How Beginning Programmers and Code LLMs
(Mis)read Each Other

Sydney Nguyen Hannah McLean Babe Yangtian Zi
Wellesley College Oberlin College Northeastern University
USA USA
Arjun Guha Carolyn Jane Anderson Molly Q Feldman
Northeastern University and Roblox Wellesley College Oberlin College
USA USA

a.guha@northeastern.edu

ABSTRACT

Generative Al models, specifically large language models (LLMs),
have made strides towards the long-standing goal of text-to-code
generation. This progress has invited numerous studies of user in-
teraction. However, less is known about the struggles and strategies
of non-experts, for whom each step of the text-to-code problem
presents challenges: describing their intent in natural language,
evaluating the correctness of generated code, and editing prompts
when the generated code is incorrect. This paper presents a large-
scale controlled study of how 120 beginning coders across three
academic institutions approach writing and editing prompts. A
novel experimental design allows us to target specific steps in the
text-to-code process and reveals that beginners struggle with writ-
ing and editing prompts, even for problems at their skill level and
when correctness is automatically determined. Our mixed-methods
evaluation provides insight into student processes and perceptions
with key implications for non-expert Code LLM use within and
outside of education.

CCS CONCEPTS

« Human-centered computing — User studies; « Social and
professional topics — Computing education; « Computing
methodologies — Artificial intelligence; Machine learning; + Soft-
ware and its engineering;

ACM Reference Format:

Sydney Nguyen, Hannah McLean Babe, Yangtian Zi, Arjun Guha, Car-
olyn Jane Anderson, and Molly Q Feldman. 2024. How Beginning Pro-
grammers and Code LLMs (Mis)read Each Other. In Proceedings of the CHI
Conference on Human Factors in Computing Systems (CHI °24), May 11—
16, 2024, Honolulu, HI, USA. ACM, New York, NY, USA, 26 pages. https:
//doi.org/10.1145/3613904.3642706

1 INTRODUCTION

Computer scientists have been working towards programming
in natural language for decades [4, 38, 86], often with the goal

CHI 24, May 11-16, 2024, Honolulu, HI, USA
© 2024 Copyright help by the owner/author(s).

® O
This work is licensed under a Creative Commons Attribution-Share Alike

International 4.0 License.

This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of the
CHI Conference on Human Factors in Computing Systems (CHI "24), May 11-16, 2024,
Honolulu, HI, USA, https://doi.org/10.1145/3613904.3642706.

carolyn.anderson@wellesley.edu

mfeldman@oberlin.edu
A
-

Understanding Articulating

the Task ¢ in NL
def foo():

= [Model

¥ N

1dwouyd ay3 buifoid

The Task

def foo():
- \/fOO(c)
[N —|
¢ &x foo()
Reading\ ::Ltsmg
Code »
def foo(): /V\N\ Editing the
[) Prompt
— eIy
[]
V'
Identifying What’s Wrong 2 I, _)‘”‘"
—

Assessing Correctness Revising the Prompt

Figure 1: Visualization of the multi-step process of querying
a large language mode of code (Code LLM). The user starts
with crafting their prompt in natural language (NL). They
provide the prompt to the model, which produces code. The
user then assesses the correctness of the generated code. If
there are errors, they must identify how to resolve them
and how to edit the prompt. This continues in an iterative
fashion.

of making programming easier for a broader set of users. Recent
advances in generative Al have brought us nearer to this goal. In
programming, along with fields like digital art [79, 81, 83], creative
writing [2, 45, 68], and digital music [1, 63], generative Al has
reduced the technical skills that users need by allowing them to
prompt a model with a natural language description of their desired
output.

In many fields, experts have started to use generative Al to
accelerate their work, including in software engineering, where
large language models of code (Code LLMs) have enhanced expert
programmer productivity [69, 76, 105]. However, to fulfill their po-
tential of democratizing these fields, models must be usable without
extensive technical training at each stage of creation: 1) writing

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

prompts for the model, 2) evaluating model output for quality, and
3) iteratively refining prompts when generation is unsuccessful.

Programming presents a particularly challenging domain for
non-experts. Like art, computer science has evolved an extensive
technical vocabulary; since generative models are trained largely
on professional code, they may not work as well if users lack this
vocabulary. In visual art, music, and creative writing, a user can
quickly determine whether they like the generated output even if
they are not an expert (embodying the cliché “I don’t know anything
about art, but I know what I like”). However, this attitude does not
extend to programming. It is very challenging for a non-expert
to evaluate the quality of a generated program. Even when a user
knows enough to determine a generated program is incorrect, they
also need to understand it well enough to know what needs to
change and how to update their prompt.

In order to use a Code LLM, non-experts must grapple with a
multi-step process (Figure 1). First, they must have a clear under-
standing of what they want the code to do. This may seem trivial,
but research on requirements engineering has shown that it can be
challenging [75]. Next, the user must clearly articulate the intended
behavior of the program in natural language to the model. Once
the model generates code, the user must evaluate its correctness
by reading it or writing tests. If the code is not correct, they must
determine what has gone wrong, and update their prompt accord-
ingly. This requires not only understanding the generated code, but
also, understanding the model’s generative process. These barri-
ers mirror well-known challenges for non-experts with end-user
programming [50] and classical Al systems [53].

There is a growing body of work studying how non-expert pro-
grammers use Al-assisted programming systems in naturalistic
settings [48, 78]. However, in open-ended tasks, it is difficult to
decouple the steps of the code generation process, since they feed
each other: if the user fails to identify incorrect code and moves on,
their editing process can’t be observed. We present results from a
carefully-controlled experiment targeting two steps in the code gen-
eration process: prompt creation (How do users describe the intended
program in natural language?) and prompt modification (How do
users modify their prompts when a generated program is incorrect?).

One challenge in studying how non-experts use Code LLMs
is selecting tasks that make sense to them. For example, replicat-
ing Barke et al. [6]’s insightful study of experienced programmers
would not be appropriate for novices, because the tasks presuppose
technical knowledge. Novices have diverse goals, backgrounds, and
familiarity with mathematical and computational thinking. Our
solution is to target a large population of near-novices with similar
experience levels: university students who have completed a single
introductory computer science course (CS1). This allows us to select
tasks that are conceptually familiar to them.

Our Approach. We ask whether students who have completed
CS1 can effectively prompt a Code LLM to solve tasks from their
previous course. In order to isolate students’ experiences in writing
and editing prompts, our experiment presents tasks as input/output
pairs and tests the generated code for correctness. This provides
in-depth insight into the processes they develop for describing code
in natural language and iteratively refining their prompts. We pose
three main research questions:

Nguyen et al.

e RQ1: Can students who have completed a CS1 course effec-
tively prompt a Code LLM to generate code for questions
from their previous courses?

e RQ2: What is the origin of student challenges with Code
LLMs? Do these differ across different groups of students?

e RQ3: What are students’ mental models of Code LLMs and
how do they effect their interactions?

We find that students struggle significantly with this task, even
though we pose problems tailored to their skill level and test code
correctness for them. In essence, beginning programmers and cur-
rent Code LLMs tend to misread each other: the Code LLM fails to
generate working code based on student descriptions and students
have a hard time adapting their descriptions to the model. Our
study has concerning implications for democratizing programming:
if these students, who already have basic skills in code explana-
tion and understanding, struggle with this simplified task, the full
natural language-to-code task—where the user has to determine
correctness themselves—must be very challenging indeed for true
novices. This finding also has important implications for education.
Code LLMs have sparked an intense debate over the future of com-
puting education, including claims that traditional programming
training is no longer necessary [65, 100]. By contrast, our findings
highlight the continuing importance of teaching students technical
communication and code understanding.

Our work differentiates itself from previous work in three key
ways: scale, population, and experimental design. First, we study
120 students solving 48 different programming problems. To our
knowledge, no previous work has studied user interactions with
Code LLMs at this scale. Second, we focus on a near-novice pop-
ulation with fairly uniform levels of experience, allowing us to
carefully tailor tasks to their skill level. Finally, we use an experi-
mental paradigm that allows us to isolate the prompt writing and
editing aspects of the task.!

2 RELATED WORK

Our work focuses on how programmers use LLMs to turn natu-
ral language into code. Programming with natural language is a
decades old proposition [67] and has led to several ideas about
bringing programming closer to how users communicate [70]. For
instance, Hindle et al. [39] imagined that future language models
could be effective at turning natural language to code, a prediction
that has been borne out with Code LLMs.

By exploring beginner interactions with Code LLMs, our study
contributes to a growing body of work on how non-experts in-
teract with emerging automated technologies [98], ranging from
automated feedback [22, 44, 94] to augmented reality [42, 80]. We
situate our study within existing work on user interactions with
Code LLMs below.

Experienced programmers and LLMs. We study how beginning
programmers interact with a Code LLM, the same foundational
technology that powers autocomplete tools such as GitHub Copilot
and others [14, 15, 95]. These tools are promoted as productivity-
boosting technology for experienced programmers. Recent in-the-
wild studies and surveys indicate that these tools are popular with

!Data collected as part of this work is publicly available at https://doi.org/10.17605/
OSF.IO/V2C4T.

How Beginning Programmers and Code LLMs (Mis)read Each Other

expert programmers, improve their self-perception of productivity,
and shift their work from writing code to understanding LLM out-
puts [10, 60, 69]. In contrast, our study of beginners’ interactions
with a Code LLM reveals that (1) they have mixed success with
writing natural language prompts, (2) and they often struggle to
understand LLM-generated code.

Vaithilingam et al. [96] present the earliest academic study of
GitHub Copilot with 24 students (undergraduate-PhD) and three
tasks. Their main finding is that although participants enjoyed
using it, Copilot did not help them code faster or write more correct
code. We design our study for less experienced participants. For
example, we developed a web interface that is much simpler than
a professional IDE. The same study reports that their participants
often struggled to validate LLM-generated code, and we avoid this
by testing generated code for our participants automatically.

Since Copilot is a general autocomplete tool, one can use it in sev-
eral ways: to produce code given code, to generate documentation
from code, to turn natural language into code, and so on. Grounded
Copilot [6] studies experienced programmers and reports that they
prefer using it to turn natural language into code [6, Section 4.2.3].
Thus our study design focuses on the natural language to code task,
but with beginning programmers.

Non-experts and LLMs. Like us, several researchers have consid-
ered the impact of using Code LLMs for the text-to-code task with
non-experts, specifically in educational settings. Our work is larger
in scale than prior work (120 students from 3 institutions and 48
problems in 8 categories), which allows us to perform statistical
analyses that require large sample sizes to be reliable. Moreover, our
experiment design allows us to investigate key research questions
that prior work has not been able to ask, such as identifying the
prompting strategies that beginners use, determining how they
modify prompts that do not work, and studying several factors that
affect their success.

Prather et al. [78] study 19 students using Copilot for a final
project in a CS1 course: building the game Minesweeper. They
found that students struggled to use Copilot, even over the course
of a week. We reach a similar conclusions with our study, with
48 problems that are much simpler than building a working video
game.

Kazemitabaar et al. [48] develop CodingSteps, a web-based Python
learning environment that allows users to query Codex. The paper
compares 33 participants (10-17 years old) with access to Codex to
36 students programming independently, working on the same set
of 45 programming problems over several weeks. Their findings in-
dicate that Code LLMs may benefit student learning outcomes. How-
ever, because CodingSteps presents students with expert-written
problem descriptions, their results do not shed light on whether
beginners can write natural language prompts independently. They
report that 32% of student prompts are verbatim copies of the expert-
written problem descriptions. In contrast, our study is carefully
designed to avoid this problem by showing students input/output
examples instead of natural language descriptions. We also investi-
gate the strategies that students use to understand model output
and modify their prompts. Kazemitabaar et al. [48] do not address
these kinds of questions, partly because their students received
feedback from instructors throughout the experiment.

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

Promptly [19] studies 54 students writing prompts for three
CS1 problems. Our substantially larger scale (120 students and 48
problems) allows us to explore research questions beyond what they
study, such as the how students change their prompting strategies,
and demographic factors that influence success rates. Our paper
also presents a detailed analysis of LLM output, such as the kinds
of errors that appear in LLM-generated code, and the impact of
non-determinism on participants’ success.

Lau and Guo [52] interviewed 20 CS1/CS2 instructors in early
2023 about their perceptions of ChatGPT and LLM technologies.
They report that instructors hold a diverse set of perspectives:
some wanted to “ban it” and others felt urged to integrate these
technologies into curricula to prepare students for future jobs that
may require using LLM technology. The students in our study echo
many of the concerns and desires raised by instructors in Lau and
Guo [52].

It is also possible to use language models to assist students learn-
ing to program, without having the model write code for the student.
For example, Geng et al. [31] use language models to localize type
errors in OCaml, but not to correct them. Like our study, this work
isolates the interaction mode in which students use Code LLMs;
however, we study prompt writing and editing, while they study
error detection and explanation.

Alternatives to inline code completion. Copilot and related tools
suggest inline code completions, but there are other ways to interact
with Al-assisted programming tools. Vaithilingam et al. [96] present
new interfaces for Visual Studio that present code changes. Liu
et al. [62] build a new interaction model, grounded abstraction
matching, which targets spreadsheets and data frames, constraining
the generated code to support grounding. These ideas are exciting
parallel directions for Code LLM interaction in addition to the
natural language prompting approach we study here.

Code LLMs beyond text-to-code. For a beginning programmer,
feedback from an expert teacher or teaching assistant can be in-
valuable. However, access to expert feedback is limited. There is
a long line of research that tries to address this shortage by de-
veloping systems that generate actionable feedback for students
[37, 40, 82, 90, 94]. Phung et al. [77] show that LLMs can help build
these systems and generate higher quality feedback than prior rule-
based approaches. In contrast to our human experiment, they eval-
uate on benchmark problems. Moreover, their system is intended to
help beginners write code directly, whereas our experiment focuses
on prompt writing.

Another body of work focuses on automated program repair [34],
which can be used to fix trivial mistakes that frustrate beginners.
Traditional automated program repair systems have required sig-
nificant engineering for each programming language and problem
domain. Joshi et al. [47] show that an LLM trained to generate code
can be employed to repair simple coding mistakes.

Similarly, Leinonen et al. [55] report that Code LLMs are better
at explaining code than beginning students, and Leinonen et al.
[56] show that an LLMs explanation of a program error can be
better than default error messages. This is further evidence that
LLM technology may help students learn to write code directly.

Recent additional efforts include Finnie-Ansley et al. [25], who
report that Codex is remarkably good at generating code from

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

natural language prompts from a CS1 class and several variations
of the Rainfall Problem; Dakhel et al. [17], who compare the quality
of Codex-generated code to student-written code; and Babe et al. [3],
who use student-written prompts to benchmark Code LLMs. Finally,
Code LLMs have applications that go beyond natural-language-
to-code, and researchers are using them as building blocks for a
variety of other tasks [5, 12, 23, 26, 47, 57, 69, 71, 77, 84, 87, 101].
The aforementioned papers present new tools, benchmarks, and
studies of LLM capabilities. But, they do not study users’ abilities
to prompt models, which is the focus of our work.

Using LLMs for non-programming tasks. Researchers are cur-
rently exploring a wide variety of applications for LLMs beyond
computational tasks. While we do not survey the full range of
such work, two recent papers are particularly relevant to our task.
Zamfirescu-Pereira et al. [103] study non-experts prompting an
LLM to produce recipes. Their participants actively avoided sys-
temic testing, which we address by automating testing. Like them,
we find that participants’ mental models of LLMs are very different
from how they actually work. Singh et al. [89] compare user inter-
actions with a multimedia writing interface with LLM-generated
audio, text, and image suggestions. Our post-study interview and
survey was inspired by their exploration of participant’s percep-
tions of AL

3 STUDY DESIGN

Our work explores whether beginning programmers can effectively
prompt Code LLMs. We investigate this question through a multi-
institutional [24], lab-based study, asking 120 students who com-
pleted a CS1 course to describe 8 out of 48 possible problems pre-
sented via input/output examples.

In this section, we discuss three major aspects of our study
design:

(1) Why do we use a controlled experiment?
(2) How do we successfully present problems to students?
(3) How do we select problems that are appropriate for students?

We discuss the logistics of implementing the study in Section 4.

3.1 Experimental Environment: In the Lab vs.
In the Classroom

Studies of student interactions with programming tools can be
grouped into three main categories: studies within the context of
a course during the term, post-hoc analyses of educational data,
or controlled, lab-based experiments. Post-hoc analyses are not
currently possible, since there is a lack of available educational
Code LLM data. We discuss the decision between a course-based
study and lab-based study below.

There are many benefits to real-world studies conducted in a
course context, including ease of access to participants and normal-
ized educational background [78]. It is easier to study how technol-
ogy directly impacts learning by using it alongside instruction [48]
or as an evaluative method [44]. At the same time, these studies
cannot be as easily controlled: participation may be optional (only
around 12% of students chose to participate in Denny et al. [19]);
participants may explicitly be learning through the task, making it

Nguyen et al.

hard to compare their responses across problems [48]; and in-depth
interviews are challenging to conduct.

Lab-based studies benefit from greater uniformity in observa-
tions, which facilitates statistical analysis, and longer experimental
sessions. We chose a lab-based experiment because our research
questions focus on the usability of Code LLMs for beginning pro-
grammers and on their processes, rather than their educational
outcomes. Specifically, the process of working with a Code LLM re-
quires multiple, interdependent steps: (1) forming an intent, (2) craft-
ing a prompt to describe the intent, (3) evaluating the quality of
the LLM-generated code, (4) editing the prompt when the code is
wrong, (5) editing the code manually, or (6) giving up and writing
code manually (Figure 1). Our goal was to isolate processes (2) and
(4).

Our study limits user interactions in order to isolate prompt writ-
ing and editing strategies. One key feature of our paradigm is that
we automatically test the generated code. In most observational
studies, programmers determine on their own whether the gener-
ated code is correct. This is itself an interesting process. However,
studying this aspect of Code LLM interaction comes at the cost
of studying prompt editing: if a programmer mistakenly accepts
incorrect code, they will move on to the next task without editing.
Prather et al. [78] report that many of their participants mistakenly
accepted incorrect code. Beginning students are particularly likely
to err in this way: they may struggle to understand generated code,
and their lack of confidence in their own abilities may make them
trust the automated system over their own judgment (an example
of automation bias [18, 30, 32, 91]).

Finally, a key contribution of our work is its scale: we study 120
participants across 3 institutions and 48 programming tasks, while
previous studies have had fewer participants and problems. We
recruit participants from three U.S. institutions: an R1 university
(Northeastern University), a small liberal arts college (Oberlin Col-
lege), and a women’s college (Wellesley College). This selection
increases the likelihood that our findings will generalize across insti-
tutions. Our scale allows us to explore how diverse factors, such as
prior non-curricular programming experience, first-generation sta-
tus, and mathematics coursework, affect participant success. These
kind of statistical analyses require large sample sizes and work best
with even observations of participants and problems, which are
challenging to obtain in course settings.

3.2 How to Describe Problems to Students:
Input/Output Examples vs. Written
Descriptions

A key design decision for studies of Code LLM interactions is how
to present the task. In classroom environments, students are usually
given instructions for what to program via written descriptions.
This makes sense, given that the student’s goal is to write code.
However, natural language presentation poses critical issues for
our key research questions. In our study, the goal is to write natural
language descriptions of problems, not to write code. A core goal
is to understand how students approach the natural-language-to-
code task. If the task is presented in natural language, students may
simply reuse this text rather than putting the task into their own
words; our results would no longer measure beginning programmer

How Beginning Programmers and Code LLMs (Mis)read Each Other

success, but instead expert description success. Prior work shows
that this is a serious concern: in Kazemitabaar et al. [48]’s study of
K-12 students, up to 49% of submissions for challenging problem
categories were copied from the expert-written task description.

Even if participants do not directly copy a description, its word-
ing could influence how participants describe the task. One chal-
lenge for beginning programmers is recalling and applying techni-
cal vocabulary; presenting them with a natural language description
of the task might remind them of terminology that they would not
have recalled on their own. This would endanger our goal of assess-
ing beginning programmers’ abilities to prompt code generation
models, since in many natural settings, they would not have an
expert description to rely on.

We therefore rely on a popular alternative for describing pro-
gram behavior: input/output examples (Figure 3). Students also
could reference the function name and parameter names. Our par-
ticipants had taken CS1 classes where natural language descrip-
tions are frequently accompanied by input/output examples (see
Appendix A.1.2), making this a familiar way of communicating pro-
gram behavior. Several CS1 courses, and some of the assignments
used in our CS1 courses, go beyond this and require students to
construct their own examples or even practice test-driven devel-
opment [21, 27]. However, our study does not require students to
write their own tests.

Avoiding natural language presentation is critical in order to
study how beginning programmers describe problems in their own
words. However, it comes with two risks. First, the input/output par-
adigm may increase task difficulty, since participants must identify
the key pattern on their own. Although understanding natural lan-
guage descriptions of coding tasks is not always easy for beginning
programmers, it is likely easier than our input/output paradigm.
Second, input/output examples run the risk of underspecification
[35, 88] — there may be more than one program that performs
the correct input-output mapping. To determine that the provided
tests adequately described the problem, we confirmed that our pro-
vided test sets had 100% code coverage for a correct solution and
performed mutation testing [46]. We also calculated participants’
success using only the provided test cases: if the generated code
passed the provided tests, it was deemed correct, ensuring that the
problem presentation aligned directly with the feedback to the user.

We feel that these potential issues pose less of a risk to our key
research questions than the copy/paste or word bias risks posed
by a natural language presentation. Other researchers have also
used an input/output presentation paradigm in studying beginner
interactions with Code LLMs [19].

3.3 Problem Selection: Previously Seen Tasks vs.
New Tasks

The natural language-to-code task requires participants to describe
specific programming problems. Previous work exhibits varied
approaches to problem selection, from a single challenging problem
in Prather et al. [78] to three simple problems in Denny et al. [19]
to a set of 45 problems in 5 categories in Kazemitabaar et al. [48].

Our main goal was to select problems at an appropriate level for
students who had completed only CS1. Since our research questions
focus on student prompting processes, not learning outcomes, we

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

chose problems at a similar level to what participants might be
able to code independently. Asking students to solve new or more
complex problem types increases the likelihood that the Code LLM
will generate unfamiliar or difficult to understand code, making the
prompt editing process more difficult. We therefore adapted Python
problems specifically from CS1 course materials at each institution.
We made small changes to facilitate input/output testing or adjust
problem difficulty. Appendix A.1 contains two examples of how
source problems were adapted.

We selected 48 problems balanced across eight conceptual cat-
egories from CS1 (Figure 2), similar to Kazemitabaar et al. [48],
but with more categories and problems. Each individual problem
was assigned to 20 students; we balanced the experimental lists
to control for ordering effects, so that each participant solved one
problem in each category, and the average difficulty of each prob-
lem list was roughly the same. To facilitate difficulty and category
coverage, previous CS1 instructors were asked to provide additional
problems as needed. Problems such as exp (Figure 3), for instance,
require students to only recognize that numbers in a list are being
squared. Other problems ask students to remember complex data
structures (e.g. lists, dictionaries), but not the specific Python syntax
for them. We further discuss student understanding of the problems
in Section 7.2 and Appendix B.2.

In order to study interactions between Code LLMs and students,
it is important to select problems that cannot be trivially solved by a
Code LLM without any natural language description. Very common
functions (for instance, shorten_url) can be solved from a func-
tion signature alone, regardless of the accompanying description.
To validate our problems, we first checked that the model could
not solve problems from their function/parameter names alone and,
if they could, edited the names accordingly. We also solved each
problem using the Code LLM to ensure that a working natural lan-
guage description existed. Finally, to address the nondeterminism of
Code LLMs, we ran each validation check multiple times to obtain
a stable estimate of these results (§5.2).

4 STUDY LOGISTICS

The previous section (§3) described our multi-institutional experi-
mental design. In this section, we discuss the logistics of participant
recruitment and executing the study.

4.1 Charlie Interface

We built a web application for the experiment called Charlie the
Coding Cow or Charlie. Charlie presents one problem per page,
displaying the function signature and several input/output exam-
ples (Figure 3a). Participants write natural language descriptions
in a text box. When they submit a description, the Charlie server
prompts Codex with the function signature and their description
formatted as a docstring (Figure 4). After Codex responds, Charlie
shows students the Codex-generated code and displays whether it
works on the given input/output examples (Figure 3b).

Charlie does not permit participants to edit the generated code,
since we are focused on natural-language-to-code interactions. If
the code fails, they can retry the problem or move to the next
problem. For retry attempts, we pre-fill the text box with their last
prompt to make editing easier. Finally, after every final attempt

CHI 24, May 11-16, 2024, Honolulu, HI, USA

Nguyen et al.

8 Problems]"’

Part #1

Post Survey

Semi
]“ Structured

. Post Survey
—
Debrief Part #2 I

Interview

% Untimed
A

Tutorial

8 problems)
per student Untllmed

.?._H’

Tutorial

20 students per
problem

|
\
|
Timed
|
I ! I -’
I
Timed

Figure 2: Study overview. (1) describes the overall student trajectory through the study. We split the post survey into two
sections, divided by the semi-structured interview, to delay collecting demographic information to prevent self-bias. (2) outlines
the 8 problem categories (4 timed versus 4 untimed) and the 6 problems per category. Students took individual trajectories
through one problem in each category, as shown by the thin arrows. (3) showcases an example trajectory for students through
the problems. Students spent, on average, 42.6 minutes (SD=10.6) completing the study, with an average of 26.6 minutes (SD=9.1)
on the untimed section and 15.9 minutes (SD=3.3) on the timed section.

at a problem, Charlie presents two forced-choice questions with
thumbs-up / thumbs-down answers: Did Charlie generate correct
code? and Would you have written this code yourself?. We included
these questions to gather information about student perceptions
of code style, since the model may produce working code, but in a
style that is unfamiliar to students.

Each student worked with Codex to solve 3 tutorial problems
and 8 main problems. We used the Charlie character to provide dis-
tance from any Al system that students might already know. This
suggested a representation that was not human and not robotic.
Charlie also provides visual feedback: Charlie animates a “think-
ing” position while Codex generates a completion and appears in

different forms when the code does or does not pass all tests. We
made this design choice to mitigate frustration with waiting for the
model to generate code, a source of annoyance in prior studies of
Code LLM interactions [69].

4.2 Model Choice

When we began piloting in November 2022, the most capable Code
LLM was the largest Codex model from OpenAl, code-davinci-002.
Although code-davinci-002 was first released in 2021, on estab-
lished Python programming benchmarks, it remains as good as
gpt-3.5-turbo, which is the model presently used for GitHub
Copilot’s inline completions [104], the free version of ChatGPT, and

How Beginning Programmers and Code LLMs (Mis)read Each Other

def exp(lst, val):

Input Expected Output
(150 2,031 [4525:3]
[252;52]5 B [8,8,8]

(Pl 72 [4]

Enter a description of this function

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

def exp(lst, val):

Produce a dictionary of exponents

d={}
for i in 1st:
d[i] = val
return d
Expression Expected Output Actual Output

[y 25 Bls 8 (i8-8 GlE Sl 23 il B s

(25202 P [8,8,8] 428 b

(212 [4] {2:92%

Describe the function.

A few tests failed.

? 2
Y 2?2 ?

SUBMIT DESCRIPTION

(a) An example task posed to a participant. The interface displays the function name
and several input/output examples. Participants write and submit a description in
the text box. During our study, 85% of students who attempted this problem wrote a

successful description after a single CS1 course.

2 {_} 2 v

? @@ _,--
(*_*))
\ /|
[l [l

TRY AGAIN | MOVE ON

(b) We run expert tests automatically and highlight
ones that fail. Students are then able to either edit
their description by pressing "Try Again" or move
on to another problem.

Figure 3: The Charlie the Coding Cow interface.

several other commercial products. Specifically, gpt-3.5-turbo
and code-davinci-002 score 48% and 46% respectively on the Hu-
manEval Python programming benchmark [11, 74], the most com-
monly used Python benchmark for Code LLMs. Since we started
our study, several other LLMs have also appeared, including non-
proprietary LLMs that are better for reproducibility (§9.5). The best
open models perform comparably to code-davinci-002; for in-
stance, CodeLlama (34B) achieves 48% on HumanEval [85]. This
suggests that the model that we use is as capable at code completion
as newer models used in practice.

There are larger models that are more capable, such as GPT-4,
which achieves a HumanEval score of 67% [74]. However, GPT-4 is
significantly slower and higher latency than the alternatives, and
low latency is essential for LLM code completion to be acceptable
to users [69]; if participants have to wait more than a few seconds
for the generated code, their frustration might lead them to move
on rather than re-attempting the problem.

For consistency, we used the same Codex model throughout
the study (code-davinci-0@2). It is important to note that Code
LLMs perform best when their output is sampled; consequently,
the model may produce different programs for the same prompt.
We generated output using best practices for hyperparameter and
sampler settings [13].

4.3 Participants

We recruited 40 participants from each institution (n = 120). Eligible
participants were at least 18 years old, had taken CS1 at their insti-
tution between Fall 2021 and Spring 2023, and had not completed
any subsequent CS courses. We recruited participants from March
to July 2023 until reaching our sample size of 120. The pilot and
main study received IRB approval.

Care for Participants. Our study design sought to balance ob-
taining accurate data with addressing potential discomforts and
power dynamics. Potential discomforts for participants included
frustration regarding their inability to complete a task, which could
reinforce negative perceptions of self or CS. In the tutorial, we
emphasized that our goal was not to evaluate their programming
skills, but the collaboration with Charlie. Students were allowed to
move on from a problem at any time, resulting in a variable number
of attempts per problem.

We took several steps to address potential power dynamics be-
tween students and their professors. Recruitment was done through
an interest form distributed by other faculty or staff. Scheduling was
performed by a researcher at another institution. Finally, research
sessions were never run by a professor at the same institution as
the participant.

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

Function signature

) I
Sent via API .
+ — » | Codex b |

Prompt - completion!
returned |

i
i
i
!
! Run tests on
I

A 4
Function signature \ py———
Submit
Test cases Charle +
Prompt thinking Prompt

+

/7,0,»% y Test cases & results
FRONTEND erm

Figure 4: An overview of the experimental platform. For
each problem, the frontend provides the participant with
the signature and tests and asks them to write a description
(prompt). This is then relayed to the backend, where the
signature and prompt are sent to Codex via the API. The
code completion from Codex is then run on our pre-defined
tests. Finally, the results of running the tests and the code
completion are presented to the participant in the frontend
interface.

4.4 Study Execution

The study was conducted over Zoom with audio and video record-
ing. Participants signed informed consent material ahead of the
experiment and assented at its start. They were compensated with
a $50 gift card for the estimated 75-minute study.

Main Task. Figure 2 (1) outlines the full study design. Students
completed 3 tutorial problems to get familiar with the interface
and see some possible Codex responses. We supplied participants
with a working prompt for the first tutorial problem, then gave
them a difficult problem so they could see a failure, and a final easy
problem to solve independently.

The main experiment consisted of 8 problems in two blocks,
the first untimed, the second timed. In the second block, students
were limited to 5 minutes per problem. We included both timed
and untimed blocks in order to balance the need to bound study
duration with the desire to observe complete prompt editing cycles.

Participants were randomly assigned experimental lists, balanced
by difficulty, using a modified Latin Square design. Four authors
independently assessed the difficulty of writing prompts for each
problem; we averaged these scores and developed six roughly equal
lists (Figure 2).

Post-task Interview and Survey. After the main study, students
completed a two-part survey, a semi-structured interview, and an

Nguyen et al.

optional debriefing session (Figure 2 (1)). The semi-structured in-
terview was interleaved between two survey blocks to mitigate
question ordering and priming biases.

The first part of the survey was designed to study student per-
ceptions of Charlie and of AI more broadly. We adapted validated
scales from previous work to understand student perceptions of the
usability, trustworthiness, and friendliness of Charlie [7, 20, 51, 99]
and the mental workload of the task [36].2 We were also interested
in whether students’ ability to come up with effective prompting
strategies might correlate with fixed versus growth mindsets about
computing; we drew on Gorson and O’Rourke [33] to measure this.

The semi-structured interview asked 8 questions covering stu-
dent editing processes, what they found hard or easy, how they
envisioned their interactions with Charlie, and how they imagined
Charlie worked. The specific questions were directly inspired by our
overarching research questions. Researchers followed a standing
script to ask each question - there are a total of 5 missing question
responses across the possible 960 interview datapoints, likely due to
researcher error or time considerations. In the optional debriefing,
we explained the experiment and how Code LLMs work.

The second part of the survey focused on participants’ back-
grounds and demographics. These were the last questions of the
study to mitigate possible stereotype threat [72]. For questions
related to identity (e.g., gender, race, spoken language at home),
we followed best practices and solicited responses via open text
boxes [92]. We also asked questions about students’ CS1 perfor-
mance, experience with programming outside of CS1, high school
& educational background, math background, major, and class year.

Pilot Study. In late 2022, we ran a pilot study with 19 participants
to assess the study design and usability of the interface. Pilot par-
ticipants were recruited from the same three institutions as in our
main study, but were students who had taken more than one CS
course. This small pilot allowed us to make sure the web platform
was working correctly, identify any problems with specific tasks,
refine our time estimates, and assess the quality of the automatic
transcriptions of the interview recordings produced by otter.ai.3
During the pilot, we identified one problem with ambiguous test
cases, which we changed before the main study. Pilot participants
solved an average of 5.5 out of 8 problems (an Eventual Success
Rate of 68.8% using the metric described in §5.2).

Because the average pilot participant took 53 minutes, we in-
creased the time estimate and compensation from $30 for 60 minutes
to $50 for 75 minutes for the main study. We also added a hidden
time limit to the first block of questions in case participants spent
more than 50 minutes on this portion of the study; this issue never
arose in the main study.

5 ANALYSIS

This section presents the analysis framework for §6, §7, and §8. We
take a mixed-methods approach to this work.

In some cases, we removed questions that were not relevant to our study to keep
the survey length manageable for participants. Details available via our Supplemental
Materials at https://doi.org/10.17605/OSF.IO/V2C4T.
3https://web.archive.org/web/20231205001012/https://otter.ai/

How Beginning Programmers and Code LLMs (Mis)read Each Other

5.1 Evaluation Plan

Qualitative analysis. We collected three types of data which lend
themselves to qualitative analysis: (1) information about student
experience and demographics, (2) free-response questions about
future use of Charlie, and (3) semi-structured interview responses.
We employed both inductive and deductive open coding towards
consensus. Our aim was to identify common themes present in this
specific dataset, rather than to develop a theory. Two researchers
with previous qualitative experience conducted the analysis; Sec-
tion A.2 contains details of the coding methodology. We present
selected quotes from the surveys and interviews throughout. Quo-
tations have been lightly edited from the automatically generated
transcripts. This includes addressing grammar/punctuation, remov-
ing speech errors or filler words, and avoiding the disclosure of any
identifiable information. Each participant’s quote is accompanied
by a pseudonym assigned to them during data collection.

Statistical analysis. We perform statistical testing with a sig-
nificance level of @=0.05 in order to determine whether observed
differences in response measures are statistically reliable. For com-
parisons between two groups, we use Student’s t-test. For com-
parisons between multiple groups, we perform ANOVAs; in cases
where there is no natural reference group, we use Tukey HSD tests
to explore pairwise differences. We report Pearson’s r for correla-
tions between continuous variables and Kendall’s 7 for correlations
between continuous and ordinal variables. Where we are interested
in multiple potentially interacting variables, we fit linear mixed-
effects models with maximal random effects for participants and
problems using the Ime4 package in R [8].

5.2 Measures of Success

There are several ways to measure success when evaluating the
natural-language-to-code task. The success rate is the fraction of all
attempts on which the model generates a working program. There-
fore, a participant who takes several attempts to solve a problem
will have a lower success rate than another who succeeds in one
try. We might also ask whether a participant is ever able to solve
a problem; we refer to this as the eventual success rate. This met-
ric considers only the participant’s final attempt at each assigned
problem. The eventual success rate metric is likely specific to this
paper, as closely related work [19, 48, 78] studies different notions
of success or does not permit controlled, repeated interactions.

Although success rates measure the correctness of the code
that students saw during the experiment, LLM generation is non-
deterministic.* Therefore, studying success rates can be misleading:
a participant may have just been lucky with a bad prompt or unlucky
with a good prompt. For this reason, we also employ an alterna-
tive metric called pass@1, which accounts for non-deterministic
generation [13]. Since the debut of Codex, pass@1 has become the
standard metric used to evaluate LLMs on the natural-language-
to-code task, including GPT-4 [74], Code Llama [85], and other
models [29, 59, 73].

Given a natural language prompt, pass@1 [13] is an estimate
of the probability that the LLM will generate working code in

4Greedy generation is significantly worse for coding tasks than non-deterministic
generation [13].

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

one attempt. In the LLM development literature, the accepted best
practice for computing pass@1 is to query the LLM 200 times for
the same prompt and test every generated program [13, 29, 85, 102].
Sampling 200 generations for all 2,000+ prompts generated as part
of this study would be very expensive with the Codex API. Instead,
we use a recently released open Code LLM called StarCoder [59]
that is nearly as capable as the Codex model on Python benchmarks.
Pass@1 with StarCoder will be slightly lower than Codex success
rates because of model differences. However, pass@1 is a more
stable measure of whether a prompt will succeed than success rate.
We use pass@1 for the bulk of our analyses.

5.3 Positionality

All authors were affiliated with the institutions from which par-
ticipants were recruited (Oberlin, Wellesley, or Northeastern) at
the time of the study; we range from undergraduate students to
tenured faculty. We developed the problem lists, problem difficulty
ratings, and other elements of the study design within a shared
educational context. The last three authors are course instructors
for CS1. As described in §4.3, significant care was taken to ad-
dress power dynamics between participants and researchers. Some
authors also contribute to the development and evaluation of open-
source Code LLMs. Overall, the potential incentives for the research
team are complex, as we approach this work as both educators and
researchers. We aspire to a neutral perspective on Code LLMs, while
attempting to center the student experience.

This research studies students at three selective higher education
institutions in the United States. Therefore, while we are able to
generalize beyond a single CS curriculum, the educational context
is specific: our findings may not generalize to other settings (e.g.,
community colleges, K-12 education) or cultural contexts.

6 RQ1: DO STUDENTS SUCCEED AT
PROMPTING CODE LLMS WITH NATURAL
LANGUAGE?

In this section, we present how well students do on our Code LLM
prompting task and address RQ1: do students succeed at prompting
Code LLMs with natural language? We explore differences between
students that are linked to their ability to successfully describe
problems to Code LLMs.

6.1 Basic Findings

Figure 5 presents the distribution of participants’ success rates and
eventual success rates. The average participant solved 4.7 out of 8
assigned problems. The mean eventual success rate (57%) is not high,
and the mean success rate (24%) is even lower, since it decreases with
every failed attempt. We find no significant institutional difference
for either measure of success.

Participants often submitted a large number of failing attempts
(Figure 5d): 153 problems (aggregated across participants) required
three or more attempts. In fact, one participant succeeded at a
problem only after 32 attempts; another gave up after 26 attempts.
These results suggest that low success rates are not due to a lack of
participant effort. Participants struggled to write natural language
prompts for the LLM, and often achieved success only after many

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

Success Rate

Nguyen et al.

Eventual Success Rate

Institution Mean pass@1
Oberlin 0.23
Wellesley 0.23
Northeastern 0.20
Overall 0.22

26% 61%
25% 57%
23% 54%
24% 57%

(a) Mean values of different measures of success.

12 12
Northeastern Northeastern
_E 104 mm Wellesley _E 10| mmm Wellesley
a Oberlin a Oberlin
E 8- E -
8 8
!.I'_ 6 !.I'_ 6
5 5
]]
2 44 2 41
))
k= k=
ol | N
o | ANN 1]
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4

Success Rate

(b) Success rates.

Eventual Success Rate

(c) Eventual success rates.

500 1 Eventual Success
2 Eventual Give Up
& 400 -
€
K
e 4
3 300
&
&
5 200 A
a2
]
t J
& 100
0 T T T T T T
0.6 0.8 1.0 0 5 10 15 20 25 30

Number of Attempts

(d) Attempts.

Figure 5: Basic measures of student success at the natural-language-to-code task. Success rate is the fraction of all attempts
by a participant that succeed. Eventual success rate is the fraction of last attempts at a problem by a participant that succeed.
Pass@1 resamples the LLM several times to estimate the probability of success. We present these measures by institution.
Figure 5a presents the means. Figure 5b and Figure 5¢ show the distribution of (eventual) success rates. Eventual success rates
are higher than success rates, which is to be expected: Figure 5d shows that many students make several attempts at a problem

before an eventual success or give up.

Self-Reported Background N | Mean pass@1
International 92 0.23
Domestic 27 0.22
First-generation college student 23 0.17
Not first-generation 96 0.23
Attended private high school 38 0.22
Attended public high school 76 0.22
Raised Monolingual in English 49 0.22
Raised Monolingual Not in English | 27 0.20
Raised Multilingual Including English | 41 0.24
Raised Multilingual Not in English 2 0.22

Table 1: Self-reported high school, language, and family back-
ground.

repeated attempts. The challenging nature of this task is supported
by comments from the students themselves (§7.1).

6.2 Do Participants Find the Task Challenging?

In the post-survey, participants completed four items of the NASA
TLX [36]. Overall, students found the task mentally demanding
(Table 2). The questions about mental demand (Q1), time pressure
(Q3), and their own performance (Q4) correlate inversely with
success rate. Students whose success rates were lower generally
rated the task as more demanding (Kendall’s 7=-0.16; p=0.02); were
less likely to say they were successful (Kendall’s 7=-0.4; p<0.0001);
and reported higher levels of stress and insecurity (Kendall’s r=-
0.27; p<0.0001).

6.3 Who Succeeds at the Task?

Using data from the post-survey, we analyze the relationship be-
tween pass@1 rates and previous knowledge, prior programming
experience, and demographics (see Table 1 for a summary of de-
mographics). We find only two statistically reliable differences (see
Appendix, Table 11 for the full statistical analyses):

e Prior programming experience: About 1/3 of participants
had no programming experience outside of CS1. The remain-
ing participants had taken pre-college programming courses
(24%), were in the next CS course (21%), or had coding expe-
rience outside of classes (29%). There is a statistically reliable
difference (t-test; p = 0.02) in pass@1 for students who have
only coded in CS1 (0.17) versus those with additional experi-
ence (0.24).

o First-generation college students: 19.1% of participants
identified as first-generation college students. We observe a
statistically reliable difference in pass@1 for first-generation
participants, who struggle more with the task than others
(t-test; p=0.04).

We examined other factors, but found no significant difference
in pass@1 rates:

e Math courses: All but one participant had taken at least one
college math course and half had taken 2+ courses. Single
variable calculus was the most common math course. There
is no statistically reliable difference between participants
who had or had not taken 2+ math courses (t-test, p=0.42).

How Beginning Programmers and Code LLMs (Mis)read Each Other

Abbreviated Question

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

‘ Scale (1 to 7) ‘ Mean

How mentally demanding was the task?

How hurried or rushed was the pace of the task?

How successful were you?

How insecure, stressed, or discouraged were you?

Very low->Very high | 4

Very low->Very high | 3.3
Perfect->Failure 3.6
Very low->Very high | 3.1

Table 2: Mean NASA-TLX ratings [36].

Thematic Codes N
Charlie Doesn’t Understand Me 91
Issues With Generated Code 59
Student Struggles 41
No Problems Mentioned 10
Issues with Study Platform 10
Issues With Experimental Design | 7

Easier To Write Code Myself 7

Table 3: Thematic codes emerging from responses to What
kinds of problems or issues did you run into working with
Charlie?

o Computing intensive majors: 42% of participants were
pursuing computationally intensive majors. We observe iden-
tical pass rates for both computing and non-computing ma-
jors.
International students: International and U.S. domestic
students had similar pass@1 rates.
Household language: Our participants reported growing
up in households where a diverse set of languages were
spoken: only English (40.8%), English and other languages
(34.2%), and without English (24.2%). We were surprised to
find that pass@1 did not reliably vary by childhood language.
However, all participants were from selective U.S. institu-
tions that require fluency in English, regardless of childhood
language exposure.
o Public vs private high schools: 1/3 of participants attended
private schools; this had no impact on pass rates.

7 RQ2: WHERE DO STUDENT DIFFICULTIES
COME FROM?

Having shown that students find it hard to prompt a Code LLM in
natural language (§6), we explore why. In this section, we present
quantitative and qualitative results that address RQ2: when students
struggle with the task, where do the struggles come from? What
are the most challenging aspects of the natural-language to-code
task?

7.1 What aspects of the task do students say are
hard?

In the semi-structured interview, we asked participants to reflect
on challenges and issues they encountered. Three common themes
emerged: difficulties in getting Charlie to understand them; issues
with the generated code; and issues stemming from students’ self-
reported lack of knowledge or skill (Table 3).

Charlie Doesn’t Understand Me. The most commonly raised is-
sues related to Charlie’s understanding of prompts (n=91); we di-
vided these into subcodes. One of the most common of these was
the sentiment that Charlie failed to understand good descriptions
(n=23). For instance, REDCoyoTE commented, ‘Tt was definitely dif-
ficult to have a concept of what you wanted written in your head,
and then feel like you’re articulating it well, but having it not work
properly.” Similarly, AQUALADYBUG reports feeling helpless when a
good prompt didn’t succeed: “if I was saying it [...] how I thought
[...] is the best way to say it, but it still wasn’t working, I had no idea
where to go from there.”

Issues with Generated Code. Another major theme was issues
with the generated code. Many commments related to perceived
bugs in the generated code or difficulty debugging (26%). Students
also mentioned finding the model’s randomness frustrating (8%).
KHAKIBEE was alarmed to find that resubmitting the same prompt
could generate different programs, commenting “You feel like you ve
made progress, and then because it did a different thing the next time,
it’s like, what do I change? I'm trying to change what I give to the
cow. And then that should change what the cow is doing. But if I'm
not changing anything, why is that changing?” Some students also
experienced the opposite issue: despite changing their descriptions,
the model generated the same incorrect function repeatedly. PUr-
pPLECARP commented, “Sometimes I changed my [...] description and
it just repeated the code the same. And it’s just very frustrating”. This
highlights the difficulty of working with stochastic models: students
expect the model output to be faithful to their descriptions.

Student Struggles. Participants also reported issues stemming
from their own lack of knowledge. 10% of students reported diffi-
culty understanding a problem, and 8% reported difficulty in un-
derstanding generated code. YELLOWCHIPMUNK said, “sometimes
with the code, just given my knowledge, that’s not necessarily the
way I would go about coding the code. But I think to even understand
it, I would have to know what the code is trying to do, which takes
more time than me just trying to reword what I said”. A handful (n=4)
reported that forgetting terminology made it hard to write prompts.

7.2 Which Problems Do Students Say Are Hard?

Some categories of CS1 problems may be harder to solve with Code
LLMs, either because the concepts are difficult or because they are
difficult to describe. We examine pass@1 and eventual success rate
by category as well as interview responses about which problems
were challenging and easy.

We find that pass@1 and eventual success rates both vary by
category (Table 4). We fit a binomial mixed-effects model to prompt
success (1 if the prompt succeeded; 0 otherwise), with fixed effects
of category, institution, and their interaction, and random effects

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

Nguyen et al.

Category Mean pass@1 | Mean Eventual Success Rate | Student Difficulty Ranking

Sorting™ 0.09 33% 1 (Hardest)
Dictionaries® 0.17 43% 2
Nested” 0.30 68% 6
Math* 0.16 54% 4
Loops 0.13 52% 3
Lists 0.18 61% 5
Conditionals 0.33 73% 7

Strings 0.26 74% 8 (Easiest)

Table 4: Pass@1 and success rates by problem category. Each category has six problems, and an equal number of students
attempted each problem. The starred (*) problems were timed. Student Difficulty Ranking is done by ordering mean Eventual
Success Rate from least to greatest, as that provides as measure of what percentage of students successfully solved a given task.

of problem and participant (see Appendix, Table 12). A statistically
reliable difference in success was observed only for Sorting prob-
lems, which were the most challenging (p=0.045). Participants from
Oberlin struggled more in the Nested category compared to other
students, but the effect is not statistically reliable (p=0.063).

Interviews provide insight into their post-task perspectives. The
most commonly mentioned easiest category was Math (n=21), whereas
the most common for hardest was Nested (n=19), followed by Dic-
tionaries (n=14). These do not match the ranking in Table 4, sug-
gesting a disconnect between student performance and perceptions
of difficulty.

A common theme that emerged related to the challenge of putting
understanding of the problem into English (n=44). criMsoNVoLE
said, “the ones that had huge lists of like, strings, and integers, were
really hard to solve, because they were really hard to describe for
me.” We differentiated this code both from students’ ability to iden-
tify patterns (n=35) and their ability to write the code without
Charlie (n=8). The opposite code, Easy to Describe, applied to 36
responses from the easiest question: T felt like time ones because
they’re pretty straightforward. They’re like [...] exercises that we do in
my Intro CS class. And so I guess it will be easier for me to word, the
description or my thinking process, like I guess that might be easier.”
(YELLLOWWEASEL).

Three codes that related to student’s lack of knowledge emerged,
with 27 responses (see §7.4 for more perspectives).

7.3 What Role Does the Model Play?

LLMs can fail in surprising ways. We now explore the kinds of
model failures that participants encountered.

7.3.1 Syntax errors. Contemporary Code LLMs generally produce
syntactically well-formed programs. However, 5.5% of student prompts
led to Python syntax errors. We manually examined and categorized
them:

o 27 generations: Codex produces degenerate, repetitive text [43]
or Python 2 print statements. These are model failures.

e 81 generations: Codex could not generate a complete func-
tion within the 256 token limit (=800 characters). Our prob-
lems are simple enough to be solvable in far fewer tokens,
so increasing the token limit is unlikely to help.

o 88 generations: Codex generates incomplete code after a
complete function, even with standard stop tokens.

The latter two categories arise from a trade-off in system design:
the first when the interface does not request enough tokens from
the Code LLM; the second when it requests so many that the model
generates extraneous additional code. Although these errors are
infrequent, they are hard for students to deal with. In 22.4% of these
cases (n=44), students gave up after seeing the syntax error.

7.3.2 When the Model Produces Different Programs From the Same

Prompt. Codex is best at coding when its output is sampled (§4.2),

but this stochasticity can frustrate students trying to modify prompts.
In 107 cases (4.2%), a student submitted a prompt several times, and

in most of these cases, Codex generates a new completion. A few

of these are trivially different (e.g., different variable names), but

most (n=86) are different functions. Some students pointed this out

in the interview — BEIGEHALIBUT noted that they “usually would

run a couple times, because Charlie is not very consistent with the

answers. And sometimes it works. Sometimes it wouldn’t work.”

7.3.3 When the Model Produces the Same Program Despite Changes
to the Prompt. When the Code LLM produces an incorrect function,
and a user edits their prompt, their intent is to have the LLM produce
a different—hopefully correct—function. Frustratingly, this does not
necessarily happen: sometimes the model repeatedly generates the
same code despite edits to the prompt. We observe many instances
where this happens (104 submissions, 11% of total): it occurs in
most problems (36 of 48 problems) and is encountered by a majority
of students (72 of 120 students). This often leads students to give
up. In fact, out of the 340 problems where students gave up, 70
were cases where the participant edited the prompt and the LLM
repeatedly generated the same code.

7.4 What Do Students Do When They
Encounter Unfamiliar Python?

Code LLMs are trained on online repositories of code and may
generate code using language features that students have not seen
before.

New Python Constructs. In their interviews, some students (n=>5)
report issues understanding code due to unfamiliar language fea-
tures. oLIVEBEAR comments about the lambda construct for anony-
mous functions: ‘T’ve only ever seen [it] in passing. And so if that
hadn’t worked, I wouldn’t have known what the problem was because
I myself don’t know how to use that operator.” Others mentioned map,

How Beginning Programmers and Code LLMs (Mis)read Each Other

def exp(lst, val):

Completion return [i #* val for i in 1st]

Question Is this code you would write yourself?
Student Responses | Wellesley: Yes, Oberlin: No

Figure 6: An example code completion for the problem exp -
this was generated by multiple different prompts. The com-
pletion was rated differently by Oberlin and Wellesley stu-
dents, likely due to the list comprehension.

replace, and try/except. List comprehensions are an interesting
case because Wellesley teaches them, but Oberlin does not. When
asked about generated code with list comprehensions, 9/24 (37.5%)
Oberlin students indicated that it is similar to code they would write
themselves, compared to 20/33 (60.6%) Wellesley students. Some
students responded differently to the same completion (Figure 6).

Ratings of Final Completions. Students evaluated the correctness
and naturalness of the final completion for each problem, producing
960 responses. For correctness, 61.8% of the time students indicated
that Charlie’s code was correct; the majority (543; 91%) are cases
where all tests passed. However, naturalness responses were more
mixed. Students indicated that Charlie’s code was like code they
would write themselves only 58.3% of the time. 78.6% of such re-
sponses were made when the code passed all tests. Responses to
these questions might diverge when the model generates correct
code that is unfamiliar or approaches a problem differently, as well
as in cases where the model’s code is incorrect, but looks familiar
to students.

8 RQ3: STUDENTS’ MENTAL MODELS AND
PROCESSES

This section addresses RQ3, presenting results related to partici-
pants’ perceptions of the task, their mental models of Charlie, and
their strategies for writing prompts.

8.1 How does Charlie work, according to
students?

In interviews, students were asked how they thought Charlie worked
(Table 5). Comments fell into two broad themes: descriptions of
Charlie’s knowledge, and descriptions of Charlie’s processes.

Processes. Comments in the Translation theme (n=13) described
Charlie in terms of a machine translation process (FUCHSIABEAVER:
‘I thought of him as like a translator, like between English and code”).
Comments in the Sequential theme (n=13) described Charlie as
working line-by-line through their prompt. This is plausible but
incorrect: Code LLMs condition on the entire prompt at once. This
mental model might lead students to focus on individual sentences,
rather than how their prompt works as a holistic description. One
student actually changed their mental model while answering: “it
looks like he went line by line. Wrote some code for each line that
mabkes sense to him [...] Actually, no, I think he takes in the whole
prompt and [...] figures out what to do with the prompt. Because I
do remember [...] there were a couple where I give a paragraph and

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

Thematic Codes N
Knowledge: Keywords - General 30
Knowledge: Keywords - Database/Dictionary | 16
Knowledge: ChatGPT 17
Knowledge: Internet Data 12
Knowledge: Intermediate Representation
Knowledge: Copilot/Codex 2
Process: Sequential 13
Process: Translation 13
No Guess 13
N/A 24

Table 5: Thematic codes emerging from responses to How did
you imagine that Charlie was working?

then he returned a line of code, which makes me think that he wasn’t
going line by line.” (KHAKICLAM).

Charlie’s Knowledge. Most students hypothesized that Charlie
relies on keywords (n=46). A large group of students (n=30) had
a vague keyword mental model. For instance, ‘T guess he probably
looks for keywords, “if” and “else” and key coding words, Python words,
and he probably has a knowledge of English” (WHEATOTTER). Another
group (n=16) outline a more specific keyword lookup model, where
Charlie uses keywords to retrieve relevant code from a dictionary
or database. For instance, LINENBOBcAT described Charlie as “using
the code words, and doing it sort of line by line and trying to work
from what was given and writing those words with what, like in a
directory or some sort of data file, understanding which ones matched
up to which functions and which commands.”

Students with this mental model emphasize the importance of
using programming terminology, since they think Charlie may not
be able to retrieve code without the right keywords. Some students
develop this mental model after observing that their prompts suc-
ceed when they use coding words: ‘Tnoticed that if I put in more like,
computerized words, I almost had a bit more control. At one point, I
forgot to mention that the function returns something. So then when I
mentioned that it returned something he put in a return statement. So
that felt like very, like logical to me. [...] Charlie’s looking for words
that kind of line up with different functions, built in functions, and
using those.” (TANMINNOW). These students correctly observe that
sounding like a programmer is important, but explain this with an
incorrect mental model.

Some students did correctly identify Charlie as similar to an LLM
such as ChatGPT (n=17) or Copilot/Codex (n=2). Success rates for
this group were slightly higher (0.27 versus 0.22; p=0.03).

8.2 What strategies do students develop?

The first two semi-structured interview questions asked students
about their strategies for writing and editing prompts. We find that
students do not have a clear understanding of how models work and
that their incorrect mental models appear to affect the strategies
they develop for prompting in ways that might be unproductive.

8.2.1 Editing processes. Over a third of students (n=48) mentioned
adding detail to their descriptions when they did not succeed (Ta-
ble 6). Some students mentioned clarity as a goal in adding detail,

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

Changes between the first and last prompt

Additions
30 1
20 4
2
Q
5 10 A
b=
[0}
§ o
-g Deletions
a
S 104
#*
20 1
30 1
0 10 20 30 40 50

of changed words

Nguyen et al.

Changes between the second-to-last and last prompt

50 A Additions
40
30 A
wn
2 201
g
b= 10 1
M
5§ o
-g Deletions
a 101
w“
o
20 A
30
40 A
50 A
0 10 20 30 40 50

of changed words

Figure 7: Histograms of the 282 prompts which lead to successes after 2 or more attempts. These represent trends in how
students edit prompts. The figure on the (left) shows the number of words changed between a first prompt and last prompt.
The figure on the (right) shows the final change that produces a successful final prompt.

Thematic Codes N
Added Detail 48
Looked at Tests First 30
Looked at Code First 29
Added Coding Language 21
Comment Not Relevant 16
Looked at Code and Tests Together | 8
Reread the Problem 7
Reordered Prompt 5
Removed Detail 4
Ran Prompt Again 3

oo

Fixed Grammar
Table 6: Thematic codes emerging from responses to What
did you do when you wrote a description, pressed Submit, and
it did not work? Describe the steps you took to edit your de-
scription.

like FuscHIABAT: “I will go back and try to change the wording to
make it more clear, and then try it again. And see if that changes any-
thing. And then just try to repeat that process until it works.” Others
noted that their descriptions needed additional detail because they
did not originally fully describe the problem, or as PLUMBEETLE puts
it, ‘T forgot to uppercase Aspen. And that was just my silly mistake.
And I will just go back and edit or add changes that I want to add and
wish it’s gonna work the next time I guess.” Considering participants’
edits quantitatively confirms the popularity of adding detail. When

we consider pairs of prompts that ultimately succeed, we find that
students, on average, add 9.44 words (SD = 11.34) between their
first and last prompt, and 5.36 words (SD = 8.87) between their
penultimate and last prompt (Figure 7).

While adding details was the most common approach, partici-
pants mentioned other strategies, such as reordering (n=5) or re-
moving detail (n=4). There are also eight attempts where rerunning
the same prompt resulted in a success; we discuss these cases in
§7.3.

Students looked in different places for insight into how to edit
their prompts. Some considered the generated code first (n=29),
some the tests (n=30). Others considered both (n=8) or reread the
problem (n=7).

8.2.2 Strategy changes over time. Participants had a range of re-
sponses about how their prompting processes changed over time.
Some students indicated that they never really developed a process
(n=13), while others (n=14) discussed actively testing and adapting
to Charlie’s capabilities: ‘7 first [...] was kind of seeing what vocabu-
lary Charlie knew. Like if he knew computer science terms, or if I had
to be less computer science-y” (BEIGEBASS).

We present key trajectories in Figure 8. Overall, we observe a
range of reported experiences. Some participants reported start-
ing more human-like and ending more technical (Pythonic), while
others said the opposite. For instance, TOMATOBEETLE reported, “To
begin with, I was using less technical terms and then using more
computer science terms near the end. I was thinking that would make
Charlie work better, but there wasn’t really any evidence behind that”,

How Beginning Programmers and Code LLMs (Mis)read Each Other

28

RYAR

Rtric Ritric
/2

Figure 8: Visualization of how students describe their editing
trajectories. The left nodes represent how students described
how they began their process. The right nodes represent how
students described how they edited prompts at the end of
the study. The codes are presented in pairs - Hard versus

Easy, Concise versus Detailed, Humanlike versus Pythonic.

Only trajectories between pairs are visualized. The size of the
nodes is proportional to the total number of students who
described their Start or End within that code.

while GRAYRABBIT said, ‘T kind of treated it like I was just coding but
saying things I would like use kind of like if statements and integers
and stuff. But towards the end, I tried to focus more on how I could
say what was going on at a higher level, so using more plain language
versus specific coding language”

A large group reported that their prompts became more detailed
(n=35) and/or more technical (n=31), mirroring the finding above
that students typically add detail when editing. For instance, TANBAT
reports, “My initial process was just to figure out what the code is
doing and then just write generic descriptions, like without any coding
language inside of it. But then when I saw that Charlie kept having
problems, I started to go to more coding language.” However, others
took the opposite approach, and ended the study writing more
human-like (n=11) or concise (n=16) descriptions.

8.3 Do Students Get Better at Prompting Over
Time?

It is easy to argue that programming by prompting a Code LLM

with prose is more natural than directly writing code and that

Code LLM prompting is easy to learn. But how easy is easy? We

investigate whether students improve at prompt writing over the

course of the study. We explore this by comparing success rates for

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

(1) students who attempted the problem first with (2) students who
attempted the problem last. Our experiment design ensures that
there are exactly 5 students who attempt each problem first and
five more who attempt it last. We find no significant difference in
success rates between the two groups, indicating that students do
not observably improve at prompting within the 75 minute study.

8.4 What do students think about Charlie?

One of the most consistent findings in work on how experts use
Code LLMs is that users enjoy using models [69, 105], even when no
concrete productivity or correctness benefits are observed [97, 102].
However, near-novices exhibit different motivations and relation-
ships to technology than expert programmers. This makes it im-
portant to investigate how non-experts feel about these systems.

8.4.1 Charlie’s competence and reliability. The post-task survey
asks participants several sets of questions related to their percep-
tions of Charlie. They completed 5 items from Bartneck et al. [7]
adapted by Wang et al. [99] and Druga and Ko [20] for non-robotics
use. Participants generally give Charlie middling ratings for knowl-
edge and competence. Participants take more extreme positions on
Charlie’s persona, in opposite directions: they rate Charlie as both
friendly and machinelike. Students who experience lower success
rates find Charlie somewhat less competent, but do not seem to
find Charlie less friendly (Table 7). Students also completed 5 items
from Kérber [51]’s trust of automation survey. Overall, students see
Charlie as somewhat reliable and somewhat interpretable (Table 8).
Students with higher success rates tended to rate Charlie as less
error prone, easier to understand, and more reliable.

8.4.2 Would they use Charlie? The post-survey asked about stu-
dents’ attitudes toward hypothetically using Charlie in (a) the CS1
course they completed and (b) their own future programming prac-
tice. We used a thematic analysis approach to analyze this data, as
with the interview data (see Appendix A.2 for more details).

Overall, two-thirds (n=83) stated that they would be interested
in using Charlie in CS1. Many responses were variants of “Yes”,
but students who responded Maybe (n=13) or No (n=23) typically
explained their reasoning. Half (n=19) of these suggested that tools
like Charlie would inhibit student learning. For instance, AQUALADY-
BUG noted, IfI had questions on how to program a particular thing,
using something like Charlie could help me clarify any questions I
had by testing out different descriptions. But if I completely relied on
something like Charlie as a tool in such a class, I feel like the whole
point of me taking the class is overlooked and at some point becomes
redundant.” Other students, including those who responded Yes,
brought up how programmer skill level could play a role. TEALHER-
RING wrote, “Yes, but I would want to maybe only try it out towards
the end of the course, when I've already learned the process of cod-
ing and would like to see how an Al could work to streamline the
process.” Other comments touched on academic integrity (‘T don’t
think so unless my teacher explicitly endorsed it because I'm terrified
of plagiarism!” - CRIMSONWORM).

More students supported using tools like Charlie in their own
future programming practice (n=95). Maybe (n=20) and No (n=4)
respondents again provided more explanation: two common themes
included Charlie’s limitations and usefulness for different kinds

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

Scale

Nguyen et al.

‘ Mean ‘ Correlation with Success Rate ()

Ignorant - Knowledgeable
Machinelike - Humanlike

Responding rigidly - Responding elegantly

Unfriendly - Friendly
Incompetent - Competent

3.68 0.16”
2.39 0.12%
3.13 0.09

4.2 0.008
3.58 0.19*

Table 7: Mean student responses to Charlie perception questions (1=left endpoint, 5=right endpoint), adapted from Wang et al.
[99], and correlation with success rate. * indicates statistical significance.

Question

‘ Mean ‘ Correlation with Success Rate ()

Charlie is capable of taking over complicated tasks. | 3.24 | 0.03

Charlie might make sporadic errors.

I was able to understand why things happened.

I can rely on Charlie.
Automated systems generally work well.

2.15 0.18*
2.24 -0.34*
2.95 -0.17*
2.46 -0.14

Table 8: Mean student responses to Charlie trust questions (1 = Strongly agree; 5 = Strongly disagree), adapted from Korber [51],
and correlation with success rate. * indicates statistical significance.

of problems: “If Charlie improved, then it should be able to gener-
ate simple functions for me, in which I don’t have to repeat myself”
(PURPLECARP).

8.5 AI Attitudes

Students were asked whether they felt optimistic or pessimistic
about AI’s future impact on society. About two-thirds of students
were optimistic; however, students pursuing a programming ma-
jor (Computer Science, Data Science, or Media Arts and Science)
were notably more optimistic than other students (80% optimistic
compared to 63% of other majors). There was no difference in task
performance between optimists and pessimists (pass@1 rate = 0.22
for both).

Students were also asked to compare the ethicality of Charlie
with three other AI deployment scenarios. Most students found
Charlie less ethically concerning in each comparison (Figure 9). Stu-
dent responses to these questions did not differ reliably in relation
to their success rate or pass rate.

9 DISCUSSION

In the previous sections we discussed our three main research
questions — we summarize the findings together here:

e RQ1: We find that some students can effectively prompt a
Code LLM, but it often takes numerous attempts. Students
overall found the task mentally demanding. Prior experi-
ence and first-generation status are correlated, positively
and negatively respectively, with success.

e RQ2: The most common issues students report relate to the
Code LLM misunderstanding their descriptions and issues
with generated code. Both students themselves and our anal-
ysis of the data suggest that the stochastic nature of the
Code LLM may impact student experiences. We find limited
differences between students regarding problem difficulty.

e RQ3: Students’ most common mental model for the Code
LLM was a data structure with keyword lookup. The most

common prompting strategy that students developed was
to expand their prompts, making them more detailed and
more Pythonic. Students viewed the model as fairly capable
and somewhat reliable. However, they expressed a range of
opinions about whether Code LLMs would be appropriate
for CS1.

In this section we draw connections between our findings and
related work and discuss their broader implications.

9.1 The Natural-Language-to-Code Task is
Challenging

The emergence of LLMs have led some to conclude that this is the
“end of programming” [65, 100]. In contrast, we find that beginners
who can write code nevertheless struggle to write natural language
prompts for LLMs. We carefully select problems that are similar
(or identical) to those they completed to pass CS1. The average
participant solves 57% of the assigned problems, but only after
several repeated attempts and with automatic feedback on code
correctness. Our study contributes to the existing work on beginner
interactions with Code LLMs by measuring how well students
can use Code LLMs to solve problems at their own programming
skill level, rather than in the context of a learning activity, where
students may not be expected to able to write the code themselves.
Despite the fact that all of our participants had passed CS1, which
required writing code to solve problems like those in our study,
many of them struggled to write natural language descriptions to
lead a Code LLM to solve similar tasks.

On the whole, our findings reveal a somewhat higher level of
difficulty in using Code LLMs than other studies [19, 48, 78], though
it can be challenging to compare across diverse student populations,
study designs, and problem types. Our results align most closely
with those from Denny et al. [19]’s subsequent study of students
with just two weeks of programming instruction. Although their
study used only 3 problems and had less experienced programmers,
they observed similar challenges: 86% of students eventually solved

How Beginning Programmers and Code LLMs (Mis)read Each Other

Screen job applicants Write news articles Grade exams

0- “‘ III ||‘ III “‘ III

Less Less More Less More
Is Charlie more or Iess ethically concerning than a system that uses Al to...?

n
<

Number of responses
>

School [Northeastern [ll Oberlin [l Wellesley

Figure 9: Student perceptions of Charlie’s ethicality as com-
pared to other Al scenarios

their easiest problem, but only 65% solved their hardest task. This
is close to the average eventual success rate that we observe.

9.2 Not a Panacea for Non-Expert Programming

Learning an effective process for how to prompt a Code LLM is the
key to interacting successfully with it in the long term. Existing
work on experts reveals different “modes” of interaction [6]. Our
findings suggest that unlike experts, near-novices do not develop
well-defined strategies for how to prompt. Students added more detail
to their previous prompts, even when it would have been better
to start from scratch. In addition, students’ prompting abilities did
not observably improve during the study (§8.3). Students’ failure
to develop effective strategies may also be linked to their incorrect
mental models of how Code LLMs work (§8.1). These results suggest
that prompting, like most ways of interacting with code, needs to
be explicitly taught to be used effectively.

Kazemitabaar et al. [48] present a study of pre-college students
that suggests Code LLMs can improve learning outcomes. They
compare student performance with and without access to the Code
LLM, and provide considerable support to participants, such as
instructor feedback and access to expert-written descriptions of the
problem. In three of their task categories, both students with and
without access to a Code LLM were able to complete 100% of the
tasks, making it difficult to understand the contribution of the Code
LLM. In the two more challenging categories, students benefited
from the Code LLM, but they also relied heavily on the expert-
written description (reusing it around 40% of the time). Together
with our results, we take this to indicate that Code LLMs can be
useful to beginners, but that writing prompts remains a barrier.
This highlights the importance of understanding why Code LLMs
and beginning programmers struggle to understand each other:
Kazemitabaar et al. [48] argue that Code LLMs could positively
impact student learning, but our results demonstrate a variety of
ways that these interactions currently fail.

CHI 24, May 11-16, 2024, Honolulu, HI, USA

Our findings provide fine-grained evidence about student chal-
lenges that have implications for complete novices, as well as the be-
ginners we study. The results in §8 highlight how effective prompt-
ing requires skills that complete novices do not possess. Figure 8
visualizes how students described their start and end approaches
to editing, showing that many students who started out writing
prompts as for a human transition into using more coding termi-
nology by the end of the study. These participants picked up on
a key property of Code LLMs: they are trained on expert-written
code and documentation and expect natural language prompts to
utilize coding terminology. The strategies that were most effective
for our beginners would not be available to true novices.

9.3 Don’t Assume a Mental Model of Al

Our study suggests that students have incomplete mental models
of how Code LLMs work. Although participants knew they were
interacting with an Al code generation tool and the majority (n=88,
73% in the post survey) had heard of GPT-3, Github Copilot, or
Codex, when asked how they thought our system worked, only 19
students mentioned these models. A notable feature of responses
was the number of detailed, but incorrect explanations. The majority
of students who gave examples identified a keyword-based lookup
strategy, like the dictionaries they had learned about in CS1.

These mental models fail to explain one aspect of Codex that stu-
dents find frustrating: its stochastic responses. Students are familiar
with errors that persist after editing their code. Code LLMs intro-
duce a related but novel experience: submitting the same prompt
and getting a different program (§7.3). This does not occur in stan-
dard CS1 settings and cannot be explained by the database/dic-
tionary mental model of Code LLMs that most participants de-
scribed. Without a well-developed understanding of why this hap-
pens, students have simply added another unknown computational
behavior to their coding experience.

We note that although Prather et al. [78] report that several of
their participants described models as having sentience or agency,
none of our participants did. This may reflect the growing public
awareness of generative Al between their study and ours, resulting
in more realistic attitudes about the capabilities of large language
models in our population. Our students seem to understand what
Al models can do, but not how they do it.

9.4 Implications for Educators

Recent work has shown that Code LLMs can solve CS exams or
homework assignments given the educator’s description of the prob-
lem [17, 25]. Our findings show that although Code LLMs can solve
CS1 problems, CS1 students cannot necessarily prompt Code LLMs
to solve CS1 problems. Our findings reiterate the importance of key
skills taught in CS1: code comprehension, problem decomposition,
and the ability to describe computational problems clearly.

While we do not study learning outcomes explicitly, we find
mixed support for Code LLMs as pedagogical tools. The survey
portion of our experiment included questions about participants’
attitudes towards Code LLMs. About two-thirds of participants
expressed interest in using similar technology in CS1. Some par-
ticipants mentioned that the task helped them remember Python
concepts that they had forgotten, or even learn new features (such as

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

list comprehensions for Oberlin students). Others felt that it helped
them practice describing technical tasks in natural language; Code
LLMs could be used to provide feedback on Explain In Plain English
(EiPE) questions [16, 64], which many educators see as valuable,
but difficult to use without automation [28]. Recent work on stu-
dents’ perceptions of automatically-graded EiPE questions provides
guidelines that may serve as a first step towards using Code LLMs
as automatic backends [44].

On the other hand, a sizeable number of students did not sup-
port using Code LLMs in CS1. Some students expressed ethical
concerns. Many questioned whether coming to rely on Code LLMs
would diminish their knowledge of programming or their sense of
fulfillment. Our survey data also highlights a key challenge of con-
temporary Al: explainability. Students gave Charlie higher ratings
for capability than interpretability. Our findings here complement
Sun et al. [93]’s exploration of Code LLM explainability needs iden-
tified by expert programmers, and Prather et al. [78]’s finding of
students’ “slow accept” mode, where students spent a lot of time
reading code generated by Copilot and deciding whether or not to
accept it.

By shedding light on how students feel about Code LLMs, our
work augments Lau and Guo [52]’s investigation of CS educators’
perspectives on Code LLMs. Our studies were conducted at a similar
moment when Code LLMs had recently gained public prominence,
but few educators or students had much experience with them. Our
students and the educators in Lau and Guo [52] raise strikingly
similar concerns about ethics and negative impacts on student
learning. Denny et al. [19]’s subsequent experiment found similar
concerns among currently enrolled CS1 students.

The large scale of our study also allows us to contribute data to
the debate over equity in Lau and Guo [52]’s study, who show con-
flicting perspectives among educators: some felt that Code LLMs
could strengthen the digital divide between students, while oth-
ers felt that Code LLMs could improve diversity in CS. On the
whole, our findings strengthens concerns. We show that students
with extracurricular programming experience have an advantage,
echoing Kazemitabaar et al. [48]’s finding that more experienced
programmers benefit more from using Code LLMs. We also show
that prompts written by first generation college students have re-
liably lower pass@1 rates. Educators should weigh the potential
benefits of adopting this new technology against the possibility
that it might exacerbate existing equity issues [41].

Finally, our students are ambivalent towards Al systems in gen-
eral. Around two-thirds were optimistic about AI's impact on so-
ciety in the future, similar to the proportion interested in using
Charlie in CS1. This leaves a sizeable number of beginners who are
concerned about Al or uninterested in its use in CS1. Our findings
capture a nuanced portrait of how young adults perceive generative
Al for programming, captured at a moment where generative Al
was increasingly prominent in popular media.

9.5 Model Selection for Human-AlI Interaction
Research

One issue for studies such as ours is the rapid pace of research
and development in machine learning. Running lab experiments
with humans takes time. However, current proprietary models are

Nguyen et al.

often updated or deprecated with very little warning. This study
used OpenAI’s Codex, which provides state-of-the-art Code LLM
performance but came with significant risks. In the middle of our
study, OpenAlI announced that Codex would be deprecated within
a week, which would have seriously compromised our results; after
much public concern, they eventually delayed the deprecation until
early 2024.

The mismatch between the timescale of ML development and
human-subjects research makes it difficult to complete studies us-
ing state-of-the-art models, which are largely proprietary. Based
on our experience, we recommend not using proprietary models,
although this may come with a trade-off in terms of performance,
and imposes significant computational requirements for the re-
search team (since alternatives require access to significant GPU
resources). Nonetheless, we strongly suggest the use of open source
models [59, 85] in future work, and potentially for classroom use,
to avoid sudden loss of access. This is an example of an ongoing
equity concern for researchers and educators.

9.6 Timeliness

Conducting work with non-experts and Code LLMs in early 2023
captures a specific moment in the evolution of this technology. Our
participant pool represents students who mostly completed CS1
before Code LLMs became commonplace. Collecting this data now
is paramount to our understanding of baseline interactions with
Code LLMs for students without previous exposure. In the future,
the controlled background knowledge of this study will become
increasingly hard to come by, both at our institutions and farther
afield.

We also see our work as timely because of the struggles and
strategies, or lack thereof, that we identify. As computing resources
become increasingly directed towards Code LLM technology [58],
work such as ours has the potential to impact how companies
develop their models, tutorials, and interfaces. We find that non-
experts struggle to execute the full prompt and edit cycle, even
with an interface that identifies output correctness. If this trend
generalizes to other non-expert groups, Code LLM technology may
strengthen the digital divide between expert and non-expert pro-
grammers, adding to the wide ranging list of ethical concerns about
generative Al [9, 49, 61].

10 THREATS TO VALIDITY

A major challenge of studying human-Al interaction is that Al ca-
pabilities and popular awareness of them change quickly. ChatGPT
was released between our pilot and main experiment; as a result,
students’ knowledge and experience with large language models
underwent significant growth during our experiment. We observed
a statistically significant improvement in task performance for stu-
dents who took the study in the last month. This may spring from
increased familiarity with large language models such as ChatGPT
or from more recent exposure to CS1 material.

Although we recruited participants who had completed CS1 and
no subsequent CS courses, their programming backgrounds were
not homogeneous. Some participants had taken a prior program-
ming course in high school or in college, and some were concur-
rently enrolled in a programming course. We study the effects of

How Beginning Programmers and Code LLMs (Mis)read Each Other

additional programming experience in §6.3. In addition, since we
recruited students who had taken CS1 as early as Fall 2021, some
participants reported having forgotten programming concepts or
terms in the intervening time.

Several factors may have biased participants towards report-
ing positive perceptions of our system. While we ensured that the
experimenter running the study was not a educator at the partici-
pant’s institution, participants were aware that the study involved
one of their professors and may have responded more positively as
a result. In addition, students may have answered questions about
text-to-code more positively because of the anthropomorphic qual-
ities of our system design; several commented about the appealing
affect of the Charlie mascot in post-study questions. Charlie may
have also had an effect on students’ level of task perseverance [54].
Finally, novelty bias is always a potential concern when evaluating
novel interfaces or systems, as-is self-selection bias for stand-alone
studies.

11 CONCLUSION

We present results from a large-scale, multi-institution study of
how near-novices interact with Code LLMs. Our novel experimental
design allows us to isolate the prompt writing and editing tasks, by
using a lab-based experiment in which participants write natural
language descriptions of tasks and receive automated feedback on
the correctness of generated code.

Our results suggest that students who have complete a single
CS course find using Code LLMs challenging, even with tasks at an
appropriate skill level. Our findings highlight the various barriers
that they face, ranging from distilling their problem understanding
into words, using coding terminology, understanding generated
code, and grappling with the stochasticity of Code LLM output. We
show that certain groups of students, most notably, first-generation
college students, face additional difficulties, raising equity issues
related to the deployment of Code LLMs in the classroom. We also
illustrate how students’ incorrect mental models of how Code LLMs
operate inhibit their ability to develop effective prompting strate-
gies. Moreover, our qualitative results provide insight into how
beginning programmers feel about introducing Code LLMs in the
classroom, bringing their voices into an key contemporary debate
and complementing existing work on educators’ perspectives.

Our findings suggest that Code LLMs do not signal the “end of
programming’: in fact, they highlight the many ways in which Code
LLMs remain inaccessible to non-experts. We hope that our findings
will motivate renewed effort towards democratizing programming
by closing this gap.

ACKNOWLEDGMENTS

We thank the anonymous reviewers and Shriram Krishnamurthi
for their thoughtful feedback. We thank our colleagues who helped
us recruit participants and who provided CS1 problems that we
adapted. We would also like to thank Rachelle Hu for her work on
the Charlie platform prototype. This work is partially supported by
the National Science Foundation (SES-2326173, SES-2326174, and
SES-2326175). We thank Northeastern Research Computing and the
New England Research Cloud for providing computing resources.

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

REFERENCES

[1] Andrea Agostinelli, Timo I. Denk, Zalan Borsos, Jesse Engel, Mauro Verzetti, An-
toine Caillon, Qingqing Huang, Aren Jansen, Adam Roberts, Marco Tagliasacchi,
Matt Sharifi, Neil Zeghidour, and Christian Frank. 2023. MusicLM: Generating
Music From Text. http://arxiv.org/abs/2301.11325

[2] Nader Akoury, Shufan Wang, Josh Whiting, Stephen Hood, Nanyun Peng, and
Mohit Iyyer. 2020. STORIUM: A Dataset and Evaluation Platform for Machine-
in-the-Loop Story Generation. http://arxiv.org/abs/2010.01717 arXiv:2010.01717
[cs].

[3] Hannah McLean Babe, Sydney Nguyen, Yangtian Zi, Arjun Guha, Molly Q.
Feldman, and Carolyn Jane Anderson. 2023. StudentEval: A Benchmark of
Student-Written Prompts for Large Language Models of Code. http://arxiv.org/
abs/2306.04556

[4] Bruce W. Ballard and Alan W. Biermann. 1979. Programming in Natural
Language: “NLC” as a Prototype. In Annual Conference of the ACM. Asso-
ciation for Computing Machinery, New York, NY, USA, 228-237. https:
//doi.org/10.1145/800177.810072

[5] Patrick Bareif, Beatriz Souza, Marcelo d’Amorim, and Michael Pradel. 2022.
Code Generation Tools (Almost) for Free? A Study of Few-Shot, Pre-Trained
Language Models on Code. http://arxiv.org/abs/2206.01335 arXiv:2206.01335
[cs].

[6] Shraddha Barke, Michael B. James, and Nadia Polikarpova. 2023. Grounded
Copilot: How Programmers Interact with Code-Generating Models. Proceedings
of the ACM on Programming Languages 7, OOPSLA1 (April 2023), 85-111. https:
//doi.org/10.1145/3586030

[7] Christoph Bartneck, Dana Kuli¢, Elizabeth Croft, and Susana Zoghbi. 2009.
Measurement Instruments for the Anthropomorphism, Animacy, Likeability,
Perceived Intelligence, and Perceived Safety of Robots. International Journal of
Social Robotics 1,1 (Jan. 2009), 71-81. https://doi.org/10.1007/s12369-008-0001-3

[8] Douglas Bates, Martin Méchler, Ben Bolker, and Steve Walker. 2015. Fitting
Linear Mixed-Effects Models Using Ime4. Journal of Statistical Software 67, 1
(2015), 1-48. https://doi.org/10.18637/jss.v067.101

[9] Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret

Shmitchell. 2021. On the Dangers of Stochastic Parrots: Can Language Models Be

Too Big?. In Proceedings of the 2021 ACM Conference on Fairness, Accountability,

and Transparency. ACM, Virtual Event Canada, 610-623. https://doi.org/10.

1145/3442188.3445922

Christian Bird, Denae Ford, Thomas Zimmermann, Nicole Forsgren, Eirini

Kalliamvakou, Travis Lowdermilk, and Idan Gazit. 2023. Taking Flight with

Copilot: Early Insights and Opportunities of AI-Powered Pair-Programming

Tools. Queue 20, 6 (Jan. 2023), 35-57. https://doi.org/10.1145/3582083 Place:

New York, NY, USA Publisher: Association for Computing Machinery.

Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen, Luna Phipps-

Costin, Donald Pinckney, Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson,

Molly Q Feldman, Arjun Guha, Michael Greenberg, and Abhinav Jangda. 2023.

MultiPL-E: A Scalable and Polyglot Approach to Benchmarking Neural Code

Generation. IEEE Transactions on Software Engineering 49, 7 (July 2023), 3675—

3691. https://doi.org/10.1109/TSE.2023.3267446

[12] Le Chen, Xianzhong Ding, Murali Emani, Tristan Vanderbruggen, Pei-Hung Lin,

and Chunhua Liao. 2023. Data Race Detection Using Large Language Models.

In Proceedings of the SC °23 Workshops of The International Conference on High

Performance Computing, Network, Storage, and Analysis. ACM, Denver CO USA,

215-223. https://doi.org/10.1145/3624062.3624088

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde

de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph,

Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy

Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder,

Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens

Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert,

Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss,

Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji,

Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike,

Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight,

Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario

Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evalu-

ating Large Language Models Trained on Code. http://arxiv.org/abs/2107.03374

arXiv:2107.03374 [cs].

[14] CodeWhisperer. 2023. ML-powered Coding Companion — Amazon CodeWhis-

perer — Amazon Web Services. https://aws.amazon.com/codewhisperer/

Github Copilot. 2023. Github Copilot Your Al pair programmer. https://github.

com/features/copilot

Malcolm Corney, Sue Fitzgerald, Brian Hanks, Raymond Lister, Renee McCauley,

and Laurie Murphy. 2014. Explain in Plain English’ Questions Revisited: Data

Structures Problems. In Proceedings of the 45th ACM technical symposium on

Computer science education. ACM, Atlanta Georgia USA, 591-596. https://doi.

org/10.1145/2538862.2538911

[10

[11

[13

[15

[16

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

(17]

(18]

(19

™
=

[21

[22

IS
3

[24

[25

[27

[28

[29

[31

(32

(33]

[34

@
2

(36

Arghavan Moradi Dakhel, Vahid Majdinasab, Amin Nikanjam, Foutse Khomh,
Michel C. Desmarais, Zhen Ming, and Jiang. 2022. GitHub Copilot Al pair
programmer: Asset or Liability? https://doi.org/10.48550/ARXIV.2206.15331
Maria De-Arteaga, Riccardo Fogliato, and Alexandra Chouldechova. 2020. A
Case for Humans-in-the-Loop: Decisions in the Presence of Erroneous Algo-
rithmic Scores. In Proceedings of the 2020 CHI Conference on Human Factors in
Computing Systems (CHI "20). Association for Computing Machinery, New York,
NY, USA, 1-12. https://doi.org/10.1145/3313831.3376638

Paul Denny, Juho Leinonen, James Prather, Andrew Luxton-Reilly, Thezyrie
Amarouche, Brett A. Becker, and Brent N. Reeves. 2023. Promptly: Using Prompt
Problems to Teach Learners How to Effectively Utilize AI Code Generators.
http://arxiv.org/abs/2307.16364 arXiv:2307.16364 [cs].

Stefania Druga and Amy J Ko. 2021. How do children’s perceptions of machine
intelligence change when training and coding smart programs?. In Interaction
Design and Children. ACM, Athens Greece, 49-61. https://doi.org/10.1145/
3459990.3460712

Stephen H. Edwards. 2004. Using Software Testing to Move Students from Trial-
and-Error to Reflection-in-Action. In Proceedings of the 35th SIGCSE Technical
Symposium on Computer Science Education. ACM, Norfolk Virginia USA, 26-30.
https://doi.org/10.1145/971300.971312

Molly Q Feldman, Ji Yong Cho, Monica Ong, Sumit Gulwani, Zoran Popovi¢,
and Erik Andersen. 2018. Automatic diagnosis of students’ misconceptions in
k-8 mathematics. In Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems. 1-12.

Kasra Ferdowsi, Ruangianqian Huang, Michael B. James, Nadia Polikarpova,
and Sorin Lerner. 2023. Live Exploration of AI-Generated Programs. http:
//arxiv.org/abs/2306.09541 arXiv:2306.09541 [cs].

Sally Fincher, Raymond Lister, Tony Clear, Anthony Robins, Josh Tenenberg,
and Marian Petre. 2005. Multi-institutional, multi-national studies in CSEd
Research: some design considerations and trade-offs. In Proceedings of the first
international workshop on Computing education research (ICER '05). Association
for Computing Machinery, New York, NY, USA, 111-121. https://doi.org/10.
1145/1089786.1089797

James Finnie-Ansley, Paul Denny, Brett A. Becker, Andrew Luxton-Reilly, and
James Prather. 2022. The Robots Are Coming: Exploring the Implications
of OpenAlI Codex on Introductory Programming. In Australasian Computing
Education Conference (ACE "22). Association for Computing Machinery, New
York, NY, USA, 10-19. https://doi.org/10.1145/3511861.3511863

Emily First, Markus Rabe, Talia Ringer, and Yuriy Brun. 2023. Baldur: Whole-
Proof Generation and Repair with Large Language Models. In Proceedings of the
31st ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. ACM, San Francisco CA USA, 1229-1241.
https://doi.org/10.1145/3611643.3616243

Matthew Flatt, Matthias Felleisen, Robert Bruce Findler, and Shriram Krishna-
murthi. 2001. How To Design Programs. MIT Press.

Max Fowler, Binglin Chen, Sushmita Azad, Matthew West, and Craig Zilles. 2021.
Autograding "Explain in Plain English" questions using NLP. In Proceedings
of the 52nd ACM Technical Symposium on Computer Science Education. ACM,
Virtual Event USA, 1163-1169. https://doi.org/10.1145/3408877.3432539
Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi,
Ruigi Zhong, Wen-tau Yih, Luke Zettlemoyer, and Mike Lewis. 2023. InCoder:
A Generative Model for Code Infilling and Synthesis. http://arxiv.org/abs/2204.
05999 arXiv:2204.05999 [cs].

Marwa Gadala. 2017. Automation bias: exploring causal mechanisms and poten-
tial mitigation strategies. https://api.semanticscholar.org/CorpusID:41123263
Chugin Geng, Haolin Ye, Yixuan Li, Tianyu Han, Brigitte Pientka, and Xujie
Si. 2022. Novice Type Error Diagnosis with Natural Language Models. http:
//arxiv.org/abs/2210.03682 arXiv:2210.03682 [cs].

Kate Goddard, Abdul V. Roudsari, and Jeremy C. Wyatt. 2012. Automation bias:
a systematic review of frequency, effect mediators, and mitigators. Journal of
the American Medical Informatics Association : JAMIA 19 1 (2012), 121-7.
Jamie Gorson and Eleanor O’Rourke. 2020. Why do CS1 Students Think
They’re Bad at Programming?: Investigating Self-efficacy and Self-assessments
at Three Universities. In Proceedings of the 2020 ACM Conference on International
Computing Education Research. ACM, Virtual Event New Zealand, 170-181.
https://doi.org/10.1145/3372782.3406273

Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. 2019. Automated
program repair. Commun. ACM 62, 12 (2019), 56-65. Publisher: ACM New York,
NY, USA.

Sumit Gulwani, Oleksandr Polozov, Rishabh Singh, and others. 2017. Program
synthesis. Foundations and Trends® in Programming Languages 4, 1-2 (2017),
1-119. Publisher: Now Publishers, Inc..

Sandra G. Hart and Lowell E. Staveland. 1988. Development of NASA-TLX
(Task Load Index): Results of Empirical and Theoretical Research. In Advances
in Psychology, Peter A. Hancock and Najmedin Meshkati (Eds.). Human Mental
Workload, Vol. 52. North-Holland, 139-183. https://doi.org/10.1016/S0166-
4115(08)62386-9

[37]

[38

[39

[40

[41

[42

[43

[44

[45

[46

[47

[48

[49

[50]

[51]

[52

[53

[54

[55

[56]

Nguyen et al.

Andrew Head, Elena Glassman, Gustavo Soares, Ryo Suzuki, Lucas Figueredo,
Loris D’Antoni, and Bjorn Hartmann. 2017. Writing reusable code feedback
at scale with mixed-initiative program synthesis. In Proceedings of the Fourth
(2017) ACM Conference on Learning@ Scale. 89-98.

George E. Heidorn. 1974. English as a Very High Level Language for Simulation
Programming. In Proceedings of the ACM SIGPLAN Symposium on Very High
Level Languages. Association for Computing Machinery, New York, NY, USA,
91-100. https://doi.org/10.1145/800233.807050

Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu.
2012. On the naturalness of software. In Proceedings of the 34th International
Conference on Software Engineering (ICSE °12). IEEE Press, Zurich, Switzerland,
837-847.

Jack Hollingsworth. 1960. Automatic graders for programming classes. Commun.
ACM 3, 10 (1960), 528-529. Publisher: ACM New York, NY, USA.

Kenneth Holstein and Shayan Doroudi. 2021. Equity and Artificial Intelligence
in Education: Will "AIEd" Amplify or Alleviate Inequities in Education? http:
//arxiv.org/abs/2104.12920 arXiv:2104.12920 [cs].

Kenneth Holstein, Bruce M McLaren, and Vincent Aleven. 2018. Student learning
benefits of a mixed-reality teacher awareness tool in Al-enhanced classrooms.
In Artificial Intelligence in Education: 19th International Conference, AIED 2018,
London, UK, June 27-30, 2018, Proceedings, Part I 19. Springer, 154-168.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. 2020. The
Curious Case of Neural Text Degeneration. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net. https://openreview.net/forum?id=rygGQyrFvH

Silas Hsu, Tiffany Wenting Li, Zhilin Zhang, Max Fowler, Craig Zilles, and
Karrie Karahalios. 2021. Attitudes Surrounding an Imperfect AI Autograder. In
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
ACM, Yokohama Japan, 1-15. https://doi.org/10.1145/3411764.3445424
Daphne Ippolito, Ann Yuan, Andy Coenen, and Sehmon Burnam. 2022. Creative
Writing with an AI-Powered Writing Assistant: Perspectives from Professional
Writers. http://arxiv.org/abs/2211.05030 arXiv:2211.05030 [cs].

Yue Jia and Mark Harman. 2011. An Analysis and Survey of the Development of
Mutation Testing. IEEE Transactions on Software Engineering 37, 5 (Sept. 2011),
649-678. https://doi.org/10.1109/TSE.2010.62

Harshit Joshi, José Cambronero Sanchez, Sumit Gulwani, Vu Le, Gust Ver-
bruggen, and Ivan Radi¢ek. 2023. Repair Is Nearly Generation: Multilingual
Program Repair with LLMs. Proceedings of the AAAI Conference on Artificial In-
telligence 37, 4 (June 2023), 5131-5140. https://doi.org/10.1609/aaai.v37i4.25642
Majeed Kazemitabaar, Justin Chow, Carl Ka To Ma, Barbara J. Ericson, David
Weintrop, and Tovi Grossman. 2023. Studying the effect of AI Code Generators
on Supporting Novice Learners in Introductory Programming. In Proceedings
of the 2023 CHI Conference on Human Factors in Computing Systems. ACM,
Hamburg Germany, 1-23. https://doi.org/10.1145/3544548.3580919

Heidy Khlaaf, Pamela Mishkin, Joshua Achiam, Gretchen Krueger, and Miles
Brundage. 2022. A Hazard Analysis Framework for Code Synthesis Large
Language Models. http://arxiv.org/abs/2207.14157 arXiv:2207.14157 [cs].
Amy J. Ko, Brad A. Myers, and Htet Htet Aung. 2004. Six Learning Barriers in
End-User Programming Systems. In 2004 IEEE Symposium on Visual Languages -
Human Centric Computing. IEEE, Rome, Italy, 199-206. https://doi.org/10.1109/
VLHCC.2004.47

Moritz Korber. 2018. Theoretical considerations and development of a question-
naire to measure trust in automation. In Congress of the International Ergonomics
Association. Springer, 13-30.

Sam Lau and Philip Guo. 2023. From "Ban It Till We Understand It" to "Resistance
is Futile": How University Programming Instructors Plan to Adapt as More
Students Use AI Code Generation and Explanation Tools such as ChatGPT and
GitHub Copilot. In Proceedings of the 2023 ACM Conference on International
Computing Education Research - Volume 1 (ICER °23). Association for Computing
Machinery, New York, NY, USA, 106-121. https://doi.org/10.1145/3568813.
3600138

Tessa Lau. 2009. Why Programming-By-Demonstration Systems Fail: Lessons
Learned for Usable Al Al Magazine 30, 4 (Oct. 2009), 65-65. https://doi.org/10.
1609/aimag.v30i4.2262

Michael J Lee and Amy J Ko. 2011. Personifying programming tool feedback im-
proves novice programmers’ learning. In Proceedings of the seventh international
workshop on Computing education research. 109-116.

Juho Leinonen, Paul Denny, Stephen MacNeil, Sami Sarsa, Seth Bernstein, Joanne
Kim, Andrew Tran, and Arto Hellas. 2023. Comparing Code Explanations
Created by Students and Large Language Models. In Proceedings of the 2023
Conference on Innovation and Technology in Computer Science Education V. 1.
ACM, Turku Finland, 124-130. https://doi.org/10.1145/3587102.3588785

Juho Leinonen, Arto Hellas, Sami Sarsa, Brent Reeves, Paul Denny, James Prather,
and Brett A. Becker. 2023. Using Large Language Models to Enhance Pro-
gramming Error Messages. In Proceedings of the 54th ACM Technical Sympo-
sium on Computer Science Education V. 1. ACM, Toronto ON Canada, 563-569.
https://doi.org/10.1145/3545945.3569770

How Beginning Programmers and Code LLMs (Mis)read Each Other

(57]

[58

(59

(61

[62

(3]

[65]

(66

(67

o
&,

[69

[70

[73

Caroline Lemieux, Jeevana Priya Inala, Shuvendu K. Lahiri, and Siddhartha Sen.
2023. CodaMosa: Escaping Coverage Plateaus in Test Generation with Pre-
trained Large Language Models. In 2023 IEEE/ACM 45th International Conference
on Software Engineering (ICSE). IEEE, Melbourne, Australia, 919-931. https:
//doi.org/10.1109/ICSE48619.2023.00085

Jonathan Vanian Leswing, Kif. 2023. ChatGPT and generative Al are booming,
but the costs can be extraordinary. https://www.cnbc.com/2023/03/13/chatgpt-
and-generative-ai-are-booming-but-at-a-very-expensive-price.html
Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Ko-
cetkov, Chenghao Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim,
Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo, Thomas Wang, Olivier De-
haene, Mishig Davaadorj, Joel Lamy-Poirier, Jodo Monteiro, Oleh Shliazhko,
Nicolas Gontier, Nicholas Meade, Armel Zebaze, Ming-Ho Yee, Logesh Kumar
Umapathi, Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang,
Rudra Murthy, Jason Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco
Zocca, Manan Dey, Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya, Wen-
hao Yu, Swayam Singh, Sasha Luccioni, Paulo Villegas, Maxim Kunakov, Fe-
dor Zhdanov, Manuel Romero, Tony Lee, Nadav Timor, Jennifer Ding, Claire
Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, Alex Gu,
Jennifer Robinson, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish
Contractor, Siva Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Car-
los Mufioz Ferrandis, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von
Werra, and Harm de Vries. 2023. StarCoder: may the source be with you!
http://arxiv.org/abs/2305.06161 arXiv:2305.06161 [cs].

Jenny T. Liang, Chenyang Yang, and Brad A. Myers. 2023. A Large-Scale
Survey on the Usability of AI Programming Assistants: Successes and Challenges.
http://arxiv.org/abs/2303.17125 arXiv:2303.17125 [cs].

Q. Vera Liao and Jennifer Wortman Vaughan. 2023. Al Transparency in the Age
of LLMs: A Human-Centered Research Roadmap. http://arxiv.org/abs/2306.
01941 arXiv:2306.01941 [cs].

Michael Xieyang Liu, Advait Sarkar, Carina Negreanu, Benjamin Zorn, Jack
Williams, Neil Toronto, and Andrew D. Gordon. 2023. “What It Wants Me To
Say”: Bridging the Abstraction Gap Between End-User Programmers and Code-
Generating Large Language Models. In Proceedings of the 2023 CHI Conference
on Human Factors in Computing Systems. ACM, Hamburg Germany, 1-31. https:
//doi.org/10.1145/3544548.3580817

Vivian Liu, Tao Long, Nathan Raw, and Lydia Chilton. 2023. Generative Disco:
Text-to-Video Generation for Music Visualization. http://arxiv.org/abs/2304.
08551

Mike Lopez, Jacqueline Whalley, Phil Robbins, and Raymond Lister. 2008. Re-
lationships between reading, tracing and writing skills in introductory pro-
gramming. In Proceedings of the Fourth international Workshop on Computing
Education Research (ICER ’08). Association for Computing Machinery, New York,
NY, USA, 101-112. https://doi.org/10.1145/1404520.1404531

Farhad Manjoo. 2023. It’s the End of Computer Programming as We Know It.
(And I Feel Fine.). The New York Times (June 2023). https://www.nytimes.com/
2023/06/02/opinion/ai-coding.html

Nora McDonald, Sarita Schoenebeck, and Andrea Forte. 2019. Reliability and
Inter-rater Reliability in Qualitative Research: Norms and Guidelines for CSCW
and HCI Practice. Proceedings of the ACM on Human-Computer Interaction 3,
CSCW (Nov. 2019), 1-23. https://doi.org/10.1145/3359174

L. A.. Miller. 1981. Natural language programming: styles, strategies, and con-
trasts. IBM Systems Journal 20, 2 (June 1981), 184-215. https://doi.org/10.1147/
§§.202.0184

Piotr Mirowski, Kory W. Mathewson, Jaylen Pittman, and Richard Evans. 2023.
Co-Writing Screenplays and Theatre Scripts with Language Models: Evaluation
by Industry Professionals. In Proceedings of the 2023 CHI Conference on Human
Factors in Computing Systems. ACM, Hamburg Germany, 1-34. https://doi.org/
10.1145/3544548.3581225

Vijayaraghavan Murali, Chandra Maddila, Imad Ahmad, Michael Bolin, Daniel
Cheng, Negar Ghorbani, Renuka Fernandez, and Nachiappan Nagappan. 2023.
CodeCompose: A Large-Scale Industrial Deployment of Al-assisted Code Au-
thoring. http://arxiv.org/abs/2305.12050 arXiv:2305.12050 [cs].

Brad A. Myers, Amy J. Ko, Thomas D. LaToza, and YoungSeok Yoon. 2016.
Programmers Are Users Too: Human-Centered Methods for Improving Pro-
gramming Tools. Computer 49, 7 (July 2016), 44-52. https://doi.org/10.1109/
MC.2016.200

Daye Nam, Andrew Macvean, Vincent Hellendoorn, Bogdan Vasilescu, and
Brad Myers. 2024. Using an LLM to Help With Code Understanding. http:
//arxiv.org/abs/2307.08177 arXiv:2307.08177 [cs].

National Center for Women & Information Technology. 2023. NCWIT Guide
to Demographic Survey Questions. https://docs.google.com/document/d/1E_
CSANwOQbKJEG27woNbGZ09JIXUfAf4Cp9j8g5DFak/

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou,
Silvio Savarese, and Caiming Xiong. 2022. CodeGen: An Open Large Language
Model for Code with Multi-Turn Program Synthesis. https://doi.org/10.48550/
ARXIV.2203.13474

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

[74] OpenAl Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge

175

[76

[77

[78

[79

[80

Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam
Altman, Shyamal Anadkat, Red Avila, Igor Babuschkin, Suchir Balaji, Valerie
Balcom, Paul Baltescu, Haiming Bao, Mo Bavarian, Jeff Belgum, Irwan Bello, Jake
Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny Bogdonoff, Oleg
Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks,
Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann,
Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang,
Fotis Chantzis, Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen,
Ben Chess, Chester Cho, Casey Chu, Hyung Won Chung, Dave Cummings,
Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah Deutsch,
Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning,
Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simén Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges,
Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes,
Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua Gross,
Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen
He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey,
Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost
Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang,
Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaf-
tan, Lukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar,
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim,
Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, Lukasz Kon-
draciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen Krueger,
Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel
Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin,
Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam
Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, An-
drew Mayne, Bob McGrew, Scott Mayer McKinney, Christine McLeavey, Paul
McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick, Luke Metz,
Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro
Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh,
Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley
Pantuliano, Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Passos,
Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe de Avila Belbute Peres,
Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny, Michelle
Pokrass, Vitchyr Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth
Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond,
Francis Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick
Ryder, Mario Saltarelli, Ted Sanders, Shibani Santurkar, Girish Sastry, Heather
Schmidt, David Schnurr, John Schulman, Daniel Selsam, Kyla Sheppard, Toki
Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor, Eric Sigler,
Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya
Sutskever, Jie Tang, Nikolas Tezak, Madeleine Thompson, Phil Tillet, Amin
Tootoonchian, Elizabeth Tseng, Preston Tuggle, Nick Turley, Jerry Tworek, Juan
Felipe Ceron Uribe, Andrea Vallone, Arun Vijayvergiya, Chelsea Voss, Carroll
Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan Ward, Jason
Wei, C. J. Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng,
Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong,
Lauren Workman, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah
Yoo, Kevin Yu, Qiming Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang,
Marvin Zhang, Shengjia Zhao, Tianhao Zheng, Juntang Zhuang, William Zhuk,
and Barret Zoph. 2023. GPT-4 Technical Report. http://arxiv.org/abs/2303.08774
arXiv:2303.08774 [cs].

David Lorge Parnas and Jan Madey. 1995. Functional documents for computer
systems. Science of Computer Programming 25, 1 (Oct. 1995), 41-61. https:
//doi.org/10.1016/0167-6423(95)96871-]

Sida Peng, Eirini Kalliamvakou, Peter Cihon, and Mert Demirer. 2023. The
Impact of Al on Developer Productivity: Evidence from GitHub Copilot. http:
//arxiv.org/abs/2302.06590 arXiv:2302.06590 [cs].

Tung Phung, José Cambronero, Sumit Gulwani, Tobias Kohn, Rupak Majumdar,
Adish Singla, and Gustavo Soares. 2023. Generating High-Precision Feedback
for Programming Syntax Errors using Large Language Models. http://arxiv.
org/abs/2302.04662 arXiv:2302.04662 [cs].

James Prather, Brent N. Reeves, Paul Denny, Brett A. Becker, Juho Leinonen,
Andrew Luxton-Reilly, Garrett Powell, James Finnie-Ansley, and Eddie Antonio
Santos. 2023. “It’s Weird That it Knows What I Want”: Usability and Interactions
with Copilot for Novice Programmers. ACM Transactions on Computer-Human
Interaction (Aug. 2023), 3617367. https://doi.org/10.1145/3617367

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya
Sutskever, and others. 2019. Language models are unsupervised multitask
learners. OpenAl 1, 8 (2019), 9. https://cdn.openai.com/better-language-
models/language_models_are_unsupervised_multitask_learners.pdf

ITulian Radu and Bertrand Schneider. 2019. What can we learn from augmented
reality (AR)? Benefits and drawbacks of AR for inquiry-based learning of physics.

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

In Proceedings of the 2019 CHI conference on human factors in computing systems.
1-12.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec
Radford, Mark Chen, and Ilya Sutskever. 2021. Zero-Shot Text-to-Image Gener-
ation. In Proceedings of the 38th International Conference on Machine Learning.
PMLR, 8821-8831. https://proceedings.mlr.press/v139/ramesh21a.html ISSN:
2640-3498.

Hemilis Joyse Barbosa Rocha, Patricia Cabral De Azevedo Restelli Tedesco,
and Evandro De Barros Costa. 2023. On the use of feedback in learning com-
puter programming by novices: a systematic literature mapping. Informatics in
Education 22, 2 (2023), 209. Publisher: Institute of Mathematics and Informatics.
Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn
Ommer. 2022. High-Resolution Image Synthesis with Latent Diffusion Models.
IEEE Computer Society, 10674-10685. https://doi.org/10.1109/CVPR52688.2022.
01042

Steven I. Ross, Fernando Martinez, Stephanie Houde, Michael Muller, and
Justin D. Weisz. 2023. The Programmer’s Assistant: Conversational Inter-
action with a Large Language Model for Software Development. In Proceed-
ings of the 28th International Conference on Intelligent User Interfaces (IUI
’23). Association for Computing Machinery, New York, NY, USA, 491-514.
https://doi.org/10.1145/3581641.3584037

Baptiste Roziére, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiao-
qing Ellen Tan, Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy
Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cris-
tian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade

Nguyen et al.

Reflects What Students Perceive About a Virtual Teaching Assistant. In Proceed-
ings of the 2021 CHI Conference on Human Factors in Computing Systems. ACM,
Yokohama Japan, 1-14. https://doi.org/10.1145/3411764.3445645

Matt Welsh. 2022. The End of Programming. Commun. ACM 66, 1 (Dec. 2022),
34-35. https://doi.org/10.1145/3570220 Place: New York, NY, USA Publisher:
Association for Computing Machinery.

Chungiu Steven Xia, Matteo Paltenghi, Jia Le Tian, Michael Pradel, and Lingming
Zhang. 2024. Fuzz4All: Universal Fuzzing with Large Language Models. http:
//arxiv.org/abs/2308.04748 arXiv:2308.04748 [cs].

Frank F. Xu, Uri Alon, Graham Neubig, and Vincent Josua Hellendoorn. 2022.
A systematic evaluation of large language models of code. In Proceedings of the
6th ACM SIGPLAN International Symposium on Machine Programming. ACM,
San Diego CA USA, 1-10. https://doi.org/10.1145/3520312.3534862

[103] JD. Zamfirescu-Pereira, Richmond Y. Wong, Bjoern Hartmann, and Qian Yang.

2023. Why Johnny Can’t Prompt: How Non-Al Experts Try (and Fail) to Design
LLM Prompts. In Proceedings of the 2023 CHI Conference on Human Factors in
Computing Systems. ACM, Hamburg Germany, 1-21. https://doi.org/10.1145/
3544548.3581388

Shuyin Zhao. 2023. GitHub Copilot Now Has a Better AI Model and New
Capabilities. https://github.blog/2023-02- 14- github- copilot-now-has-a-better-
ai-model-and-new-capabilities/ Publication Title: The GitHub Blog.

Albert Ziegler, Eirini Kalliamvakou, X Alice Li, Andrew Rice, Devon Rifkin,
Shawn Simister, Ganesh Sittampalam, and Edward Aftandilian. 2022. Produc-
tivity assessment of neural code completion. In Proceedings of the 6th ACM
SIGPLAN International Symposium on Machine Programming. 21-29.

Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas
Scialom, and Gabriel Synnaeve. 2024. Code Llama: Open Foundation Models
for Code. http://arxiv.org/abs/2308.12950 arXiv:2308.12950 [cs].

Jean E. Sammet. 1966. The Use of English as a Programming Language. Commun.
ACM 9, 3 (March 1966), 228-230. https://doi.org/10.1145/365230.365274

Max Schifer, Sarah Nadi, Aryaz Eghbali, and Frank Tip. 2023. Adaptive Test
Generation Using a Large Language Model. https://doi.org/10.48550/arXiv.
2302.06527 Issue: arXiv:2302.06527 _eprint: 2302.06527.

David E Shaw, William R Swartout, and C Cordell Green. 1975. Inferring LISP
Programs From Examples. In IJCAL Vol. 75. 260-267.

Nikhil Singh, Guillermo Bernal, Daria Savchenko, and Elena L. Glassman. 2022.
Where to Hide a Stolen Elephant: Leaps in Creative Writing with Multimodal
Machine Intelligence. ACM Transactions on Computer-Human Interaction (Feb.
2022), 3511599. https://doi.org/10.1145/3511599

Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. 2013. Automated
feedback generation for introductory programming assignments. In Proceedings
of the 34th ACM SIGPLAN conference on Programming language design and
implementation. 15-26.

Linda J Skita, Kathleen Mosier, and Mark D. Burdick. 2000. Accountability and
automation bias. International Journal of Human-Computer Studies 52, 4 (2000),
701-717. https://doi.org/10.1006/ijhc.1999.0349

Katta Spiel, Oliver L. Haimson, and Danielle Lottridge. 2019. How to do better
with gender on surveys: a guide for HCI researchers. Interactions 26, 4 (June
2019), 62-65. https://doi.org/10.1145/3338283

Jiao Sun, Q. Vera Liao, Michael Muller, Mayank Agarwal, Stephanie Houde,
Kartik Talamadupula, and Justin D. Weisz. 2022. Investigating Explainability of
Generative Al for Code through Scenario-based Design. In 27th International
Conference on Intelligent User Interfaces. ACM, Helsinki Finland, 212-228. https:
//doi.org/10.1145/3490099.3511119

[94] Ryo Suzuki, Gustavo Soares, Andrew Head, Elena Glassman, Ruan Reis, Melina
Mongiovi, Loris D’Antoni, and Bjoern Hartmann. 2017. Tracediff: Debugging
unexpected code behavior using trace divergences. In 2017 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC). IEEE, 107-115.
TabNine. 2023. Al Assistant for Software Developers | Tabnine. https://www.
tabnine.com/

Priyan Vaithilingam, Elena L. Glassman, Peter Groenwegen, Sumit Gulwani,
Austin Z. Henley, Rohan Malpani, David Pugh, Arjun Radhakrishna, Gustavo
Soares, Joey Wang, and Aaron Yim. 2023. Towards More Effective AI-Assisted
Programming: A Systematic Design Exploration to Improve Visual Studio Intel-
liCode’s User Experience. In International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP).

Priyan Vaithilingam, Tianyi Zhang, and Elena L. Glassman. 2022. Expectation
vs. Experience: Evaluating the Usability of Code Generation Tools Powered by
Large Language Models. In Extended Abstracts of the 2022 CHI Conference on
Human Factors in Computing Systems (CHI EA "22). Association for Computing
Machinery, New York, NY, USA. https://doi.org/10.1145/3491101.3519665
Maarten Van Mechelen, Rachel Charlotte Smith, Marie-Monique Schaper, Mari-
ana Tamashiro, Karl-Emil Bilstrup, Mille Lunding, Marianne Graves Petersen,
and Ole Sejer Iversen. 2023. Emerging technologies in K-12 education: A future
HCI research agenda. ACM Transactions on Computer-Human Interaction 30, 3
(2023), 1-40. Publisher: ACM New York, NY.

Qiaosi Wang, Koustuv Saha, Eric Gregori, David Joyner, and Ashok Goel. 2021.
Towards Mutual Theory of Mind in Human-AlI Interaction: How Language

(86

[87

(88

[89

)
=

[o1

[92

[93

[95

[96

[97

[98

[99

How Beginning Programmers and Code LLMs (Mis)read Each Other

A ADDITIONAL METHODOLOGICAL DETAILS

A.1 Study Design

A.1.1 Pilot Study. In late 2022, we ran an IRB-approved pilot study
with 19 participants from all three institutions. These students had
completed CS1 and at least one additional course, so they were
ineligible for the main study. Overall, we made few changes after
the pilot. The most consequential were to add an additional 15
minutes (75 minutes total) to the study window, increase participant
compensation, and implement word wrapping in the interface to
prevent excessive scrolling.

A.1.2 Problem Adaptation. Our problems were based on CS1 prob-
lems used at each of our three institutions. In most cases, we made
small adaptations to the problems, both to make it less likely for
students to recognize the exact problem, and to fit the constraints of
the Code LLM task (i.e, changing printed output to returned output,
avoiding library imports).

Figure 10 presents two examples of how we adapted problems.
Figure 10a shows the original presentation of the problem that
was adapted into mod_end. We added an additional parameter so
that the function substitutes a given string for the ‘s’ at the end
of each string in the list. We also renamed the function. Note that
in the original class setting, the problem was presented with three
input/output pairs, as in our experimental design.

Figure 10b shows the original presentation of the problem that
was turned into find_multiples. We changed the function to return
the list of multiples rather than the number of multiples. As in
our experiment, the original problem description contained three
input/output pairs.

A.1.3 Problem Validation. By selecting from existing problems
in the CS1 curricula, we ensured that the problems were at an
appropriate difficulty level for our student population. In order to
focus specifically on the human-model interaction, we also needed
to ensure that the problems were an appropriate difficulty level for
the code generation model: the model is capable of generating a
solution, but only when it is appropriately prompted.

Because code generation models memorize common associations
between function names and function bodies, it is important to
ensure that the model cannot generate a passing implementation
from the function name alone. We produced Codex generations
from just the function signature for every problem, without any
natural language prompt, and measured mean pass@1 rate. We
renamed any functions with high pass@1 rates. For our final set of
problems, the overall mean pass@1 for function signatures alone is
0.0519. The maximum pass@1 is 0.925, for the problem exp. This
means that students generally need to provide a description of the
function’s intended behavior in order for the model to produce a
correct implementation.

We also ensured that there was a prompt that would lead to a
correct implementation for every problem. Each problem has an
“expert” prompt written by one of the authors for which Codex pro-
duces a correct implementation. These prompts were not otherwise
used as part of the experiment.

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

A.1.4 Test Case Validation. We rely on unit tests to check the
correctness of model-generated code. These tests also produce feed-
back for students about the model’s generated code. We built an
initial suite of test cases for each problem by taking tests from
grading rubrics and other class resources. We used test coverage
and mutation testing [46] to identify missing test cases and build
more robust test coverage, while keeping the number of test cases
per problem to a size that can be easily displayed.

A.2 Qualitative Analysis

As described in the main body of the paper, the analysis of the qual-
itative data was done by two researchers with previous qualitative
analysis experience. The aim was to identify common themes in
the data set, rather than build a generalizable theory. Below we
outline the analyses performed on three types of data: (1) data
about student experience and demographics, (2) free-response ques-
tions about future use of Charlie, and (3) the semi-structured in-
terview responses. We provide the full codebooks, with defini-
tions, for all data types as part of our Supplemental Materials at
https://doi.org/10.17605/0OSF.I0/V2C4T.

A.2.1 Student Experience & Demographics. We used thematic anal-
ysis for the post survey questions, beginning with the Language,
Major, and Experience questions. Codes were developed inductively
- the two researchers independently developed codes and then it-
erated on a code set via conversation and consensus. We did not
calculate inter-rated reliability for these questions, as their specific
use was for quantitative analysis rather than for specific qualitative
trends [66]. Once the researchers arrived at a tentative codebook
they independently coded and iterated until there was complete
consensus on all codes for all data points as part of the post survey.
This took one round to normalize code application (e.g., Computer
Science was not coded as a Natural Science) and then a second
round where the codes were complete, but typos were identified.

A.2.2 Free Response Questions. These questions (UseCharlie and
Foresee) were coded second out of the three kinds of qualitative
data. This process initially followed a similar inductive style to that
described above. Due to the open-ended nature of these responses,
both researchers then developed independent definitions for each
code to provide clearer guidelines for inclusion/exclusion. They
then met to merge their definitions and discuss any discrepancies.
For instance, normalizing most definitions to start with “Mentions”
and combining definitions or picking the more detailed. Then the
researchers independently coded according to the consensus defi-
nitions. Arriving at consensus took two rounds. Two sets of codes
were combined (two subcodes of Skill Level and two subcodes of
Problem Difficulty) and Documentation/Code Understanding was
re-coded due to clarifications in their definitions. The final round
of coding identified only typos and unintentional omissions. Again,
consensus was reached and inter-rated reliability was not calculated
for these codes.

A.2.3 Semi-Structured Interview Analysis. We took a different ap-
proach to coding the semi-structured interview data than the post-
survey data, as the responses varied significantly in length and
precision. The details of the codebook development are described
below, but the following process was conducted for all 8 questions:

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

3. mapPluralize

Write a function called mapPluralize(mylist) that takes a list of words and returns a new list

with the plurals of each of the words.

The nouns are pluralized by adding the suffix s, e.g. the plural of bagel is bagels. You do not have

to handle special cases like kiss -> kisses.

Examples:
print (mapPluralize(['assignment']))
print (mapPluralize(['donut', 'muffin', 'bagel']))

print (mapPluralize(['tree' ,'witch' , 'kiss', 'moose', 'alpaca'l]))

(a) Study problem called mod_end

Nguyen et al.

findMultiplesOf is a None function that prints all the multiples of a given factor between the

given start and stop numbers, inclusive.

findMultiplesOf(1,10,15)
There are 0 multiples of 15 between 1 and 10.

findMultiplesOf(1,100,17)

There are 5 multiples of 17 between 1 and 100.

findMultiplesOf(1000,2000,177)
1062
1239
1416
1593
1770
1947
There are 6 multiples of 177 between 1000 and 2000.

(b) Study problem called find_multiples

Figure 10: Original problem presentations

(1) The two coding researchers independently developed codes
for a set of 15 non-overlapping interviews. They met to
discuss their codes and general themes.

(2) They then coded 15 shared interviews to test the codes, add
additional codes, and finalize definitions. They reached con-
sensus on the codes and their application to the shared 15
interviews.

(3) To confirm their understanding of the codebook, they then
coded 20 shared interviews and calculated percent agree-
ment. Any codes with low agreement were discussed, had
their definitions changed/edited, or were removed. The re-
searchers then came to consensus on how to apply the codes
to these data.

(4) The researchers then divided the remaining 70 interviews
and coded independently, making use of a fixed codebook.
The researchers did not code interviews they conducted
themselves. They also independently recoded their original
15 datapoints.

The two researchers began by coding the last four interview
questions, which they deemed more concrete. This process was
primarily inductive. Computing percent agreement across the data,
87% of our 70 codes exhibited 90% or higher agreement (i.e. dis-
agreement on 2 or less datapoints). 9 codes were less, with the
minimum agreement being 75%.

The researchers then moved on to the first four interview ques-
tions — the last analysis performed on the qualitative data. This
process was more deductive than previous analyses. For example,
for Hardest/Easiest, the topic categories of problems (e.g. Loops,
Conditionals) were particularly relevant to our analyses and the
data suggest those categories as codes. The first two problems had
the most variation in student responses — we attribute this to stu-
dents’ lack of knowledge of their process, as they found this task
difficult overall. Therefore, the researchers focused on codes that
err on the side of temporal attributes. Percent agreement was again
calculated for these codes - 80% had 90% agreement or higher. Only
two codes had agreement lower than 75% - the researchers discussed
these codes significantly, reaching agreement on the generality of
one code (Add Detail) and removing another code entirely.

B ADDITIONAL QUANTITATIVE RESULTS
B.1 Participant Demographics

In order to protect participant anonymity, we report responses
to the open-ended demographics questions only if an identical
response was submitted by at least 5 participants. Gender and
race responses are shown in Table 9 and Table 10. The majority
of responses to the question about ethnicity were unique. Due to
the need to protect participant anonymity, we have chosen not to
report this data.

Self-Reported Gender ‘ N ‘ Mean pass@1

Female 72 0.22

Male 30 0.21
Nonbinary 5 0.28

All other responses | 13 0.24

Table 9: Self-reported gender of participants, capitalization
normalized to title case.

Self-Reported Race ‘ N ‘ Mean pass@1

Asian 38 0.22

Black 6 0.11

East Asian 6 0.34
White 36 0.21

All other responses | 34 0.23

Table 10: Self-reported race of participants, capitalization
normalized to title case.

B.1.1 Statistical Analysis. We used Welch Two Sample t-tests to ex-
plore whether there were statistically reliable differences in pass@1
rates for students with different backgrounds. Table 11 shows the
results.

B.2 Problem Difficulty

B.2.1 Statistical Analysis of Category Difficulty. A binomial mixed-
effects model (Table 12) was fitted to prompt success as a binary

How Beginning Programmers and Code LLMs (Mis)read Each Other

Group 1

Group 2

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

¢ P

Domestic student
First generation college student
English in childhood household

International student -0.4 | 0.68
Not first generation college student | 2.1 | 0.04
No English in childhood household | 1.02 | 0.31

Public high school Private high school 0.1 | 0.92
Coding experience outside of CS1 | No other coding experience 2.47 | 0.02
More than 1 math course 1 college math course 0.8 | 043

Table 11: Welch Two Sample t-tests to explore differences in pass@1 rates between demographic groups

Fixed effects B z p
-0.80 (+/- 0.6) | -1.35 | 0.18

(Intercept)

Dictionaries -0.70 (+/- 0.8) | -0.8 | 0.41
Lists -0.55 (+/- 0.8) | -0.7 | 0.51
Loops -0.92 (+/-0.8) | -1.1 | 0.28
Math -1.10 (+/- 0.8) | -1.3 | 0.19
Nested 0.83 (+/-0.8) | 1.0 0.32
Sorting -1.75 (+/- 0.9) | -2.0 | 0.045
Strings 0.14 (+/- 0.8) | 0.2 0.87
Wellesley 0.14 (+/-0.4) | 0.4 0.71
Oberlin 0.24 (+/-0.4) | 0.6 0.53

Dictionaries:Wellesley | -0.04 (+/- 0.6) | -0.1 | 0.95

Lists:Wellesley 0.37 (+/-0.5) | 0.7 0.50
Loops:Wellesley 0.62 (+/-0.5) | 1.2 0.25
Math:Wellesley 0.18 (+/-0.5) | 0.3 0.73
Nested:Wellesley -0.98 (+/- 0.5) | -1.9 | 0.062
Sorting:Wellesley -0.16 (+/- 0.6) | -0.3 | 0.77
Strings:Wellesley -0.17 (+/-0.5) | -0.4 | 0.73

-0.52 (+/- 0.6) | -0.9 | 0.37
-0.05 (+/- 0.5) | -0.1 | 0.93

Dictionaries:Oberlin
Lists:Oberlin

Loops:Oberlin -0.33 (+/- 0.6) | -0.6 | 0.57
Math:Oberlin 0.14 (+/-0.5) | 03 | 0.79
Nested:Oberlin -0.57 (+/-0.5) | -1.1 | 0.28
Sorting:Oberlin -0.10 (+/- 0.6) | -0.2 | 0.86
Strings:Oberlin 0.10 (+/-0.5) | 0.2 | 0.84

Table 12: Full results of binomial mixed-effects model fitted
to problem category and institution.

outcome (1 if the prompt succeeded; 0 otherwise). The model in-
cluded fixed effects of problem category, institution, and their inter-
action, and random effects of participant and problem. Treatment
coding was used for institution, with Northeastern as the baseline
category; deviation coding was used for category, since we were
interested in whether any one category differed from the average
problem difficulty.

B.2.2 Least-Solved Problems. To understand where struggles arise,
we manually examined student responses to two problems: laugh,
which has one of the lowest number of student successes, and
total_bill, which has a mid-range success rate.

A challenging problem: 1augh. One of the least-solved problems
in our study was laugh. The intended function takes a number n

«

and produces a string of n “ha”s, where the initial “ha” has n “a”s,

)

and each subsequent laugh has one fewer “a”.

Only two students were able to eventually succeed at this task
(orcHIDWALLEYE and MAGENTAWEASEL). However, a manual inspec-
tion of all initial student descriptions reveals only one serious misun-
derstanding of the task (TEALPossum) — see Table 13 for all students’
initial descriptions.

A mid-range problem: total_bill. The task in total_bill is
to compute the total of a grocery bill, using a list of grocery items
and a sales tax rate. Each grocery item is itself a list containing the
name of the item, a quantity, and a price. One expert description
that reliably generates a working program is Returns the sum of
multiplying the second and third indices of each list in grocery_list,
multiplied by 1 + sales_tax. Round to 2 digits.

We manually inspect all descriptions for this problem. Of the 20
students who attempted this problem, 12 eventually succeed. All of
these students follow a similar path: their first attempt omits the
rounding step, leading one of the tests to fail. A handful of students
also omit or incorrectly describe the sales tax step initially.

What about the students who never succeed? One student ini-
tially misunderstands the task, writing: This function takes in a list
of the item purchased, the price, the tax, and the overall sales tax. All
of the prices and tax within the lists are added together. The sales
tax is then multiplied by the outcome of the added prices, and then
the result of the multiplication is added onto the total price. The total
price is then returned as the output. (LIMESALAMANDER)

The student has misunderstood a key detail in the structure of
the lists: the two numbers are the quantity and price, so they should
be multiplied, not added. Consequently, this prompt fails. However,
their third description is accurate: This function takes in a list of the
item purchased, the amount of the item purchased, the price for each
item, and the overall sales tax. The amount purchased is multiplied
with the price for each item, creating a total amount. The sales tax
is then multiplied by the outcome of the total amount, and then the
result of the multiplication is added onto the total price. The total
price is then returned as the output.

Although the student initially misunderstood part of the prob-
lem, they are able to reread the input/output pairs and/or code,
arriving at the correct interpretation eventually. However, their
description still fails. This participant eventually runs out of time.
The rest of the participants who never succeed submit accurate
descriptions that omit key details, such as how to calculate the sales
tax (6 participants) or the list positions of the price and quantity (5
participants).

Overall, the student prompts for total_bill demonstrate more
issues in describing the problem than in understanding it. Although
one participant misunderstands the task initially, they were able to
quickly self-correct.

Participant

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

Initial Description

Nguyen et al.

N submissions

AQUALADYBUG

GREENMOTH

ORCHIDBEETLE

TEALPOSSUM

PINKFISHER

MAGENTAWEASEL

AQUAMARINESHREW

ORCHID WALLEYE

KHAKIBEE
PINKPERCH

ORCHIDFLOUNDER

BEIGEBASS

TOMATOFISHER

CRIMSONVOLE

LAVENDERPOSsUM

LAVENDERBAT

MAGENTADOLPHIN

LINENBOBCAT

GRAYVOLE

THISTLETROUT

If n is the input value, returns a combination of n strings, where each of the n strings
consists of "h" followed by n occurrences of "a", and there is " " before each "h" except the
first "h"

a function have initial input as ‘ha’ when input of size(int) is 1, when size+= 1 from 1, ‘ha
will gain one more ‘a’

Based on the inputted number, will return a laugh size where the number of
with the initial size, then decreases by one for each additional laugh.

return the number of words in a string

the function laugh will take the input of an int and should output a string with the ha as
many times as the input but also the number of a’s is based on the number it is currently
working with

Write a function which takes an integer size as an input, and uses a for loop to print an h
followed by size a’s and then a space, and then an h followed by size-1 a’s and then a space,
etc. until it prints a h followed by one a

This function prints an ‘h’ and adds the corresponding amount of a’s as the value provided.
It then adds a space to the output. It subtracts 1 from the value and prints another h with
less a’s and repeats until the value of the number is 0

function adds ‘a’ to every ‘h’ based on input and will lower amount of ‘a’ until it reaches
only 1 ‘a’ after the ‘h’

take in a number and write the word ‘ha’ but with as many ‘a’s as the number

Produce a string, with each word starting with h and then however many a’s the input says.
Decrease the count of a’s by one following the h for each word after.

the input generates a string where the number corresponds to how many items are in the
string. each item in the string also starts with the letter ‘h’ and the letter ‘a’ is added to the
letter ‘h’ based on the number of the input. However, only the first item in the string has
the number of ‘a’ equal to the input, the following ‘a’ are added to ‘h’ by subtracting 1 from
the input.

the code increases the number of the letters in "ha," depending on the input in an increasing
factorial way

This function takes an integer and an input produces the word "ha" that number of times
but the number of times "a" appears in each "ha" decreases by one until "ha"

Takes in an integer ‘n’ input and outputs a string with ‘n” words, ‘h’ as the first letter for
each word, and ‘n’ number of ‘a’s after it, followed by ‘h’ as the first letter of the next word
and ‘n-1’ number of ‘a’s after it and so on until we reachn = 1

Given an integer, return a string in the form ‘ha’ where the integer determines the number
of a’s and repeat the same pattern until there is one a

The input takes in a number, say n, and produces a string that has n words. the first word is
formed of one "h" and n number of "a". The number of "a" decreases by one for each next
word

This function returns the number of laughs in a string, where a laugh is the character ‘h’
followed by any number of the character ‘a’

Counts the number of laughs, beginning with the given number of "a"s within it and
descending by each laugh, totaling the given number of laughs.

Takes size and uses recursion to produce that number of "ha" laughs with one less "a" with
each "ha" until there is only one "a" left

Using the given number, add that number of "a"s after an "h". Count down the number by 1,
and add that number of "a"s after another "h" and repeat.

>

nons

a"'s starts

18

26

Table 13: Initial descriptions of the laugh problem from all 20 students who encountered it. N submissions describes how many
times the specific student attempted laugh before succeeding or giving up.

	Abstract
	1 Introduction
	2 Related Work
	3 Study Design
	3.1 Experimental Environment: In the Lab vs. In the Classroom
	3.2 How to Describe Problems to Students: Input/Output Examples vs. Written Descriptions
	3.3 Problem Selection: Previously Seen Tasks vs. New Tasks

	4 Study Logistics
	4.1 Charlie Interface
	4.2 Model Choice
	4.3 Participants
	4.4 Study Execution

	5 Analysis
	5.1 Evaluation Plan
	5.2 Measures of Success
	5.3 Positionality

	6 RQ1: Do Students Succeed at Prompting Code LLMs with Natural Language?
	6.1 Basic Findings
	6.2 Do Participants Find the Task Challenging?
	6.3 Who Succeeds at the Task?

	7 RQ2: Where do student difficulties come from?
	7.1 What aspects of the task do students say are hard?
	7.2 Which Problems Do Students Say Are Hard?
	7.3 What Role Does the Model Play?
	7.4 What Do Students Do When They Encounter Unfamiliar Python?

	8 RQ3: Students' mental models and processes
	8.1 How does Charlie work, according to students?
	8.2 What strategies do students develop?
	8.3 Do Students Get Better at Prompting Over Time?
	8.4 What do students think about Charlie?
	8.5 AI Attitudes

	9 Discussion
	9.1 The Natural-Language-to-Code Task is Challenging
	9.2 Not a Panacea for Non-Expert Programming
	9.3 Don't Assume a Mental Model of AI
	9.4 Implications for Educators
	9.5 Model Selection for Human-AI Interaction Research
	9.6 Timeliness

	10 Threats to Validity
	11 Conclusion
	Acknowledgments
	References
	A Additional Methodological Details
	A.1 Study Design
	A.2 Qualitative Analysis

	B Additional Quantitative Results
	B.1 Participant Demographics
	B.2 Problem Difficulty

