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Abstract

This work is motivated by experimental studies (NASA Langley Research Center) of
nonlinear damping mechanisms present in flight structures. It has been observed that
the structures exhibit significant nonlinear damping effects which are functions of the
energy of the system. The present work is devoted to the study of long-time dynamics
to a class of extensible beams/plates featuring nonlocal nonlinear energy damping
of hyperbolic nature. Such models arise frequently in aeroelasticity when modeling
flight structures, see NASA-AirForce reports (Balakrishnan in A theory of nonlinear
damping in flexible structures. Stabilization of flexible structures, 1988; Balakrishnan
and Taylor in Proceedings Damping 89, Flight Dynamics Lab and Air Force Wright
Aeronautical Labs, WPAFB, 1989). The main mathematical challenge in this context
is twofold: (1) nonlinear and potentially degenerate energy damping coefficient, (2)
energy damping at a critical level where the usual compactness arguments (critical
to the theory of attractors) do not apply. Our investigation sheds some light on a
long-time behavior of such class of problems, providing new results in the area of
existence of attractors and their properties within this hyperbolic-like framework. This
should be contrasted with widely studied parabolic-like models involving structural
damping which is known to be poorly understood. The goal is achieved by developing
new methodology which allows to circumvent the difficulties related to the lack of
compactness and non-locality of the nonlinear damping. The results are achieved
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through arigorous analysis that reveals an interplay between extensibility, non-locality,
and nonlinear energy damping of critical exponent.
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1 Introduction

Problem. Let 2 C R” be a bounded domain with smooth boundary I' = 9. We
consider vibrations of a nonlinear plate model described by the displacement u(x, ¢)
and its velocity u,(x, t). With these variables (u, u;) := U, we associate a standard
energy function in the variable U as

EWU) = MIAull® + lu?,

where || - || stands for the norm in L?(€2) and A is a structural positive constant
appearing in the model under consideration, which is subjected to nonlinear effects
affecting both: the displacement u and the velocity u,. The nonlinear forcing (internal
or external) is modeled by a function f(x) while the oscillations and the damping
is subjected to a nonlocal law depending on the instantenous energy itself with the
dissipation of the form
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Dynamics of extensible beams. . .

This is one of the models of current interest where the dissipation rate modulates
with the strength of the energy £(U). Examples of applications are abundant, for
instance in aeroelasticity, see [2, 3] and references therein. On the mathematical side,
the difficulties are due to potential degeneracy of the damping and superlinearity of
the damping above critical exponents. More detail on this matter will be said later. In
short, the type of models of interest to this study can be written more generally as:

U + AN U — pAu+yHEWU) +eDus + fw) =h in QxRY,  (1.1)
where H (s) is a convex, c! (R*) function, H(0) =0, A, y,u >0, >0, f(u)isa
nonlinear source of critical exponent, % is a external force. A canonical example for

H(s)isapowerlaw H(s) = s7,q > 1,5 > 0. So, we will consider this more specific
configuration

Uy + AN — uAu+yEU)+eD%u, + f(u) =h in Qx RT. (1.2)
Associated with the model are the boundary conditions imposed on to the dis-

placement u = u(x, t). We will consider either clamped (C) or hinged (H) boundary
conditions given, respectively, by

u
O ulpxr+ = ah"x]w =0,

(1.3)

H) ulrxr+ = Aulpxr+ =0,

where v is the outward normal to I", and initial conditions
u(x,0) =up(x) and wus(x,0) =u;(x), x € Q. (1.4)

The analysis of the dynamics for (1.2)—(1.4) will be considered within the following
functional framework.

" HZ(Q) x L*(Q) for (1.3)-(C),
| (H*(@) N HJ (Q)) x L*(Q) for (1.3)-(H).

Goal. The main objective in this work is to study the long-time dynamics described
by (1.2)—(1.4) including asymptotic analysis with respect to the change of dynamics
when € — 0. More precisely, denoting by {Sc(#)}¢>0 the Cp-semigroup of global
solutions to (1.2)—(1.4) defined on ‘H via the relation

Se(®) (o, ur) = W (1), uz (1)), t=0,

it will be shown that the semigroup {Sc (¢)}e>0 has a family compact global attractors
>0 in the phase space H with polynomial attraction rates for ¢ = 0 and expo-
nential for € > 0. Moreover, if € > 0 we prove that the family of global attractors
e~ for (1.2)—(1.4) is both finite-dimensional and smooth. Finally, we show that the
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family {%l¢}e>0 is upper semicontinuous at € = 0, which means that the Hausdorff
semidistance

distyy (Ae, Ao) = sup inf || — @llx
Y, Ppey

tendsto 0 as e — 0.

Mathematical challenge. The main challenge in achieving our goals stems from two
factors: (1) nonlinear and potentially degenerate damping, (2) nonlinearities are of
critical level, where the usual compactness based arguments do not apply. Indeed,
Proposition 4.6 is the main backbone estimate which provides a control of decay
rates to the attracting set, accounting for potential degeneracy of the damping. The
latter is handled via special nonlinear multiplier involving the energy itself, which is
first given in this work. Te above with a compensated compactness argument allows to
establish an existence of a compact global attractor whose measure of non-compactness
is uniform in € > 0. It is the latter aspect which requires delicate analysis, being
exactly the open problem addressed in [10]. In the case when € > 0, one also shows
additional smoothness and finite dimensionality of the said attractor. This is obtained
by first establishing the so called quasi-stability inequality. Here the challenge is due
to critical level of nonlinear terms. Cancellation techniques such as used for full von
Karman equation (also critical) prove successful, due to good structural properties
even at critical level and also generalize cases of “subcritical" nonlinear terms in the
damping coefficient as considered in [10] as well as cases of non-degenerate damping
coefficients as addressed in [12—14, 18, 23, 24].

Main contribution in the context of prior literature. Since the model is of current
and significant interest, it has been considered in the past literature extensively with
a considerable volume of papers published on the topic, see e.g. [10, 15, 23, 24]
and references therein. It is also important to mention that there are several other
inspiring works that are pioneering in the stability of hyperbolic models with nonlocal
non-degenerate weak damping [4, 19] and later problems with nonlocal degenerate
damping coefficient [5, 6]. The precise comparison with prior literature will be left to
Remark 3.4. However, we shortly give the details of the results obtained. In fact, the
most distinct and challenging aspects of the problem are related to: (1) “hyperbolic
like" nature of the dynamics and (2) energy level of the nonlinear damping which may
degenerate. Most of the past literature dealt with “parabolic" versions of the model,
where strong “structural” damping introduced has led to the enhanced regularity of
the solutions, which is typical in parabolic dynamics, e.g. [23] and references within.
Or else, the nonlinearity in the damping is below the critical energy level, e.g. [10, 24]
and references within. In the latter, it may be that the damping depends on ||A%ul||
where o < 1 or the kinetic part is subcritical as in the Kirchhoff model (with rotational
inertia) and so ||u,|| is below the critical level of || Vu,||. The treatment of both of these
aspects, while motivated by real applications, require new methodology introduced in
the present work. In short, the main contribution of this work is that regularized effects
of the damping are not accounted for, and the energy damping is in its critical form,
which required the introduction of new nonlinear energy multipliers techniques. Also,
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we recall that this is the form of damping coefficients arising in modeling of physical
phenomena [3].

Structure of the paper. We begin with the well-posedness of the dynamics mostly
to set up the stage for studying the underlying dynamical system. Here the arguments
are rather standard based on nonlinear semigroup theory (Sect.2). Then, we proceed
with statements of the main results of the present work, namely, Theorems 3.2, 3.3,
and 3.4, dealing with existence of global attractors, qualitative properties, and upper-
semicontinuity (Sect. 3). In the next step (Sect. 4) we give the proofs of the main results.
More specifically, it will be shown that the dynamics is ultimately dissipative, with an
absorbing ball independent on the parameter €. The subsequent result shows that for
every € > 0, the dynamics is quasi-stable. This means that the corresponding attractors
2 are both smooth and finite dimensional. However, quasi-stability property is nor—
as expected—uniformin € > 0 due to high order damping and its degeneracy at critical
level. Last, the latter aspect leads to a question of singular perturbation analysis: what
happens when € — 0? So, it will be proved that the measure of noncompactness of
global attractors is uniform in € and that global attractor also exists for the limiting
case € = 0. Based on these estimates, upper-semicontinuity of the attractors, when
€ — 0 will be established. We conclude by providing a concise review of relevant
results wihin dynamical systems theory, in order to make the paper as self-contained
as possible (Appendix A).

2 Generation of the dynamical system (H, Sc (t))

Functional spaces and assumptions. We start by setting Wy = L*(Q), W; = H}(Q),
and

) Hi () for (1.3)-(C),
| H2 (@) N H}(Q) for (1.3)-(H).

For m = 3, 4, we consider

W — H™(Q) N H3(Q) for (1.3)-(C),
" u e H™(Q) N HY(Q): Au e HL()) for (1.3)-(H).

Here the notation (-, -) stands for L?-inner product and || - || p denotes L”-norm. For
simplicity, for p = 2 we denote || - |2 = || - ||. Thus, ||V - || and || A - || represent the
norms in W and W», respectively. We also rewrite the phase space

H=Wyx Wo, [, 0)|[F =rlAul®+vl*, (u,v)eH.

Denoting by A; > 0 the first eigenvalue of the bi-harmonic operator A% with
clamped or hinged boundary condition, one has

1/2
alull? < 1Aul?, A2 IVul? < [Aul?, Ve Wa.
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The energy E(t) = E(u(t), u,(¢)) related to problem (1.2)—(1.4) is given by
1 5 5 _
E@) = 3 [Il(u(t), ur ()3 + pullVu@)| ] + /Q [ f(®) —hu)]dx, (2.1)

where f(u) = Jo f(dr.
We impose the following standard assumptions on the nonlinear source term f (u)
which is of “critical" Sobolev’s exponent..

Assumption 2.1 Let f : R — R be a C>-function with f(0) = 0 and satisfying

If")] < Cpr(1+ulP™h), ueR, (2.2)
.S o 7 Cfi2
Cy > ul- < f(w) < fwu + > lul“, ueR, 2.3)

for some constants Cr, Cy» > 0, ¢y € [0, A1) and growth exponent p < ﬁ for
n>>5.

From inequality (2.2) we also have
/@) < Cp(1+ul”), ueR, 24
for some C s > 0.

Well-posedness. Setting U = (u, v) with v = u,, we then rewrite the original problem
(1.2)—(1.4) as the following equivalent first-order Cauchy problem

U =AU+ B(U), t>0, 2.5)
U(0) = (uo, u1) := Vo, '
where A : D(A) C 'H — 'H is a linear operator defined by
v L ve W
AUZ(—AAzu) , UeD(A):{UeH kAzueWO}’ (2.6)
and B : H — 'H is the nonlinear operator
0 1
By = (HAu — Y EUYTY — f(u) + h) » U=swveH, @7
where we define the linear (perturbed) energy as
Ec(U) :=EWU) + el = |U|[3, +€l. (2.8)

Thus, the Hadamard well-posedness result for (2.5), and consequently for the sys-
tem (1.2)—(1.4), is a consequence of the next results.
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Theorem 2.1 Let us consider the cases: g > 0 if e > 0 or else g > % ife = 0. Under
the Assumption 2.1 with h € Wy, it holds the following statements:

(i) If Uy € H, then there exists Tmax > 0 such that problem (2.5) has a unique mild
solution U € C ([0, Tymax), H), which is given by

t
U(t) = e Uy + / A BW(s))ds, t €0, Trmax). (2.9)
0

(i) If Uy € D(A), then the above mild solution U is the regular one.
(iii) In both cases, we have that Tyax = +00.

By the virtue of Theorem 2.1 the solution of (1.2)—(1.4) will generate a family
of dynamical systems on the phase space H. Indeed, for each ¢ > 0 the evolution
operator S¢(¢) : H — 'H given by the formula

Se()Uo = Se () (uo, ur) = (u(t), us (1)), =0,

where U = (u, u;) is the unique mild solution of the system (1.2)—(1.4), defines a
nonlinear Cp-semigroup. In addition, an important property is the “robustness" with
respect to the continuous dependence of initial data as given next. Consequently, the
pair (H, Se¢(t)) generates a dynamical system.

Theorem 2.2 Let Assumptions of Theorem 2.1 be in force. Then, for any two (strong
or mild) solutions U'(t) = Se(t)US and U%(t) = Se(t)UZ of problem (1.2)~(1.4)
corresponding to initial data U'(0) = U& = (ué,u}), U%(O) = Ug = (u%,u%),
respectively, there exists a positive constant C = C (||U(; [, ||U§| |7), independent
on € > 0, such that

1S Uy — Sc(UG |13 < CeC' UG — Udll, t€l0,T]. (2.10)

The proofs of Theorems 2.1 and 2.2 are relegated to Sect. 4.

3 Main results

In this section we state the main results of this work, which are established in Theorems
3.2, 3.3, and 3.4. In what follows, It will be shown that for every € > 0 the dynamical
systems (H, S¢ (7)) has a compact global attractor 2., which moreover is smooth and
finite-dimensional. The above property does not hold uniformly in € > 0, hence not
for ¢ = 0. However, it is shown that all the dynamics S., ¢ > 0, have a common
absorbing ball. This implies, by standard methods, the existence of weak attractors
2 with uniformity in € > 0. Under additional restrictions on the parameter ¢, it will
be also shown that the dynamical systems (H, S¢(#)) admit global compact attractors,
whose measure of non-compactness for 2 is independent of ¢ > 0. This s, of course, a
weaker condition than uniform additional regularity of the attractors 2(. independently
of € > 0 but, however, it is enough to conclude strong convergence of the perturbed
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semigroups, hence upper-semicontinuity of the attractors at the threshold parameter
€ = 0. Moreover, since under the restriction € > 0 the attractor {2l }¢~¢ is both finite-
dimensional and smooth, then the upper-semicontinuity at € = 0 ensures the attractor
2o can not “explode”.

3.1 Global attractors fore > 0

For each € > 0, let N; be the set of stationary points of (H, Sc(t)) and M*(N,) be
the unstable manifold emanating from N;. For readers’ convenience, all definitions
on long time behavior of dynamical systems are recalled in the Appendix A. The main
results of this work are formulated below.

Theorem 3.1 (Uniform Ultimate Dissipativity) Under the assumptions of Theorem
2.1, for any bounded set B C H, Uy € B, there exist R > 0 and tg > 0, both
independent of € > 0, such that

[1SeUolln < R, Vi >1p. (3.1)

Remark 3.1 Note that the size of the absorbing ball is uniformin e > 0. Weak attractors
have a measure of non-compactness uniform in € in the weak topology.

Theorem 3.2 (Case € > 0) Let Assumptions of Theorem 2.1 be valid with € > 0.
Then:

(i) (Finite-dimensionality) the associate dynamical system (H, S¢(t))e>0 of problem
(1.2)—(1.4) has a compact global attractor A = M*(N) in H with finite fractal
dimension a’imHQl€ ;

(ii) (Regularity) any full trajectory Y = {U (t) = (u(t), u,(t)); t € R} from attractor
e enjoys the following regularity properties,

u; € L°(R; Wo) N CR, Wy), uy € L= ([R; Wp). 3.2)

Moreover, there exists Re > 0 such that

s D17 + 12w * < RZ, 1 €R, (3.3)
where R¢ depends on the parameter € > 0, on the seminorm nw, (u) = ||u| |f)+2,

and on a finite intrinsic structural constant (to be denoted as cso).

Remark 3.2 Since the damping depends nonlinearly on the full energy and it is degen-
erate when € = 0, it is expected that the global attractor may not be always compact
in the weak phase space with an arbitrary choice of H (s). Indeed, a counterexample
can be found in [7, Chapt. 5] for certain choices of the function H (s). See also [10,
Sect. 7].

Remark 3.3 Note that the results of Theorem 3.2 hold for each € > 0 with the estimates
potentially blowing up when € — 0. This is expected, due to intrinsic nonlinearity of
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the damping with a positive derivative for low frequencies. So, the dimension of each
attractor di m?ng depends on € > 0. The result dealing with the asymptotic analysis
of the attractors when € — 0 is given below under the additional restrictions on the
parameter q.

Theorem 3.3 (Case € > 0) Let us consider the assumptions of Theorem 2.1 withe > 0
and 1 < 2‘7_1q < 2. Then, we have:

(i) (Global attractor) the associate dynamical system (H, S¢(t)) of problem (1.2)-
(1.4) has a compact global attractor U in H whose measure of non-compactness
is uniform in € > 0. In particular, the dynamical system (H, So(t)) has a global
compact attractor 2.

(ii) (Characterization) the global attractor 2 is precisely the unstable manifold
Ao = M*(Ny) emanating from the set of stationary solution Ny. In addition,
consists of full trajectories Y = {So(Up) = U(t) : t € R} such that

lim disty(U(t), No) =0 and lim disty(U(t), Ng) = 0.
——00 t—+00

Remark 3.4 (Comparison with prior literature) As we have already mentioned, there
is a considerable volume of recent papers related to long time behavior of the general
model described in the introduction. We shall focus only on the most relevant ones. The
n-dimensional version of the model proposed by Balakrishinan—Taylor ([3], Section
4, Eq. (4.2)) in a bounded domain 2 C R” with clamped boundary condition and
perturbed by a source term f (1) was considered by Jorge Silva et al. in [15]:

q
wie = b+ A=y [ Al + a2 ] duc+ f@) =0, 34

Assuming that g > 1, the authors proved the existence and uniqueness of a global
regular solution, polynomial stability and a non-exponential decay prospect. Recently,
Sun and Yang [23, 24] consider n-dimensional models of extensible beams (without
rotational forces and with rotational forces) with an energy-like damping. In [23] a
parabolic version (strong damping) with non-degenerate case was considered, that
is, they considered the damping like M(||Au||2 + ||u; ||2)Au, with a strong hypoth-
esis M(s) > 0 for s € RT. For that model, existence of smooth attractors with
additional properties has been established. In [24] the authors focus on asymptotic
behavior of attractors where models under consideration are also subjected to non-
degenerate damping coefficient M > 0. In addition, in the “hyperbolic" case, the
nonlinear damping is of subcritical nature with respect to rotational inertia energy
and, consequently, the authors prove the existence of strong global and exponential
attractors. More recently, [ 10] considers a class of models associated with (3.4) its non-
homogeneous version under the presence of degenerate and non-degenerate damping.
More specifically, the energy models class was treated with the following dissipation

q
y [Nl + |, o € 10,10,
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The authors prove the existence of a compact global attractor for the restriction of
a € [0, 1), which again is of subcritical level of the energy. This result is in line
with the counterexample in [7]. Hence, the compact global attractor in Theorem 3.3
greatly improves the result achieved in [10]. In view of the above, the results presented
in this work deal with “hyperbolic" dynamics, critical level of the energy damping
(H possibly degenerating and ¢ = 1). In the degenerate case, existence and upper-
semicontinuity (with respect to “degeneracy") of attractors is shown for a restricted
range of g. The proofs of these results require new methodology and approaches,
which will be explained in the process of the proofs.

3.2 Upper-semiconinuity of global attractorsate = 0

As already mentioned, the family of attractors {c}e>0 is upper semiconituous at
€ = 0. Since the semicontinuity is analyzed at ¢ = 0, then without loss of generality,
let us fix any €9 > 0 and take € € [0, €p). The third main result dealing with upper-
semicontinuity of global attractor 2. at € = 0 can be stated as follows.

Theorem 3.4 (Upper-semicontinuity) Let the assumptions of Theorem 3.3 be in force.
Then, the family of the attractors {¢}e=0 to problem (1.2)—(1.4) is upper-semi-
continuous at € = 0, namely,

distyy (Ae, Ao) = sup inf ||y —plly — 0 as € — 0T, 3.5
YeA, dep

The proofs of Theorems 3.1, 3.2, 3.3, and 3.4, are relegated to Sect. 4 after presenta-
tion of several technical results. To conclude the final statements in the stated theorems,
we evoke several abstract results on dynamical systems recalled in Appendix A.

4 Proofs of the main results

This section is devoted to the proofs of Theorems 2.1, 2.2, 3.1, 3.2, 3.3, and 3.4.

4.1 Proof of Theorem 2.1

This proof is rather standard and relies on application of semigroup theory. We provide
it for sake of completeness. In Step 1 we show that the operator A : D(A) C H — 'H
given in (2.6) is a infinitesimal generator of a Cy- semigroup of contractions on H.
This is proved by showing that A is dissipative and maximal, and application of the
Lumer—Phillips Theorem [20, Theorem 1.4.3]. In Step 2 we show that the operator
B : 'H — H is locally Lipschtz. Step I and Step 2 guarantee the existence of local
solution [20, Theorem 6.1.4]. The existence of global solution is asserted in Step 3.
Step 1. The operator A defined in (2.6) is the infinitesimal generator of a Cyp-semigroup
in H. Indeed, we take arbitrary element U € D(A). Then

(AU1), U(t))3 = A (Av, Au) + (—/\Azu, v) —0,
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which proves dissipativity for A. To show that A is maximal we need to prove that
R(I —A) = H, where R(I — A) is the range of I — A. Indeed, let U* = (u™*, v*) € H,
and consider the equation (I — A)U = U* which, written in components, reads

u—v=u,
v+ AATu = " @.1)

Substituting u = v + u* in the second equations of (4.1), we obtain
v+ AA%Y = vF — QA% = w* e W) 4.2)

Since the corresponding weak formulation is

a(v, w) :/Qw*wdx, Yw € Wa,
where

a(v,w) := /Q [vw + AAvAw ] dx,

by the Lax-Milgram Theorem we can conclude that problem (4.2) admits a unique
solution v € W>. Then we deduce from the second equation of (4.1) that MAZy =
v* — v € Wy. This implies that R(I — A) = H. Therefore, A is maximal monotone
and due to Lummer-Phillips Theorem A is a infinitesimal generator of a Cp-semigroup
of contractions on H.

Step 2. The operator B : H — H given in (2.6) is locally Lipschitz. Indeed, let us take

R>0andU' = (u',u}), U? = u?, u?) suchthat ||U"||3, ||U?||% < R.Denoting

w = u' — u?, we have

IBWY = B = | ndw +y [ £yl — v |

~[rah = rad] (43)

Now, let us estimate the terms on the right hand side of the above equality. First we
have

"
u/ Awgpdx < plAwlllel < A—IIIU] — U¥lnllgll, Yo € Wo.
Q 2
Note that we can rewrite
)// [gg(U‘)qu} —EE(Uz)qutz]godx
Q

:ySE(Ul)qutwdx+y[€é(U1)q —Ee(Uz)q]/;zutz(pdx.
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It is easy to see that

q
y&(U‘)‘f/thgodxsy[||U||%1+e] el

q
=Y (R2 +6) WU — U3Inliell, Ve € Wo.

Next, to estimate the term y [ £ (U — E.(U?)4 | [ u? dx we will separate the
casese€ > OQand e = 0.
Case € > 0 and ¢ > 0: Note that, from Mean Value Theorem, we have

-1
Ec(UNT — .U = q 011U, + A —NU2B, +€ ] [NU13, — 10313, ]
[ get™ [ IUME, —NU2B, | for 0<gq <1,
ql

= -1
R+ ] [IWUMG, — U215, | for g =1

Hence, taking C = g max{e, [R2 +e€ ]}‘1_1, we have

e —ecwdn] [ dods < ¢ [0+ 101 ] 10 = 10211 s g

< 2CRY|U' = U?Inlloll, Yo € Wo.

Casee =0and g > %: Also from Mean Value Theorem there exists 6 € (0, 1) such
that

y|ew'y —&(Uz)‘f]/gu?godx =y [ IU"15 —||U2||3;’]/Qu?wdx

1 T 1 2 2
= 2rq [ 01U e+ A =00 e | [110 1 = 102115 | | b
Q

< 2pq[RI*|IU' — U Inligll, Vo € Wo.

Finally, from Mean Value Theorem, Assumption (2.4), Holder’s inequality with
ﬁ + m + % = 1, and embedding W> — L?*+tD(Q), we get

/Q(f(u')—f(uz))wdx = cff/Q[H (1 1+ 121) " g ax

P
2 1 2 1 200+D
= 2*iep 1R+ B0 + 1213050 7 lwlpan el
< CrllU' = UPlnllgll, Vo € Wo.
Thus, returning to (4.3), there exists a constant Cr > 0 such that
B(U"Y — BU% ||y < CrlIIU' = U? 4.4
[1BU") (UNNIn = Crll [l 4.4)

This completes the proof of (i) and (ii).
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Step 3. It remains to check that both mild and regular solutions are globally defined,
that is, Tiyax = +00. Indeed, in order we define

£ > 0.
ANy

w:=1-—
Next, multiplying the problem (1.2) by u; and integrating over 2 we get
EE(U(I)) =—y& U@ Nu@®)|” <0, (4.5)
where we remember that E is defined in (2.1) and & in (2.8). Equation (4.5) implies
EWU®) = EWU(0), Vte€l0, Tnax)- (4.6)
Now, from assumption (2.3) and using that W, <— Wy, we have
7 _ 2 _ _r 2 _
Sfuwydx > > lu@®|* = Crl2| = > [Au(®)|” = CrlS|. 4.7)
Q Al

On the other hand, from Holder and Young inequalities, and using again that Wy —
Wo, we have

1 1 , WA 2
hudx < |hlllu@N = Il 55 18wl = ———IAlI" + = Au®]".  (4.8)
Q A WAL 4

Then, from definition of E(U(¢)) and inequalities (4.7) and (4.8), we obtain that

E(U<t>>>1|| O+ 8u®) P = €191 ——— 1P = 21U )12
—|lu —||Au — - — —wy,
=it 4 ! WA =2 HT0
“4.9)
where wg = [c 190+ i ||h||§]. Hence, from (4.9) and (4.6), we obtain
5 4 4w
U3, < —EUo) + —=, V1 €10, Tnax). (4.10)

Estimate (4.10) implies that any (mild or strong) solution is globally bounded in time.
Therefore, from Pazy [20, Theorem 1.4] we conclude that Tpax = +00. Which proves
(iii) and completes the proof of Theorem 2.1. O
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4.2 Proof of Theorem 2.2

From (2.9) we have

t
oAU [B(Ul(s)) — B(U%(s)) ] ds.
4.11)

Sc(HUS — Se()UE = ™! [Uol - Ug] +/0

Then, from (4.11) and (4.4) there exists a constant C = C(||U} |3, |U311%) > 0
such that

t
1S (U = SO U211 < 11U — U2|13 + cfo 11 (8)UL — Se()U2 I34ds.

Applying Gronwall’s lemma we obtain (2.10), which completes the proof of Theorem
2.2.

4.3 Proof of Theorem 3.1

In what follows we shall perform several calculations which require adequate degree
of smoothness of solutions. Since solutions can be smooth if we take sufficiently
smooth initial data, the usual density argument allows to obtain the needed estimates
for solutions in the phase space. This fact will be used without further mention.

4.3.1 Gradient system

We begin with asserting that the dynamical systems (H, Sc(¢)) is gradient for each
€ > (0. While gradient property along with an asymptotic smoothness (to be established
later) imply an existence of an absorbing ball, the needed piece of information is an
uniformity of the size of the absorbing balls in terms of the paraneter ¢ > 0. To

accomplish the latter, we shall construct the absorbing balls explicitely.

Proposition 4.1 Assume that the assumptions of Theorem 2.1 hold. Then, ® : H — R
given by

1 —~
D) = 5||U||%+%||w||2+/ﬂf<u<x>)dx—/Qh(x)uoc)dx

is a strict Lyapunov functional for the dynamical system (H, Sc(t)). Consequently,
(H, Se (1)) is a gradient dynamical system.

Proof Let us define @ := E. From (4.5) one sees that the mapping
1= EU()) = ®(Se(t)Uo)
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is non-increasing for every Uy := (uo, 1) € H. Multiplying the problem (1.2) by u;,
and integrating over Q x [0, #] one gets

t
D (Se(1)Uo) + 7// EcU @) lur())>dr = ®(Up), 1 >0, (4.12)
0

for every Uy € H. From (4.12), we easily conclude that
(S (HUp) = d(Uy) = UpeN, >0,

where A\ is the set of stationary points (with the size independent on €) of the dynam-
ical system (H, S¢(¢)). Since we know that

UpeNe & Sc()(Up) =Uy, t>0,
then & is a strict Lyapunov functional for the dynamical system (H, S¢(t)). O
4.3.2 Ultimate dissipativity-Completion of Theorem 3.1

Now we show that the dynamic system (H, S¢(¢)) with € > 0 is (ultimately) dissipa-
tive, that is, that the Cp-semigroup {Se(#)}¢>0 has a bounded absorbing set 3 with the
size independent on € > 0.

Proposition 4.2 Let us consider a bounded set B C H and take the solution
Se(t)(Uo) = U(t) of problem (1.2)—(1.4) with Uy = (uo, u1) € B. Under the hypothe-
ses of Theorem 2.1, there exist positive constants co.p, c1.B.c (o p independent on
€), and 6. > 0 such that

~ _1
EWU®) < [coB(t — 1’):r +EWUo)™] 7 48wy if €>0, (4.13)
- c1,8,e E(Up)e™b%" + 4wy, if €>0.

where E is a perturbed energy given by

~ 1
EWU@) =EWU@))+wo, with wy:= mllhﬂz + CrlL2], (4.14)
1

wherew=1— L > 0.

oY,
Proof From the definition of E it follows directly from (4.9) that
~ w )
EWU®) = ZIIU(I)IIH- (4.15)

By multiplying the first equation in (1.2) by u, and integrating over Q2 x [f, t 4 1], we
have

t+1
y / EcU ) lur(s)|?ds = EQU@) — E(U(t + 1)) = Q)*.  (4.16)
t
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Using that

PEWON®I? = y [MAu®I + a1 + €1 | (]2

=y [l 1P + € ] s )2,
returning to (4.16), we have
t+1 t+1
y / ()29t Dds + yet / lus () |17ds < Q(1)>. (4.17)
t t

Note that, if € > 0 follows directly from (4.17) that

t+1 1
/ llus (5)[12ds < — Q(n)>.
t yed

On the other hand, if € > 0, from Holder inequality with —— 7 +1 + +_ = 1and (4.17),
we have

9 1

1+1 1 g ol 7 5
/ s ()12 < [ / ds} [ / s <s>||2<q+“ds} < ow
t t t yq+l

Thus, we obtain that

t+1
f s () |1ds < Te(0), (4.18)
t
where, ,
L_ Q)7 1, ife >0,
Te(t) i= { yatt (4.19)
#Q(;){ if e > 0.

From Mean Value Theorem there exist #; € [¢, ¢ + 4—1;], He[t+ %, t 4+ 1] such that

llu, ()1 < 4T (2). (4.20)

Next, multiplying the first equation in (1.2) by u# and integrating over 2 x [t1, t2] we
get

t 5] 2
/ / [,\|Au|2+u|vu|2+f(u)u—hu]dxds :/ lue ()1 %ds + > I,
1 Q n

i=1
(4.21)

@ Springer



Dynamics of extensible beams. . .

where

4]
I = —y/ /EG(U)qu,udxds,
1 Q

t
L = |:/ u,(s)u(s)dx] : .
Q f

From Assumption (2.3) and definition of E , we obtain that

n ~ 3 n 2
/ EU(s))ds < wo+ 5/ s () 1%ds + > I;. (4.22)
1

n i=1

The terms /1 and /; can be estimated as follows. First, from Holder inequality, (4.10),
(4.15), (4.16), and Young inequality, we have

1
I < y/2fQ&(U(s))%|u,|EE(U(s))%|u|dxds
n
t+1 % y 1+1 %
< [y / &(U(s))qnu,(s)nzds} [E / &(U(s))qnmmnzds]
t t
< CpO(1) sup EWU(s))?
t<s<t+l1
1 ~
< CpQ()*+ - sup E(U(s)).
t<s<t+1

Using immersion W, < W, (4.15), and (4.18) we have

I

IA

2
1
N > e ) 1 Auep) |
1

i=1

IA

t<s<t+l

1 ~
— sup E(U(s)).
8 t<s<t+1

4 ~
Fﬂ(rﬁ sup E(U(s))?

IA

32

— t

o Je(0) +
Substituting /; and /> into (4.22) we get

I
f TEW(s)ds < wo + }1 sup E(U(s) + CpQ)* + <i—2 + 1) 7.0,
1 1

t<s<t+1

(4.23)
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Again using the MVT, there exists t € [t1, t2] such that
n ~ - 1 -
/ EWU@s))ds = E(t)(tp — 1) > EE(U(t + 1)). 4.24)
a1

On the other hand, from (4.16), we have
EW@) =EU@+1)+ o0 (4.25)

From (4.23), (4.24), (4.25), and using that E (U (1)) = sup,, -, E(U (s)), we obtain

~ 1 ~ 2
sup E(U(s)) < 2wy + > sup EU(Gs))+ (1 —I-ZCB)Q(t)2 +2 (i—l + l) Te(1).

t<s<t+1 t<s<t+1

Thus, there exists a constant Kg > 0 such that

sup E(U(s)) < 4wy + KpJe(t). (4.26)

t<s<t+1

From (4.26), we have

sup E(Us)H < Boo)™ ! + K1 5 [EU@) —EWUE+1)] if €>0,

1<s<t+1
. q+1
with K1 p = %, and

sup E(U(s)) < 4wo+ Ko p [EUM) = EWE+1)] if €>0,

t<s<t+1
with K> p = )%, Therefore, applying Nakao’s Lemma (cf. [17]), we have
- _1
x =D+ EW0 | T 8wy if ez0,

EW®) < [ 5
Eo) (42 ) e + 4on, if >0

where (t — 1)T = max{t — 1,0} and 6§ = In (%) > 0. Taking cp.p = ﬁ and
Cl.B = % we obtain (4.13). This completes the proof of the Proposition 4.2. O
Remark 4.1 Proposition 4.2 shows that bounded sets of H are attracted by polynomial
rates in case € = 0 and by exponential rates in case € > 0. However the polynomial
rates are uniform in € — 0. This is sufficient to assert that the size of the absorbing
ball is independent on € > 0.

The next corollary gives the conclusion of the proof of Theorem 3.1.
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Corollary 4.3 (Ultimate dissipativity) Under the hypotheses of Theorem 2.1, let us
consider any bounded set B C 'H. For Uy € B, there exist R > 0 and tp > 0 (both
independent on € > 0) such that

[1Se(®)Uoll¢ < R, Vt>tp, € >0. 4.27)

Proof For initial data Uy € B we obtain from (4.13) and (4.15) that there exists
Tg.c > 0 depending on B C H and € such that

s 20 if € >0,
1Se () Uoll3 =

16w jf ¢ 5 0,
w

(4.28)

where we recall that wy is setin (4.14). One notices that 7p . can be made independent
on €, by applying the polynomial rate of convergence to the absorbing ball, which is

uniform for all €. Thus, taking R = 32%, we obtain (4.27) and the set

B={U¢€e™H; ||U|lx <R}
is a bounded absorbing set for {Sc(#)}c>0 with #p independent on € > 0. There-

fore, from Definition A.3, the dynamical system (H, S¢(¢)) is ultimately dissipative
uniformly in € > 0. O

4.4 A useful identity for the difference of trajectories
In the proof of the subsequent results (Propositions 4.5 and 4.6), a useful energy

identity is ensured by Lemma 4.4 when dealing with the difference of two trajectories.

Let us consider two mild solutions Ué = (ui, u;',e) of (1.2)—(1.4) with initial data

1

(uf), u’i),i =1,2, and we = u, — ug Then, w, := w satisfies

wy = pAw + 282w +y [ £ U] - EUH |+ Faw) =0,

(4.29)
w(0) = wo = uy —uf, w;(0) =wy =u} —ui,
where F(w) = fu') — f(u?), E(UY),i = 1,2, is set in (2.8), and
yEUNTu} — E U} = T | £ +EUDT |wy
+ 2| e - £ | 1] +u
The energy functional associated with (4.29) is given by
1 2 2 1 2
Eue() =5 [ I, w)ly+mlVwl® | = 5 [1Wll + I Vol? . @30)

In what follows we shall use simply w, E,,-omitting €.
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Lemma 4.4 Under the above notations, the following identity holds true

T
D¢ (s)ds = /

T

Ew(T) — En(2) +f

T

T
|:G€(s)ds —/ F(w)w,dx:|ds, T>1t>0,
Q
4.31)

where

2
De(t) = 5| £« + £ |Iwill? + T 16017 [ Iuf 1P = 1?1 |

(4.32)
Gty = = L 16917 [AnAu‘uz—AnAuznz]/Q[u} +ufwdx,  (433)

with &g = 0E(UY) + (1 — 0)E(U?) for some 6 € (0, 1).

Proof Multiplying (4.29) by w,, applying polarization formula, and integrating over
Q x [z, T], we get

y T
Eu(T) = B+ 5 [ [y + 8w | jwilPas

+Z/T [5 whr —¢ (Uz)q]/[ul + u? Jw,dxds
€ € t t t
2 J: Q
T
__ / / F(w)w;dxds. (4.34)
T Q

Denoting & = 0E(U") + (1 — 0)E (U 2), from Mean Value Theorem there exists
6 € (0, 1) such that

> lewhr - €€(U2)q]/;2[u,] +u? Twydx
= Tl 1o 177" [ 12 = 1?12+ 2 a1 = 2 s | fg[u} +uf Jwdx
= 20107 [l 1? — i?]
#2110 [aau P = 2R [ el 0 o
Therefore, returning to (4.34) we obtain the identity (4.31). m]

4.5 Quasi-stability property: case € > 0

In this subsection we show that under the restriction € > 0 the dynamical system
(H, S (1)) associated with problem (1.2)—(1.4) is quasi-stable and then will possess a
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compact global attractor {2(¢}c~¢ that is both finite-dimensional and smooth-see the
Appendix..

Proposition 4.5 (Quasi-stabilizability estimate) Let € > 0. Under the assumptions
of Theorem 2.1, let B a bounded set in 'H and assume that Ult) = @), ”rl 1))
and U%(t) = u>(t), u(t)) be two mild solutions to (1.2)~(1.4) with initial data
U(’; = (uf), u’i) € B, i =1, 2. Then we have the following estimate

ISe(OUg — Se(Ug 113 < beIIUg — Ug I3, + ce(®) sup [lu'(s) = u* ()17 5.

s€[0,7]

(4.35)

where b (t) and c.(t) are nonnegative scalar functions satisfying the properties b, €
LR witht liT be(t) = 0and c(t) is locally bounded on [0, 0c0). However, these
——+00

functions do depend in a critical way on € > 0.

1 1

Proof We consider again the difference w = u' — u? of two mild solution u!, u* of
the problem (1.2)—(1.4). Then, the difference U U2 = (w, wy) solves the problem
(4.29) with € > 0 and the following equality holds

T T
E,(T)— E,(t) + / Dc(s)ds = / |:G€(s)ds — f F(w)w;dx i| ds.
T T Q
(4.36)

where E (1), D¢(t), and G¢(t) are given in (4.30), (4.32), and (4.33), respectively.
Claim: For any § > 0, there exist positive constants Cp 5, Cp, such that

T
/ [Gg(s) —/ F(w)w,dxi|ds
T Q

T
<Co sup WO, +0 [ Eu)ds
0<s<T T

T
+Cps / d(s,u', u*)E,(s)ds,
T
(4.37)

where
d(t,u, u?) = llu} O + |uZ ).

Indeed, from definition of G (¢) given in (4.33) and Young inequality with any §; > O,
we get

T
/ Gc(s)ds

T
rq - 1 1 1
< 20 [T vt [abnant i b oy |23 1awl [l -+ 01 ] vuclas
T
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T 1
<o [ adiaw) [l + 1] s
T
8 T T _
< > Ew(s)ds—i—Cg,(sl/ d(s,u ,u“)E,(s)ds. (4.38)
T T

On the other hand, we can rewrite

fF(w)w,dx:/ [f(ul)—f(uz)]w,dx
Q

d

dt
_ 4 [ 7@ = 76 | wax —/ £/ ywwdx
rJo Q

[ [t = rd) Juwds = [ [l = i Jwds

—/ [f’(ul)—f’(u2)]ut2wdx
Q
_ d F d 1d 701 2d
+l/ f”(u‘)u}wzdx—/ [f’(u‘)—f/(uz)]ufwdx
2 Ja Q
d
= EQ(I) + R(@),
where
o) ::f F(w)wdx—l/ ' uHw?dx,
Q 2 Ja
R(t) = lf 7 yul w?dx —/ [f’(ul)—f’(u2)]u3wdx.
2 Ja Q

Thus, we have

T T g4 T
— / / Fw(s)ws(s)ds = — / gQ(s)ds - / R(s)ds. (4.39)
T Q T T

Defining &y (1) := Qul (t)+(1— 0)u2(t)andusmg Assumption (2.4), Holder inequality
with p2 + ,0-25-2 = 1, and immersion W» < LPT2(), we obtain

T
—/ S—SQ(s)ds = —/ F(w(T))w(T)dx+/ F(w(t))w(t)dx
" / f/ @ (T)w(T)?dx — = / @ (m)w(r)?dx
=— / / f(E(T))dOw (1) dx + / / f (& () dOw(t)*dx
QJO QJO
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41 / £ (Tywedx — + / f ' (@)w(r)dx
2 Jq 2 Ja
< Cf’/;z[l‘i‘<|ul(T)|+|M2(T)|)p]|w(T)|2dX
+Cfr/9[l+<|u1(1)|+|u2(r)|)p]|w(t)|2dx
+%/Q[l+|u1(T)|p]|w(T)|2dx
+Q/ [1+ 1 @ | lwePdx
= [t (1" Do + 12D ) |2,

+C [1+ (1 @104 + 12 @105 ) [ w12,

< Cp sup w20
0<s<T

Using Assumption (2.2), Holder inequality with 2( - +1) + + 5 +1 = 1, and the

embedding W> — L***+1(Q), and Young inequality with any 8y > 0, we have

T 1 T 17”1 1 2
— [ Reyds < = @) )| JwlPdxds
T 2 T Q
T 1
+ / / / | o (D)6l [wlPdxds
T QJO
C o t
< —f/ / [1+|u‘|P*1]|u}||w|2dxds
2 T Q
g 1 2\ 22
+cf/// / 1+<\u |+ |u |) 2| |w|2dxds
T Q
T 1 2 2
< ¢ [ [0 0 e+ 102 ) [+ 120 i
T 1 2 2
<co [ [l nedi ] nawiies
T

5 T T
< 32 Ey(s)ds +cB,52/ d(s.u', u¥) Ey(s)ds.
T

T

Substituting the last two inequalities in (4.39) we get that

T 8 T
_/ /F(w(s))wt(s)ds<C3 sup w1245 + 2/ Eu(s)ds

0<s<T

T
+cB,52/ d(s,u', u*)E,(s)ds. (4.40)
T

Therefore, taking 61 = 8> := § > 0, we obtain the inequality (4.37) from (4.38) and
(4.40).
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Now, multiplying the equation in (4.29) by w and integrating over 2 x [0, T'], we
get

T 5
f Ey(s)ds = Z I, (4.41)
0 i=1
where
T
n=2 [ julds.
0
v [T
Iz:——/ / [ge(Ul)q+5€(U2)q]thddea
2J)o Ja
v (T
L=— —/ / [T = €U | L} +u} wdxds,
2 Jo Ja
T
Iy = —/ / F(w)wdxds,
0o Ja
Is = '/Q [wO)w;(0) — w(T)w,(T) ]dx.
Let us estimate the terms I, ..., I5. Firstly, from (4.32) with € > 0, we have

2 T
Iliﬁ/ De(s)ds.
T

It is here where the dependence on € becomes critical. Next, it is easy to see that

T 1 T T 5
b < cB/ lwrlllwlds < g/ Ew(s>ds+cgf wlPds,
0 0 0

T

T 1 T
I < CB/ Eu(s)}wlds < 3/ Ew<s>ds+c3/ lwlds.
0 0 0

From Assumption (2.4), Holder inequality with —2 2

mtom = 1, immersion Wy —
LPT2(Q), we get

T T
L < cf,/ / [l+(|u1|+|u2|)p]|w|2dxds < cB/ w2, 5ds.
0o Jo 0
Finally, using that W, < L?(2), we have

Is = 2 [Eu(0) + Eo(T) .
M
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Returning to (4.41) and using that LP2(Q) — LE(Q), we get

T
/ w(s)ds<i[E 0) + Ey (T)]+—/ D. (s)ds+CB/ ||w||p+2ds
0 )\2 0

(4.42)

On the other hand, integrating (4.36) from 0 to 7', we get

T T T
TE,(T) +/ / D (s)dsdt =/ E,(t)dr
0 T 0

T T
—i—/ / |:Ge(s) —f F(w)w,dx]dsdt.
0 T Q

(4.43)

Combining (4.42) and (4.43), we obtain that

T T
TED) + [ Euds = 5 (B0 + B 1+ [ Detsras
0 A yet Jo

T T
—|—/ / |:Ge(s)—/ F(w)w,dxi|dsdt

+TCp sup ||w(t)||p+2 (4.44)

0<t<T

From (4.36) with T = 0, we have
T T
E(0) = E(T) —i—/ D¢ (s)ds — / [GG (s) — / F(w)w,dx ] ds. (4.45)
0 0 Q

Substituting (4.45) in (4.44) and using without loss of generality that T=T- ﬂ/ > 0,

we get

~ T 1 1 T
TE,(T) +/ Ey(s)ds <8 ]/2 + — / D¢ (s)ds
0 vel | Jo

—i—/ / [Gg(s)—/ F(w)wldx]dsdt
0 T Q

8 T

_1/2/0 |:G€(S)—/ F(w)wtdxi|ds

+TCp sup ||w(s)||p+2 (4.46)

0<s<T
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Again, from (4.36) with T = 0, we get

T T
f Dc(s)ds = Ey(0) — E(T)] +/ |:G€(s) —/ F(w)w,dxi| ds.
0 0 Q

Using this equality in (4.46) we get

T T T
FELT) + / Ew(s)ds < Ce[Ew(0) — Ey(T)] 4+ / / [Gem— / F(w)w,dx]dsdr
0 0 T Q

8 T
4+ — [Ge(s)—/ F(w)wrdx]ds
0 Q

yed

+TCp sup [w(s)|}42,
T

0<s<

(4.47)

where C, = 8 <A117 + )/17) From (4.37), we obtain that
1

T T T
TELT) + / Ew(s)ds < Ce[ Ey(0) — Ey(T)] 45 f / Ey(s)dsdr
0 0 T
88 T T t
+— | Eu(s)ds+Cgs / / d(s,u', u*)Ey(s)dsdt
ved Jo o Jr

T
+CB.5/ d(s.u',u*)Ey(s)ds + TCp sup [w(D)]},,.
0 T

0<t<
(4.48)
Taking § small enough such that 1 — §(T + y%) > %, we obtain
~ 1 T
TENT) +5 / Ey(s)ds < Ce[Ey(0) — Ey(T)]
0
T
+TCpe f d(s,u', u*)Ey(s)ds
0
+TCp sup [lw(®)|? -
0<t<T
(4.49)

Reiterating the estimate on the intervals [mT, (m + 1)T] yelds

Ey((m+ DT) < nEy(mT) + Cpbp, m=0,1,2,...,

1 — Ce _ T(CB,6+CB)
with0 < n = Toe, <land Cp = —Ter,where
5 (m+1)T L o
bn = sup IIU)(S)Ilp+2+/ d(s;u,u”)Ey(s)ds.
semT,(im+1)T] mT
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This yeelds
m
Ey(t) <n"Ey©) +cy 0" b1,
=1

Since n < 1, using the same argument as in ([8], Remark 3.3) along with the definition
of b; we obtain that there exists w > 0 such that

t
Ey(t) < Cre~® E,(0) + Ca [ sup lw(s)[7,, +/ e““”‘”d(s,ul,uz)Ew(s)ds} ,
0

0<s<t

for all + > 0. Therefore, applying Gronwall’s lemma we find

Eu(1) < {cle—”’Ew«)H@ sup ||w<s)||%+2}eszéd(s’u“uzws.

0<s<t

Using that §||U' — U?[13, < Ey (1) < $(1 + A/fﬂ)nU1 — U?||3,, we have
1

Ut = U113, < bOI|Uy — Ugllz, + c(@) sup [w()]7,,.

0<s<t
where

be(t) 1= (14 —173)Cre™ e h A6l adds and (1) 1= 2Cye 2 o Al s
A

Thus, using that d(s, u', u?) = [||u[1 1%+ ||u[2||2] € L'(0, 1) we obtain for every
positive € > 0

be(t) € L'(RT) and lim b.(t) =0
1—400

and c, (¢) is locally bounded on [0, co). The proof of Proposition 4.5 is now complete.
O

4.6 Asymptotically smooth: case € > 0

Before presenting Proposition 4.7, which claims that for € > 0 the dynamical system
(H, Sc(1)) is asymptotically smooth, we are going to establish the crucial Proposition
4.6, which plays a key result in our analysis since it provides a very new estimate
whose proof requires a new way of dealing with the energy damping coefficient at the
critical level with respect to potential energy.

Proposition 4.6 Under the assumptions of Theorem 2.1, let us also take g such that
1 <297'g < 2. Let B be a bounded set in H and Se(O)(Uy) = (u', uy) be two mild
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solutions of problem (1.2)—(1.4) with initial data Ué = (uf), u"l) € B,i =1,2. Then,
there exist positive constants C, Cp ; such that the following inequality holds

1

C 1
Ey(t) < ——Ey(0)T1 + Cp; sup [lu'(s) — u()II7,
q+1 0<s<t

t t t
/ / / F(w)w;dxdsdt / / F(w)w;dxds
0 Jr JQ 0 JQ

where E,, is given in (4.30) and w = ul — u?. The estimate is uniform in € > 0 with
the constants C, Cp ; independent on € > 0.

q+1

C

tatl
1
+ -
t

_I_

1
tatl

(4.50)

Proof Step 1: First energy identity. Using the definition of G in (4.33), Young
inequality, inequalities A || Au' 12 < |1UY| |%{ and (a +b) <2 V" +b") forr > 1,
we estimate

T
/ Ge(s)ds

va (T 1 12 22 12 212
20t et = o ][l - 1R ] s
T

T 2
vq g—1 12 _ 1,2
—2/1 6017 [} 12 = 1?1 | s

IA

T 2
14 _ 1 1
+ 20 et [adisai + 2ty | aiswlPas
T

r 2
vq _
<20 [ e [l - i ] as

T
q
+ 20 [ewh +ewd | anawids

T
T
_va

2
=50 ] G [P = ] as

T
+ qu/ [ £ + £ | aw]ds,

where Cy := 2‘7Tq. Substituting the last inequality in (4.34), noting the cancelation of
the first term on the RHS of the inequality above, we obtain the first energy inequality
with the weighted dissipation:

y T
B+ % [ [e@ + e JhuniPas

T T
ng(z)ercq/ [&(U‘)‘f +5€(U2)q]k||Aw||2ds—/ /QF(w)w,dxds.
(4.51)
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Step 2: Second energy inequality. The second term on the RHS of the inequality in
(4.51) needs to be absorbed. This will be done by using time weighted equipartition
of the energy with a positive weight M (t) € C LR*) to be selected later. To proceed,
we multiply equation in (4.29) by M (t)w and we integrate the result from 7 to 7.

T T S T
[ M [mswi? s wiveRas = [ mopwids+ Y [ Lios.
T T i=1 T

(4.52)
where
Li(t) = —M(t) /Q F(w)wdx,
L20) = ~ L M@IEW" Y +E.W)) fQ wewdsx,
L3(1) = —%M(r)[&(v‘)q — E(UH] fQ [} + ufwdsx,
Li(t) = —M'(t) fQ w,wdx,
Ls(t) = M(t) /Q wywdx|!. (4.53)

We note that all the terms defined by L; are of lower order (compact) as long as
IM' ()] + M (0)] < Cg. (4.54)
We shall apply (4.52) with
M(0) = yCql€c(UN? + E.(U1]

For this, we verify regularity in (4.54). From the energy identity valid for each solution
U one has

d
—EU® + yE(U @) lu/]|* =0,
which implies, by ultimate dissipativity, that

d
'd_tE(U(t)) < yE U ) |luf* < Cs.

On the other hand,
d d
L =Lewry—u / Autydx + / LF (yus — huldx,
dt dt Q Q

which proves the regularity in (4.54) for this specific choice of the multiplier M.
Combining (4.51) and (4.52) we obtain
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1 T
Ew<T>+y(§—Cq>/ 1034 4+ 1021154 +2¢4 | fw 2
5 T
5@@%/mew+2/me, (4.55)
Q i=1 YT

uniformly in € > 0. Recalling (a 4+ b)? < 2°9=1(a? 4 b*), we have

L0 + 10215 + 2671 |l = [ 1 129 + 1 IP + 2691 fao 2

2 2
> sl +2¢7 w2

Substituting the last inequality in (4.55), we have
T
EuT)+ [ tohu PO 4 260wl Pds < Bu(o) ~ [ Fawpuid
0 Q

5 T
+Z/me, (4.56)
i=1°7

where 0 = 22’;—_1 (% - Cq). We also recall that all the terms L; provide compact
contribution. Thus, the energy inequality (4.55) is the desired final energy inequality
driven by a force F modulo compact terms. In fact, this can be summarized as follows:

Substituting the integrals of the terms L1, Ly, L3, L4 and L5 in (4.56) and using
that LP12(Q) — L*($2), we obtain the second energy inequality

w<T>+/ [0l 24D + 267 |y P1ds

< Ey(t) — f /‘F(w)w,dxds—}—CB,T sup flw(s) |l p+2- 4.57)
0<s<T

Step 3: Reconstruction of the L'-norm for full potential and Kinetic energy. This
is accomplished, as usual, by standard equipartition of energy with the multiplier
M (t) = I. A first step in reconstructing Kinetic energy is to integrate (4.57) from 0
to T'. This yields:

T
TE,(T) + /0 / [0 1w [P+ + 29w, | P1dsd
T

T T T
5/ Ew(r)dr—f / /F(w)wtdxdsdr+CB,T sup [lw(s) |l p+2-
0 0 T Q

0<s<T

(4.58)
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Now, multiplying the equation in (4.29) by w and integrating over 2 x [0, T], we
obtain

T T 4,7
f Ey(s)ds =2 / lwell® + ) / Li(s)ds, (4.59)
0 0 = Jo

where

~

Li(t) = — / F(w)wdx,
Q
Lo = = L [10"15¢ + 10213 +2eq,]/ wewdx,
Q

B0 = = 3 [0 = 1021t ] [ [l 46 Jwar,

Z4(t) = - o /Q wrwdx.

Since all the terms represented by L; are of lower order, it is easy to see that

4
> / Li(s)ds < Cpr sup [w(s)llps2.
i—1 0

0<s<T

Hence, returning to (4.59), we get

T T
/0 Eu(s)ds <2 /O lwlPds + Cor sup [lw)lpsa.  (460)

0<s<T

Combining (4.58) and (4.60), we obtain that

T
TE, (T>+/ w<s)ds+/ / [o[lw, 179D + 269 [|w,| [*1dsd T

<4/ ||w,||2ds—/ / /F(w)w,dxdsdr—l—CB,T sup [[w(s)|lp42-

0<s<T
(4.61)

From Hoélder inequality with % + qlﬁ = 1, we have

T . T T
4f ||w,||2dss4Tq+l<f ||w||2<q+1>ds) .
0 0

Using (4.57) with T = 0, we get
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T
/ / F(w)w,dxds
0 Q

+C,r sup [[w(s)p+2-
0<s<T

T
/ [0 1w, 179D 4+ 267 | |w, [|*]ds < Ey(0) +
0

Returning to (4.61), we obtain

T T T
TEw(T) + / Eu(s)ds + / / [0 [ [29+D 4 29w, | P1dsde
0 0 T

AT7h r
= 1 E,(0) + ‘f / F(w)w;dxds
0 Q

F(w)w;dxdsdt
Q

1

q+1
+ Cp,r sup [[w(s)]ps2
0<s<T

+Cp,r sup [[w(s)|ps2. (4.62)

T<s<T

which is our formula for reconstructing the L'-norm of the full energy.

Step 4: Final proof of Proposition 4.6. There is a T > 0 so that the energy E,,(T)
can be made arbitrarily small modulo compensated compactness functional involving
F (w)w;. Indeed, it follows from (4.62) that

T

/ /F(w)wtdxds
=] Q
///F(w)w,dxdvdr

1
Using that g(s) = s4*T is a concave function that satisfies g(s +r) < g(s) + g(r),

we obtain that

4 7
Ew(T)<T Ey(0) + +Cp,r sup [ws)lp+2

0<s<T

+Cp,r sup [[w(s)llp42-
0<s<T

ﬂ‘ — +‘_.

4

L
Ew<T)sﬁEw(O) T+ Cpr sup ||w(s>||gi‘2

ER AR 0<s<T

1
7+
F(w)w;dxdsdr

/ / F(w)wtdxds

we obtain (4.50). This proves Proposition 4.6 with the

L L
g+ T g+l

Therefore, taking C =
q+l
constants independent on € > 0. O

Proposition 4.7 (Asymptotic smoothness) Let us assume the hypotheses of Proposition
4.6. Then, the dynamical system (H, S¢(t)) is asymptotically smooth.

Proof The proof is based on arguments set out by Chueshov and Lasiecka [8, Sect.
3.4]. From inequality (4.50), using that §|Sc(1)(U}) — Se()(UD)|%, < Ey(t) and
E,,(0) < Cpg, we have
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+Cpr sup |lu (s)—u2<s)||‘f“

1Se(T)(Ug) = Se(TY(UII3, < o
z1+l 0<s<T

F(w)wtdxdsdt

/ /F(w)wtdxds

Note that, for any fixed p > 0, there exists 7p > 0 such that C’f < p and

q+1
TB

1
g+1

Tq+1

1Se(TY(UY) — Se(TYUPDI3y < p + V. 1,,Us, UY), for T =T,
(4.63)

where Wp 7, : B x B — R is defined by

Vg r(Uy, UD) = Ch.1 S lu' (s) = w173,
Ay

T
/Q [f(ul(s)) — f(uz(s))] [} (s) — u?(s)ldxdsdz

1
q+1

)

f f ) = fu )]l 5) = uf ) ldxds

T q-H
where all the constants are independent on € > 0. Let U" = (u", u}) be the corre-

sponding solution of Uy = (ug, u}) € B, n € N. From bounds [|U"|| < C, the
corresponding solution U" (t) = (u"(t), u} (t)) satisfy (on a subsequence):

) (4.64)
ul! — u, weakly-starin L*(s, T; Wp),

{u” — u weakly-starin L™ (s, T; W),
and from the Aubin-Lions compactness theorem (see e.g. Simon [22]), we also have

u" — u stronglyin C([s, T]; Wo), (4.65)
u" — u stronglyin C([s, T]; LP(R)), (4.66)

for p < n474 where we use the compact embedding Wy — L?”(2). From compact
embedding W> < LPT2(Q), we have

lim lim sup [u™(s) —u" (s)||‘f+' =0. (4.67)

n—00M—00 1[0, 7] p+2
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On the other hand, by using Lemma 8.1 in Lions and Magenes [16] (see on p. 275
therein), (4.64) also implies that u" is bounded in Cs(s, T; W»)), and then u"(7) is
bounded in W, for all ¢ € [s, T]. From this and (4.65) one gets

u"(t) —> u(t) weaklyin W,, s <t <T, (4.68)
and due to the compact embedding theorem, we infer
f" (1)) = Flu@) swonglyin L' (Q), s<t<T. (4.69)

where we remember that f(u) = fou f(r)dz. Also, from (4.64), assumptions on f
and again (4.65), we have

f"), u?) = (f),u;) stronglyin L'(s, T). (4.70)
t

Now, regarding that

0 —~
5 [ P )y = (7@ o). o)
Q

we get
t
f (f(u”(r)),uf’(r))dr=/;Zf(u"(x,t))dx—/Qf(u"(s,x))dx.

From this identity (which also holds true for «) and from the limits (4.69)—(4.70), we
finally arrive at

T

lim lim ' (f(u"(t)) —f(u’"(t)) ul (t) —ul (t))

n—00 m—0o0

= lim | f(u"(. T)dx+ lim / Fu"™(x, T))dx
Q

n— oo

— lim f(u (x,))dx — lim / (u™ (x, 5))dx

n—oo

n—o0 n— 00

— lim lim / / u"(t, x) V(x, ndxdt
— lim 1im/ /f(um(x,t))u’f(x,t)dxdt
n—-oon—oo s Q

= 2/ fu(x, T))dx —2/ fu(x,s))dx
Q Q

T
—2/ (f (), u; (1)) dxdt
= 0. 4.71)
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where the convergence is independent on € > 0. Hence, using (4.67) and (4.71), we
obtain

lim inf lim inf W g 7 ,(Ug, UY') =0,
m—00 n—o00

uniformly in € > 0. Therefore, from Theorem A.2 (see Appendix A) the dynamical

system (H, Sc(t)) is asymptotically smooth with mesure of noncompactnesss inde-

pendent of € > 0. O

4.7 Upper-semicontinuity: case ¢ — 0

Proposition 4.8 Lete € [0, €g). Under the assumptions of Theorem 3.3, let us consider
an arbitrary bounded set B C 'H and denote by Sc(t)Uy = (u (), ug (t)) the solution
corresponding to initial data Uy = (uo, u1) € B. Then, there exists a positive non-
decresasing function P(t) = P(t, B) such that

IS (1) Uo — So()Upllx < P(1)e?, 1 > 0. (4.72)

Proof For simplicity, we denote So(t)Uy = (u(t), u;(t)) and set w® = u¢ — u. Then,
w* is a solution (in the mild and strong sense) of the following problem

W + AAPwE — pAwe + %l’[lwf + %Hz[uf +us] + F(w€) =0, 4.73)
wé(0) =0, w;s(0)=0, ’
where F(w€) = f(u€) — f(u) and
M =EWUHT+ (D' ey, j=1,2.
Taking the multiplier w; in (4.73), we get
1d y
EEzzf(r) + Enj(t)nw;n? =1If + I, (4.74)
where
E€(t) = [lw > + Al Aw > + wl Vs |,
If = —/ F(w)widx,
Q

I5 —%H;(I)/Q[uf—}-u,]wfdx.

From Holder inequality with % + m + % = 1 and embedding W, —
L2+TD (), we have

171 =< CallAwS[[lwi [l = CRES(D).
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Using that
E(US) — EWU) = U3, — U134 + e,
we have
qy ! 1
HE 7/0 [66. (U + 1 —)EW) ]! de[||Uf||%{—||U||%i]/Q[ufw]wfdx
1
+e [0E.(UST + (1 —9)5(U>]"“d@/[u§ + uJwedx
0 Q

2
< CpllU* = Ullnllwg | + € Cpllwill < CRE(t) + 5

Returning to (4.74), we obtain

d . € 2

EE (1) < CREC(t) + €. (4.75)
From Gronwall’s lemma, we get

E€(t) < €5t [ES(O) + ezt] . (4.76)
Using that
w(0) = wi (0) =0 and ||Se(t)Uo — So(1)Uoll3, < E*(0).

from (4.76), we find the following inequality

1Se()Uo — So()Upl[7, < €*1e*", >0

which proves inequality (4.72) with P(t) := 1e€B! and, therefore, completes the proof

of Proposition 4.8. O

4.8 Proofs of Theorems 3.2, 3.3, 3.4 (completion)

Proof of Theorem 3.2: The conclusion of Theorem 3.2 follows by combining Propo-
sition 4.5 with the abstract Theorem A.5 and Theorem A.6 given in Appendix A.
O

Proof of Theorem 3.3-(i): Corollary 4.3 guarantees that the dynamical system (H, So(¢))
is dissipative and Proposition 4.7 ensures that (H, So(t)) is asymptotically smooth.
Here, the main issue is to trace the asymptotic behavior of measures of non-
compactness. Hence the fact that the dynamical system (H, So(#)) associated with
the problem (1.2)—(1.4) has a compact global attractor {2{o} is a direct application of
Theorem A.1. O
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Proof of Theorem 3.3-(ii): The characterization of the attractor as 2y = M*(Np) fol-
lows from the abstract Theorem A.4, after establishing gradient property for the system
(H, So(2)) is gradient. The latter is established in Proposition 4.1. O

Proof of Theorem 3.4: Again from Corollary 4.3, we obtain

J 2 csB

0<e<eg

where B is an absorbing ball for the semigroup Sc(7) for each ¢ > 0. Also, from
Proposition 4.8 the semigroup S¢ (1) — So(¢) uniformly on bounded subsets B of .
Therefore, the conclusion follows from Theorem A.7. O
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A Appendix: a short review on long time behavior of evolution
operators
In order to keep this work self-contained, we find convenient to recall several defini-

tions characterizing a long time behavior of dynamic evolutions such as S¢(¢). This
can be found in many references, including [1, 8, 9, 11, 21, 25].

A.1 Definitions

Let (X, S(¢)) be a dynamical system, where X is a Banach space.

Definition A.1 A global attractor for (X, S(¢)) is a compact set 2 C X that is fully
invariant and uniformly attracting, that is, S(#)2 = 2 for all + > 0 and for every
bounded subset B C X

distx (S(#)B,2A) = sup inf d(x,y) —> 0 as r— oo.
xeS(t)B Y
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Definition A.2 A bounded set D C X is an absorbing set for S(¢) if for any bounded
set B C X, there exists tg > 0 such that

S@EB C D, Vit=>tp,

which defines (X, S(¢)) as a dissipative dynamical system.
Definition A.3 (X, S(¢)) is said to be (ultimate) dissipative iff it posesses a bounded
absorbing set B. If X is a Banach space, then a value R > 0 is said to be a radius of

dissipativity of (X, S(t))iff BC {x € X : ||x|lx < R}.

Definition A.4 We say that S(r) is asymptotically smooth in X, if for any bounded
positive invariant set B C X, there exists a compact set K C B, such that

distx (S(t)B, K) =0 as t — oo.

Definition A.5 The fractal dimension of a compact set K C X is defined by

1 K
dimK }( = lim sup M,
e—~0 In(l/¢)

where n(X, ¢) is the minimal number of closed balls of the radius & which cover the
set K.

Definition A.6 Let\ be the set of stationary points of the dynamical system (X, S()):
N={veX:Stv=v forall +>0}.

We define the unstable manifold M* (N) emanating from set N as asetof all y € X
such that there exists a full trajectory Y = {u(?) : ¢ € R} with the properties

u(0) =y and ) lim disty (u(z), N) = 0.
——00

Definition A.7 The dynamical system (X, S(¢)) is said to be gradient if there exists a
strict Lyapunov function for (X, S(¢)) on the whole phase space X.

Definition A.8 Let X, Y be two reflexive Banach spaces with X compactly embedded
in Y and set H = X x Y. Consider the dynamical system (H, S(¢)) given by an
evolution operator

Sz = u@),u(t),), z=(uo,u1)€H, (A.1)
where the functions u and 0 possess the regularity
ue CR"; X)NCRY;Y), (A2)
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Then one says that (H, S()) is quasi-stable on a set B C H if there exist a compact
seminorm ny on X and nonnegative scalar functions a(z) and c(¢) locally bounded in
[0, 00), and b(¢) € LY (R1) with lim;_ o0 b(t) = 0, such that

IS()z' — S22 13 < a®llz! — 2213, (A.3)

and

2
IS0z = SO21 < bl = 21 +e@) sup [nx' ) —w2en] a4

O<s<t

for any z!, z2 € B. The inequality (A.4) is often called stabilizability inequality.

Quasi-stable systems enjoy many interesting properties that include finite dimension
and smoothness, cf. [8, 9].

A.2 Abstract results

Finally, we provide several abstract theorems pertaining to long time-behavior of
dynamical systems, which have been used in the process of proofs related to Sects. 3—
4.

It is well known that the properties of dissipativity and asymptotic smoothness
are critical for proving existence of global attractors. In fact, the following result is
well-known [8, 9].

Theorem A.1 (Theorem 2.3, [8]) Let S(t) be a dissipative semigroup defined on a
metric space H. Then S(t) has a compact global attractor in H if and only if it is
asymptotically smooth in H.

The following result establishes a convenient criteria for asymptotic smoothness of
a dynamical system.

Theorem A.2 (Theorem7.1.11,[9]) Let (X, S(t)) be a dynamical system on a complete
metric space X endowed with a metric d. Assume that for any bounded positively
invariant set B in X and for any ¢ > 0 there exists T = T, p such that

d(S(TM)y1, S(T)y2) < e+ Ve pr(¥1,¥2), Vi €B, (A5)

where W, g 1(y1, ¥2) is a functional defined on B x B such that

lim inf lim inf W, 5.7 (yp, ym) = 0 (A.6)

m—0o0 n—>0oo

for every sequence y, from B. Then (X, S(t)) is an asymptotically smooth dynamical
system.

The following result also guarantees that quasi-stable systems are also asymptoti-
cally smooth.
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Proposition A.3 (Proposition 7.9.5, [9]) Let Assumptions (A.1) and (A.2) be in force.
Assume that the dynamical system (H, S(t)) is quasi-stable on every bounded forward
invariant set B in H. The, (H, S(t)) is asymptotically smooth.

The following result gives the characterization of the attractor for gradient systems.

Theorem A.4 (Theorem 7.5.6, [9]) Let a dynamical system (X, S(t)) possess a com-
pact global attractor 2. Assume that there exists a strict Lyapunov function on 2.
Then A = M“(N). Moreover, the global attractor 24 consists of full trajectories
Y = {u(t) : t € R} with the properties

lim distx(u(t),N) =0 and lim distxu(t),N)=0.
t——00 t——+o0

The next two results show that quasi-stable systems enjoy nice properties that
include both finite-dimensional and smoothness.

Theorem A.5 (Theorem 7.9.6, [9]) Assume that the dynamical system (H, S(t)) pos-
sess a compact global attractor A and is quasi-stable on 2A. Then the atractor A of
has a finite fractal dimension di mlfi 2.

Theorem A.6 (Theorem 7.9.8, [9]) Assume that the dynamical system (H, S(t)) pos-
sess a compact global attractor 2 and is quasi-stable on A. Moreover, we assume that
(A.4) holds with the function c(t) possessing the property coo = sup,cg+ c(t) < 00.
Then any full trajectory {(u(t); us(t); 6(t)) : t € R} that belongs to the global attrac-
tor enjoys the following regularity properties,

ur € L®R; X)NCR; Y), uy € L°R;Y), 6 € L®R; Z).
Moreover, there exists R > 0 such that
s % + e O1F +16:(017 < R?, 1 €R,
where R depends on the constant c«, on the semigroup nyx in Definition A.8, also on

the embedding properties of X into Y.

Finally, the following abstract result deals with upper-semicontinuity of attractors,
see for instance the books by Robinson [21] and Chueshov [7].

Theorem A.7 (Theorem 10.16, [21]; Proposition 2.3.30, [7]) Assume that for each
€ € [0, €), €9 > 0, the semigroup S¢(t) have a global attractor U, C H such that:

(i) the attractors are uniformly bounded, i.e.: there exists a bounded set By C H such
that A C By for all € € [0, €p);

(ii) there exists to > 0 such that the semigroup Se¢(t)x converge to So(t)x as € — 0
for every t > ty uniformly with respect to x € By, i.e.:

sup |Se(t)x — So(t)x| = 0 as € — 0T,
X€By
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Then, the Hausdorff semidistance

disty (e, Ug) = 0 as € — 0.
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