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Abstract—This study evaluates the performance of two 
convolutional neural networks (CNNs) in a brain-machine 
interface (BMI) based on motor imagery (MI) by using a small 
dataset collected from five participants wearing a lower-limb 
exoskeleton. To address the issue of limited data availability, 
transfer learning was employed by training models on EEG 
signals from other subjects and subsequently fine-tuning them 
to specific users. A combination of common spatial patterns 
(CSP) and linear discriminant analysis (LDA) was used as a 
benchmark for comparison. The study's primary aim is to 
examine the potential of CNNs and transfer learning in the 
development of an automatic neural classification system for a 
BMI based on MI to command a lower-limb exoskeleton that can 
be used by individuals without specialized training. 

 
Clinical Relevance— BMI can be used in rehabilitation for 

patients with motor impairment by using mental simulation of 
movement to activate robotic exoskeletons. This can promote 
neural plasticity and aid in recovery. 

I. INTRODUCTION 

Electroencephalography (EEG) is a widely used 
neuroimaging technique for recording brain activity in brain-
machine interfaces (BMI). Many EEG studies have employed 
analytical tools based on machine learning to uncover relevant 
information to classify different mental states [1]. These tools 
depend on data preprocessing and feature extraction that are 
typically designed by trained professionals with knowledge of 
neuroscience. 

Data-driven approaches, specifically deep learning 
frameworks, have the potential to discover relevant features 
without the need for feature engineering. These methods have 
demonstrated promise in the development of automatic neural 
classification systems that can be used by individuals without 
specialized training [2]. Furthermore, deep learning networks 
have been successfully applied to transfer functions, enabling 
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models to adapt from source domains to different target 
domains, this  procedure is known as transfer learning [3]. 

BMI can serve as a rehabilitation tool for patients with 
motor impairment, such as by using the mental task of motor 
imagery (MI) - the imagination of a movement without 
physical execution - to trigger powered robotic exoskeletons. 
The receipt of motion-related feedback while performing MI 
can promote neural plasticity, potentially leading to recovery 
[4][11]. 

In terms of BMI based on MI, the state-of-the-art is divided 
between traditional machine learning approaches, which rely 
on spatial, temporal and/or spectral features, and deep learning 
frameworks. Traditional methods such as the combination of 
common spatial patterns (CSP) and linear discriminant 
analysis (LDA) or support vector machines (SVM) have 
shown the highest results [5]. In contrast, deep learning 
frameworks utilizing convolutional neural networks (CNNs) 
have been proven to be the most efficient. These frameworks 
typically use raw EEG or filtered and/or normalized signals as 
input data [2].  

The primary aim of this study is to evaluate the 
performance of two convolutional neural networks (CNN) 
using a small dataset collected from five participants. The EEG 
data was obtained while the participants performed MI of gait 
wearing a lower-limb exoskeleton since the final goal is to 
control the device by using the BMI. To tackle the issue of 
limited data availability, transfer learning was employed [12]. 
This involved training models on EEG signals from other 
subjects, and subsequently fine-tuning them to specific users. 
In addition, a combination of CSP and LDA was used as a 
benchmark for comparison.  

II. MATERIAL AND METHODS 

A. Subjects 
In this study, five healthy subjects participated (mean age: 

24.4±2.07). These subjects did no report movement 
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impairments or known diseases and had no prior experience 
with BMI. All participants were informed about the 
experiments and provided written informed consent in 
accordance with the Helsinki Declaration. The study was 
approved by the Responsible Research Office of Miguel 
Hernández University of Elche (Spain). 

B. Equipment 
EEG signals were recorded using the Starstim R32 device 

(Neuroelectrics, Spain) at a sampling rate of 500 Hz. Ground 
and reference electrodes were placed on the right earlobe. 27 
electrodes were positioned over a cap, following the 10-10 
international system for electrode placement, including F3, 
FZ, F4, FC5, FC3, FC1, FCZ, FC2, FC4, FC6, C5, C3, C1, 
CZ, C2, C4, C6, CP5, CP3, CP1, CPZ, CP2, CP4, CP6, P3, 
PZ, and P4.  

All participants wore the H3 exoskeleton (Technaid, 
Spain), a powered hip-knee-ankle exoskeleton designed to 
emulate human walking. They also used crutches for walking 
stability, and were assisted by a technician holding the 
exoskeleton from the back to prevent any risk of loss of 
balance. H3 was controlled with commands sent from the 
computer via Bluetooth. Fig. 1 shows the experimental setup. 

 

 
Figure 1. Experimental setup. The subject is depicted standing still while 
wearing the H3 exoskeleton with crutches and a Starstim R32 cap that 
records the EEG signal.   

 

C. Experimental protocol 
Each subject participated in five experimental sessions. 

During each session, they wore the exoskeleton and performed 
22 trials. Each trial consisted of a sequence of mental tasks, as 

illustrated in Fig. 2. The status of the exoskeleton was varied 
among trials by a researcher. During half of the trials the 
exoskeleton was walking, and during the other half it remained 
standing still. This design enabled subjects to train four 
different strategies that can be used to define the classes used 
in the classification models designed for closed-loop control: 
1) Being relaxed while remaining stationary, which could be 
used to keep the exoskeleton stationary; 2) Performing MI 
while remaining stationary, which could be used to send a 
MOTION command to the exoskeleton; 3) Performing MI 
while walking, which could be used to maintain the gait of the 
exoskeleton; and 4) Being relaxed while walking, which could 
be used to send a STOP command. 

 
 
Figure 2.  Sequence of tasks for each trial. Participants were not required 
to perform any mental task during the initial 15 seconds, as this time was 
allocated for the estimation of parameters for all preprocessing 
algorithms. Auditory cues in the form of beeps instructed participants 
when to commence each mental task, with the subsequent 4 seconds of 
signal being disregarded for subsequent analysis to prevent the presence 
in the classes of any related evoked potentials to the cues. 
 

D. Preprocessing 
Signals were first downsampled to a rate of 200 Hz. Then, 

a Notch filter was applied at 50 Hz to eliminate power line 
noise. Based on previous studies that have employed deep 
learning frameworks for identifying MI, three additional 
preprocessing steps were implemented [2]. These procedures 
were performed in real time, with signals split into 2-second 
segments (epochs) and with a 0.5-second overlap between 
each segment, allowing for individual analysis of each epoch. 
These steps included: 

1. Common Average Reference (CAR), which involved 
averaging measures from all electrodes and subtracting this 
value from each electrode at each time point. This helped to 
reduce noise that is common to all electrodes, creating an 
electrically neutral reference [6]. 

2. Butterworth band-pass filters were applied at two different 
frequency bands: 8-40 Hz, which focused solely on the alpha 
and beta bands associated with MI; and 1-100 Hz, which 
broadened the spectrum. Filters were implemented by state 
variables to allow its use sample by sample, avoiding any over 
oscillation in the processing epochs. 

3. Normalization of the signal using the maximum visual 
threshold method, which involved estimating the maximum 
amplitude of all electrodes at each epoch, averaging this value 
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with previous epochs, and using it to normalize the signals 
[7]. 

E. Neural network frameworks 
This study utilized two CNNs that have been specifically 

designed to work with EEG data: EEGNet [8], and 
DeepConvNet [9]. Table I provides the number of parameters 
for each framework and how many need to be adjusted. The 
DeepConvNet and EEGNet architectures both utilize 1D 
convolutional filters to extract features in the spatial and 
temporal domains. By using pooling layers to downsample the 
data, a variety of frequency ranges are taken into account. 
However, the DeepConvNet is more intricate in design and 
requires a longer training period compared to the EEGNet. 

To achieve the best results for our dataset, a variety of 
hyperparameters were explored as seen in Table II. When it 
came to batch size, only values that were a power of 2 were 
considered. Dropout and learning rate values were selected 
based on the recommendations of the developers of the 
frameworks. Finally, the number of epochs was not increased 
beyond 80 as overfitting was observed.  

TABLE I.  PARAMETERS OF THE NEURAL FRAMEWORKS 

 Total 
parameters 

Trainable 
parameters 

Non-trainable 
parameters 

EEGNet 2130 2050 80 

DeepConvNet 236177 235427 750 

TABLE II.  CHOICE OF HYPERPARAMTERS 

Batch size [32, 64, 128, 256] 

Dropout rate [0.4, 0.5] 

Learning rate [0.0001, 0.001] 

Number epochs [20, 80] 

 

F. Benchmark 
The signals were preprocessed slightly differently for the 

benchmark approach compared to neural network models. To 
start, they were downsampled to a frequency of 200 Hz and a 
Notch filter was applied at 50 Hz, in line with the other 
methods. Then, four state variables based band-pass filters 
were applied at frequencies of 5-10 Hz, 10-15 Hz, 15-20 Hz, 
and 20-25 Hz, as previously established in our prior research 
[7]. The subsequent step entailed calculating CSP for each 
frequency band. The goal of CSP is to compute spatial filters 
that linearly transform the signals from each channel, in order 
to maximize the differences between two mental tasks, in this 
case, between motor imagery of gait and blank minded state. 
The signals from 27 electrodes were filtered, and only the 8 
most discriminant were selected as features. The log-variance 
was computed for all of them, resulting in a vector of 32 
features, (8 x 4 frequency bands). LDA was then trained with 
these features to distinguish between two classes: MI and 
blank minded state.  

III. RESULTS 

In training neural networks, three different approaches 
were assessed: 

1. Subject-independent training, which involved training 
the model with data from all subjects except one, and then 
testing it with all trials of the remaining subject. 

2. Subject-dependent training, which involved training 
the model with data from all subjects except one and then fine-
tuning it with the remaining subject. This approach consisted 
of one independent leave-one-out cross-validation analysis per 
session of that subject, with the model pre-trained on data from 
other subjects and re-trained on each step of cross-validation.  

3. Hybrid, which closely resembled the previous method, 
but with the distinction that when re-training the model with 
data from the subject, only the weights of the last three layers 
were updated, while the remainder of the model remained as it 
had been trained through subject-independent training. 

Two tests were conducted, one for stationary trials (static 
data) and one for walking trials (motion data). The best results 
for EEGNet were found with a batch size of 128, a dropout 
rate of 0.5, a learning rate of 0.0001, and 80 epochs for static 
data; and a batch size of 32, a dropout rate of 0.4, a learning 
rate of 0.001, and 80 epochs for motion data. The optimal 
parameters for DeepConvNet were different, with a batch size 
of 256, a dropout rate of 0.4, a learning rate of 0.001, and 20 
epochs for static data; and a batch size of 128, a dropout rate 
of 0.4, a learning rate of 0.0001, and 80 epochs for motion data. 

Table III compares the accuracy of the two neural 
frameworks and the three training approaches to the 
benchmark model trained on a subject-dependent basis. The 
accuracy was measured as the percentage of correctly 
classified epochs, and it is presented as the average and 
standard deviation among sessions. 

IV. DISCUSSION 

In general, both EEGNet and DeepConvNet frameworks 
demonstrated higher accuracy when they were re-trained with 
data from individual subjects, resulting in an increase of 
accuracy between 9 and 12% compared to subject-independent 
training. 

When analyzing static data, EEGNet and DeepConvNet 
performed better when all layers were fine-tuned for a specific 
subject, as opposed to only fine-tuning the last three layers. 
The performance of the model varied greatly among subjects, 
indicating that the model works better when adapted to a 
specific individual. EEGNet trained in a subject-dependent 
manner yielded the best results, followed by the benchmark 
model and closely by DeepConvnet trained in a subject-
dependent manner too. Notably, for subject S3, who had the 
lowest results with the benchmark model at 59.48%, EEGNet 
trained in a subject-independent manner was able to achieve 
the same level of accuracy. This suggests that the model 
benefits from having information from other participants and 
it may be a potential solution for dealing with BMI illiteracy 
[10], allowing all users to effectively use a BMI. 

As with static data, the trend for motion data was similar. 
The benchmark model exhibited a superior level of accuracy 
compared to both networks when they were trained in a 
subject-independent manner. However, when the networks 
were fine-tuned for each individual subject, regardless of 
whether all layers of the last three were fine-tuned, their 
effectiveness was comparable or even superior to the 

Authorized licensed use limited to: Univerdad Miguel Hernandez. Downloaded on December 13,2023 at 12:11:43 UTC from IEEE Xplore.  Restrictions apply. 



  

benchmark model. However, DeepConvNet showed higher 
results when only the last three layers were re-trained which 
means the data of an individual subject was not enough to 
adapt all layer weights. Lastly, CNN with transfer learning was 
found to outperform the state-of-the-art machine learning 
approach. 

V. CONCLUSION 
In conclusion, this study examined the application of 

transfer learning in the development of a brain-machine 
interfaces based on motor imagery that utilizes information 
from all participants. Two CNN frameworks were evaluated 
and compared against a conventional machine learning 
approach that involved the combination of CSP and LDA. 
The results demonstrated that the performance of all 
participants was enhanced with this new approach. 
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