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Abstract
This work is motivated by experimental studies (NASA Langley Research Center) of
nonlinear damping mechanisms present in flight structures. It has been observed that
the structures exhibit significant nonlinear damping effects which are functions of the
energy of the system. The present work is devoted to the study of long-time dynamics
to a class of extensible beams/plates featuring nonlocal nonlinear energy damping
of hyperbolic nature. Such models arise frequently in aeroelasticity when modeling
flight structures, see NASA-AirForce reports (Balakrishnan in A theory of nonlinear
damping in flexible structures. Stabilization of flexible structures, 1988; Balakrishnan
and Taylor in Proceedings Damping 89, Flight Dynamics Lab and Air Force Wright
Aeronautical Labs, WPAFB, 1989). The main mathematical challenge in this context
is twofold: (1) nonlinear and potentially degenerate energy damping coefficient, (2)
energy damping at a critical level where the usual compactness arguments (critical
to the theory of attractors) do not apply. Our investigation sheds some light on a
long-time behavior of such class of problems, providing new results in the area of
existence of attractors and their properties within this hyperbolic-like framework. This
should be contrasted with widely studied parabolic-like models involving structural
damping which is known to be poorly understood. The goal is achieved by developing
new methodology which allows to circumvent the difficulties related to the lack of
compactness and non-locality of the nonlinear damping. The results are achieved
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through a rigorous analysis that reveals an interplay between extensibility, non-locality,
and nonlinear energy damping of critical exponent.
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1 Introduction

Problem. Let � ⊂ R
n be a bounded domain with smooth boundary � = ∂�. We

consider vibrations of a nonlinear plate model described by the displacement u(x, t)
and its velocity ut (x, t). With these variables (u, ut ) := U , we associate a standard
energy function in the variable U as

E(U ) ≡ λ||�u||2 + ||ut ||2,

where ‖ · ‖ stands for the norm in L2(�) and λ is a structural positive constant
appearing in the model under consideration, which is subjected to nonlinear effects
affecting both: the displacement u and the velocity ut . The nonlinear forcing (internal
or external) is modeled by a function f (u) while the oscillations and the damping
is subjected to a nonlocal law depending on the instantenous energy itself with the
dissipation of the form

E(U )ut .
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This is one of the models of current interest where the dissipation rate modulates
with the strength of the energy E(U ). Examples of applications are abundant, for
instance in aeroelasticity, see [2, 3] and references therein. On the mathematical side,
the difficulties are due to potential degeneracy of the damping and superlinearity of
the damping above critical exponents. More detail on this matter will be said later. In
short, the type of models of interest to this study can be written more generally as:

utt + λ�2u − μ�u + γ H(E(U ) + ε I )ut + f (u) = h in � × R
+, (1.1)

where H(s) is a convex, C1(R+) function, H(0) = 0, λ, γ , μ > 0, ε ≥ 0, f (u) is a
nonlinear source of critical exponent, h is a external force. A canonical example for
H(s) is a power law H(s) = sq , q ≥ 1, s ≥ 0. So, we will consider this more specific
configuration

utt + λ�2u − μ�u + γ (E(U ) + ε I )qut + f (u) = h in � × R
+. (1.2)

Associated with the model are the boundary conditions imposed on to the dis-
placement u = u(x, t). We will consider either clamped (C) or hinged (H) boundary
conditions given, respectively, by

(C) u|�×R+ = ∂u

∂ν
|�×R+ = 0,

(H) u|�×R+ = �u|�×R+ = 0,
(1.3)

where ν is the outward normal to �, and initial conditions

u(x, 0) = u0(x) and ut (x, 0) = u1(x), x ∈ �. (1.4)

The analysis of the dynamics for (1.2)–(1.4) will be consideredwithin the following
functional framework.

H :=
{

H2
0 (�) × L2(�) for (1.3)-(C),(

H2(�) ∩ H1
0 (�)

) × L2(�) for (1.3)-(H).

Goal. The main objective in this work is to study the long-time dynamics described
by (1.2)–(1.4) including asymptotic analysis with respect to the change of dynamics
when ε → 0. More precisely, denoting by {Sε(t)}ε≥0 the C0-semigroup of global
solutions to (1.2)–(1.4) defined onH via the relation

Sε(t)(u0, u1) = (uε(t), uε
t (t)), t ≥ 0,

it will be shown that the semigroup {Sε(t)}ε≥0 has a family compact global attractors
Aε≥0 in the phase space H with polynomial attraction rates for ε = 0 and expo-
nential for ε > 0. Moreover, if ε > 0 we prove that the family of global attractors
Aε>0 for (1.2)–(1.4) is both finite-dimensional and smooth. Finally, we show that the
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family {Aε}ε≥0 is upper semicontinuous at ε = 0, which means that the Hausdorff
semidistance

distH (Aε,A0) ≡ sup
ψ∈Aε

inf
φ∈A0

||ψ − φ||H

tends to 0 as ε → 0+.

Mathematical challenge. The main challenge in achieving our goals stems from two
factors: (1) nonlinear and potentially degenerate damping, (2) nonlinearities are of
critical level, where the usual compactness based arguments do not apply. Indeed,
Proposition 4.6 is the main backbone estimate which provides a control of decay
rates to the attracting set, accounting for potential degeneracy of the damping. The
latter is handled via special nonlinear multiplier involving the energy itself, which is
first given in this work. Te above with a compensated compactness argument allows to
establish an existenceof a compact global attractorwhosemeasure of non-compactness
is uniform in ε ≥ 0. It is the latter aspect which requires delicate analysis, being
exactly the open problem addressed in [10]. In the case when ε > 0, one also shows
additional smoothness and finite dimensionality of the said attractor. This is obtained
by first establishing the so called quasi-stability inequality. Here the challenge is due
to critical level of nonlinear terms. Cancellation techniques such as used for full von
Karman equation (also critical) prove successful, due to good structural properties
even at critical level and also generalize cases of “subcritical" nonlinear terms in the
damping coefficient as considered in [10] as well as cases of non-degenerate damping
coefficients as addressed in [12–14, 18, 23, 24].

Main contribution in the context of prior literature. Since the model is of current
and significant interest, it has been considered in the past literature extensively with
a considerable volume of papers published on the topic, see e.g. [10, 15, 23, 24]
and references therein. It is also important to mention that there are several other
inspiring works that are pioneering in the stability of hyperbolic models with nonlocal
non-degenerate weak damping [4, 19] and later problems with nonlocal degenerate
damping coefficient [5, 6]. The precise comparison with prior literature will be left to
Remark 3.4. However, we shortly give the details of the results obtained. In fact, the
most distinct and challenging aspects of the problem are related to: (1) “hyperbolic
like" nature of the dynamics and (2) energy level of the nonlinear damping which may
degenerate. Most of the past literature dealt with “parabolic" versions of the model,
where strong “structural" damping introduced has led to the enhanced regularity of
the solutions, which is typical in parabolic dynamics, e.g. [23] and references within.
Or else, the nonlinearity in the damping is below the critical energy level, e.g. [10, 24]
and references within. In the latter, it may be that the damping depends on ||�αu||
where α < 1 or the kinetic part is subcritical as in the Kirchhoff model (with rotational
inertia) and so ||ut || is below the critical level of ||∇ut ||. The treatment of both of these
aspects, while motivated by real applications, require new methodology introduced in
the present work. In short, the main contribution of this work is that regularized effects
of the damping are not accounted for, and the energy damping is in its critical form,
which required the introduction of new nonlinear energy multipliers techniques. Also,
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we recall that this is the form of damping coefficients arising in modeling of physical
phenomena [3].

Structure of the paper. We begin with the well-posedness of the dynamics mostly
to set up the stage for studying the underlying dynamical system. Here the arguments
are rather standard based on nonlinear semigroup theory (Sect. 2). Then, we proceed
with statements of the main results of the present work, namely, Theorems 3.2, 3.3,
and 3.4, dealing with existence of global attractors, qualitative properties, and upper-
semicontinuity (Sect. 3). In the next step (Sect. 4)we give the proofs of themain results.
More specifically, it will be shown that the dynamics is ultimately dissipative, with an
absorbing ball independent on the parameter ε. The subsequent result shows that for
every ε > 0, the dynamics is quasi-stable. Thismeans that the corresponding attractors
Aε are both smooth and finite dimensional. However, quasi-stability property is not—
as expected—uniform in ε ≥ 0 due to high order damping and its degeneracy at critical
level. Last, the latter aspect leads to a question of singular perturbation analysis: what
happens when ε → 0? So, it will be proved that the measure of noncompactness of
global attractors is uniform in ε and that global attractor also exists for the limiting
case ε = 0. Based on these estimates, upper-semicontinuity of the attractors, when
ε → 0 will be established. We conclude by providing a concise review of relevant
results wihin dynamical systems theory, in order to make the paper as self-contained
as possible (Appendix A).

2 Generation of the dynamical system (H, S�(t))

Functional spaces and assumptions.Westart by settingW0 = L2(�),W1 = H1
0 (�),

and

W2 =
{

H2
0 (�) for (1.3)-(C),

H2(�) ∩ H1
0 (�) for (1.3)-(H).

For m = 3, 4, we consider

Wm =
{

Hm(�) ∩ H2
0 (�) for (1.3)-(C),

{u ∈ Hm(�) ∩ H1
0 (�); �u ∈ H1

0 (�)} for (1.3)-(H).

Here the notation ( ·, · ) stands for L2-inner product and ‖ · ‖p denotes L p-norm. For
simplicity, for p = 2 we denote ‖ · ‖2 = ‖ · ‖. Thus, ‖∇ · ‖ and ‖� · ‖ represent the
norms in W1 and W2, respectively. We also rewrite the phase space

H = W2 × W0, ||(u, v)||2H = λ‖�u‖2 + ‖v‖2, (u, v) ∈ H.

Denoting by λ1 > 0 the first eigenvalue of the bi-harmonic operator �2 with
clamped or hinged boundary condition, one has

λ1‖u‖2 ≤ ‖�u‖2, λ
1/2
1 ‖∇u‖2 ≤ ‖�u‖2, ∀ u ∈ W2.
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The energy E(t) = E(u(t), ut (t)) related to problem (1.2)–(1.4) is given by

E(t) = 1

2

[
||(u(t), ut (t))||2H + μ‖∇u(t)‖2

]
+

∫
�

[
f̂ (u(t)) − hu(t)

]
dx, (2.1)

where f̂ (u) = ∫ u
0 f (τ )dτ .

We impose the following standard assumptions on the nonlinear source term f (u)

which is of “critical" Sobolev’s exponent..

Assumption 2.1 Let f : R → R be a C2-function with f (0) = 0 and satisfying

| f ′′(u)| ≤ C f ′′(1 + |u|ρ−1), u ∈ R, (2.2)

−C f − c f

2
|u|2 ≤ f̂ (u) ≤ f (u)u + c f

2
|u|2, u ∈ R, (2.3)

for some constants C f , C f ′′ > 0, c f ∈ [0, λ1λ) and growth exponent ρ ≤ 4
n−4 for

n ≥ 5.

From inequality (2.2) we also have

| f ′(u)| ≤ C f ′(1 + |u|ρ), u ∈ R, (2.4)

for some C f ′ > 0.
Well-posedness. SettingU = (u, v)with v = ut , we then rewrite the original problem
(1.2)–(1.4) as the following equivalent first-order Cauchy problem

{
Ut = AU + B(U ), t > 0,
U (0) = (u0, u1) := U0,

(2.5)

where A : D(A) ⊂ H → H is a linear operator defined by

AU =
(

v

−λ�2u

)⊥
, U ∈ D(A) =

{
U ∈ H

∣∣∣∣ v ∈ W2,

λ�2u ∈ W0

}
, (2.6)

and B : H → H is the nonlinear operator

B(U ) =
(

0
μ�u − γ Eε(U )qv − f (u) + h

)⊥
, U = (u, v) ∈ H, (2.7)

where we define the linear (perturbed) energy as

Eε(U ) := E(U ) + ε I = ||U ||2H + ε I . (2.8)

Thus, the Hadamard well-posedness result for (2.5), and consequently for the sys-
tem (1.2)–(1.4), is a consequence of the next results.
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Theorem 2.1 Let us consider the cases: q > 0 if ε > 0 or else q ≥ 1
2 if ε = 0. Under

the Assumption 2.1 with h ∈ W0, it holds the following statements:

(i) If U0 ∈ H, then there exists Tmax > 0 such that problem (2.5) has a unique mild
solution U ∈ C([0, Tmax),H), which is given by

U (t) = eAtU0 +
∫ t

0
eA(t−s) B(U (s)) ds, t ∈ [0, Tmax). (2.9)

(ii) If U0 ∈ D(A), then the above mild solution U is the regular one.
(iii) In both cases, we have that Tmax = +∞.

By the virtue of Theorem 2.1 the solution of (1.2)–(1.4) will generate a family
of dynamical systems on the phase space H. Indeed, for each ε ≥ 0 the evolution
operator Sε(t) : H → H given by the formula

Sε(t)U0 = Sε(t)(u0, u1) = (u(t), ut (t)), t ≥ 0,

where U = (u, ut ) is the unique mild solution of the system (1.2)–(1.4), defines a
nonlinear C0-semigroup. In addition, an important property is the “robustness" with
respect to the continuous dependence of initial data as given next. Consequently, the
pair (H, Sε(t)) generates a dynamical system.

Theorem 2.2 Let Assumptions of Theorem 2.1 be in force. Then, for any two (strong
or mild) solutions U 1(t) = Sε(t)U 1

0 and U 2(t) = Sε(t)U 2
0 of problem (1.2)–(1.4)

corresponding to initial data U1(0) = U 1
0 = (u1

0, u1
1), U 2(0) = U 2

0 = (u2
0, u2

1),
respectively, there exists a positive constant C = C(||U 1

0 ||H, ||U 2
0 ||H), independent

on ε ≥ 0, such that

||Sε(t)U
1
0 − Sε(t)U

2
0 ||H ≤ CeCt ||U 1

0 − U 2
0 ||H, t ∈ [0, T ]. (2.10)

The proofs of Theorems 2.1 and 2.2 are relegated to Sect. 4.

3 Main results

In this sectionwe state themain results of this work, which are established in Theorems
3.2, 3.3, and 3.4. In what follows, It will be shown that for every ε > 0 the dynamical
systems (H, Sε(t)) has a compact global attractor Aε , which moreover is smooth and
finite-dimensional. The above property does not hold uniformly in ε ≥ 0, hence not
for ε = 0. However, it is shown that all the dynamics Sε, ε ≥ 0, have a common
absorbing ball. This implies, by standard methods, the existence of weak attractors
Aε with uniformity in ε ≥ 0. Under additional restrictions on the parameter q, it will
be also shown that the dynamical systems (H, Sε(t)) admit global compact attractors,
whosemeasure of non-compactness forAε is independent of ε ≥ 0. This is, of course, a
weaker condition than uniform additional regularity of the attractorsAε independently
of ε ≥ 0 but, however, it is enough to conclude strong convergence of the perturbed
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semigroups, hence upper-semicontinuity of the attractors at the threshold parameter
ε = 0. Moreover, since under the restriction ε > 0 the attractor {Aε}ε>0 is both finite-
dimensional and smooth, then the upper-semicontinuity at ε = 0 ensures the attractor
A0 can not “explode".

3.1 Global attractors for� ≥ 0

For each ε ≥ 0, let Nε be the set of stationary points of (H, Sε(t)) and Mu(Nε) be
the unstable manifold emanating from Nε . For readers’ convenience, all definitions
on long time behavior of dynamical systems are recalled in the Appendix A. The main
results of this work are formulated below.

Theorem 3.1 (Uniform Ultimate Dissipativity) Under the assumptions of Theorem
2.1, for any bounded set B ⊂ H, U0 ∈ B, there exist R > 0 and tB > 0, both
independent of ε ≥ 0, such that

||Sε(t)U0||H ≤ R, ∀t > tB . (3.1)

Remark 3.1 Note that the size of the absorbing ball is uniform in ε ≥ 0.Weak attractors
have a measure of non-compactness uniform in ε in the weak topology.

Theorem 3.2 (Case ε > 0) Let Assumptions of Theorem 2.1 be valid with ε > 0.
Then:

(i) (Finite-dimensionality) the associate dynamical system (H, Sε(t))ε>0 of problem
(1.2)–(1.4) has a compact global attractor Aε = Mu(Nε) in H with finite fractal
dimension dimH

f Aε;
(ii) (Regularity) any full trajectory ϒ = {U (t) = (u(t), ut (t)); t ∈ R} from attractor

Aε enjoys the following regularity properties,

ut ∈ L∞(R; W2) ∩ C(R, W0), utt ∈ L∞(R; W0). (3.2)

Moreover, there exists Rε > 0 such that

‖utt (t)‖2 + ‖�ut (t)‖2 ≤ R2
ε , t ∈ R, (3.3)

where Rε depends on the parameter ε > 0, on the seminorm ηW2(u) ≡ ||u||2ρ+2,
and on a finite intrinsic structural constant (to be denoted as c∞).

Remark 3.2 Since the damping depends nonlinearly on the full energy and it is degen-
erate when ε = 0, it is expected that the global attractor may not be always compact
in the weak phase space with an arbitrary choice of H(s). Indeed, a counterexample
can be found in [7, Chapt. 5] for certain choices of the function H(s). See also [10,
Sect. 7].

Remark 3.3 Note that the results of Theorem 3.2 hold for each ε > 0with the estimates
potentially blowing up when ε → 0. This is expected, due to intrinsic nonlinearity of
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the damping with a positive derivative for low frequencies. So, the dimension of each
attractor dimH

f Aε depends on ε > 0. The result dealing with the asymptotic analysis
of the attractors when ε → 0 is given below under the additional restrictions on the
parameter q.

Theorem 3.3 (Case ε ≥ 0) Let us consider the assumptions of Theorem 2.1 with ε ≥ 0
and 1 ≤ 2q−1q < 2. Then, we have:

(i) (Global attractor) the associate dynamical system (H, Sε(t)) of problem (1.2)–
(1.4) has a compact global attractor Aε in H whose measure of non-compactness
is uniform in ε ≥ 0. In particular, the dynamical system (H, S0(t)) has a global
compact attractor A0.

(ii) (Characterization) the global attractor A0 is precisely the unstable manifold
A0 = Mu(N0) emanating from the set of stationary solution N0. In addition, A0
consists of full trajectories ϒ = {S0(U0) = U (t) : t ∈ R} such that

lim
t→−∞ distH(U (t),N0) = 0 and lim

t→+∞ distH(U (t),N0) = 0.

Remark 3.4 (Comparison with prior literature) As we have already mentioned, there
is a considerable volume of recent papers related to long time behavior of the general
model described in the introduction.We shall focus only on themost relevant ones. The
n-dimensional version of the model proposed by Balakrishinan–Taylor ([3], Section
4, Eq. (4.2)) in a bounded domain � ⊂ R

n with clamped boundary condition and
perturbed by a source term f (u) was considered by Jorge Silva et al. in [15]:

utt − μ�u + �2u − γ
[
‖�u‖2 + ‖ut‖2

]q
�ut + f (u) = 0. (3.4)

Assuming that q ≥ 1, the authors proved the existence and uniqueness of a global
regular solution, polynomial stability and a non-exponential decay prospect. Recently,
Sun and Yang [23, 24] consider n-dimensional models of extensible beams (without
rotational forces and with rotational forces) with an energy-like damping. In [23] a
parabolic version (strong damping) with non-degenerate case was considered, that
is, they considered the damping like M(‖�u‖2 + ‖ut‖2)�ut with a strong hypoth-
esis M(s) > 0 for s ∈ R

+. For that model, existence of smooth attractors with
additional properties has been established. In [24] the authors focus on asymptotic
behavior of attractors where models under consideration are also subjected to non-
degenerate damping coefficient M > 0. In addition, in the “hyperbolic" case, the
nonlinear damping is of subcritical nature with respect to rotational inertia energy
and, consequently, the authors prove the existence of strong global and exponential
attractors.More recently, [10] considers a class ofmodels associatedwith (3.4) its non-
homogeneous version under the presence of degenerate and non-degenerate damping.
More specifically, the energy models class was treated with the following dissipation

γ
[
‖(−�)αu‖2 + ‖ut‖2

]q
ut , α ∈ [0, 1].
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The authors prove the existence of a compact global attractor for the restriction of
α ∈ [0, 1), which again is of subcritical level of the energy. This result is in line
with the counterexample in [7]. Hence, the compact global attractor in Theorem 3.3
greatly improves the result achieved in [10]. In view of the above, the results presented
in this work deal with “hyperbolic" dynamics, critical level of the energy damping
(H possibly degenerating and α = 1). In the degenerate case, existence and upper-
semicontinuity (with respect to “degeneracy") of attractors is shown for a restricted
range of q. The proofs of these results require new methodology and approaches,
which will be explained in the process of the proofs.

3.2 Upper-semiconinuity of global attractors at� = 0

As already mentioned, the family of attractors {Aε}ε≥0 is upper semiconituous at
ε = 0. Since the semicontinuity is analyzed at ε = 0, then without loss of generality,
let us fix any ε0 > 0 and take ε ∈ [0, ε0). The third main result dealing with upper-
semicontinuity of global attractor Aε at ε = 0 can be stated as follows.

Theorem 3.4 (Upper-semicontinuity) Let the assumptions of Theorem 3.3 be in force.
Then, the family of the attractors {Aε}ε≥0 to problem (1.2)–(1.4) is upper-semi-
continuous at ε = 0, namely,

distH (Aε,A0) ≡ sup
ψ∈Aε

inf
φ∈A0

||ψ − φ||H → 0 as ε → 0+. (3.5)

The proofs of Theorems 3.1, 3.2, 3.3, and 3.4, are relegated to Sect. 4 after presenta-
tion of several technical results. To conclude the final statements in the stated theorems,
we evoke several abstract results on dynamical systems recalled in Appendix A.

4 Proofs of themain results

This section is devoted to the proofs of Theorems 2.1, 2.2, 3.1, 3.2, 3.3, and 3.4.

4.1 Proof of Theorem 2.1

This proof is rather standard and relies on application of semigroup theory.We provide
it for sake of completeness. In Step 1 we show that the operator A : D(A) ⊂ H → H
given in (2.6) is a infinitesimal generator of a C0- semigroup of contractions on H.
This is proved by showing that A is dissipative and maximal, and application of the
Lumer–Phillips Theorem [20, Theorem 1.4.3]. In Step 2 we show that the operator
B : H → H is locally Lipschtz. Step 1 and Step 2 guarantee the existence of local
solution [20, Theorem 6.1.4]. The existence of global solution is asserted in Step 3.
Step 1.The operator A defined in (2.6) is the infinitesimal generator of aC0-semigroup
inH. Indeed, we take arbitrary element U ∈ D(A). Then

〈AU (t), U (t)〉H = λ (�v,�u) +
(
−λ�2u, v

)
= 0,
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Dynamics of extensible beams. . .

which proves dissipativity for A. To show that A is maximal we need to prove that
R(I − A) = H, where R(I − A) is the range of I − A. Indeed, letU∗ = (u∗, v∗) ∈ H,
and consider the equation (I − A)U = U∗ which, written in components, reads

u − v = u∗,
v + λ�2u = v∗. (4.1)

Substituting u = v + u∗ in the second equations of (4.1), we obtain

v + λ�2v = v∗ − λ�2u∗ =: w∗ ∈ W ′
2. (4.2)

Since the corresponding weak formulation is

a(v,w) =
∫

�

w∗wdx, ∀w ∈ W2,

where

a(v,w) :=
∫

�

[ vw + λ�v�w ] dx,

by the Lax-Milgram Theorem we can conclude that problem (4.2) admits a unique
solution v ∈ W2. Then we deduce from the second equation of (4.1) that λ�2u =
v∗ − v ∈ W0. This implies that R(I − A) = H. Therefore, A is maximal monotone
and due to Lummer-Phillips Theorem A is a infinitesimal generator of aC0-semigroup
of contractions on H.
Step 2. The operator B : H → H given in (2.6) is locally Lipschitz. Indeed, let us take
R > 0 andU 1 = (u1, u1

t ), U 2 = (u2, u2
t ) such that ||U 1||H, ||U 2||H ≤ R. Denoting

w = u1 − u2, we have

||B(U 1) − B(U 2)||H = ‖μ�w + γ
[
Eε(U

1)qu1
t − Eε(U

2)qu2
t

]

−
[

f (u1) − f (u2)
]

‖. (4.3)

Now, let us estimate the terms on the right hand side of the above equality. First we
have

μ

∫
�

�wϕ dx ≤ μ‖�w‖‖ϕ‖ ≤ μ

λ
1
2

||U 1 − U 2||H‖ϕ‖, ∀ϕ ∈ W0.

Note that we can rewrite

γ

∫
�

[
Eε(U

1)qu1
t − Eε(U

2)qu2
t

]
ϕ dx

= γ Eε(U
1)q

∫
�

wtϕ dx + γ
[
Eε(U

1)q − Eε(U
2)q

] ∫
�

u2
t ϕ dx .
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It is easy to see that

γ Eε(U
1)q

∫
�

wtϕ dx ≤ γ
[
||U ||2H + ε

]q ‖wt‖‖ϕ‖

≤ γ
(

R2 + ε
)q ||U 1 − U 2||H‖ϕ‖, ∀ϕ ∈ W0.

Next, to estimate the term γ
[ Eε(U 1)q − Eε(U 2)q

] ∫
�

u2
t ϕ dx we will separate the

cases ε > 0 and ε = 0.
Case ε > 0 and q > 0: Note that, from Mean Value Theorem, we have

Eε(U
1)q − Eε(U

2)q = q
[
θ ||U1||2H + (1 − θ)||U2||2H + ε

]q−1 [ ||U1||2H − ||U2||2H
]

≤
{

qεq−1
∣∣ ||U1||2H − ||U2||2H

∣∣ for 0 < q < 1,

q
[

R2 + ε
]q−1 ∣∣ ||U1||2H − ||U2||2H

∣∣ for q ≥ 1.

Hence, taking C = q max{ε, [ R2 + ε
]}q−1, we have

γ
[
Eε(U

1)q − Eε(U
2)q

] ∫
�

u2
t ϕ dx ≤ C

[
||U1||H + ||U2||H

] ∣∣∣ ||U1||H − ||U2||H
∣∣∣ ‖u1

t ‖‖ϕ‖
≤ 2C R2||U1 − U2||H‖ϕ‖, ∀ϕ ∈ W0.

Case ε = 0 and q ≥ 1
2 : Also from Mean Value Theorem there exists θ ∈ (0, 1) such

that

γ
[
Eε(U

1)q − Eε(U
2)q

] ∫
�

u2
t ϕ dx = γ

[
||U 1||2q

H − ||U 2||2q
H

] ∫
�

u2
t ϕ dx

= 2γ q
[
θ ||U 1||H + (1 − θ)||U 1||H

]2q−1 [
||U 1||H − ||U 2||H

] ∫
�

u2
t ϕ dx

≤ 2γ q [ R ]2q ||U 1 − U 2||H‖ϕ‖, ∀ϕ ∈ W0.

Finally, from Mean Value Theorem, Assumption (2.4), Hölder’s inequality with
ρ

2(ρ+1) + 1
2(ρ+1) + 1

2 = 1, and embedding W2 ↪→ L2(ρ+1)(�), we get

∫
�

(
f (u1) − f (u2)

)
ϕdx ≤ C f ′

∫
�

[
1 +

(
|u1| + |u2|

)ρ ]
|w||ϕ| dx

≤ 2ρ+1C f ′
[
|�| + ‖u1‖2(ρ+1)

2(ρ+1) + ‖u2‖2(ρ+1)
2(ρ+1)

] ρ
2(ρ+1) ‖w‖2(ρ+1)‖ϕ‖

≤ CR ||U1 − U2||H‖ϕ‖, ∀ϕ ∈ W0.

Thus, returning to (4.3), there exists a constant CR > 0 such that

||B(U 1) − B(U 2)||H ≤ CR ||U 1 − U 2||H. (4.4)

This completes the proof of (i) and (ii).
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Step 3. It remains to check that both mild and regular solutions are globally defined,
that is, Tmax = +∞. Indeed, in order we define

ω := 1 − c f

λλ1
> 0.

Next, multiplying the problem (1.2) by ut and integrating over � we get

d

dt
E(U (t)) = − γ Eε(U (t))q‖ut (t)‖2 ≤ 0, (4.5)

where we remember that E is defined in (2.1) and Eε in (2.8). Equation (4.5) implies

E(U (t)) ≤ E(U (0)), ∀t ∈ [0, Tmax). (4.6)

Now, from assumption (2.3) and using that W2 ↪→ W0, we have

∫
�

f̂ (u)dx ≥ −c f

2
‖u(t)‖2 − C f |�| ≥ − c f

2λ1
‖�u(t)‖2 − C f |�|. (4.7)

On the other hand, from Hölder and Young inequalities, and using again that W2 ↪→
W0, we have

∫
�

hudx ≤ ‖h‖‖u(t)‖ ≤ ‖h‖ 1

λ
1/2
1

‖�u(t)‖ ≤ 1

ωλλ1
‖h‖2 + ωλ

4
‖�u(t)‖2. (4.8)

Then, from definition of E(U (t)) and inequalities (4.7) and (4.8), we obtain that

E(U (t))≥ 1

2
‖ut (t)‖2+ ωλ

4
‖�u(t)‖2 − C f |�|− 1

ωλλ1
‖h‖2≥ ω

4
||U (t)||2H−ω0,

(4.9)

where ω0 =
[
C f |�| + 1

ωλλ1
‖h‖22

]
. Hence, from (4.9) and (4.6), we obtain

||U (t)||2H ≤ 4

ω
E(U0) + 4ω0

ω
, ∀t ∈ [0, Tmax). (4.10)

Estimate (4.10) implies that any (mild or strong) solution is globally bounded in time.
Therefore, from Pazy [20, Theorem 1.4] we conclude that Tmax = +∞.Which proves
(iii) and completes the proof of Theorem 2.1. ��
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4.2 Proof of Theorem 2.2

From (2.9) we have

Sε(t)U
1
0 − Sε(t)U

2
0 = eAt

[
U 1
0 − U 2

0

]
+

∫ t

0
eA(t−s)

[
B(U 1(s)) − B(U 2(s))

]
ds.

(4.11)

Then, from (4.11) and (4.4) there exists a constant C = C(||U 1
0 ||H, ||U 2

0 ||H) > 0
such that

||Sε(t)U
1
0 − Sε(t)U

2
0 ||H ≤ ||U 1

0 − U 2
0 ||H + C

∫ t

0
||Sε(s)U

1
0 − Sε(s)U

2
0 ||Hds.

Applying Gronwall’s lemma we obtain (2.10), which completes the proof of Theorem
2.2.

4.3 Proof of Theorem 3.1

In what follows we shall perform several calculations which require adequate degree
of smoothness of solutions. Since solutions can be smooth if we take sufficiently
smooth initial data, the usual density argument allows to obtain the needed estimates
for solutions in the phase space. This fact will be used without further mention.

4.3.1 Gradient system

We begin with asserting that the dynamical systems (H, Sε(t)) is gradient for each
ε ≥ 0.While gradient property alongwith an asymptotic smoothness (to be established
later) imply an existence of an absorbing ball, the needed piece of information is an
uniformity of the size of the absorbing balls in terms of the paraneter ε ≥ 0. To
accomplish the latter, we shall construct the absorbing balls explicitely.

Proposition 4.1 Assume that the assumptions of Theorem 2.1 hold. Then, � : H → R

given by

�(U ) := 1

2
||U ||2H + μ

2
‖∇u‖2 +

∫
�

f̂ (u(x)) dx −
∫

�

h(x)u(x) dx

is a strict Lyapunov functional for the dynamical system (H, Sε(t)). Consequently,
(H, Sε(t)) is a gradient dynamical system.

Proof Let us define � := E . From (4.5) one sees that the mapping

t �→ E(U (t)) = �(Sε(t)U0)
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is non-increasing for every U0 := (u0, u1) ∈ H. Multiplying the problem (1.2) by ut

and integrating over � × [0, t] one gets

�(Sε(t)U0) + γ

∫ t

0
Eε(U (τ ))q‖ut (τ )‖2 dτ = �(U0), t > 0, (4.12)

for every U0 ∈ H. From (4.12), we easily conclude that

�(Sε(t)U0) = �(U0) ⇒ U0 ∈ Nε, t > 0,

whereNε is the set of stationary points (with the size independent on ε) of the dynam-
ical system (H, Sε(t)). Since we know that

U0 ∈ Nε ⇔ Sε(t)(U0) = U0, t > 0,

then � is a strict Lyapunov functional for the dynamical system (H, Sε(t)). ��

4.3.2 Ultimate dissipativity–Completion of Theorem 3.1

Now we show that the dynamic system (H, Sε(t)) with ε ≥ 0 is (ultimately) dissipa-
tive, that is, that the C0-semigroup {Sε(t)}ε≥0 has a bounded absorbing set B with the
size independent on ε ≥ 0.

Proposition 4.2 Let us consider a bounded set B ⊂ H and take the solution
Sε(t)(U0) = U (t) of problem (1.2)–(1.4)with U0 = (u0, u1) ∈ B. Under the hypothe-
ses of Theorem 2.1, there exist positive constants c0,B, c1,B,ε (c0,B independent on
ε), and θε > 0 such that

Ẽ(U (t)) ≤
{[

c0,B(t − 1)+ + Ẽ(U0)
−q

]− 1
q + 8ω0 if ε ≥ 0,

c1,B,ε Ẽ(U0)e−θε t + 4ω0, if ε > 0.
(4.13)

where Ẽ is a perturbed energy given by

Ẽ(U (t)) = E(U (t)) + ω0, with ω0 := 1

ωλλ1
‖h‖2 + C f |�|, (4.14)

where ω ≡ 1 − c f
λλ1

> 0.

Proof From the definition of Ẽ it follows directly from (4.9) that

Ẽ(U (t)) ≥ ω

4
||U (t)||2H. (4.15)

By multiplying the first equation in (1.2) by ut and integrating over �×[t, t + 1], we
have

γ

∫ t+1

t
Eε(U (s))q‖ut (s)‖2ds = E(U (t)) − E(U (t + 1)) ≡ Q(t)2. (4.16)
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Using that

γ Eε(U (t))‖ut (t)‖2 = γ
[
λ‖�u(t)‖2 + ‖ut (t)‖2 + ε I

]q ‖ut (t)‖2

≥ γ
[
‖ut (t)‖2q + εq

]
‖ut (t)‖2,

returning to (4.16), we have

γ

∫ t+1

t
‖ut (s)‖2(q+1)ds + γ εq

∫ t+1

t
‖ut (s)‖2ds ≤ Q(t)2. (4.17)

Note that, if ε > 0 follows directly from (4.17) that

∫ t+1

t
‖ut (s)‖2ds ≤ 1

γ εq
Q(t)2.

On the other hand, if ε ≥ 0, from Hölder inequality with q
q+1 + 1

q+1 = 1 and (4.17),
we have

∫ t+1

t
‖ut (s)‖2ds ≤

[∫ t+1

t
ds

] q
q+1

[∫ t+1

t
‖ut (s)‖2(q+1)ds

] 1
q+1

≤ 1

γ
1

q+1

Q(t)
2

q+1 .

Thus, we obtain that

∫ t+1

t
‖ut (s)‖2ds ≤ Jε(t), (4.18)

where,

Jε(t) :=
⎧⎨
⎩

1

γ
1

q+1
Q(t)

2
q+1 , if ε ≥ 0,

1
γ εq Q(t)2, if ε > 0.

(4.19)

From Mean Value Theorem there exist t1 ∈ [t, t + 1
4 ], t2 ∈ [t + 3

4 , t + 1] such that

‖ut (ti )‖2 ≤ 4Jε(t). (4.20)

Next, multiplying the first equation in (1.2) by u and integrating over � × [t1, t2] we
get

∫ t2

t1

∫
�

[
λ|�u|2 + μ|∇u|2 + f (u)u − hu

]
dxds =

∫ t2

t1
‖ut (s)‖2ds +

2∑
i=1

Ii ,

(4.21)
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where

I1 = −γ

∫ t2

t1

∫
�

Eε(U )qut udxds,

I2 =
[ ∫

�

ut (s)u(s)dx

]t2

t1

.

From Assumption (2.3) and definition of Ẽ , we obtain that

∫ t2

t1
Ẽ(U (s))ds ≤ ω0 + 3

2

∫ t2

t1
‖ut (s)‖2ds +

2∑
i=1

Ii . (4.22)

The terms I1 and I2 can be estimated as follows. First, from Hölder inequality, (4.10),
(4.15), (4.16), and Young inequality, we have

I1 ≤ γ

∫ t2

t1

∫
�

Eε(U (s))
q
2 |ut |Eε(U (s))

q
2 |u|dxds

≤
[
γ

∫ t+1

t
Eε(U (s))q‖ut (s)‖2ds

] 1
2
[

γ

λ1

∫ t+1

t
Eε(U (s))q‖�u(s)‖2ds

] 1
2

≤ CBQ(t) sup
t≤s≤t+1

Ẽ(U (s))
1
2

≤ CBQ(t)2 + 1

8
sup

t≤s≤t+1
Ẽ(U (s)).

Using immersion W2 ↪→ W0, (4.15), and (4.18) we have

I2 ≤ 1

λ
1/2
1

2∑
i=1

‖ut (ti )‖‖�u(ti )‖

≤ 4

λ
1/2
1

Jε(t)
1
2 sup

t≤s≤t+1
Ẽ(U (s))

1
2

≤ 32

λ1
Jε(t) + 1

8
sup

t≤s≤t+1
Ẽ(U (s)).

Substituting I1 and I2 into (4.22) we get

∫ t2

t1
Ẽ(U (s))ds ≤ ω0 + 1

4
sup

t≤s≤t+1
Ẽ(U (s)) + CBQ(t)2 +

(
32

λ1
+ 1

)
Jε(t).

(4.23)
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Again using the MVT, there exists τ ∈ [t1, t2] such that

∫ t2

t1
Ẽ(U (s))ds = Ẽ(τ )(t2 − t1) ≥ 1

2
Ẽ(U (t + 1)). (4.24)

On the other hand, from (4.16), we have

Ẽ(U (t)) = Ẽ(U (t + 1)) + Q(t)2. (4.25)

From (4.23), (4.24), (4.25), and using that Ẽ(U (t)) = supt≤s≤t+1 Ẽ(U (s)), we obtain

sup
t≤s≤t+1

Ẽ(U (s)) ≤ 2ω0 + 1

2
sup

t≤s≤t+1
Ẽ(U (s)) + (1 + 2CB)Q(t)2 + 2

(
32

λ1
+ 1

)
Jε(t).

Thus, there exists a constant K B > 0 such that

sup
t≤s≤t+1

Ẽ(U (s)) ≤ 4ω0 + K BJε(t). (4.26)

From (4.26), we have

sup
t≤s≤t+1

Ẽ(U (s))q+1 ≤ (8ω0)
q+1 + K1,B

[
Ẽ(U (t)) − Ẽ(U (t + 1))

]
if ε ≥ 0,

with K1,B = (2K B )q+1

γ
, and

sup
t≤s≤t+1

Ẽ(U (s)) ≤ 4ω0 + K2,B
[

Ẽ(U (t)) − Ẽ(U (t + 1))
]

if ε > 0,

with K2,B = K B
γ εq . Therefore, applying Nakao’s Lemma (cf. [17]), we have

Ẽ(U (t)) ≤

⎧⎪⎨
⎪⎩

[
1

K1,B
(t − 1)+ + Ẽ(U0)

−q
]− 1

q + 8ω0 if ε ≥ 0,

Ẽ(U0)
(
1+K B

K B

)
e−θ t + 4ω0, if ε > 0.

where (t − 1)+ = max{t − 1, 0} and θ = ln
(
1+K2,B

K2,B

)
> 0. Taking c0,B = 1

K1,B
and

c1,B = 1+K B
K B

we obtain (4.13). This completes the proof of the Proposition 4.2. ��
Remark 4.1 Proposition 4.2 shows that bounded sets ofH are attracted by polynomial
rates in case ε = 0 and by exponential rates in case ε > 0. However the polynomial
rates are uniform in ε → 0. This is sufficient to assert that the size of the absorbing
ball is independent on ε ≥ 0.

The next corollary gives the conclusion of the proof of Theorem 3.1.
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Corollary 4.3 (Ultimate dissipativity) Under the hypotheses of Theorem 2.1, let us
consider any bounded set B ⊂ H. For U0 ∈ B, there exist R > 0 and tB > 0 (both
independent on ε ≥ 0) such that

||Sε(t)U0||H ≤ R, ∀t > tB, ε ≥ 0. (4.27)

Proof For initial data U0 ∈ B we obtain from (4.13) and (4.15) that there exists
TB,ε > 0 depending on B ⊂ H and ε such that

||Sε(t)U0||2H ≤
{

32ω0
ω

if ε ≥ 0,
16ω0

ω
if ε > 0,

(4.28)

where we recall thatω0 is set in (4.14). One notices that TB,ε can be made independent
on ε, by applying the polynomial rate of convergence to the absorbing ball, which is
uniform for all ε. Thus, taking R = 32ω0

ω
, we obtain (4.27) and the set

B = {U ∈ H; ||U ||H ≤ R}

is a bounded absorbing set for {Sε(t)}ε≥0 with tB independent on ε ≥ 0. There-
fore, from Definition A.3, the dynamical system (H, Sε(t)) is ultimately dissipative
uniformly in ε ≥ 0. ��

4.4 A useful identity for the difference of trajectories

In the proof of the subsequent results (Propositions 4.5 and 4.6), a useful energy
identity is ensured by Lemma 4.4 when dealing with the difference of two trajectories.

Let us consider two mild solutions Ui
ε = (ui

ε, ui
t,ε) of (1.2)–(1.4) with initial data

(ui
0, ui

1), i = 1, 2, and wε = u1
ε − u2

ε . Then, wε := w satisfies

{
wt t − μ�w + λ�2w + γ

[
Eε(U

1)qu1
t − Eε(U

2)qu2
t

]
+ F(w) = 0,

w(0) = w0 = u1
0 − u2

0, wt (0) = w1 = u1
1 − u2

1,
(4.29)

where F(w) = f (u1) − f (u2), Eε(Ui ), i = 1, 2, is set in (2.8), and

γ Eε(U
1)qu1

t − Eε(U
2)qu2

t = γ

2

[
Eε(U

1)q + Eε(U
2)q

]
wt

+ γ

2

[
Eε(U

1)q − Eε(U
2)q

]
[u1

t + u2
t ].

The energy functional associated with (4.29) is given by

Ew,ε(t) := 1

2

[
||(w,wt )||2H + μ‖∇w‖2

]
= 1

2

[
||W ||H + μ‖∇w‖2

]
. (4.30)

In what follows we shall use simply w, Ew-omitting ε.
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Lemma 4.4 Under the above notations, the following identity holds true

Ew(T ) − Ew(τ) +
∫ T

τ
Dε(s)ds =

∫ T

τ

[
Gε(s)ds −

∫
�

F(w)wt dx

]
ds, T > τ ≥ 0,

(4.31)

where

Dε(t) = γ

2

[
Eε(U

1)q + Eε(U
2)q

]
‖wt‖2 + γ q

2
[ ξθ ]

q−1
[
‖u1

t ‖2 − ‖u2
t ‖2

]2
,

(4.32)

Gε(t) = − γ q

2
[ ξθ ]

q−1
[
λ‖�u1‖2 − λ‖�u2‖2

] ∫
�

[ u1
t + u2

t ]wt dx, (4.33)

with ξθ = θEε(U 1) + (1 − θ)Eε(U 2) for some θ ∈ (0, 1).

Proof Multiplying (4.29) by wt , applying polarization formula, and integrating over
� × [τ, T ], we get

Ew(T ) − Ew(τ) + γ

2

∫ T

τ

[
Eε(U

1)q + Eε(U
2)q

]
‖wt‖2ds

+ γ

2

∫ T

τ

[
Eε(U

1)q − Eε(U
2)q

] ∫
�

[ u1
t + u2

t ]wt dxds

= −
∫ T

τ

∫
�

F(w)wt dxds. (4.34)

Denoting ξθ = θEε(U 1) + (1 − θ)Eε(U 2), from Mean Value Theorem there exists
θ ∈ (0, 1) such that

γ

2

[
Eε(U

1)q − Eε(U
2)q

] ∫
�

[ u1
t + u2

t ]wt dx

= γ q

2
[ ξθ ]

q−1
[
‖u1

t ‖2 − ‖u2
t ‖2 + λ‖�u1‖2 − λ‖�u2‖2

] ∫
�

[ u1
t + u2

t ]wt dx

= γ q

2
[ ξθ ]

q−1
[
‖u1

t ‖2 − ‖u2
t ‖2

]2

+γ q

2
[ ξθ ]

q−1
[
λ‖�u1‖2 − λ‖�u2‖2

] ∫
�

[ u1
t + u2

t ]wt dx .

Therefore, returning to (4.34) we obtain the identity (4.31). ��

4.5 Quasi-stability property: case� > 0

In this subsection we show that under the restriction ε > 0 the dynamical system
(H, Sε(t)) associated with problem (1.2)–(1.4) is quasi-stable and then will possess a
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compact global attractor {Aε}ε>0 that is both finite-dimensional and smooth-see the
Appendix..

Proposition 4.5 (Quasi-stabilizability estimate) Let ε > 0. Under the assumptions
of Theorem 2.1, let B a bounded set in H and assume that U 1(t) = (u1(t), u1

t (t))
and U 2(t) = (u2(t), u2

t (t)) be two mild solutions to (1.2)–(1.4) with initial data
Ui
0 ≡ (ui

0, ui
1) ∈ B, i = 1, 2. Then we have the following estimate

||Sε(t)U
1
0 − Sε(t)U

2
0 ||2H ≤ bε(t)||U 1

0 − U 2
0 ||2H + cε(t) sup

s∈[0,t]
‖u1(s) − u2(s)‖2ρ+2,

(4.35)

where bε(t) and cε(t) are nonnegative scalar functions satisfying the properties bε ∈
L1(R+) with lim

t→+∞ bε(t) = 0 and cε(t) is locally bounded on [0,∞). However, these

functions do depend in a critical way on ε ≥ 0.

Proof We consider again the difference w = u1 − u2 of two mild solution u1, u2 of
the problem (1.2)–(1.4). Then, the difference U 1 − U 2 = (w,wt ) solves the problem
(4.29) with ε > 0 and the following equality holds

Ew(T ) − Ew(τ) +
∫ T

τ

Dε(s)ds =
∫ T

τ

[
Gε(s)ds −

∫
�

F(w)wt dx

]
ds.

(4.36)

where Ew(t), Dε(t), and Gε(t) are given in (4.30), (4.32), and (4.33), respectively.
Claim: For any δ > 0, there exist positive constants CB,δ, CB , such that

∣∣∣∣
∫ T

τ

[
Gε(s) −

∫
�

F(w)wt dx

]
ds

∣∣∣∣ ≤ CB sup
0≤s≤T

‖w(s)‖2ρ+2 + δ

∫ T

τ

Ew(s)ds

+ CB,δ

∫ T

τ

d(s, u1, u2)Ew(s)ds,

(4.37)

where

d(t, u1, u2) := ‖u1
t (t)‖2 + ‖u2

t (t)‖2.

Indeed, from definition of Gε(t) given in (4.33) andYoung inequality with any δ1 > 0,
we get

∫ T

τ

Gε(s)ds

≤ γ q

2

∫ T

τ

[ ξθ ]
q−1

[
λ

1
2 ‖�u1‖ + λ

1
2 ‖�u2‖

]
λ

1
2 ‖�w‖

[
‖u1

t ‖ + ‖u2
t ‖

]
‖wt‖ds
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≤ CB

∫ T

τ

λ
1
2 ‖�w‖

[
‖u1

t ‖ + ‖u2
t ‖

]
‖wt‖ds

≤ δ1

2

∫ T

τ

Ew(s)ds + CB,δ1

∫ T

τ

d(s, u1, u2)Ew(s)ds. (4.38)

On the other hand, we can rewrite

∫
�

F(w)wt dx =
∫

�

[
f (u1) − f (u2)

]
wt dx

= d

dt

∫
�

[
f (u1) − f (u2)

]
wdx −

∫
�

[
f ′(u1)u1

t − f ′(u2)u2
t

]
wdx

= d

dt

∫
�

[
f (u1) − f (u2)

]
wdx −

∫
�

f ′(u1)wtwdx

−
∫

�

[
f ′(u1) − f ′(u2)

]
u2

t wdx

= d

dt

∫
�

F(w)wdx − 1

2

d

dt

∫
�

f ′(u1)w2dx

+1

2

∫
�

f ′′(u1)u1
t w

2dx −
∫

�

[
f ′(u1) − f ′(u2)

]
u2

t wdx

= d

dt
Q(t) + R(t),

where

Q(t) :=
∫

�

F(w)wdx − 1

2

∫
�

f ′(u1)w2dx,

R(t) := 1

2

∫
�

f ′′(u1)u1
t w

2dx −
∫

�

[
f ′(u1) − f ′(u2)

]
u2

t wdx .

Thus, we have

−
∫ T

τ

∫
�

F(w(s))wt (s)ds = −
∫ T

τ

d

ds
Q(s)ds −

∫ T

τ

R(s)ds. (4.39)

Defining ξθ (t) := θu1(t)+(1−θ)u2(t) and usingAssumption (2.4), Hölder inequality
with ρ

ρ+2 + 2
ρ+2 = 1, and immersion W2 ↪→ Lρ+2(�), we obtain

−
∫ T

τ

d

ds
Q(s)ds = −

∫
�

F(w(T ))w(T )dx +
∫

�

F(w(τ))w(τ)dx

+ 1

2

∫
�

f ′(u1(T ))w(T )2dx − 1

2

∫
�

f ′(u1(τ ))w(τ)2dx

= −
∫

�

∫ 1

0
f ′(ξθ (T ))dθw(t)2dx +

∫
�

∫ 1

0
f ′(ξθ (τ ))dθw(τ)2dx
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+1

2

∫
�

f ′(u1(T ))w(t)2dx − 1

2

∫
�

f ′(u1(τ ))w(τ)2dx

≤ C f ′
∫

�

[
1 +

(
|u1(T )| + |u2(T )|

)ρ ]
|w(T )|2dx

+ C f ′
∫

�

[
1 +

(
|u1(τ )| + |u2(τ )|

)ρ ]
|w(τ)|2dx

+ C f ′

2

∫
�

[
1 + |u1(T )|ρ

]
|w(T )|2dx

+C f ′

2

∫
�

[
1 + |u1(τ )|ρ

]
|w(τ)|2dx

≤ C
[
1 +

(
‖u1(T )‖ρ

ρ+2 + ‖u2(T )‖ρ
ρ+2

) ]
‖w(T )‖2ρ+2

+C
[
1 +

(
‖u1(τ )‖ρ

ρ+2 + ‖u2(τ )‖ρ
ρ+2

) ]
‖w(τ)‖2ρ+2

≤ CB sup
0≤s≤T

‖w(s)‖2ρ+2.

Using Assumption (2.2), Hölder inequality with ρ−1
2(ρ+1) + 1

2 + 1
ρ+1 = 1, and the

embedding W2 ↪→ L2(ρ+1)(�), and Young inequality with any δ2 > 0, we have

−
∫ T

τ

R(s)ds ≤ 1

2

∫ T

τ

∫
�

| f ′′(u1)| |u1
t | |w|2dxds

+
∫ T

τ

∫
�

∫ 1

0
| f ′′(ξθ (s))|dθ |u2

t | |w|2dxds

≤ C f ′′

2

∫ t

τ

∫
�

[
1 + |u1|ρ−1

]
|u1

t ||w|2dxds

+ C f ′′
∫ T

τ

∫
�

[
1 +

(
|u1| + |u2|

)ρ−1
]

|u2
t ||w|2dxds

≤ C
∫ T

τ

[
1 + ‖u1‖2(ρ+1) + ‖u2‖ρ−1

2(ρ+1)

] [
‖u1

t ‖ + ‖u2
t ‖

]
‖w‖22(ρ+1)ds

≤ CB

∫ T

τ

[
‖u1

t ‖ + ‖u2
t ‖

]
‖�w‖2ds

≤ δ2

2

∫ T

τ

Ew(s)ds + CB,δ2

∫ T

τ

d(s, u1, u2)Ew(s)ds.

Substituting the last two inequalities in (4.39) we get that

−
∫ T

τ

∫
�

F(w(s))wt (s)ds ≤ CB sup
0≤s≤T

‖w(s)‖2ρ+2 + δ2

2

∫ T

τ

Ew(s)ds

+ CB,δ2

∫ T

τ

d(s, u1, u2)Ew(s)ds. (4.40)

Therefore, taking δ1 = δ2 := δ > 0, we obtain the inequality (4.37) from (4.38) and
(4.40).
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Now, multiplying the equation in (4.29) by w and integrating over � × [0, T ], we
get

∫ T

0
Ew(s)ds =

5∑
i=1

Ii , (4.41)

where

I1 = 2
∫ T

0
‖wt‖2ds,

I2 = − γ

2

∫ T

0

∫
�

[
Eε(U

1)q + Eε(U
2)q

]
wtwdxds,

I3 = − γ

2

∫ T

0

∫
�

[
Eε(U

1)q − Eε(U
2)q

]
[ u1

t + u2
t ]wdxds,

I4 = −
∫ T

0

∫
�

F(w)wdxds,

I5 =
∫

�

[w(0)wt (0) − w(T )wt (T ) ] dx .

Let us estimate the terms I1, . . . , I5. Firstly, from (4.32) with ε > 0, we have

I1 ≤ 2

γ εq

∫ T

τ

Dε(s)ds.

It is here where the dependence on ε becomes critical. Next, it is easy to see that

I2 ≤ CB

∫ T

0
‖wt‖‖w‖ds ≤ 1

6

∫ T

0
Ew(s)ds + CB

∫ T

0
‖w‖2ds,

I3 ≤ CB

∫ T

0
Ew(s)

1
2 ‖w‖ds ≤ 1

6

∫ T

0
Ew(s)ds + CB

∫ T

0
‖w‖2ds.

From Assumption (2.4), Hölder inequality with ρ
ρ+2 + 2

ρ+2 = 1, immersion W2 ↪→
Lρ+2(�), we get

I4 ≤ C f ′
∫ T

0

∫
�

[
1 + ( |u1| + |u2| )ρ

]
|w|2dxds ≤ CB

∫ T

0
‖w‖2ρ+2ds.

Finally, using that W2 ↪→ L2(�), we have

I5 ≤ 2

λ
1
2
1

[ Ew(0) + Ew(T ) ] .
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Returning to (4.41) and using that Lρ+2(�) ↪→ L2(�), we get

∫ T

0
Ew(s)ds ≤ 4

λ
1
2
1

[ Ew(0) + Ew(T ) ] + 4

γ εq

∫ T

0
Dε(s)ds + CB

∫ T

0
‖w‖2ρ+2ds.

(4.42)

On the other hand, integrating (4.36) from 0 to T , we get

T Ew(T ) +
∫ T

0

∫ T

τ

Dε(s)dsdτ =
∫ T

0
Ew(τ)dτ

+
∫ T

0

∫ T

τ

[
Gε(s) −

∫
�

F(w)wt dx

]
dsdτ.

(4.43)

Combining (4.42) and (4.43), we obtain that

T Ew(T ) +
∫ T

0
Ew(s)ds ≤ 8

λ
1/2
1

[ Ew(0) + Ew(T ) ] + 8

γ εq

∫ T

0
Dε(s)ds

+
∫ T

0

∫ T

τ

[
Gε(s) −

∫
�

F(w)wt dx

]
dsdτ

+ T CB sup
0≤t≤T

‖w(t)‖2ρ+2. (4.44)

From (4.36) with τ = 0, we have

Ew(0) = Ew(T ) +
∫ T

0
Dε(s)ds −

∫ T

0

[
Gε(s) −

∫
�

F(w)wt dx

]
ds. (4.45)

Substituting (4.45) in (4.44) andusingwithout loss of generality that T̃ = T − 16
λ
1/2
1

> 0,

we get

T̃ Ew(T ) +
∫ T

0
Ew(s)ds ≤ 8

(
1

λ
1/2
1

+ 1

γ εq

)∫ T

0
Dε,κ (s)ds

+
∫ T

0

∫ T

τ

[
Gε(s) −

∫
�

F(w)wt dx

]
dsdτ

− 8

λ
1/2
1

∫ T

0

[
Gε(s) −

∫
�

F(w)wt dx

]
ds

+ T CB sup
0≤s≤T

‖w(s)‖2ρ+2. (4.46)
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Again, from (4.36) with τ = 0, we get

∫ T

0
Dε(s)ds = [ Ew(0) − Ew(T ) ] +

∫ T

0

[
Gε(s) −

∫
�

F(w)wt dx

]
ds.

Using this equality in (4.46) we get

T̃ Ew(T ) +
∫ T

0
Ew(s)ds ≤ Cε [ Ew(0) − Ew(T ) ] +

∫ T

0

∫ T

τ

[
Gε(s) −

∫
�

F(w)wt dx

]
dsdτ

+ 8

γ εq

∫ T

0

[
Gε(s) −

∫
�

F(w)wt dx

]
ds

+T CB sup
0≤s≤T

‖w(s)‖2ρ+2,

(4.47)

where Cε = 8

(
1

λ
1/2
1

+ 1
γ εq

)
. From (4.37), we obtain that

T̃ Ew(T ) +
∫ T

0
Ew(s)ds ≤ Cε [ Ew(0) − Ew(T ) ] + δ

∫ T

0

∫ T

τ

Ew(s)dsdτ

+ 8δ

γ εq

∫ T

0
Ew(s)ds + CB,δ

∫ T

0

∫ t

τ

d(s, u1, u2)Ew(s)dsdτ

+ CB,δ

∫ T

0
d(s, u1, u2)Ew(s)ds + T CB sup

0≤t≤T
‖w(t)‖2ρ+2.

(4.48)

Taking δ small enough such that 1 − δ(T + 8
γ εq ) ≥ 1

2 , we obtain

T̃ Ew(T ) + 1

2

∫ T

0
Ew(s)ds ≤ Cε [ Ew(0) − Ew(T ) ]

+ T CB,ε

∫ T

0
d(s, u1, u2)Ew(s)ds

+T CB sup
0≤t≤T

‖w(t)‖2ρ+2.

(4.49)

Reiterating the estimate on the intervals [mT , (m + 1)T ] yelds

Ew((m + 1)T ) ≤ ηEw(mT ) + CBbm, m = 0, 1, 2, . . . ,

with 0 < η ≡ Cε

T̃ +Cε
< 1 and CB = T (CB,ε+CB )

T̃ +Cε
, where

bm ≡ sup
s∈[mT ,(m+1)T ]

‖w(s)‖2ρ+2 +
∫ (m+1)T

mT
d(s; u1, u2)Ew(s)ds.
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This yeelds

Ew(t) ≤ ηm Ew(0) + c
m∑

l=1

ηm−lbl−1.

Since η < 1, using the same argument as in ([8], Remark 3.3) along with the definition
of bl we obtain that there exists ω > 0 such that

Ew(t) ≤ C1e−ωt Ew(0) + C2

[
sup

0≤s≤t
‖w(s)‖2ρ+2 +

∫ t

0
e−ω(t−s)d(s, u1, u2)Ew(s)ds

]
,

for all t ≥ 0. Therefore, applying Gronwall’s lemma we find

Ew(t) ≤
[

C1e−ωt Ew(0) + C2 sup
0≤s≤t

‖w(s)‖2ρ+2

]
eC2

∫ t
0 d(s,u1,u2)ds .

Using that 1
2 ||U 1 − U 2||2H ≤ Ew(t) ≤ 1

2 (1 + μ

λ
1/2
1

)||U 1 − U 2||2H, we have

||U 1 − U 2||2H ≤ b(t)||U 1
0 − U 2

0 ||2H + c(t) sup
0≤s≤t

‖w(s)‖2ρ+2.

where

bε(t) := (1 + μ

λ
1/2
1

)C1e−ωt eC2
∫ t
0 d(s,u1,u2)ds and cε(t) := 2C2eC2

∫ t
0 d(s,u1,u2)ds

Thus, using that d(s, u1, u2) = [ ‖u1
t ‖2 + ‖u2

t ‖2
] ∈ L1(0, t) we obtain for every

positive ε > 0

bε(t) ∈ L1(R+) and lim
t→+∞ bε(t) = 0

and cε(t) is locally bounded on [0,∞). The proof of Proposition 4.5 is now complete.
��

4.6 Asymptotically smooth: case� ≥ 0

Before presenting Proposition 4.7, which claims that for ε ≥ 0 the dynamical system
(H, Sε(t)) is asymptotically smooth, we are going to establish the crucial Proposition
4.6, which plays a key result in our analysis since it provides a very new estimate
whose proof requires a new way of dealing with the energy damping coefficient at the
critical level with respect to potential energy.

Proposition 4.6 Under the assumptions of Theorem 2.1, let us also take q such that
1 ≤ 2q−1q < 2. Let B be a bounded set in H and Sε(t)(Ui

0) = (ui , ui
t ) be two mild
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solutions of problem (1.2)–(1.4) with initial data Ui
0 ≡ (ui

0, ui
1) ∈ B, i = 1, 2. Then,

there exist positive constants C, CB,t such that the following inequality holds

Ew(t) ≤ C

t
1

q+1

Ew(0)
1

q+1 + CB,t sup
0≤s≤t

‖u1(s) − u2(s)‖
1

q+1
ρ+2

+ 1

t

∣∣∣∣
∫ t

0

∫ t

τ

∫
�

F(w)wt dxdsdτ

∣∣∣∣ + C

t
1

q+1

∣∣∣∣
∫ t

0

∫
�

F(w)wt dxds

∣∣∣∣
1

q+1

.

(4.50)

where Ew is given in (4.30) and w = u1 − u2. The estimate is uniform in ε ≥ 0 with
the constants C, CB,t independent on ε ≥ 0.

Proof Step 1: First energy identity. Using the definition of Gε in (4.33), Young
inequality, inequalities λ‖�ui‖2 ≤ ||Ui ||2H and (a + b)r ≤ 2r−1(ar + br ) for r ≥ 1,
we estimate

∫ T

τ

Gε(s)ds = −γ q

2

∫ T

τ

[ ξθ ]
q−1

[
λ‖�u1‖2 − λ‖�u2‖2

] [
‖u1

t ‖2 − ‖u2
t ‖2

]
ds

≤ γ q

2

∫ T

τ

[ ξθ ]
q−1

[
‖u1

t ‖2 − ‖u2
t ‖

]2
ds

+ γ q

8

∫ T

τ

[ ξθ ]
q−1

[
λ

1
2 ‖�u1‖ + λ

1
2 ‖�u2‖

]2
λ‖�w‖2ds

≤ γ q

2

∫ T

τ

[ ξθ ]
q−1

[
‖u1

t ‖2 − ‖u2
t ‖

]2
ds

+ γ q

4

∫ T

τ

[
Eε(U

1) + Eε(U
2)

]q
λ‖�w‖2ds

≤ γ q

2

∫ T

τ

[ ξθ ]
q−1

[
‖u1

t ‖2 − ‖u2
t ‖

]2
ds

+ γ Cq

∫ T

τ

[
Eε(U

1)q + Eε(U
2)q

]
λ‖�w‖2ds,

where Cq := 2q q
8 . Substituting the last inequality in (4.34), noting the cancelation of

the first term on the RHS of the inequality above, we obtain the first energy inequality
with the weighted dissipation:

Ew(T ) + γ

2

∫ T

τ

[
Eε(U

1)q + Eε(U
2)q

]
‖wt‖2ds

≤ Ew(τ) + γ Cq

∫ T

τ

[
Eε(U

1)q + Eε(U
2)q

]
λ‖�w‖2ds −

∫ T

τ

∫
�

F(w)wt dxds.

(4.51)
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Step 2: Second energy inequality. The second term on the RHS of the inequality in
(4.51) needs to be absorbed. This will be done by using time weighted equipartition
of the energy with a positive weight M(t) ∈ C1(R+) to be selected later. To proceed,
we multiply equation in (4.29) by M(t)w and we integrate the result from τ to T .

∫ T

τ

M(t)
[
λ‖�w‖2 + μ‖∇w‖2

]
ds =

∫ T

τ

M(t)‖wt‖2ds +
5∑

i=1

∫ T

τ

Li (s)ds,

(4.52)

where

L1(t) = −M(t)
∫

�

F(w)wdx,

L2(t) = −γ

2
M(t)[Eε(U

1)q + Eε(U
2)q ]

∫
�

wtwdx,

L3(t) = −γ

2
M(t)[Eε(U

1)q − Eε(U
2)q ]

∫
�

[u1
t + u2

t ]wdx,

L4(t) = −M ′(t)
∫

�

wtwdx,

L5(t) = M(t)
∫

�

wtwdx |Tτ . (4.53)

We note that all the terms defined by Li are of lower order (compact) as long as

|M ′(t)| + |M(t)| ≤ CB . (4.54)

We shall apply (4.52) with

M(t) ≡ γ Cq [Eε(U
1)q + Eε(U

2)q ]

For this, we verify regularity in (4.54). From the energy identity valid for each solution
U one has

d

dt
E(U (t) + γ Eε(U (t))q ||ut ||2 = 0,

which implies, by ultimate dissipativity, that

∣∣∣∣ d

dt
E(U (t))

∣∣∣∣ ≤ γ Eε(U (t))q ||ut ||2 ≤ CB .

On the other hand,

d

dt
E(t) = d

dt
Eε(t) − μ

∫
�

�uut dx +
∫

�

[ f (u)ut − hut ]dx,

which proves the regularity in (4.54) for this specific choice of the multiplier M .
Combining (4.51) and (4.52) we obtain
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Ew(T ) + γ

(
1

2
− Cq

) ∫ T

τ

[
||U 1||2q

H + ||U 2||2q
H + 2εq

]
‖wt‖2ds

≤ Ew(τ) −
∫

�

F(w)wt dx +
5∑

i=1

∫ T

τ

Li (s)ds, (4.55)

uniformly in ε > 0. Recalling (a + b)2q ≤ 22q−1(a2q + b2q), we have

[
||U 1||2q

H + ||U 2||2q
H + 2εq I

]
‖wt‖2 ≥

[
‖u1

t ‖2q + ‖u2
t ‖2q + 2εq I

]
‖wt‖2

≥ 1

22q−1 ‖wt‖2q + 2εq ||wt ||2.

Substituting the last inequality in (4.55), we have

Ew(T ) +
∫ T

0
[σ‖wt‖2(q+1) + 2εq ||wt ||2]ds ≤ Ew(τ) −

∫
�

F(w)wt dx

+
5∑

i=1

∫ T

τ

Li (s)ds, (4.56)

where σ = γ

22q−1

( 1
2 − Cq

)
. We also recall that all the terms Li provide compact

contribution. Thus, the energy inequality (4.55) is the desired final energy inequality
driven by a force F modulo compact terms. In fact, this can be summarized as follows:

Substituting the integrals of the terms L1, L2, L3, L4 and L5 in (4.56) and using
that Lρ+2(�) ↪→ L2(�), we obtain the second energy inequality

Ew(T ) +
∫ T

τ

[σ‖wt‖2(q+1) + 2εq ||wt ||2]ds

≤ Ew(τ) −
∫ T

τ

∫
�

F(w)wt dxds + CB,T sup
0≤s≤T

‖w(s)‖ρ+2. (4.57)

Step 3: Reconstruction of the L1-norm for full potential and kinetic energy. This
is accomplished, as usual, by standard equipartition of energy with the multiplier
M(t) = I . A first step in reconstructing kinetic energy is to integrate (4.57) from 0
to T . This yields:

T Ew(T ) +
∫ T

0

∫ T

τ

[σ‖wt‖2(q+1) + 2εq ||wt ||2]dsdτ

≤
∫ T

0
Ew(τ)dτ −

∫ T

0

∫ T

τ

∫
�

F(w)wt dxdsdτ + CB,T sup
0≤s≤T

‖w(s)‖ρ+2.

(4.58)
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Now, multiplying the equation in (4.29) by w and integrating over � × [0, T ], we
obtain

∫ T

0
Ew(s)ds = 2

∫ T

0
‖wt‖2 +

4∑
i=1

∫ T

0
L̃i (s)ds, (4.59)

where

L̃1(t) = −
∫

�

F(w)wdx,

L̃2(t) = − γ

2

[
||U 1||2q

H + ||U 2||2q
H + 2εq ,

] ∫
�

wtwdx,

L̃3(t) = − γ

2

[
||U 1||2q

H − ||U 2||2q
H

] ∫
�

[
u1

t + u2
t

]
wdx,

L̃4(t) = − d

dt

∫
�

wtwdx .

Since all the terms represented by Li are of lower order, it is easy to see that

4∑
i=1

∫ T

0
L̃i (s)ds ≤ CB,T sup

0≤s≤T
‖w(s)‖ρ+2.

Hence, returning to (4.59), we get

∫ T

0
Ew(s)ds ≤ 2

∫ T

0
‖wt‖2ds + CB,T sup

0≤s≤T
‖w(s)‖ρ+2. (4.60)

Combining (4.58) and (4.60), we obtain that

T Ew(T ) +
∫ T

0
Ew(s)ds +

∫ T

0

∫ T

τ

[σ‖wt‖2(q+1) + 2εq ||wt ||2]dsdτ

≤ 4
∫ T

0
‖wt‖2ds −

∫ T

0

∫ T

τ

∫
�

F(w)wt dxdsdτ + CB,T sup
0≤s≤T

‖w(s)‖ρ+2.

(4.61)

From Hölder inequality with q
q+1 + 1

q+1 = 1, we have

4
∫ T

0
‖wt‖2ds ≤ 4T

q
q+1

(∫ T

0
‖wt‖2(q+1)ds

) 1
q+1

.

Using (4.57) with τ = 0, we get
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∫ T

0
[σ‖wt‖2(q+1) + 2εq ||wt ||2]ds ≤ Ew(0) +

∣∣∣∣
∫ T

0

∫
�

F(w)wt dxds

∣∣∣∣
+ CB,T sup

0≤s≤T
‖w(s)‖ρ+2.

Returning to (4.61), we obtain

T Ew(T ) +
∫ T

0
Ew(s)ds +

∫ T

0

∫ T

τ

[σ‖wt‖2(q+1) + 2εq ||wt ||2]dsdτ

≤ 4T
q

q+1

σ
1

q+1

[
Ew(0) +

∣∣∣∣
∫ T

0

∫
�

F(w)wt dxds

∣∣∣∣ + CB,T sup
0≤s≤T

‖w(s)‖ρ+2

] 1
q+1

+
∣∣∣∣
∫ T

0

∫ T

τ

∫
�

F(w)wt dxdsdτ

∣∣∣∣ + CB,T sup
τ≤s≤T

‖w(s)‖ρ+2. (4.62)

which is our formula for reconstructing the L1-norm of the full energy.
Step 4: Final proof of Proposition 4.6. There is a T > 0 so that the energy Ew(T )

can be made arbitrarily small modulo compensated compactness functional involving
F(w)wt . Indeed, it follows from (4.62) that

Ew(T ) ≤ 4

σ
1

q+1 T
1

q+1

[
Ew(0) +

∣∣∣∣∣
∫ T

0

∫
�

F(w)wt dxds

∣∣∣∣∣ + CB,T sup
0≤s≤T

‖w(s)‖ρ+2

] 1
q+1

+ 1

T

∣∣∣∣∣
∫ T

0

∫ T

τ

∫
�

F(w)wt dxdsdτ

∣∣∣∣∣ + CB,T sup
0≤s≤T

‖w(s)‖ρ+2.

Using that g(s) = s
1

q+1 is a concave function that satisfies g(s + r) ≤ g(s) + g(r),
we obtain that

Ew(T ) ≤ 4

σ
1

q+1 T
1

q+1

Ew(0)
1

q+1 + CB,T sup
0≤s≤T

‖w(s)‖
1

q+1
ρ+2

+ 1

T

∣∣∣∣∣
∫ T

0

∫ T

τ

∫
�

F(w)wt dxdsdτ

∣∣∣∣∣ + 4

σ
1

q+1 T
1

q+1

∣∣∣∣∣
∫ T

0

∫
�

F(w)wt dxds

∣∣∣∣∣
1

q+1

.

Therefore, taking C = 4

σ
1

q+1
we obtain (4.50). This proves Proposition 4.6 with the

constants independent on ε > 0. ��
Proposition 4.7 (Asymptotic smoothness)Let us assume the hypotheses ofProposition
4.6. Then, the dynamical system (H, Sε(t)) is asymptotically smooth.

Proof The proof is based on arguments set out by Chueshov and Lasiecka [8, Sect.
3.4]. From inequality (4.50), using that 1

2 ||Sε(t)(U 1
0 ) − Sε(t)(U 2

0 )||2H ≤ Ew(t) and
Ew(0) ≤ CB , we have
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||Sε(T )(U 1
0 ) − Sε(T )(U 2

0 )||2H ≤ CB

T
1

q+1

+ CB,T sup
0≤s≤T

‖u1(s) − u2(s)‖
1

q+1
ρ+2

+ 2

T

∣∣∣∣
∫ T

0

∫ T

τ

∫
�

F(w)wt dxdsdτ

∣∣∣∣
+ 2C

T
1

q+1

∣∣∣∣
∫ T

0

∫
�

F(w)wt dxds

∣∣∣∣
1

q+1

.

Note that, for any fixed ρ > 0, there exists TB > 0 such that CB

T
1

q+1
B

< ρ and

||Sε(T )(U 1
0 ) − Sε(T )(U 2

0 )||2H ≤ ρ + �B,T ,ρ(U 1
0 , U 2

0 ), for T ≥ TB,

(4.63)

where �B,T ,ρ : B × B → R is defined by

�B,T (U1
0 , U2

0 ) := CB,T sup
0≤s≤T

‖u1(s) − u2(s)‖
1

q+1
ρ+2

+ 2

T

∣∣∣∣∣
∫ T

0

∫ T

τ

∫
�

[
f (u1(s)) − f (u2(s))

]
[u1t (s) − u2t (s)]dxdsdτ

∣∣∣∣∣

+ 2C

T
1

q+1

∣∣∣∣∣
∫ T

0

∫
�

[
f (u1(s)) − f (u2(s))

]
[u1t (s) − u2t (s)]dxds

∣∣∣∣∣
1

q+1

,

where all the constants are independent on ε > 0. Let U n = (un, un
t ) be the corre-

sponding solution of U n
0 = (un

0, un
1) ∈ B, n ∈ N. From bounds ||U n||H ≤ C , the

corresponding solution U n(t) = (un(t), un
t (t)) satisfy (on a subsequence):

{
un → u weakly-star in L∞(

s, T ; W2
)
,

un
t → ut weakly-star in L∞(s, T ; W0),

(4.64)

and from the Aubin-Lions compactness theorem (see e.g. Simon [22]), we also have

un → u strongly in C([s, T ]; W0), (4.65)

un → u strongly in C([s, T ]; L p(�)), (4.66)

for p < 4
n−4 where we use the compact embedding W0 ↪→ L p(�). From compact

embedding W2 ↪→ Lρ+2(�), we have

lim
n→∞ lim

m→∞ sup
t∈[0,T ]

‖um(s) − un(s)‖
1

q+1
ρ+2 = 0. (4.67)
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On the other hand, by using Lemma 8.1 in Lions and Magenes [16] (see on p. 275
therein), (4.64) also implies that un is bounded in Cs

(
s, T ; W2)

)
, and then un(t) is

bounded in W2 for all t ∈ [s, T ]. From this and (4.65) one gets

un(t) → u(t) weakly in W2, s ≤ t ≤ T , (4.68)

and due to the compact embedding theorem, we infer

f̂
(
un(t)

) → f̂ (u(t)) strongly in L1(�), s ≤ t ≤ T . (4.69)

where we remember that f̂ (u) = ∫ u
0 f (τ )dτ . Also, from (4.64), assumptions on f

and again (4.65), we have

(
f
(
un)

, un
t

) → (
f (u), ut

)
strongly in L1(s, T ). (4.70)

Now, regarding that

∂

∂t

∫
�

f̂
(
un(x, t)

)
dx = (

f
(
un(t)

)
, un

t (t)
)
,

we get

∫ t

s

(
f (un(τ )), un

t (τ )
)
dτ =

∫
�

f̂ (un(x, t))dx −
∫

�

f̂ (un(s, x))dx .

From this identity (which also holds true for u) and from the limits (4.69)–(4.70), we
finally arrive at

lim
n→∞ lim

m→∞

∫ T

s

(
f
(
un(t)

) − f
(
um(t)

)
, un

t (t) − um
t (t)

)
dt

= lim
n→∞

∫
�

f̂
(
un(x, T )

)
dx + lim

m→∞

∫
�

f̂
(
um(x, T )

)
dx

− lim
n→∞

∫
�

f̂
(
un(x, s)

)
dx − lim

m→∞

∫
�

f̂
(
um(x, s)

)
dx

− lim
n→∞ lim

n→∞

∫ T

s

∫
�

f
(
un(t, x)

)
um

t (x, t)dxdt

− lim
n→∞ lim

n→∞

∫ T

s

∫
�

f
(
um(x, t)

)
un

t (x, t)dxdt

= 2
∫

�

f (u(x, T ))dx − 2
∫

�

f (u(x, s))dx

− 2
∫ T

s

(
f (u(t)), ut (t)

)
dxdt

= 0. (4.71)
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where the convergence is independent on ε > 0. Hence, using (4.67) and (4.71), we
obtain

lim inf
m→∞ lim inf

n→∞ �ε,B,T ,ρ(U n
0 , U m

0 ) = 0,

uniformly in ε > 0. Therefore, from Theorem A.2 (see Appendix A) the dynamical
system (H, Sε(t)) is asymptotically smooth with mesure of noncompactnesss inde-
pendent of ε > 0. ��

4.7 Upper-semicontinuity: case� → 0

Proposition 4.8 Let ε ∈ [0, ε0). Under the assumptions ofTheorem3.3, let us consider
an arbitrary bounded set B ⊂ H and denote by Sε(t)U0 = (uε(t), uε

t (t)) the solution
corresponding to initial data U0 = (u0, u1) ∈ B. Then, there exists a positive non-
decresasing function P(t) = P(t, B) such that

||Sε(t)U0 − S0(t)U0||H ≤ P(t)ε2, t > 0. (4.72)

Proof For simplicity, we denote S0(t)U0 = (u(t), ut (t)) and set wε = uε − u. Then,
wε is a solution (in the mild and strong sense) of the following problem

{
wε

t t + λ�2wε − μ�wε + γ
2 �1w

ε
t + γ

2 �2[uε
t + ut ] + F(wε) = 0,

wε(0) = 0, wε
t (0) = 0,

(4.73)

where F(wε) = f (uε) − f (u) and

�ε
j = Eε(U

ε)q + (−1)1− jE(U )q , j = 1, 2.

Taking the multiplier wε
t in (4.73), we get

1

2

d

dt
Eε(t) + γ

2
�ε

1(t)‖wε
t ‖2 = I ε

1 + I ε
2 , (4.74)

where

Eε(t) = ‖wε
t ‖2 + λ‖�wε‖2 + μ‖∇wε‖2,

I ε
1 = −

∫
�

F(wε)wε
t dx,

I ε
2 = −γ

2
�ε

2(t)
∫

�

[uε
t + ut ]wε

t dx .

From Hölder inequality with ρ
2(ρ+1) + 1

2(ρ+1) + 1
2 = 1 and embedding W2 ↪→

L2(ρ+1)(�), we have

|I ε
1 | ≤ CB‖�wε‖‖wε

t ‖ ≤ CB Eε(t).
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Using that

Eε(U
ε) − E(U ) = ||U ε ||2H − ||U ||2H + ε,

we have

|I ε
2 | =

∣∣∣∣qγ

2

∫ 1

0

[
θEε(U

ε) + (1 − θ)E(U )
]q−1

dθ
[ ||U ε ||2H − ||U ||2H

] ∫
�

[uε
t + ut ]wε

t dx

+ ε
qγ

2

∫ 1

0

[
θEε(U

ε)q + (1 − θ)E(U )
]q−1

dθ

∫
�

[uε
t + ut ]wε

t dx

∣∣∣∣
≤ CB ||U ε − U ||H‖wε

t ‖ + ε CB‖wε
t ‖ ≤ CB Eε(t) + ε2

2
.

Returning to (4.74), we obtain

d

dt
Eε(t) ≤ CB Eε(t) + ε2. (4.75)

From Gronwall’s lemma, we get

Eε(t) ≤ eCB t
[

Eε(0) + ε2t
]
. (4.76)

Using that

wε(0) = wε
t (0) = 0 and ||Sε(t)U0 − S0(t)U0||2H ≤ Eε(t),

from (4.76), we find the following inequality

||Sε(t)U0 − S0(t)U0||2H ≤ ε2 teCB t , t > 0

which proves inequality (4.72) withP(t) := teCB t and, therefore, completes the proof
of Proposition 4.8. ��

4.8 Proofs of Theorems 3.2, 3.3, 3.4 (completion)

Proof of Theorem 3.2: The conclusion of Theorem 3.2 follows by combining Propo-
sition 4.5 with the abstract Theorem A.5 and Theorem A.6 given in Appendix A.

��
Proof of Theorem 3.3-(i): Corollary4.3 guarantees that the dynamical system (H, S0(t))
is dissipative and Proposition 4.7 ensures that (H, S0(t)) is asymptotically smooth.
Here, the main issue is to trace the asymptotic behavior of measures of non-
compactness. Hence the fact that the dynamical system (H, S0(t)) associated with
the problem (1.2)–(1.4) has a compact global attractor {A0} is a direct application of
Theorem A.1. ��
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Proof of Theorem 3.3-(ii): The characterization of the attractor as A0 = Mu(N0) fol-
lows from the abstract TheoremA.4, after establishing gradient property for the system
(H, S0(t)) is gradient. The latter is established in Proposition 4.1. ��

Proof of Theorem 3.4: Again from Corollary 4.3, we obtain

⋃
0≤ε<ε0

Aε ⊂ B,

where B is an absorbing ball for the semigroup Sε(t) for each ε ≥ 0. Also, from
Proposition 4.8 the semigroup Sε(t) → S0(t) uniformly on bounded subsets B ofH.
Therefore, the conclusion follows from Theorem A.7. ��
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A Appendix: a short review on long time behavior of evolution
operators

In order to keep this work self-contained, we find convenient to recall several defini-
tions characterizing a long time behavior of dynamic evolutions such as Sε(t). This
can be found in many references, including [1, 8, 9, 11, 21, 25].

A.1 Definitions

Let (X , S(t)) be a dynamical system, where X is a Banach space.

Definition A.1 A global attractor for (X , S(t)) is a compact set A ⊂ X that is fully
invariant and uniformly attracting, that is, S(t)A = A for all t ≥ 0 and for every
bounded subset B ⊂ X

distX (S(t)B,A) = sup
x∈S(t)B

inf
y∈A d(x, y) → 0 as t → ∞.
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Definition A.2 A bounded set D ⊂ X is an absorbing set for S(t) if for any bounded
set B ⊂ X , there exists tB ≥ 0 such that

S(t)B ⊂ D, ∀ t ≥ tB,

which defines (X , S(t)) as a dissipative dynamical system.

Definition A.3 (X , S(t)) is said to be (ultimate) dissipative iff it posesses a bounded
absorbing set B. If X is a Banach space, then a value R > 0 is said to be a radius of
dissipativity of (X , S(t)) iff B ⊂ {x ∈ X : ‖x‖X ≤ R}.
Definition A.4 We say that S(t) is asymptotically smooth in X , if for any bounded
positive invariant set B ⊂ X , there exists a compact set K ⊂ B, such that

distX (S(t)B, K ) = 0 as t → ∞.

Definition A.5 The fractal dimension of a compact set K ⊂ X is defined by

dimK X
f = lim sup

ε→0

ln(n(K , ε))

ln(1/ε)
,

where n(X , ε) is the minimal number of closed balls of the radius ε which cover the
set K .

Definition A.6 LetN be the set of stationary points of the dynamical system (X , S(t)):

N = {v ∈ X : S(t)v = v for all t ≥ 0}.

We define the unstable manifold Mu(N ) emanating from set N as a set of all y ∈ X
such that there exists a full trajectory ϒ = {u(t) : t ∈ R} with the properties

u(0) = y and lim
t→−∞ distX (u(t),N ) = 0.

Definition A.7 The dynamical system (X , S(t)) is said to be gradient if there exists a
strict Lyapunov function for (X , S(t)) on the whole phase space X .

Definition A.8 Let X , Y be two reflexive Banach spaces with X compactly embedded
in Y and set H = X × Y . Consider the dynamical system (H , S(t)) given by an
evolution operator

S(t)z = (u(t), ut (t), ), z = (u0, u1) ∈ H , (A.1)

where the functions u and θ possess the regularity

u ∈ C(R+; X) ∩ C1(R+; Y ), (A.2)
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Then one says that (H , S(t)) is quasi-stable on a set B ⊂ H if there exist a compact
seminorm nX on X and nonnegative scalar functions a(t) and c(t) locally bounded in
[0,∞), and b(t) ∈ L1(R+) with limt→∞ b(t) = 0, such that

‖S(t)z1 − S(t)z2‖2H ≤ a(t)‖z1 − z2‖2H , (A.3)

and

‖S(t)z1 − S(t)z2‖2H ≤ b(t)‖z1 − z2‖2H + c(t) sup
0<s<t

[
nX (u1(s) − u2(s))

]2
, (A.4)

for any z1, z2 ∈ B. The inequality (A.4) is often called stabilizability inequality.

Quasi-stable systems enjoy many interesting properties that include finite dimension
and smoothness, cf. [8, 9].

A.2 Abstract results

Finally, we provide several abstract theorems pertaining to long time-behavior of
dynamical systems, which have been used in the process of proofs related to Sects. 3–
4.

It is well known that the properties of dissipativity and asymptotic smoothness
are critical for proving existence of global attractors. In fact, the following result is
well-known [8, 9].

Theorem A.1 (Theorem 2.3, [8]) Let S(t) be a dissipative semigroup defined on a
metric space H. Then S(t) has a compact global attractor in H if and only if it is
asymptotically smooth in H.

The following result establishes a convenient criteria for asymptotic smoothness of
a dynamical system.

Theorem A.2 (Theorem7.1.11, [9])Let (X , S(t)) be a dynamical system on a complete
metric space X endowed with a metric d. Assume that for any bounded positively
invariant set B in X and for any ε > 0 there exists T = Tε,B such that

d(S(T )y1, S(T )y2) < ε + �ε,B,T (y1, y2), yi ∈ B, (A.5)

where �ε,B,T (y1, y2) is a functional defined on B × B such that

lim inf
m→∞ lim inf

n→∞ �ε,B,T (yn, ym) = 0 (A.6)

for every sequence yn from B. Then (X , S(t)) is an asymptotically smooth dynamical
system.

The following result also guarantees that quasi-stable systems are also asymptoti-
cally smooth.
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Proposition A.3 (Proposition 7.9.5, [9]) Let Assumptions (A.1) and (A.2) be in force.
Assume that the dynamical system (H , S(t)) is quasi-stable on every bounded forward
invariant set B in H. The, (H , S(t)) is asymptotically smooth.

The following result gives the characterization of the attractor for gradient systems.

Theorem A.4 (Theorem 7.5.6, [9]) Let a dynamical system (X , S(t)) possess a com-
pact global attractor A. Assume that there exists a strict Lyapunov function on A.
Then A = Mu(N ). Moreover, the global attractor A consists of full trajectories
ϒ = {u(t) : t ∈ R} with the properties

lim
t→−∞ distX (u(t),N ) = 0 and lim

t→+∞ distX (u(t),N ) = 0.

The next two results show that quasi-stable systems enjoy nice properties that
include both finite-dimensional and smoothness.

Theorem A.5 (Theorem 7.9.6, [9]) Assume that the dynamical system (H , S(t)) pos-
sess a compact global attractor A and is quasi-stable on A. Then the atractor A of
has a finite fractal dimension dim H

f A.

Theorem A.6 (Theorem 7.9.8, [9]) Assume that the dynamical system (H , S(t)) pos-
sess a compact global attractor A and is quasi-stable on A. Moreover, we assume that
(A.4) holds with the function c(t) possessing the property c∞ = supt∈R+ c(t) < ∞.
Then any full trajectory {(u(t); ut (t); θ(t)) : t ∈ R} that belongs to the global attrac-
tor enjoys the following regularity properties,

ut ∈ L∞(R; X) ∩ C(R; Y ), utt ∈ L∞(R; Y ), θ ∈ L∞(R; Z).

Moreover, there exists R > 0 such that

|ut (t)|2X + |utt (t)|2Y + |θt (t)|2Z ≤ R2, t ∈ R,

where R depends on the constant c∞, on the semigroup ηX in Definition A.8, also on
the embedding properties of X into Y .

Finally, the following abstract result deals with upper-semicontinuity of attractors,
see for instance the books by Robinson [21] and Chueshov [7].

Theorem A.7 (Theorem 10.16, [21]; Proposition 2.3.30, [7]) Assume that for each
ε ∈ [0, ε0), ε0 > 0, the semigroup Sε(t) have a global attractor Aε ⊂ H such that:

(i) the attractors are uniformly bounded, i.e.: there exists a bounded set B0 ⊂ H such
that Aε ⊂ B0 for all ε ∈ [0, ε0);

(ii) there exists t0 > 0 such that the semigroup Sε(t)x converge to S0(t)x as ε → 0
for every t ≥ t0 uniformly with respect to x ∈ B0, i.e.:

sup
x∈B0

|Sε(t)x − S0(t)x | → 0 as ε → 0+.
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Then, the Hausdorff semidistance

distH (Aε,A0) → 0 as ε → 0+.
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