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prompts for the model, 2) evaluating model output for quality, and

3) iteratively refining prompts when generation is unsuccessful.

Programming presents a particularly challenging domain for

non-experts. Like art, computer science has evolved an extensive

technical vocabulary; since generative models are trained largely

on professional code, they may not work as well if users lack this

vocabulary. In visual art, music, and creative writing, a user can

quickly determine whether they like the generated output even if

they are not an expert (embodying the cliché łI don’t know anything

about art, but I know what I likež). However, this attitude does not

extend to programming. It is very challenging for a non-expert

to evaluate the quality of a generated program. Even when a user

knows enough to determine a generated program is incorrect, they

also need to understand it well enough to know what needs to

change and how to update their prompt.

In order to use a Code LLM, non-experts must grapple with a

multi-step process (Figure 1). First, they must have a clear under-

standing of what they want the code to do. This may seem trivial,

but research on requirements engineering has shown that it can be

challenging [75]. Next, the user must clearly articulate the intended

behavior of the program in natural language to the model. Once

the model generates code, the user must evaluate its correctness

by reading it or writing tests. If the code is not correct, they must

determine what has gone wrong, and update their prompt accord-

ingly. This requires not only understanding the generated code, but

also, understanding the model’s generative process. These barri-

ers mirror well-known challenges for non-experts with end-user

programming [50] and classical AI systems [53].

There is a growing body of work studying how non-expert pro-

grammers use AI-assisted programming systems in naturalistic

settings [48, 78]. However, in open-ended tasks, it is difficult to

decouple the steps of the code generation process, since they feed

each other: if the user fails to identify incorrect code and moves on,

their editing process can’t be observed. We present results from a

carefully-controlled experiment targeting two steps in the code gen-

eration process: prompt creation (How do users describe the intended

program in natural language?) and prompt modification (How do

users modify their prompts when a generated program is incorrect?).

One challenge in studying how non-experts use Code LLMs

is selecting tasks that make sense to them. For example, replicat-

ing Barke et al. [6]’s insightful study of experienced programmers

would not be appropriate for novices, because the tasks presuppose

technical knowledge. Novices have diverse goals, backgrounds, and

familiarity with mathematical and computational thinking. Our

solution is to target a large population of near-novices with similar

experience levels: university students who have completed a single

introductory computer science course (CS1). This allows us to select

tasks that are conceptually familiar to them.

Our Approach. We ask whether students who have completed

CS1 can effectively prompt a Code LLM to solve tasks from their

previous course. In order to isolate students’ experiences in writing

and editing prompts, our experiment presents tasks as input/output

pairs and tests the generated code for correctness. This provides

in-depth insight into the processes they develop for describing code

in natural language and iteratively refining their prompts. We pose

three main research questions:

• RQ1: Can students who have completed a CS1 course effec-

tively prompt a Code LLM to generate code for questions

from their previous courses?

• RQ2: What is the origin of student challenges with Code

LLMs? Do these differ across different groups of students?

• RQ3: What are students’ mental models of Code LLMs and

how do they effect their interactions?

We find that students struggle significantly with this task, even

though we pose problems tailored to their skill level and test code

correctness for them. In essence, beginning programmers and cur-

rent Code LLMs tend to misread each other: the Code LLM fails to

generate working code based on student descriptions and students

have a hard time adapting their descriptions to the model. Our

study has concerning implications for democratizing programming:

if these students, who already have basic skills in code explana-

tion and understanding, struggle with this simplified task, the full

natural language-to-code taskÐwhere the user has to determine

correctness themselvesÐmust be very challenging indeed for true

novices. This finding also has important implications for education.

Code LLMs have sparked an intense debate over the future of com-

puting education, including claims that traditional programming

training is no longer necessary [65, 100]. By contrast, our findings

highlight the continuing importance of teaching students technical

communication and code understanding.

Our work differentiates itself from previous work in three key

ways: scale, population, and experimental design. First, we study

120 students solving 48 different programming problems. To our

knowledge, no previous work has studied user interactions with

Code LLMs at this scale. Second, we focus on a near-novice pop-

ulation with fairly uniform levels of experience, allowing us to

carefully tailor tasks to their skill level. Finally, we use an experi-

mental paradigm that allows us to isolate the prompt writing and

editing aspects of the task.1

2 RELATED WORK

Our work focuses on how programmers use LLMs to turn natu-

ral language into code. Programming with natural language is a

decades old proposition [67] and has led to several ideas about

bringing programming closer to how users communicate [70]. For

instance, Hindle et al. [39] imagined that future language models

could be effective at turning natural language to code, a prediction

that has been borne out with Code LLMs.

By exploring beginner interactions with Code LLMs, our study

contributes to a growing body of work on how non-experts in-

teract with emerging automated technologies [98], ranging from

automated feedback [22, 44, 94] to augmented reality [42, 80]. We

situate our study within existing work on user interactions with

Code LLMs below.

Experienced programmers and LLMs. We study how beginning

programmers interact with a Code LLM, the same foundational

technology that powers autocomplete tools such as GitHub Copilot

and others [14, 15, 95]. These tools are promoted as productivity-

boosting technology for experienced programmers. Recent in-the-

wild studies and surveys indicate that these tools are popular with

1Data collected as part of this work is publicly available at https://doi.org/10.17605/
OSF.IO/V2C4T.
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expert programmers, improve their self-perception of productivity,

and shift their work from writing code to understanding LLM out-

puts [10, 60, 69]. In contrast, our study of beginners’ interactions

with a Code LLM reveals that (1) they have mixed success with

writing natural language prompts, (2) and they often struggle to

understand LLM-generated code.

Vaithilingam et al. [96] present the earliest academic study of

GitHub Copilot with 24 students (undergraduateśPhD) and three

tasks. Their main finding is that although participants enjoyed

using it, Copilot did not help them code faster or write more correct

code. We design our study for less experienced participants. For

example, we developed a web interface that is much simpler than

a professional IDE. The same study reports that their participants

often struggled to validate LLM-generated code, and we avoid this

by testing generated code for our participants automatically.

Since Copilot is a general autocomplete tool, one can use it in sev-

eral ways: to produce code given code, to generate documentation

from code, to turn natural language into code, and so on. Grounded

Copilot [6] studies experienced programmers and reports that they

prefer using it to turn natural language into code [6, Section 4.2.3].

Thus our study design focuses on the natural language to code task,

but with beginning programmers.

Non-experts and LLMs. Like us, several researchers have consid-

ered the impact of using Code LLMs for the text-to-code task with

non-experts, specifically in educational settings. Our work is larger

in scale than prior work (120 students from 3 institutions and 48

problems in 8 categories), which allows us to perform statistical

analyses that require large sample sizes to be reliable. Moreover, our

experiment design allows us to investigate key research questions

that prior work has not been able to ask, such as identifying the

prompting strategies that beginners use, determining how they

modify prompts that do not work, and studying several factors that

affect their success.

Prather et al. [78] study 19 students using Copilot for a final

project in a CS1 course: building the game Minesweeper. They

found that students struggled to use Copilot, even over the course

of a week. We reach a similar conclusions with our study, with

48 problems that are much simpler than building a working video

game.

Kazemitabaar et al. [48] develop CodingSteps, aweb-based Python

learning environment that allows users to query Codex. The paper

compares 33 participants (10ś17 years old) with access to Codex to

36 students programming independently, working on the same set

of 45 programming problems over several weeks. Their findings in-

dicate that Code LLMsmay benefit student learning outcomes. How-

ever, because CodingSteps presents students with expert-written

problem descriptions, their results do not shed light on whether

beginners can write natural language prompts independently. They

report that 32% of student prompts are verbatim copies of the expert-

written problem descriptions. In contrast, our study is carefully

designed to avoid this problem by showing students input/output

examples instead of natural language descriptions. We also investi-

gate the strategies that students use to understand model output

and modify their prompts. Kazemitabaar et al. [48] do not address

these kinds of questions, partly because their students received

feedback from instructors throughout the experiment.

Promptly [19] studies 54 students writing prompts for three

CS1 problems. Our substantially larger scale (120 students and 48

problems) allows us to explore research questions beyond what they

study, such as the how students change their prompting strategies,

and demographic factors that influence success rates. Our paper

also presents a detailed analysis of LLM output, such as the kinds

of errors that appear in LLM-generated code, and the impact of

non-determinism on participants’ success.

Lau and Guo [52] interviewed 20 CS1/CS2 instructors in early

2023 about their perceptions of ChatGPT and LLM technologies.

They report that instructors hold a diverse set of perspectives:

some wanted to łban itž and others felt urged to integrate these

technologies into curricula to prepare students for future jobs that

may require using LLM technology. The students in our study echo

many of the concerns and desires raised by instructors in Lau and

Guo [52].

It is also possible to use language models to assist students learn-

ing to program, without having themodel write code for the student.

For example, Geng et al. [31] use language models to localize type

errors in OCaml, but not to correct them. Like our study, this work

isolates the interaction mode in which students use Code LLMs;

however, we study prompt writing and editing, while they study

error detection and explanation.

Alternatives to inline code completion. Copilot and related tools

suggest inline code completions, but there are other ways to interact

with AI-assisted programming tools. Vaithilingam et al. [96] present

new interfaces for Visual Studio that present code changes. Liu

et al. [62] build a new interaction model, grounded abstraction

matching, which targets spreadsheets and data frames, constraining

the generated code to support grounding. These ideas are exciting

parallel directions for Code LLM interaction in addition to the

natural language prompting approach we study here.

Code LLMs beyond text-to-code. For a beginning programmer,

feedback from an expert teacher or teaching assistant can be in-

valuable. However, access to expert feedback is limited. There is

a long line of research that tries to address this shortage by de-

veloping systems that generate actionable feedback for students

[37, 40, 82, 90, 94]. Phung et al. [77] show that LLMs can help build

these systems and generate higher quality feedback than prior rule-

based approaches. In contrast to our human experiment, they eval-

uate on benchmark problems. Moreover, their system is intended to

help beginners write code directly, whereas our experiment focuses

on prompt writing.

Another body of work focuses on automated program repair [34],

which can be used to fix trivial mistakes that frustrate beginners.

Traditional automated program repair systems have required sig-

nificant engineering for each programming language and problem

domain. Joshi et al. [47] show that an LLM trained to generate code

can be employed to repair simple coding mistakes.

Similarly, Leinonen et al. [55] report that Code LLMs are better

at explaining code than beginning students, and Leinonen et al.

[56] show that an LLMs explanation of a program error can be

better than default error messages. This is further evidence that

LLM technology may help students learn to write code directly.

Recent additional efforts include Finnie-Ansley et al. [25], who

report that Codex is remarkably good at generating code from



CHI ’24, May 11ś16, 2024, Honolulu, HI, USA Nguyen et al.

natural language prompts from a CS1 class and several variations

of the Rainfall Problem; Dakhel et al. [17], who compare the quality

of Codex-generated code to student-written code; and Babe et al. [3],

who use student-written prompts to benchmark Code LLMs. Finally,

Code LLMs have applications that go beyond natural-language-

to-code, and researchers are using them as building blocks for a

variety of other tasks [5, 12, 23, 26, 47, 57, 69, 71, 77, 84, 87, 101].

The aforementioned papers present new tools, benchmarks, and

studies of LLM capabilities. But, they do not study users’ abilities

to prompt models, which is the focus of our work.

Using LLMs for non-programming tasks. Researchers are cur-

rently exploring a wide variety of applications for LLMs beyond

computational tasks. While we do not survey the full range of

such work, two recent papers are particularly relevant to our task.

Zamfirescu-Pereira et al. [103] study non-experts prompting an

LLM to produce recipes. Their participants actively avoided sys-

temic testing, which we address by automating testing. Like them,

we find that participants’ mental models of LLMs are very different

from how they actually work. Singh et al. [89] compare user inter-

actions with a multimedia writing interface with LLM-generated

audio, text, and image suggestions. Our post-study interview and

survey was inspired by their exploration of participant’s percep-

tions of AI.

3 STUDY DESIGN

Our work explores whether beginning programmers can effectively

prompt Code LLMs. We investigate this question through a multi-

institutional [24], lab-based study, asking 120 students who com-

pleted a CS1 course to describe 8 out of 48 possible problems pre-

sented via input/output examples.

In this section, we discuss three major aspects of our study

design:

(1) Why do we use a controlled experiment?

(2) How do we successfully present problems to students?

(3) How dowe select problems that are appropriate for students?

We discuss the logistics of implementing the study in Section 4.

3.1 Experimental Environment: In the Lab vs.
In the Classroom

Studies of student interactions with programming tools can be

grouped into three main categories: studies within the context of

a course during the term, post-hoc analyses of educational data,

or controlled, lab-based experiments. Post-hoc analyses are not

currently possible, since there is a lack of available educational

Code LLM data. We discuss the decision between a course-based

study and lab-based study below.

There are many benefits to real-world studies conducted in a

course context, including ease of access to participants and normal-

ized educational background [78]. It is easier to study how technol-

ogy directly impacts learning by using it alongside instruction [48]

or as an evaluative method [44]. At the same time, these studies

cannot be as easily controlled: participation may be optional (only

around 12% of students chose to participate in Denny et al. [19]);

participants may explicitly be learning through the task, making it

hard to compare their responses across problems [48]; and in-depth

interviews are challenging to conduct.

Lab-based studies benefit from greater uniformity in observa-

tions, which facilitates statistical analysis, and longer experimental

sessions. We chose a lab-based experiment because our research

questions focus on the usability of Code LLMs for beginning pro-

grammers and on their processes, rather than their educational

outcomes. Specifically, the process of working with a Code LLM re-

quiresmultiple, interdependent steps: (1) forming an intent, (2) craft-

ing a prompt to describe the intent, (3) evaluating the quality of

the LLM-generated code, (4) editing the prompt when the code is

wrong, (5) editing the code manually, or (6) giving up and writing

code manually (Figure 1). Our goal was to isolate processes (2) and

(4).

Our study limits user interactions in order to isolate prompt writ-

ing and editing strategies. One key feature of our paradigm is that

we automatically test the generated code. In most observational

studies, programmers determine on their own whether the gener-

ated code is correct. This is itself an interesting process. However,

studying this aspect of Code LLM interaction comes at the cost

of studying prompt editing: if a programmer mistakenly accepts

incorrect code, they will move on to the next task without editing.

Prather et al. [78] report that many of their participants mistakenly

accepted incorrect code. Beginning students are particularly likely

to err in this way: they may struggle to understand generated code,

and their lack of confidence in their own abilities may make them

trust the automated system over their own judgment (an example

of automation bias [18, 30, 32, 91]).

Finally, a key contribution of our work is its scale: we study 120

participants across 3 institutions and 48 programming tasks, while

previous studies have had fewer participants and problems. We

recruit participants from three U.S. institutions: an R1 university

(Northeastern University), a small liberal arts college (Oberlin Col-

lege), and a women’s college (Wellesley College). This selection

increases the likelihood that our findings will generalize across insti-

tutions. Our scale allows us to explore how diverse factors, such as

prior non-curricular programming experience, first-generation sta-

tus, and mathematics coursework, affect participant success. These

kind of statistical analyses require large sample sizes and work best

with even observations of participants and problems, which are

challenging to obtain in course settings.

3.2 How to Describe Problems to Students:
Input/Output Examples vs. Written
Descriptions

A key design decision for studies of Code LLM interactions is how

to present the task. In classroom environments, students are usually

given instructions for what to program via written descriptions.

This makes sense, given that the student’s goal is to write code.

However, natural language presentation poses critical issues for

our key research questions. In our study, the goal is to write natural

language descriptions of problems, not to write code. A core goal

is to understand how students approach the natural-language-to-

code task. If the task is presented in natural language, students may

simply reuse this text rather than putting the task into their own

words; our results would no longer measure beginning programmer
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success, but instead expert description success. Prior work shows

that this is a serious concern: in Kazemitabaar et al. [48]’s study of

K-12 students, up to 49% of submissions for challenging problem

categories were copied from the expert-written task description.

Even if participants do not directly copy a description, its word-

ing could influence how participants describe the task. One chal-

lenge for beginning programmers is recalling and applying techni-

cal vocabulary; presenting themwith a natural language description

of the task might remind them of terminology that they would not

have recalled on their own. This would endanger our goal of assess-

ing beginning programmers’ abilities to prompt code generation

models, since in many natural settings, they would not have an

expert description to rely on.

We therefore rely on a popular alternative for describing pro-

gram behavior: input/output examples (Figure 3). Students also

could reference the function name and parameter names. Our par-

ticipants had taken CS1 classes where natural language descrip-

tions are frequently accompanied by input/output examples (see

Appendix A.1.2), making this a familiar way of communicating pro-

gram behavior. Several CS1 courses, and some of the assignments

used in our CS1 courses, go beyond this and require students to

construct their own examples or even practice test-driven devel-

opment [21, 27]. However, our study does not require students to

write their own tests.

Avoiding natural language presentation is critical in order to

study how beginning programmers describe problems in their own

words. However, it comes with two risks. First, the input/output par-

adigm may increase task difficulty, since participants must identify

the key pattern on their own. Although understanding natural lan-

guage descriptions of coding tasks is not always easy for beginning

programmers, it is likely easier than our input/output paradigm.

Second, input/output examples run the risk of underspecification

[35, 88] ś there may be more than one program that performs

the correct input-output mapping. To determine that the provided

tests adequately described the problem, we confirmed that our pro-

vided test sets had 100% code coverage for a correct solution and

performed mutation testing [46]. We also calculated participants’

success using only the provided test cases: if the generated code

passed the provided tests, it was deemed correct, ensuring that the

problem presentation aligned directly with the feedback to the user.

We feel that these potential issues pose less of a risk to our key

research questions than the copy/paste or word bias risks posed

by a natural language presentation. Other researchers have also

used an input/output presentation paradigm in studying beginner

interactions with Code LLMs [19].

3.3 Problem Selection: Previously Seen Tasks vs.
New Tasks

The natural language-to-code task requires participants to describe

specific programming problems. Previous work exhibits varied

approaches to problem selection, from a single challenging problem

in Prather et al. [78] to three simple problems in Denny et al. [19]

to a set of 45 problems in 5 categories in Kazemitabaar et al. [48].

Our main goal was to select problems at an appropriate level for

students who had completed only CS1. Since our research questions

focus on student prompting processes, not learning outcomes, we

chose problems at a similar level to what participants might be

able to code independently. Asking students to solve new or more

complex problem types increases the likelihood that the Code LLM

will generate unfamiliar or difficult to understand code, making the

prompt editing process more difficult. We therefore adapted Python

problems specifically from CS1 course materials at each institution.

We made small changes to facilitate input/output testing or adjust

problem difficulty. Appendix A.1 contains two examples of how

source problems were adapted.

We selected 48 problems balanced across eight conceptual cat-

egories from CS1 (Figure 2), similar to Kazemitabaar et al. [48],

but with more categories and problems. Each individual problem

was assigned to 20 students; we balanced the experimental lists

to control for ordering effects, so that each participant solved one

problem in each category, and the average difficulty of each prob-

lem list was roughly the same. To facilitate difficulty and category

coverage, previous CS1 instructors were asked to provide additional

problems as needed. Problems such as exp (Figure 3), for instance,

require students to only recognize that numbers in a list are being

squared. Other problems ask students to remember complex data

structures (e.g. lists, dictionaries), but not the specific Python syntax

for them. We further discuss student understanding of the problems

in Section 7.2 and Appendix B.2.

In order to study interactions between Code LLMs and students,

it is important to select problems that cannot be trivially solved by a

Code LLMwithout any natural language description. Very common

functions (for instance, shorten_url) can be solved from a func-

tion signature alone, regardless of the accompanying description.

To validate our problems, we first checked that the model could

not solve problems from their function/parameter names alone and,

if they could, edited the names accordingly. We also solved each

problem using the Code LLM to ensure that a working natural lan-

guage description existed. Finally, to address the nondeterminism of

Code LLMs, we ran each validation check multiple times to obtain

a stable estimate of these results (ğ5.2).

4 STUDY LOGISTICS

The previous section (ğ3) described our multi-institutional experi-

mental design. In this section, we discuss the logistics of participant

recruitment and executing the study.

4.1 Charlie Interface

We built a web application for the experiment called Charlie the

Coding Cow or Charlie. Charlie presents one problem per page,

displaying the function signature and several input/output exam-

ples (Figure 3a). Participants write natural language descriptions

in a text box. When they submit a description, the Charlie server

prompts Codex with the function signature and their description

formatted as a docstring (Figure 4). After Codex responds, Charlie

shows students the Codex-generated code and displays whether it

works on the given input/output examples (Figure 3b).

Charlie does not permit participants to edit the generated code,

since we are focused on natural-language-to-code interactions. If

the code fails, they can retry the problem or move to the next

problem. For retry attempts, we pre-fill the text box with their last

prompt to make editing easier. Finally, after every final attempt
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Figure 2: Study overview. (1) describes the overall student trajectory through the study. We split the post survey into two

sections, divided by the semi-structured interview, to delay collecting demographic information to prevent self-bias. (2) outlines

the 8 problem categories (4 timed versus 4 untimed) and the 6 problems per category. Students took individual trajectories

through one problem in each category, as shown by the thin arrows. (3) showcases an example trajectory for students through

the problems. Students spent, on average, 42.6 minutes (SD=10.6) completing the study, with an average of 26.6 minutes (SD=9.1)

on the untimed section and 15.9 minutes (SD=3.3) on the timed section.

at a problem, Charlie presents two forced-choice questions with

thumbs-up / thumbs-down answers: Did Charlie generate correct

code? and Would you have written this code yourself?. We included

these questions to gather information about student perceptions

of code style, since the model may produce working code, but in a

style that is unfamiliar to students.

Each student worked with Codex to solve 3 tutorial problems

and 8 main problems. We used the Charlie character to provide dis-

tance from any AI system that students might already know. This

suggested a representation that was not human and not robotic.

Charlie also provides visual feedback: Charlie animates a łthink-

ingž position while Codex generates a completion and appears in

different forms when the code does or does not pass all tests. We

made this design choice to mitigate frustration with waiting for the

model to generate code, a source of annoyance in prior studies of

Code LLM interactions [69].

4.2 Model Choice

When we began piloting in November 2022, the most capable Code

LLMwas the largest Codexmodel fromOpenAI, code-davinci-002.

Although code-davinci-002 was first released in 2021, on estab-

lished Python programming benchmarks, it remains as good as

gpt-3.5-turbo, which is the model presently used for GitHub

Copilot’s inline completions [104], the free version of ChatGPT, and
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(a) An example task posed to a participant. The interface displays the function name

and several input/output examples. Participants write and submit a description in

the text box. During our study, 85% of students who attempted this problem wrote a

successful description after a single CS1 course.

(b)We run expert tests automatically andhighlight

ones that fail. Students are then able to either edit

their description by pressing "Try Again" or move

on to another problem.

Figure 3: The Charlie the Coding Cow interface.

several other commercial products. Specifically, gpt-3.5-turbo

and code-davinci-002 score 48% and 46% respectively on the Hu-

manEval Python programming benchmark [11, 74], the most com-

monly used Python benchmark for Code LLMs. Since we started

our study, several other LLMs have also appeared, including non-

proprietary LLMs that are better for reproducibility (ğ9.5). The best

open models perform comparably to code-davinci-002; for in-

stance, CodeLlama (34B) achieves 48% on HumanEval [85]. This

suggests that the model that we use is as capable at code completion

as newer models used in practice.

There are larger models that are more capable, such as GPT-4,

which achieves a HumanEval score of 67% [74]. However, GPT-4 is

significantly slower and higher latency than the alternatives, and

low latency is essential for LLM code completion to be acceptable

to users [69]; if participants have to wait more than a few seconds

for the generated code, their frustration might lead them to move

on rather than re-attempting the problem.

For consistency, we used the same Codex model throughout

the study (code-davinci-002). It is important to note that Code

LLMs perform best when their output is sampled; consequently,

the model may produce different programs for the same prompt.

We generated output using best practices for hyperparameter and

sampler settings [13].

4.3 Participants

We recruited 40 participants from each institution (n = 120). Eligible

participants were at least 18 years old, had taken CS1 at their insti-

tution between Fall 2021 and Spring 2023, and had not completed

any subsequent CS courses. We recruited participants from March

to July 2023 until reaching our sample size of 120. The pilot and

main study received IRB approval.

Care for Participants. Our study design sought to balance ob-

taining accurate data with addressing potential discomforts and

power dynamics. Potential discomforts for participants included

frustration regarding their inability to complete a task, which could

reinforce negative perceptions of self or CS. In the tutorial, we

emphasized that our goal was not to evaluate their programming

skills, but the collaboration with Charlie. Students were allowed to

move on from a problem at any time, resulting in a variable number

of attempts per problem.

We took several steps to address potential power dynamics be-

tween students and their professors. Recruitment was done through

an interest form distributed by other faculty or staff. Scheduling was

performed by a researcher at another institution. Finally, research

sessions were never run by a professor at the same institution as

the participant.
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Figure 4: An overview of the experimental platform. For

each problem, the frontend provides the participant with

the signature and tests and asks them to write a description

(prompt). This is then relayed to the backend, where the

signature and prompt are sent to Codex via the API. The

code completion from Codex is then run on our pre-defined

tests. Finally, the results of running the tests and the code

completion are presented to the participant in the frontend

interface.

4.4 Study Execution

The study was conducted over Zoom with audio and video record-

ing. Participants signed informed consent material ahead of the

experiment and assented at its start. They were compensated with

a $50 gift card for the estimated 75-minute study.

Main Task. Figure 2 (1) outlines the full study design. Students

completed 3 tutorial problems to get familiar with the interface

and see some possible Codex responses. We supplied participants

with a working prompt for the first tutorial problem, then gave

them a difficult problem so they could see a failure, and a final easy

problem to solve independently.

The main experiment consisted of 8 problems in two blocks,

the first untimed, the second timed. In the second block, students

were limited to 5 minutes per problem. We included both timed

and untimed blocks in order to balance the need to bound study

duration with the desire to observe complete prompt editing cycles.

Participants were randomly assigned experimental lists, balanced

by difficulty, using a modified Latin Square design. Four authors

independently assessed the difficulty of writing prompts for each

problem; we averaged these scores and developed six roughly equal

lists (Figure 2).

Post-task Interview and Survey. After the main study, students

completed a two-part survey, a semi-structured interview, and an

optional debriefing session (Figure 2 (1)). The semi-structured in-

terview was interleaved between two survey blocks to mitigate

question ordering and priming biases.

The first part of the survey was designed to study student per-

ceptions of Charlie and of AI more broadly. We adapted validated

scales from previous work to understand student perceptions of the

usability, trustworthiness, and friendliness of Charlie [7, 20, 51, 99]

and the mental workload of the task [36].2 We were also interested

in whether students’ ability to come up with effective prompting

strategies might correlate with fixed versus growth mindsets about

computing; we drew on Gorson and O’Rourke [33] to measure this.

The semi-structured interview asked 8 questions covering stu-

dent editing processes, what they found hard or easy, how they

envisioned their interactions with Charlie, and how they imagined

Charlie worked. The specific questions were directly inspired by our

overarching research questions. Researchers followed a standing

script to ask each question - there are a total of 5 missing question

responses across the possible 960 interview datapoints, likely due to

researcher error or time considerations. In the optional debriefing,

we explained the experiment and how Code LLMs work.

The second part of the survey focused on participants’ back-

grounds and demographics. These were the last questions of the

study to mitigate possible stereotype threat [72]. For questions

related to identity (e.g., gender, race, spoken language at home),

we followed best practices and solicited responses via open text

boxes [92]. We also asked questions about students’ CS1 perfor-

mance, experience with programming outside of CS1, high school

& educational background, math background, major, and class year.

Pilot Study. In late 2022, we ran a pilot study with 19 participants

to assess the study design and usability of the interface. Pilot par-

ticipants were recruited from the same three institutions as in our

main study, but were students who had taken more than one CS

course. This small pilot allowed us to make sure the web platform

was working correctly, identify any problems with specific tasks,

refine our time estimates, and assess the quality of the automatic

transcriptions of the interview recordings produced by otter.ai.3

During the pilot, we identified one problem with ambiguous test

cases, which we changed before the main study. Pilot participants

solved an average of 5.5 out of 8 problems (an Eventual Success

Rate of 68.8% using the metric described in ğ5.2).

Because the average pilot participant took 53 minutes, we in-

creased the time estimate and compensation from $30 for 60minutes

to $50 for 75 minutes for the main study. We also added a hidden

time limit to the first block of questions in case participants spent

more than 50 minutes on this portion of the study; this issue never

arose in the main study.

5 ANALYSIS

This section presents the analysis framework for ğ6, ğ7, and ğ8. We

take a mixed-methods approach to this work.

2In some cases, we removed questions that were not relevant to our study to keep
the survey length manageable for participants. Details available via our Supplemental
Materials at https://doi.org/10.17605/OSF.IO/V2C4T.
3https://web.archive.org/web/20231205001012/https://otter.ai/
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5.1 Evaluation Plan

Qualitative analysis. We collected three types of data which lend

themselves to qualitative analysis: (1) information about student

experience and demographics, (2) free-response questions about

future use of Charlie, and (3) semi-structured interview responses.

We employed both inductive and deductive open coding towards

consensus. Our aim was to identify common themes present in this

specific dataset, rather than to develop a theory. Two researchers

with previous qualitative experience conducted the analysis; Sec-

tion A.2 contains details of the coding methodology. We present

selected quotes from the surveys and interviews throughout. Quo-

tations have been lightly edited from the automatically generated

transcripts. This includes addressing grammar/punctuation, remov-

ing speech errors or filler words, and avoiding the disclosure of any

identifiable information. Each participant’s quote is accompanied

by a pseudonym assigned to them during data collection.

Statistical analysis. We perform statistical testing with a sig-

nificance level of 𝛼=0.05 in order to determine whether observed

differences in response measures are statistically reliable. For com-

parisons between two groups, we use Student’s 𝑡-test. For com-

parisons between multiple groups, we perform ANOVAs; in cases

where there is no natural reference group, we use Tukey HSD tests

to explore pairwise differences. We report Pearson’s 𝑟 for correla-

tions between continuous variables and Kendall’s 𝜏 for correlations

between continuous and ordinal variables. Where we are interested

in multiple potentially interacting variables, we fit linear mixed-

effects models with maximal random effects for participants and

problems using the lme4 package in R [8].

5.2 Measures of Success

There are several ways to measure success when evaluating the

natural-language-to-code task. The success rate is the fraction of all

attempts on which the model generates a working program. There-

fore, a participant who takes several attempts to solve a problem

will have a lower success rate than another who succeeds in one

try. We might also ask whether a participant is ever able to solve

a problem; we refer to this as the eventual success rate. This met-

ric considers only the participant’s final attempt at each assigned

problem. The eventual success rate metric is likely specific to this

paper, as closely related work [19, 48, 78] studies different notions

of success or does not permit controlled, repeated interactions.

Although success rates measure the correctness of the code

that students saw during the experiment, LLM generation is non-

deterministic.4 Therefore, studying success rates can be misleading:

a participantmay have just been luckywith a bad prompt or unlucky

with a good prompt. For this reason, we also employ an alterna-

tive metric called pass@1, which accounts for non-deterministic

generation [13]. Since the debut of Codex, pass@1 has become the

standard metric used to evaluate LLMs on the natural-language-

to-code task, including GPT-4 [74], Code Llama [85], and other

models [29, 59, 73].

Given a natural language prompt, pass@1 [13] is an estimate

of the probability that the LLM will generate working code in

4Greedy generation is significantly worse for coding tasks than non-deterministic
generation [13].

one attempt. In the LLM development literature, the accepted best

practice for computing pass@1 is to query the LLM 200 times for

the same prompt and test every generated program [13, 29, 85, 102].

Sampling 200 generations for all 2,000+ prompts generated as part

of this study would be very expensive with the Codex API. Instead,

we use a recently released open Code LLM called StarCoder [59]

that is nearly as capable as the Codex model on Python benchmarks.

Pass@1 with StarCoder will be slightly lower than Codex success

rates because of model differences. However, pass@1 is a more

stable measure of whether a prompt will succeed than success rate.

We use pass@1 for the bulk of our analyses.

5.3 Positionality

All authors were affiliated with the institutions from which par-

ticipants were recruited (Oberlin, Wellesley, or Northeastern) at

the time of the study; we range from undergraduate students to

tenured faculty. We developed the problem lists, problem difficulty

ratings, and other elements of the study design within a shared

educational context. The last three authors are course instructors

for CS1. As described in ğ4.3, significant care was taken to ad-

dress power dynamics between participants and researchers. Some

authors also contribute to the development and evaluation of open-

source Code LLMs. Overall, the potential incentives for the research

team are complex, as we approach this work as both educators and

researchers. We aspire to a neutral perspective on Code LLMs, while

attempting to center the student experience.

This research studies students at three selective higher education

institutions in the United States. Therefore, while we are able to

generalize beyond a single CS curriculum, the educational context

is specific: our findings may not generalize to other settings (e.g.,

community colleges, K-12 education) or cultural contexts.

6 RQ1: DO STUDENTS SUCCEED AT
PROMPTING CODE LLMS WITH NATURAL
LANGUAGE?

In this section, we present how well students do on our Code LLM

prompting task and address RQ1: do students succeed at prompting

Code LLMs with natural language? We explore differences between

students that are linked to their ability to successfully describe

problems to Code LLMs.

6.1 Basic Findings

Figure 5 presents the distribution of participants’ success rates and

eventual success rates. The average participant solved 4.7 out of 8

assigned problems. Themean eventual success rate (57%) is not high,

and themean success rate (24%) is even lower, since it decreaseswith

every failed attempt. We find no significant institutional difference

for either measure of success.

Participants often submitted a large number of failing attempts

(Figure 5d): 153 problems (aggregated across participants) required

three or more attempts. In fact, one participant succeeded at a

problem only after 32 attempts; another gave up after 26 attempts.

These results suggest that low success rates are not due to a lack of

participant effort. Participants struggled to write natural language

prompts for the LLM, and often achieved success only after many
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Abbreviated Question Scale (1 to 7) Mean

How mentally demanding was the task? Very low->Very high 4

How hurried or rushed was the pace of the task? Very low->Very high 3.3

How successful were you? Perfect->Failure 3.6

How insecure, stressed, or discouraged were you? Very low->Very high 3.1

Table 2: Mean NASA-TLX ratings [36].

Thematic Codes N

Charlie Doesn’t Understand Me 91

Issues With Generated Code 59

Student Struggles 41

No Problems Mentioned 10

Issues with Study Platform 10

Issues With Experimental Design 7

Easier To Write Code Myself 7

Table 3: Thematic codes emerging from responses toWhat

kinds of problems or issues did you run into working with

Charlie?

• Computing intensive majors: 42% of participants were

pursuing computationally intensive majors.We observe iden-

tical pass rates for both computing and non-computing ma-

jors.

• International students: International and U.S. domestic

students had similar pass@1 rates.

• Household language: Our participants reported growing

up in households where a diverse set of languages were

spoken: only English (40.8%), English and other languages

(34.2%), and without English (24.2%). We were surprised to

find that pass@1 did not reliably vary by childhood language.

However, all participants were from selective U.S. institu-

tions that require fluency in English, regardless of childhood

language exposure.

• Public vs private high schools: 1/3 of participants attended

private schools; this had no impact on pass rates.

7 RQ2: WHERE DO STUDENT DIFFICULTIES
COME FROM?

Having shown that students find it hard to prompt a Code LLM in

natural language (ğ6), we explore why. In this section, we present

quantitative and qualitative results that address RQ2: when students

struggle with the task, where do the struggles come from? What

are the most challenging aspects of the natural-language to-code

task?

7.1 What aspects of the task do students say are
hard?

In the semi-structured interview, we asked participants to reflect

on challenges and issues they encountered. Three common themes

emerged: difficulties in getting Charlie to understand them; issues

with the generated code; and issues stemming from students’ self-

reported lack of knowledge or skill (Table 3).

Charlie Doesn’t Understand Me. The most commonly raised is-

sues related to Charlie’s understanding of prompts (n=91); we di-

vided these into subcodes. One of the most common of these was

the sentiment that Charlie failed to understand good descriptions

(n=23). For instance, redCoyote commented, łIt was definitely dif-

ficult to have a concept of what you wanted written in your head,

and then feel like you’re articulating it well, but having it not work

properly.ž Similarly, aquaLadybug reports feeling helpless when a

good prompt didn’t succeed: łif I was saying it [...] how I thought

[...] is the best way to say it, but it still wasn’t working, I had no idea

where to go from there.ž

Issues with Generated Code. Another major theme was issues

with the generated code. Many commments related to perceived

bugs in the generated code or difficulty debugging (26%). Students

also mentioned finding the model’s randomness frustrating (8%).

khakiBee was alarmed to find that resubmitting the same prompt

could generate different programs, commenting łYou feel like you’ve

made progress, and then because it did a different thing the next time,

it’s like, what do I change? I’m trying to change what I give to the

cow. And then that should change what the cow is doing. But if I’m

not changing anything, why is that changing?ž Some students also

experienced the opposite issue: despite changing their descriptions,

the model generated the same incorrect function repeatedly. pur-

pleCarp commented, łSometimes I changed my [...] description and

it just repeated the code the same. And it’s just very frustratingž. This

highlights the difficulty of working with stochastic models: students

expect the model output to be faithful to their descriptions.

Student Struggles. Participants also reported issues stemming

from their own lack of knowledge. 10% of students reported diffi-

culty understanding a problem, and 8% reported difficulty in un-

derstanding generated code. yellowChipmunk said, łsometimes

with the code, just given my knowledge, that’s not necessarily the

way I would go about coding the code. But I think to even understand

it, I would have to know what the code is trying to do, which takes

more time than me just trying to reword what I saidž. A handful (n=4)

reported that forgetting terminology made it hard to write prompts.

7.2 Which Problems Do Students Say Are Hard?

Some categories of CS1 problems may be harder to solve with Code

LLMs, either because the concepts are difficult or because they are

difficult to describe. We examine pass@1 and eventual success rate

by category as well as interview responses about which problems

were challenging and easy.

We find that pass@1 and eventual success rates both vary by

category (Table 4). We fit a binomial mixed-effects model to prompt

success (1 if the prompt succeeded; 0 otherwise), with fixed effects

of category, institution, and their interaction, and random effects
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Category Mean pass@1 Mean Eventual Success Rate Student Difficulty Ranking

Sorting* 0.09 33% 1 (Hardest)

Dictionaries* 0.17 43% 2

Nested* 0.30 68% 6

Math* 0.16 54% 4

Loops 0.13 52% 3

Lists 0.18 61% 5

Conditionals 0.33 73% 7

Strings 0.26 74% 8 (Easiest)

Table 4: Pass@1 and success rates by problem category. Each category has six problems, and an equal number of students

attempted each problem. The starred (*) problems were timed. Student Difficulty Ranking is done by ordering mean Eventual

Success Rate from least to greatest, as that provides as measure of what percentage of students successfully solved a given task.

of problem and participant (see Appendix, Table 12). A statistically

reliable difference in success was observed only for Sorting prob-

lems, which were the most challenging (𝑝=0.045). Participants from

Oberlin struggled more in the Nested category compared to other

students, but the effect is not statistically reliable (𝑝=0.063).

Interviews provide insight into their post-task perspectives. The

most commonlymentioned easiest categorywasMath (n=21), whereas

the most common for hardest was Nested (n=19), followed by Dic-

tionaries (n=14). These do not match the ranking in Table 4, sug-

gesting a disconnect between student performance and perceptions

of difficulty.

A common theme that emerged related to the challenge of putting

understanding of the problem into English (n=44). crimsonVole

said, łthe ones that had huge lists of like, strings, and integers, were

really hard to solve, because they were really hard to describe for

me.ž We differentiated this code both from students’ ability to iden-

tify patterns (n=35) and their ability to write the code without

Charlie (n=8). The opposite code, Easy to Describe, applied to 36

responses from the easiest question: łI felt like time ones because

they’re pretty straightforward. They’re like [...] exercises that we do in

my Intro CS class. And so I guess it will be easier for me to word, the

description or my thinking process, like I guess that might be easier.ž

(yelllowWeasel).

Three codes that related to student’s lack of knowledge emerged,

with 27 responses (see ğ7.4 for more perspectives).

7.3 What Role Does the Model Play?

LLMs can fail in surprising ways. We now explore the kinds of

model failures that participants encountered.

7.3.1 Syntax errors. Contemporary Code LLMs generally produce

syntacticallywell-formed programs. However, 5.5% of student prompts

led to Python syntax errors.Wemanually examined and categorized

them:

• 27 generations: Codex produces degenerate, repetitive text [43]

or Python 2 print statements. These are model failures.

• 81 generations: Codex could not generate a complete func-

tion within the 256 token limit (≈800 characters). Our prob-

lems are simple enough to be solvable in far fewer tokens,

so increasing the token limit is unlikely to help.

• 88 generations: Codex generates incomplete code after a

complete function, even with standard stop tokens.

The latter two categories arise from a trade-off in system design:

the first when the interface does not request enough tokens from

the Code LLM; the second when it requests so many that the model

generates extraneous additional code. Although these errors are

infrequent, they are hard for students to deal with. In 22.4% of these

cases (n=44), students gave up after seeing the syntax error.

7.3.2 When the Model Produces Different Programs From the Same

Prompt. Codex is best at coding when its output is sampled (ğ4.2),

but this stochasticity can frustrate students trying tomodify prompts.

In 107 cases (4.2%), a student submitted a prompt several times, and

in most of these cases, Codex generates a new completion. A few

of these are trivially different (e.g., different variable names), but

most (n=86) are different functions. Some students pointed this out

in the interview ś beigeHalibut noted that they łusually would

run a couple times, because Charlie is not very consistent with the

answers. And sometimes it works. Sometimes it wouldn’t work.ž

7.3.3 When the Model Produces the Same Program Despite Changes

to the Prompt. When the Code LLM produces an incorrect function,

and a user edits their prompt, their intent is to have the LLMproduce

a differentÐhopefully correctÐfunction. Frustratingly, this does not

necessarily happen: sometimes the model repeatedly generates the

same code despite edits to the prompt. We observe many instances

where this happens (104 submissions, 11% of total): it occurs in

most problems (36 of 48 problems) and is encountered by a majority

of students (72 of 120 students). This often leads students to give

up. In fact, out of the 340 problems where students gave up, 70

were cases where the participant edited the prompt and the LLM

repeatedly generated the same code.

7.4 What Do Students Do When They
Encounter Unfamiliar Python?

Code LLMs are trained on online repositories of code and may

generate code using language features that students have not seen

before.

New Python Constructs. In their interviews, some students (n=5)

report issues understanding code due to unfamiliar language fea-

tures. oliveBear comments about the lambda construct for anony-

mous functions: łI’ve only ever seen [it] in passing. And so if that

hadn’t worked, I wouldn’t have known what the problem was because

I myself don’t know how to use that operator.ž Others mentioned map,
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Completion
def exp(lst, val):

return [i ** val for i in lst]

Question Is this code you would write yourself?

Student Responses Wellesley: Yes, Oberlin: No

Figure 6: An example code completion for the problem exp ś

this was generated by multiple different prompts. The com-

pletion was rated differently by Oberlin and Wellesley stu-

dents, likely due to the list comprehension.

replace, and try/except. List comprehensions are an interesting

case because Wellesley teaches them, but Oberlin does not. When

asked about generated code with list comprehensions, 9/24 (37.5%)

Oberlin students indicated that it is similar to code they would write

themselves, compared to 20/33 (60.6%) Wellesley students. Some

students responded differently to the same completion (Figure 6).

Ratings of Final Completions. Students evaluated the correctness

and naturalness of the final completion for each problem, producing

960 responses. For correctness, 61.8% of the time students indicated

that Charlie’s code was correct; the majority (543; 91%) are cases

where all tests passed. However, naturalness responses were more

mixed. Students indicated that Charlie’s code was like code they

would write themselves only 58.3% of the time. 78.6% of such re-

sponses were made when the code passed all tests. Responses to

these questions might diverge when the model generates correct

code that is unfamiliar or approaches a problem differently, as well

as in cases where the model’s code is incorrect, but looks familiar

to students.

8 RQ3: STUDENTS’ MENTAL MODELS AND
PROCESSES

This section addresses RQ3, presenting results related to partici-

pants’ perceptions of the task, their mental models of Charlie, and

their strategies for writing prompts.

8.1 How does Charlie work, according to
students?

In interviews, studentswere asked how they thought Charlie worked

(Table 5). Comments fell into two broad themes: descriptions of

Charlie’s knowledge, and descriptions of Charlie’s processes.

Processes. Comments in the Translation theme (n=13) described

Charlie in terms of a machine translation process (fuchsiaBeaver:

łI thought of him as like a translator, like between English and codež).

Comments in the Sequential theme (n=13) described Charlie as

working line-by-line through their prompt. This is plausible but

incorrect: Code LLMs condition on the entire prompt at once. This

mental model might lead students to focus on individual sentences,

rather than how their prompt works as a holistic description. One

student actually changed their mental model while answering: łit

looks like he went line by line. Wrote some code for each line that

makes sense to him [...] Actually, no, I think he takes in the whole

prompt and [...] figures out what to do with the prompt. Because I

do remember [...] there were a couple where I give a paragraph and

Thematic Codes N

Knowledge: Keywords - General 30

Knowledge: Keywords - Database/Dictionary 16

Knowledge: ChatGPT 17

Knowledge: Internet Data 12

Knowledge: Intermediate Representation 4

Knowledge: Copilot/Codex 2

Process: Sequential 13

Process: Translation 13

No Guess 13

N/A 24

Table 5: Thematic codes emerging from responses to How did

you imagine that Charlie was working?

then he returned a line of code, which makes me think that he wasn’t

going line by line.ž (khakiClam).

Charlie’s Knowledge. Most students hypothesized that Charlie

relies on keywords (n=46). A large group of students (n=30) had

a vague keyword mental model. For instance, łI guess he probably

looks for keywords, łifž and łelsež and key coding words, Python words,

and he probably has a knowledge of Englishž (wheatOtter). Another

group (n=16) outline a more specific keyword lookup model, where

Charlie uses keywords to retrieve relevant code from a dictionary

or database. For instance, linenBobcat described Charlie as łusing

the code words, and doing it sort of line by line and trying to work

from what was given and writing those words with what, like in a

directory or some sort of data file, understanding which ones matched

up to which functions and which commands.ž

Students with this mental model emphasize the importance of

using programming terminology, since they think Charlie may not

be able to retrieve code without the right keywords. Some students

develop this mental model after observing that their prompts suc-

ceed when they use coding words: łI noticed that if I put in more like,

computerized words, I almost had a bit more control. At one point, I

forgot to mention that the function returns something. So then when I

mentioned that it returned something he put in a return statement. So

that felt like very, like logical to me. [...] Charlie’s looking for words

that kind of line up with different functions, built in functions, and

using those.ž (tanMinnow). These students correctly observe that

sounding like a programmer is important, but explain this with an

incorrect mental model.

Some students did correctly identify Charlie as similar to an LLM

such as ChatGPT (n=17) or Copilot/Codex (n=2). Success rates for

this group were slightly higher (0.27 versus 0.22; 𝑝=0.03).

8.2 What strategies do students develop?

The first two semi-structured interview questions asked students

about their strategies for writing and editing prompts. We find that

students do not have a clear understanding of howmodels work and

that their incorrect mental models appear to affect the strategies

they develop for prompting in ways that might be unproductive.

8.2.1 Editing processes. Over a third of students (n=48) mentioned

adding detail to their descriptions when they did not succeed (Ta-

ble 6). Some students mentioned clarity as a goal in adding detail,
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Figure 8: Visualization of how students describe their editing

trajectories. The left nodes represent how students described

how they began their process. The right nodes represent how

students described how they edited prompts at the end of

the study. The codes are presented in pairs - Hard versus

Easy, Concise versus Detailed, Humanlike versus Pythonic.

Only trajectories between pairs are visualized. The size of the

nodes is proportional to the total number of students who

described their Start or End within that code.

while grayRabbit said, łI kind of treated it like I was just coding but

saying things I would like use kind of like if statements and integers

and stuff. But towards the end, I tried to focus more on how I could

say what was going on at a higher level, so using more plain language

versus specific coding language.ž

A large group reported that their prompts became more detailed

(n=35) and/or more technical (n=31), mirroring the finding above

that students typically add detail when editing. For instance, tanBat

reports, łMy initial process was just to figure out what the code is

doing and then just write generic descriptions, like without any coding

language inside of it. But then when I saw that Charlie kept having

problems, I started to go to more coding language.ž However, others

took the opposite approach, and ended the study writing more

human-like (n=11) or concise (n=16) descriptions.

8.3 Do Students Get Better at Prompting Over
Time?

It is easy to argue that programming by prompting a Code LLM

with prose is more natural than directly writing code and that

Code LLM prompting is easy to learn. But how easy is easy? We

investigate whether students improve at prompt writing over the

course of the study. We explore this by comparing success rates for

(1) students who attempted the problem first with (2) students who

attempted the problem last. Our experiment design ensures that

there are exactly 5 students who attempt each problem first and

five more who attempt it last. We find no significant difference in

success rates between the two groups, indicating that students do

not observably improve at prompting within the 75 minute study.

8.4 What do students think about Charlie?

One of the most consistent findings in work on how experts use

Code LLMs is that users enjoy using models [69, 105], even when no

concrete productivity or correctness benefits are observed [97, 102].

However, near-novices exhibit different motivations and relation-

ships to technology than expert programmers. This makes it im-

portant to investigate how non-experts feel about these systems.

8.4.1 Charlie’s competence and reliability. The post-task survey

asks participants several sets of questions related to their percep-

tions of Charlie. They completed 5 items from Bartneck et al. [7]

adapted byWang et al. [99] and Druga and Ko [20] for non-robotics

use. Participants generally give Charlie middling ratings for knowl-

edge and competence. Participants take more extreme positions on

Charlie’s persona, in opposite directions: they rate Charlie as both

friendly and machinelike. Students who experience lower success

rates find Charlie somewhat less competent, but do not seem to

find Charlie less friendly (Table 7). Students also completed 5 items

from Körber [51]’s trust of automation survey. Overall, students see

Charlie as somewhat reliable and somewhat interpretable (Table 8).

Students with higher success rates tended to rate Charlie as less

error prone, easier to understand, and more reliable.

8.4.2 Would they use Charlie? The post-survey asked about stu-

dents’ attitudes toward hypothetically using Charlie in (a) the CS1

course they completed and (b) their own future programming prac-

tice. We used a thematic analysis approach to analyze this data, as

with the interview data (see Appendix A.2 for more details).

Overall, two-thirds (n=83) stated that they would be interested

in using Charlie in CS1. Many responses were variants of łYesž,

but students who responded Maybe (n=13) or No (n=23) typically

explained their reasoning. Half (n=19) of these suggested that tools

like Charlie would inhibit student learning. For instance, aquaLady-

bug noted, ‘If I had questions on how to program a particular thing,

using something like Charlie could help me clarify any questions I

had by testing out different descriptions. But if I completely relied on

something like Charlie as a tool in such a class, I feel like the whole

point of me taking the class is overlooked and at some point becomes

redundant.ž Other students, including those who responded Yes,

brought up how programmer skill level could play a role. tealHer-

ring wrote, łYes, but I would want to maybe only try it out towards

the end of the course, when I’ve already learned the process of cod-

ing and would like to see how an AI could work to streamline the

process.ž Other comments touched on academic integrity (łI don’t

think so unless my teacher explicitly endorsed it because I’m terrified

of plagiarism!ž - crimsonWorm).

More students supported using tools like Charlie in their own

future programming practice (n=95). Maybe (n=20) and No (n=4)

respondents again provided more explanation: two common themes

included Charlie’s limitations and usefulness for different kinds
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Scale Mean Correlation with Success Rate (𝜏)

Ignorant - Knowledgeable 3.68 0.16*

Machinelike - Humanlike 2.39 0.12*

Responding rigidly - Responding elegantly 3.13 0.09

Unfriendly - Friendly 4.2 0.008

Incompetent - Competent 3.58 0.19*

Table 7: Mean student responses to Charlie perception questions (1=left endpoint, 5=right endpoint), adapted from Wang et al.

[99], and correlation with success rate. * indicates statistical significance.

Question Mean Correlation with Success Rate (𝜏)

Charlie is capable of taking over complicated tasks. 3.24 0.03

Charlie might make sporadic errors. 2.15 0.18*

I was able to understand why things happened. 2.24 -0.34*

I can rely on Charlie. 2.95 -0.17*

Automated systems generally work well. 2.46 -0.14

Table 8: Mean student responses to Charlie trust questions (1 = Strongly agree; 5 = Strongly disagree), adapted from Körber [51],

and correlation with success rate. * indicates statistical significance.

of problems: łIf Charlie improved, then it should be able to gener-

ate simple functions for me, in which I don’t have to repeat myselfž

(purpleCarp).

8.5 AI Attitudes

Students were asked whether they felt optimistic or pessimistic

about AI’s future impact on society. About two-thirds of students

were optimistic; however, students pursuing a programming ma-

jor (Computer Science, Data Science, or Media Arts and Science)

were notably more optimistic than other students (80% optimistic

compared to 63% of other majors). There was no difference in task

performance between optimists and pessimists (pass@1 rate = 0.22

for both).

Students were also asked to compare the ethicality of Charlie

with three other AI deployment scenarios. Most students found

Charlie less ethically concerning in each comparison (Figure 9). Stu-

dent responses to these questions did not differ reliably in relation

to their success rate or pass rate.

9 DISCUSSION

In the previous sections we discussed our three main research

questions ś we summarize the findings together here:

• RQ1: We find that some students can effectively prompt a

Code LLM, but it often takes numerous attempts. Students

overall found the task mentally demanding. Prior experi-

ence and first-generation status are correlated, positively

and negatively respectively, with success.

• RQ2: The most common issues students report relate to the

Code LLM misunderstanding their descriptions and issues

with generated code. Both students themselves and our anal-

ysis of the data suggest that the stochastic nature of the

Code LLM may impact student experiences. We find limited

differences between students regarding problem difficulty.

• RQ3: Students’ most common mental model for the Code

LLM was a data structure with keyword lookup. The most

common prompting strategy that students developed was

to expand their prompts, making them more detailed and

more Pythonic. Students viewed the model as fairly capable

and somewhat reliable. However, they expressed a range of

opinions about whether Code LLMs would be appropriate

for CS1.

In this section we draw connections between our findings and

related work and discuss their broader implications.

9.1 The Natural-Language-to-Code Task is
Challenging

The emergence of LLMs have led some to conclude that this is the

łend of programmingž [65, 100]. In contrast, we find that beginners

who can write code nevertheless struggle to write natural language

prompts for LLMs. We carefully select problems that are similar

(or identical) to those they completed to pass CS1. The average

participant solves 57% of the assigned problems, but only after

several repeated attempts and with automatic feedback on code

correctness. Our study contributes to the existing work on beginner

interactions with Code LLMs by measuring how well students

can use Code LLMs to solve problems at their own programming

skill level, rather than in the context of a learning activity, where

students may not be expected to able to write the code themselves.

Despite the fact that all of our participants had passed CS1, which

required writing code to solve problems like those in our study,

many of them struggled to write natural language descriptions to

lead a Code LLM to solve similar tasks.

On the whole, our findings reveal a somewhat higher level of

difficulty in using Code LLMs than other studies [19, 48, 78], though

it can be challenging to compare across diverse student populations,

study designs, and problem types. Our results align most closely

with those from Denny et al. [19]’s subsequent study of students

with just two weeks of programming instruction. Although their

study used only 3 problems and had less experienced programmers,

they observed similar challenges: 86% of students eventually solved
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Figure 9: Student perceptions of Charlie’s ethicality as com-

pared to other AI scenarios

their easiest problem, but only 65% solved their hardest task. This

is close to the average eventual success rate that we observe.

9.2 Not a Panacea for Non-Expert Programming

Learning an effective process for how to prompt a Code LLM is the

key to interacting successfully with it in the long term. Existing

work on experts reveals different łmodesž of interaction [6]. Our

findings suggest that unlike experts, near-novices do not develop

well-defined strategies for how to prompt. Students added more detail

to their previous prompts, even when it would have been better

to start from scratch. In addition, students’ prompting abilities did

not observably improve during the study (ğ8.3). Students’ failure

to develop effective strategies may also be linked to their incorrect

mental models of howCode LLMswork (ğ8.1). These results suggest

that prompting, like most ways of interacting with code, needs to

be explicitly taught to be used effectively.

Kazemitabaar et al. [48] present a study of pre-college students

that suggests Code LLMs can improve learning outcomes. They

compare student performance with and without access to the Code

LLM, and provide considerable support to participants, such as

instructor feedback and access to expert-written descriptions of the

problem. In three of their task categories, both students with and

without access to a Code LLM were able to complete 100% of the

tasks, making it difficult to understand the contribution of the Code

LLM. In the two more challenging categories, students benefited

from the Code LLM, but they also relied heavily on the expert-

written description (reusing it around 40% of the time). Together

with our results, we take this to indicate that Code LLMs can be

useful to beginners, but that writing prompts remains a barrier.

This highlights the importance of understanding why Code LLMs

and beginning programmers struggle to understand each other:

Kazemitabaar et al. [48] argue that Code LLMs could positively

impact student learning, but our results demonstrate a variety of

ways that these interactions currently fail.

Our findings provide fine-grained evidence about student chal-

lenges that have implications for complete novices, as well as the be-

ginners we study. The results in ğ8 highlight how effective prompt-

ing requires skills that complete novices do not possess. Figure 8

visualizes how students described their start and end approaches

to editing, showing that many students who started out writing

prompts as for a human transition into using more coding termi-

nology by the end of the study. These participants picked up on

a key property of Code LLMs: they are trained on expert-written

code and documentation and expect natural language prompts to

utilize coding terminology. The strategies that were most effective

for our beginners would not be available to true novices.

9.3 Don’t Assume a Mental Model of AI

Our study suggests that students have incomplete mental models

of how Code LLMs work. Although participants knew they were

interacting with an AI code generation tool and the majority (n=88,

73% in the post survey) had heard of GPT-3, Github Copilot, or

Codex, when asked how they thought our system worked, only 19

students mentioned these models. A notable feature of responses

was the number of detailed, but incorrect explanations. Themajority

of students who gave examples identified a keyword-based lookup

strategy, like the dictionaries they had learned about in CS1.

These mental models fail to explain one aspect of Codex that stu-

dents find frustrating: its stochastic responses. Students are familiar

with errors that persist after editing their code. Code LLMs intro-

duce a related but novel experience: submitting the same prompt

and getting a different program (ğ7.3). This does not occur in stan-

dard CS1 settings and cannot be explained by the database/dic-

tionary mental model of Code LLMs that most participants de-

scribed. Without a well-developed understanding of why this hap-

pens, students have simply added another unknown computational

behavior to their coding experience.

We note that although Prather et al. [78] report that several of

their participants described models as having sentience or agency,

none of our participants did. This may reflect the growing public

awareness of generative AI between their study and ours, resulting

in more realistic attitudes about the capabilities of large language

models in our population. Our students seem to understand what

AI models can do, but not how they do it.

9.4 Implications for Educators

Recent work has shown that Code LLMs can solve CS exams or

homework assignments given the educator’s description of the prob-

lem [17, 25]. Our findings show that although Code LLMs can solve

CS1 problems, CS1 students cannot necessarily prompt Code LLMs

to solve CS1 problems. Our findings reiterate the importance of key

skills taught in CS1: code comprehension, problem decomposition,

and the ability to describe computational problems clearly.

While we do not study learning outcomes explicitly, we find

mixed support for Code LLMs as pedagogical tools. The survey

portion of our experiment included questions about participants’

attitudes towards Code LLMs. About two-thirds of participants

expressed interest in using similar technology in CS1. Some par-

ticipants mentioned that the task helped them remember Python

concepts that they had forgotten, or even learn new features (such as
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list comprehensions for Oberlin students). Others felt that it helped

them practice describing technical tasks in natural language; Code

LLMs could be used to provide feedback on Explain In Plain English

(EiPE) questions [16, 64], which many educators see as valuable,

but difficult to use without automation [28]. Recent work on stu-

dents’ perceptions of automatically-graded EiPE questions provides

guidelines that may serve as a first step towards using Code LLMs

as automatic backends [44].

On the other hand, a sizeable number of students did not sup-

port using Code LLMs in CS1. Some students expressed ethical

concerns. Many questioned whether coming to rely on Code LLMs

would diminish their knowledge of programming or their sense of

fulfillment. Our survey data also highlights a key challenge of con-

temporary AI: explainability. Students gave Charlie higher ratings

for capability than interpretability. Our findings here complement

Sun et al. [93]’s exploration of Code LLM explainability needs iden-

tified by expert programmers, and Prather et al. [78]’s finding of

students’ łslow acceptž mode, where students spent a lot of time

reading code generated by Copilot and deciding whether or not to

accept it.

By shedding light on how students feel about Code LLMs, our

work augments Lau and Guo [52]’s investigation of CS educators’

perspectives on Code LLMs. Our studies were conducted at a similar

moment when Code LLMs had recently gained public prominence,

but few educators or students had much experience with them. Our

students and the educators in Lau and Guo [52] raise strikingly

similar concerns about ethics and negative impacts on student

learning. Denny et al. [19]’s subsequent experiment found similar

concerns among currently enrolled CS1 students.

The large scale of our study also allows us to contribute data to

the debate over equity in Lau and Guo [52]’s study, who show con-

flicting perspectives among educators: some felt that Code LLMs

could strengthen the digital divide between students, while oth-

ers felt that Code LLMs could improve diversity in CS. On the

whole, our findings strengthens concerns. We show that students

with extracurricular programming experience have an advantage,

echoing Kazemitabaar et al. [48]’s finding that more experienced

programmers benefit more from using Code LLMs. We also show

that prompts written by first generation college students have re-

liably lower pass@1 rates. Educators should weigh the potential

benefits of adopting this new technology against the possibility

that it might exacerbate existing equity issues [41].

Finally, our students are ambivalent towards AI systems in gen-

eral. Around two-thirds were optimistic about AI’s impact on so-

ciety in the future, similar to the proportion interested in using

Charlie in CS1. This leaves a sizeable number of beginners who are

concerned about AI or uninterested in its use in CS1. Our findings

capture a nuanced portrait of how young adults perceive generative

AI for programming, captured at a moment where generative AI

was increasingly prominent in popular media.

9.5 Model Selection for Human-AI Interaction
Research

One issue for studies such as ours is the rapid pace of research

and development in machine learning. Running lab experiments

with humans takes time. However, current proprietary models are

often updated or deprecated with very little warning. This study

used OpenAI’s Codex, which provides state-of-the-art Code LLM

performance but came with significant risks. In the middle of our

study, OpenAI announced that Codex would be deprecated within

a week, which would have seriously compromised our results; after

much public concern, they eventually delayed the deprecation until

early 2024.

The mismatch between the timescale of ML development and

human-subjects research makes it difficult to complete studies us-

ing state-of-the-art models, which are largely proprietary. Based

on our experience, we recommend not using proprietary models,

although this may come with a trade-off in terms of performance,

and imposes significant computational requirements for the re-

search team (since alternatives require access to significant GPU

resources). Nonetheless, we strongly suggest the use of open source

models [59, 85] in future work, and potentially for classroom use,

to avoid sudden loss of access. This is an example of an ongoing

equity concern for researchers and educators.

9.6 Timeliness

Conducting work with non-experts and Code LLMs in early 2023

captures a specific moment in the evolution of this technology. Our

participant pool represents students who mostly completed CS1

before Code LLMs became commonplace. Collecting this data now

is paramount to our understanding of baseline interactions with

Code LLMs for students without previous exposure. In the future,

the controlled background knowledge of this study will become

increasingly hard to come by, both at our institutions and farther

afield.

We also see our work as timely because of the struggles and

strategies, or lack thereof, that we identify. As computing resources

become increasingly directed towards Code LLM technology [58],

work such as ours has the potential to impact how companies

develop their models, tutorials, and interfaces. We find that non-

experts struggle to execute the full prompt and edit cycle, even

with an interface that identifies output correctness. If this trend

generalizes to other non-expert groups, Code LLM technology may

strengthen the digital divide between expert and non-expert pro-

grammers, adding to the wide ranging list of ethical concerns about

generative AI [9, 49, 61].

10 THREATS TO VALIDITY

A major challenge of studying human-AI interaction is that AI ca-

pabilities and popular awareness of them change quickly. ChatGPT

was released between our pilot and main experiment; as a result,

students’ knowledge and experience with large language models

underwent significant growth during our experiment. We observed

a statistically significant improvement in task performance for stu-

dents who took the study in the last month. This may spring from

increased familiarity with large language models such as ChatGPT

or from more recent exposure to CS1 material.

Although we recruited participants who had completed CS1 and

no subsequent CS courses, their programming backgrounds were

not homogeneous. Some participants had taken a prior program-

ming course in high school or in college, and some were concur-

rently enrolled in a programming course. We study the effects of
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additional programming experience in ğ6.3. In addition, since we

recruited students who had taken CS1 as early as Fall 2021, some

participants reported having forgotten programming concepts or

terms in the intervening time.

Several factors may have biased participants towards report-

ing positive perceptions of our system. While we ensured that the

experimenter running the study was not a educator at the partici-

pant’s institution, participants were aware that the study involved

one of their professors and may have responded more positively as

a result. In addition, students may have answered questions about

text-to-code more positively because of the anthropomorphic qual-

ities of our system design; several commented about the appealing

affect of the Charlie mascot in post-study questions. Charlie may

have also had an effect on students’ level of task perseverance [54].

Finally, novelty bias is always a potential concern when evaluating

novel interfaces or systems, as-is self-selection bias for stand-alone

studies.

11 CONCLUSION

We present results from a large-scale, multi-institution study of

how near-novices interact with Code LLMs. Our novel experimental

design allows us to isolate the prompt writing and editing tasks, by

using a lab-based experiment in which participants write natural

language descriptions of tasks and receive automated feedback on

the correctness of generated code.

Our results suggest that students who have complete a single

CS course find using Code LLMs challenging, even with tasks at an

appropriate skill level. Our findings highlight the various barriers

that they face, ranging from distilling their problem understanding

into words, using coding terminology, understanding generated

code, and grappling with the stochasticity of Code LLM output. We

show that certain groups of students, most notably, first-generation

college students, face additional difficulties, raising equity issues

related to the deployment of Code LLMs in the classroom. We also

illustrate how students’ incorrect mental models of how Code LLMs

operate inhibit their ability to develop effective prompting strate-

gies. Moreover, our qualitative results provide insight into how

beginning programmers feel about introducing Code LLMs in the

classroom, bringing their voices into an key contemporary debate

and complementing existing work on educators’ perspectives.

Our findings suggest that Code LLMs do not signal the łend of

programmingž: in fact, they highlight the manyways in which Code

LLMs remain inaccessible to non-experts. We hope that our findings

will motivate renewed effort towards democratizing programming

by closing this gap.
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A ADDITIONAL METHODOLOGICAL DETAILS

A.1 Study Design

A.1.1 Pilot Study. In late 2022, we ran an IRB-approved pilot study

with 19 participants from all three institutions. These students had

completed CS1 and at least one additional course, so they were

ineligible for the main study. Overall, we made few changes after

the pilot. The most consequential were to add an additional 15

minutes (75 minutes total) to the study window, increase participant

compensation, and implement word wrapping in the interface to

prevent excessive scrolling.

A.1.2 Problem Adaptation. Our problems were based on CS1 prob-

lems used at each of our three institutions. In most cases, we made

small adaptations to the problems, both to make it less likely for

students to recognize the exact problem, and to fit the constraints of

the Code LLM task (i.e, changing printed output to returned output,

avoiding library imports).

Figure 10 presents two examples of how we adapted problems.

Figure 10a shows the original presentation of the problem that

was adapted into mod_end. We added an additional parameter so

that the function substitutes a given string for the ‘s’ at the end

of each string in the list. We also renamed the function. Note that

in the original class setting, the problem was presented with three

input/output pairs, as in our experimental design.

Figure 10b shows the original presentation of the problem that

was turned into find_multiples. We changed the function to return

the list of multiples rather than the number of multiples. As in

our experiment, the original problem description contained three

input/output pairs.

A.1.3 Problem Validation. By selecting from existing problems

in the CS1 curricula, we ensured that the problems were at an

appropriate difficulty level for our student population. In order to

focus specifically on the human-model interaction, we also needed

to ensure that the problems were an appropriate difficulty level for

the code generation model: the model is capable of generating a

solution, but only when it is appropriately prompted.

Because code generation models memorize common associations

between function names and function bodies, it is important to

ensure that the model cannot generate a passing implementation

from the function name alone. We produced Codex generations

from just the function signature for every problem, without any

natural language prompt, and measured mean pass@1 rate. We

renamed any functions with high pass@1 rates. For our final set of

problems, the overall mean pass@1 for function signatures alone is

0.0519. The maximum pass@1 is 0.925, for the problem exp. This

means that students generally need to provide a description of the

function’s intended behavior in order for the model to produce a

correct implementation.

We also ensured that there was a prompt that would lead to a

correct implementation for every problem. Each problem has an

łexpertž prompt written by one of the authors for which Codex pro-

duces a correct implementation. These prompts were not otherwise

used as part of the experiment.

A.1.4 Test Case Validation. We rely on unit tests to check the

correctness of model-generated code. These tests also produce feed-

back for students about the model’s generated code. We built an

initial suite of test cases for each problem by taking tests from

grading rubrics and other class resources. We used test coverage

and mutation testing [46] to identify missing test cases and build

more robust test coverage, while keeping the number of test cases

per problem to a size that can be easily displayed.

A.2 Qualitative Analysis

As described in the main body of the paper, the analysis of the qual-

itative data was done by two researchers with previous qualitative

analysis experience. The aim was to identify common themes in

the data set, rather than build a generalizable theory. Below we

outline the analyses performed on three types of data: (1) data

about student experience and demographics, (2) free-response ques-

tions about future use of Charlie, and (3) the semi-structured in-

terview responses. We provide the full codebooks, with defini-

tions, for all data types as part of our Supplemental Materials at

https://doi.org/10.17605/OSF.IO/V2C4T.

A.2.1 Student Experience & Demographics. We used thematic anal-

ysis for the post survey questions, beginning with the Language,

Major, and Experience questions. Codes were developed inductively

- the two researchers independently developed codes and then it-

erated on a code set via conversation and consensus. We did not

calculate inter-rated reliability for these questions, as their specific

use was for quantitative analysis rather than for specific qualitative

trends [66]. Once the researchers arrived at a tentative codebook

they independently coded and iterated until there was complete

consensus on all codes for all data points as part of the post survey.

This took one round to normalize code application (e.g., Computer

Science was not coded as a Natural Science) and then a second

round where the codes were complete, but typos were identified.

A.2.2 Free Response Questions. These questions (UseCharlie and

Foresee) were coded second out of the three kinds of qualitative

data. This process initially followed a similar inductive style to that

described above. Due to the open-ended nature of these responses,

both researchers then developed independent definitions for each

code to provide clearer guidelines for inclusion/exclusion. They

then met to merge their definitions and discuss any discrepancies.

For instance, normalizing most definitions to start with łMentionsž

and combining definitions or picking the more detailed. Then the

researchers independently coded according to the consensus defi-

nitions. Arriving at consensus took two rounds. Two sets of codes

were combined (two subcodes of Skill Level and two subcodes of

Problem Difficulty) and Documentation/Code Understanding was

re-coded due to clarifications in their definitions. The final round

of coding identified only typos and unintentional omissions. Again,

consensus was reached and inter-rated reliability was not calculated

for these codes.

A.2.3 Semi-Structured Interview Analysis. We took a different ap-

proach to coding the semi-structured interview data than the post-

survey data, as the responses varied significantly in length and

precision. The details of the codebook development are described

below, but the following process was conducted for all 8 questions:
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(a) Study problem called mod_end (b) Study problem called find_multiples

Figure 10: Original problem presentations

(1) The two coding researchers independently developed codes

for a set of 15 non-overlapping interviews. They met to

discuss their codes and general themes.

(2) They then coded 15 shared interviews to test the codes, add

additional codes, and finalize definitions. They reached con-

sensus on the codes and their application to the shared 15

interviews.

(3) To confirm their understanding of the codebook, they then

coded 20 shared interviews and calculated percent agree-

ment. Any codes with low agreement were discussed, had

their definitions changed/edited, or were removed. The re-

searchers then came to consensus on how to apply the codes

to these data.

(4) The researchers then divided the remaining 70 interviews

and coded independently, making use of a fixed codebook.

The researchers did not code interviews they conducted

themselves. They also independently recoded their original

15 datapoints.

The two researchers began by coding the last four interview

questions, which they deemed more concrete. This process was

primarily inductive. Computing percent agreement across the data,

87% of our 70 codes exhibited 90% or higher agreement (i.e. dis-

agreement on 2 or less datapoints). 9 codes were less, with the

minimum agreement being 75%.

The researchers then moved on to the first four interview ques-

tions ś the last analysis performed on the qualitative data. This

process was more deductive than previous analyses. For example,

for Hardest/Easiest, the topic categories of problems (e.g. Loops,

Conditionals) were particularly relevant to our analyses and the

data suggest those categories as codes. The first two problems had

the most variation in student responses ś we attribute this to stu-

dents’ lack of knowledge of their process, as they found this task

difficult overall. Therefore, the researchers focused on codes that

err on the side of temporal attributes. Percent agreement was again

calculated for these codes - 80% had 90% agreement or higher. Only

two codes had agreement lower than 75% - the researchers discussed

these codes significantly, reaching agreement on the generality of

one code (Add Detail) and removing another code entirely.

B ADDITIONAL QUANTITATIVE RESULTS

B.1 Participant Demographics

In order to protect participant anonymity, we report responses

to the open-ended demographics questions only if an identical

response was submitted by at least 5 participants. Gender and

race responses are shown in Table 9 and Table 10. The majority

of responses to the question about ethnicity were unique. Due to

the need to protect participant anonymity, we have chosen not to

report this data.

Self-Reported Gender N Mean pass@1

Female 72 0.22

Male 30 0.21

Nonbinary 5 0.28

All other responses 13 0.24

Table 9: Self-reported gender of participants, capitalization

normalized to title case.

Self-Reported Race N Mean pass@1

Asian 38 0.22

Black 6 0.11

East Asian 6 0.34

White 36 0.21

All other responses 34 0.23

Table 10: Self-reported race of participants, capitalization

normalized to title case.

B.1.1 Statistical Analysis. We usedWelch Two Sample t-tests to ex-

plore whether there were statistically reliable differences in pass@1

rates for students with different backgrounds. Table 11 shows the

results.

B.2 Problem Difficulty

B.2.1 Statistical Analysis of Category Difficulty. A binomial mixed-

effects model (Table 12) was fitted to prompt success as a binary
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Group 1 Group 2 𝑡 𝑝

Domestic student International student -0.4 0.68

First generation college student Not first generation college student 2.1 0.04

English in childhood household No English in childhood household 1.02 0.31

Public high school Private high school 0.1 0.92

Coding experience outside of CS1 No other coding experience 2.47 0.02

More than 1 math course 1 college math course 0.8 0.43

Table 11: Welch Two Sample t-tests to explore differences in pass@1 rates between demographic groups

Fixed effects 𝛽 𝑧 𝑝

(Intercept) -0.80 (+/- 0.6) -1.35 0.18

Dictionaries -0.70 (+/- 0.8) -0.8 0.41

Lists -0.55 (+/- 0.8) -0.7 0.51

Loops -0.92 (+/- 0.8) -1.1 0.28

Math -1.10 (+/- 0.8) -1.3 0.19

Nested 0.83 (+/- 0.8) 1.0 0.32

Sorting -1.75 (+/- 0.9) -2.0 0.045

Strings 0.14 (+/- 0.8) 0.2 0.87

Wellesley 0.14 (+/- 0.4) 0.4 0.71

Oberlin 0.24 (+/- 0.4) 0.6 0.53

Dictionaries:Wellesley -0.04 (+/- 0.6) -0.1 0.95

Lists:Wellesley 0.37 (+/- 0.5) 0.7 0.50

Loops:Wellesley 0.62 (+/- 0.5) 1.2 0.25

Math:Wellesley 0.18 (+/- 0.5) 0.3 0.73

Nested:Wellesley -0.98 (+/- 0.5) -1.9 0.062

Sorting:Wellesley -0.16 (+/- 0.6) -0.3 0.77

Strings:Wellesley -0.17 (+/- 0.5) -0.4 0.73

Dictionaries:Oberlin -0.52 (+/- 0.6) -0.9 0.37

Lists:Oberlin -0.05 (+/- 0.5) -0.1 0.93

Loops:Oberlin -0.33 (+/- 0.6) -0.6 0.57

Math:Oberlin 0.14 (+/- 0.5) 0.3 0.79

Nested:Oberlin -0.57 (+/- 0.5) -1.1 0.28

Sorting:Oberlin -0.10 (+/- 0.6) -0.2 0.86

Strings:Oberlin 0.10 (+/- 0.5) 0.2 0.84

Table 12: Full results of binomial mixed-effects model fitted

to problem category and institution.

outcome (1 if the prompt succeeded; 0 otherwise). The model in-

cluded fixed effects of problem category, institution, and their inter-

action, and random effects of participant and problem. Treatment

coding was used for institution, with Northeastern as the baseline

category; deviation coding was used for category, since we were

interested in whether any one category differed from the average

problem difficulty.

B.2.2 Least-Solved Problems. To understand where struggles arise,

we manually examined student responses to two problems: laugh,

which has one of the lowest number of student successes, and

total_bill, which has a mid-range success rate.

A challenging problem: laugh. One of the least-solved problems

in our study was laugh. The intended function takes a number 𝑛

and produces a string of 𝑛 łhažs, where the initial łhaž has 𝑛 łažs,

and each subsequent laugh has one fewer łaž.

Only two students were able to eventually succeed at this task

(orchidWalleye and magentaWeasel). However, a manual inspec-

tion of all initial student descriptions reveals only one seriousmisun-

derstanding of the task (tealPossum) ś see Table 13 for all students’

initial descriptions.

A mid-range problem: total_bill. The task in total_bill is

to compute the total of a grocery bill, using a list of grocery items

and a sales tax rate. Each grocery item is itself a list containing the

name of the item, a quantity, and a price. One expert description

that reliably generates a working program is Returns the sum of

multiplying the second and third indices of each list in grocery_list,

multiplied by 1 + sales_tax. Round to 2 digits.

We manually inspect all descriptions for this problem. Of the 20

students who attempted this problem, 12 eventually succeed. All of

these students follow a similar path: their first attempt omits the

rounding step, leading one of the tests to fail. A handful of students

also omit or incorrectly describe the sales tax step initially.

What about the students who never succeed? One student ini-

tially misunderstands the task, writing: This function takes in a list

of the item purchased, the price, the tax, and the overall sales tax. All

of the prices and tax within the lists are added together. The sales

tax is then multiplied by the outcome of the added prices, and then

the result of the multiplication is added onto the total price. The total

price is then returned as the output. (limeSalamander)

The student has misunderstood a key detail in the structure of

the lists: the two numbers are the quantity and price, so they should

be multiplied, not added. Consequently, this prompt fails. However,

their third description is accurate: This function takes in a list of the

item purchased, the amount of the item purchased, the price for each

item, and the overall sales tax. The amount purchased is multiplied

with the price for each item, creating a total amount. The sales tax

is then multiplied by the outcome of the total amount, and then the

result of the multiplication is added onto the total price. The total

price is then returned as the output.

Although the student initially misunderstood part of the prob-

lem, they are able to reread the input/output pairs and/or code,

arriving at the correct interpretation eventually. However, their

description still fails. This participant eventually runs out of time.

The rest of the participants who never succeed submit accurate

descriptions that omit key details, such as how to calculate the sales

tax (6 participants) or the list positions of the price and quantity (5

participants).

Overall, the student prompts for total_bill demonstrate more

issues in describing the problem than in understanding it. Although

one participant misunderstands the task initially, they were able to

quickly self-correct.
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Participant Initial Description N submissions

aquaLadybug If n is the input value, returns a combination of n strings, where each of the n strings

consists of "h" followed by n occurrences of "a", and there is " " before each "h" except the

first "h"

18

greenMoth a function have initial input as ‘ha’ when input of size(int) is 1, when size+= 1 from 1, ‘ha’

will gain one more ‘a’

2

orchidBeetle Based on the inputted number, will return a laugh size where the number of "a"’s starts

with the initial size, then decreases by one for each additional laugh.

4

tealPossum return the number of words in a string 2

pinkFisher the function laugh will take the input of an int and should output a string with the ha as

many times as the input but also the number of a’s is based on the number it is currently

working with

4

magentaWeasel Write a function which takes an integer size as an input, and uses a for loop to print an h

followed by size a’s and then a space, and then an h followed by size-1 a’s and then a space,

etc. until it prints a h followed by one a

7

aquamarineShrew This function prints an ‘h’ and adds the corresponding amount of a’s as the value provided.

It then adds a space to the output. It subtracts 1 from the value and prints another h with

less a’s and repeats until the value of the number is 0

26

orchidWalleye function adds ‘a’ to every ‘h’ based on input and will lower amount of ‘a’ until it reaches

only 1 ‘a’ after the ‘h’

3

khakiBee take in a number and write the word ‘ha’ but with as many ‘a’s as the number 7

pinkPerch Produce a string, with each word starting with h and then however many a’s the input says.

Decrease the count of a’s by one following the h for each word after.

5

orchidFlounder the input generates a string where the number corresponds to how many items are in the

string. each item in the string also starts with the letter ‘h’ and the letter ‘a’ is added to the

letter ‘h’ based on the number of the input. However, only the first item in the string has

the number of ‘a’ equal to the input, the following ‘a’ are added to ‘h’ by subtracting 1 from

the input.

1

beigeBass the code increases the number of the letters in "ha," depending on the input in an increasing

factorial way

1

tomatoFisher This function takes an integer and an input produces the word "ha" that number of times

but the number of times "a" appears in each "ha" decreases by one until "ha"

2

crimsonVole Takes in an integer ‘n’ input and outputs a string with ‘n’ words, ‘h’ as the first letter for

each word, and ‘n’ number of ‘a’s after it, followed by ‘h’ as the first letter of the next word

and ‘n-1’ number of ‘a’s after it and so on until we reach n = 1

1

lavenderPossum Given an integer, return a string in the form ‘ha’ where the integer determines the number

of a’s and repeat the same pattern until there is one a

5

lavenderBat The input takes in a number, say n, and produces a string that has n words. the first word is

formed of one "h" and n number of "a". The number of "a" decreases by one for each next

word

8

magentaDolphin This function returns the number of laughs in a string, where a laugh is the character ‘h’

followed by any number of the character ‘a’

9

linenBobcat Counts the number of laughs, beginning with the given number of "a"s within it and

descending by each laugh, totaling the given number of laughs.

2

grayVole Takes size and uses recursion to produce that number of "ha" laughs with one less "a" with

each "ha" until there is only one "a" left

8

thistleTrout Using the given number, add that number of "a"s after an "h". Count down the number by 1,

and add that number of "a"s after another "h" and repeat.

5

Table 13: Initial descriptions of the laugh problem from all 20 students who encountered it. N submissions describes how many

times the specific student attempted laugh before succeeding or giving up.
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