10.56  59.48+27  83.99+7.34  80.45:335 | 75.15£10.62
Subject-independent training 56.95+3.59 65.49+7.26 59.84+1.48 65.91+8.55  45.94+12.86 | 58.82+8.14
EEGNet Subject-dependent training 75.68+6.98  86.75+10.24 6461323 8825294  82.66+3.87 | 79.59+9.69*
Hybrid 6334+394 7682598  59.25:1.98  7834x7.04  71.46+625 | 69.84+834
Subject-independent training  52.66:2.61 5808459 511125  63.08:10.88  47.86+7.52 | 54.56+6.03
DeepConvNet  Subject-dependent training 71.07+£3.4 86.04+8.97 52.11£1.98 86.04+4.67 79.19+4.08 | 74.89+14.15
Hybrid 5591383 7321£6.54  50.19+1.24 7435674  65.16:891 | 63.77+10.6
MOTION DATA s1 s2 S3 sS4 S5 Avg.
Benchmark 57345249  68.15:5.64 6075337  5844:427  75.6819.8 | 64.07+7.74
Subject-independent training  5234+322 48253407  49.68+3.15  51.01=1.73  5481+7.63 | 5121+2.52
EEGNet Subject-dependent training 60.91£7.88  7416x5.59  66.56£9.14  63.05:6.1  81.3+8.34 | 69.84:834*
Hybrid 54714234 61494874 5737464  S1.14x461  69.97+7.07 | 63.16+9.71
Subject-independent training  52.79+3.44 47474527  50.29:035  51.01%0.82  51.929.06 | 50.69+2.03
DeepConvNet  Subject-dependent training 57.66+4.58  67.44+12.32  61.04+12.08 58.38+4.88 74.58+6.77 63.77+10.6
Hybrid 51824372 6036:9.18 53414211 51491269 6231575 | 69.66+9.12

benchmark model. However, DeepConvNet showed higher
results when only the last three layers were re-trained which
means the data of an individual subject was not enough to
adapt all layer weights. Lastly, CNN with transfer learning was
found to outperform the state-of-the-art machine learning
approach.

V. CONCLUSION

In conclusion, this study examined the application of
transfer learning in the development of a brain-machine
interfaces based on motor imagery that utilizes information
from all participants. Two CNN frameworks were evaluated
and compared against a conventional machine learning
approach that involved the combination of CSP and LDA.
The results demonstrated that the performance of all
participants was enhanced with this new approach.
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