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Modern data center storage systems are invariably networked to allow for consolidation and flexible man-
agement of storage. They also include high performance storage devices based on flash or other emerging
technologies, generally accessed through low-latency and high throughput protocols such as NVMe (or its
derivatives) carried over the network. With the increasing complexity and data-centric nature of the applica-
tions, properly configuring the quality of service (QoS) for the storage path has become crucial for ensuring
the desired application performance. Such QoS is substantially influenced by the QoS in the network path, in
the access protocol, and in the storage device. In this paper, we define a new transport level QoS mechanism
for the network segment and demonstrate how it can augment and coordinate with the access level QoS
mechanism defined for NVMe, and a similar QoS mechanism configured in the device. We show that the
transport QoS mechanism not only provides the desired QoS to different classes of storage accesses but is also
able to protect the access to the shared persistent memory (PM) devices located along with the storage but
requiring much lower latency than storage. We demonstrate that a proper coordinated configuration of the 3
QoS’es on the path is crucial to achieve the desired differentiation depending on where the bottlenecks appear.
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1 Introduction

The insatiable demand for accessing ever more data with very low latency makes the storage
systems central to the performance of nearly all enterprise applications. Fortunately, the rapid
evolution in storage technologies has made it possible to continuously improve the size, speed, cost,
and flexibility of storage systems. In particular, mechanical hard disk drives (HDDs) have given way
to much faster solid state disks (SSDs) for storing much of the popular data, while both technologies
continue to evolve rapidly. There are even faster storage technologies whose latencies approach
the DRAM memory, and this has led to the notion of storage class memory (SCM), which refers
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Fig. 1. (a)End-to-end data center organization and (b) comparison between local and end-to-end storage access

to the combined features of nonvolatility (persistence) and speeds approaching that of memory.
Thus, SCM can truly fill the gap between storage and memory. For example, a fast SCM could be
organized and accessed just like DRAM, meaning that the CPU directly accesses the SCM in small
units (a few cachelines at a time) and waits for the access to complete. It can also be organized
as storage, where the transfer sizes are large (e.g., 4KB or larger) and the CPU does not wait for
IO completion. Fast SCM accessed like a memory (henceforth called persistent memory or PM) is
attractive because of its expected lower cost compared to DRAM.

1.1 Data Center Storage Organization

Storage systems are invariably organized as separate subsystems, known as storage servers, each
hosting many storage devices. The storage server manages these devices and provides the ability to
allocate storage and provide access to them without regard to how the allocated space is distributed
over various devices. Thus, all storage accesses from any application go over the network via
network switches to the storage servers, as shown in Fig.1a. The emerging persistent memory
(PM), which provides nonvolatile storage with latencies of about an order of magnitude slower
than DRAM (but much faster than storage) can also benefit from being installed in a storage server
and accessed over the network. Although latency considerations would suggest that the PM be
deployed on each application server locally, the shared remote access not only allows on-demand
access to PM but also incurs overall lower cost. However, the storage and PM accesses in such a
case would share the same network and thus require appropriate QoS so that a low latency can be
maintained for PM even when the storage accesses experience congestion.

It is important to note that modern storage devices accessed over the network are fast enough
for the network latency to become a significant part of the overall access latency, which was
not an issue for the older HDD-based storage. The oversized impact of network latency is also
facilitated by highly efficient storage access protocols such as the Non-Volatile Memory Express
(NVMe) protocol [9]. As shown in Fig.1b, when accessing an SSD locally, the access latency is of
the range of 30-100us, however, a TCP based network going through multiple switches can add
substantially to this latency even without network congestion. Furthermore, with current SSDs
already exceeding 1M ops/sec (or 32 Gb/sec), a few SSDs can easily congest even a 100 Gb/sec link.
This has two implications: (1) Network congestion episodes could occur rather frequently, and (2)
Storage side congestion is less likely since the increasing storage demands would generally require
many more SSDs to the storage server than what the network can handle at peak transfer rate.

1.2 End to End QoS Differentiation

With increasing demands of large amounts of data to be processed online, it is important to
differentiate between various applications in terms of their storage access latency and throughput.
While the applications may have specific high-level Service Level Agreements (SLAs), it is difficult
to translate those directly into QoS differentiation since enforcing it involves many factors beyond
network bandwidth, and includes computing resources, storage side hierarchy through which the
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data flows, host side caching, etc. Thus, we consider QoS differentiation only in terms of relative
treatment of different classes of applications (e.g., relative throughputs). We will assume that the
applications have already been classified into a small number of classes, each of which may be
further designated as latency or throughput sensitive. We then specify the relative treatment in
terms of the four key components on the storage path: host-side, network, storage protocol, and
the device. The SLA for the latency sensitive application class often specifies some bounds on the
tail latency (e.g., 99 percentile latency), but latencies can be controlled directly only for classes
that are given absolute priority over all others and their offered rate remains low enough that they
can always be accommodated at the cost of others. Beyond this, while it is possible to enforce
relative latencies (instead of relative throughputs), this is meaningful only for brief congestion
episodes, since the queue lengths will continue to increase under sustained congestion. The relative
throughput control does work under sustained congestion and would also impact the latencies
under transient episodes based on the difference between offered and carried load for each class.

One issue concerning the enforcement of relative throughputs is the coordination across multiple
resources in the path. By using the same relative throughputs, we can ensure that the resource
that is most bottlenecked will automatically determine the end-to-end throughput of each class
without requiring further coordination. However, enforcing the same ratios end to end does require
a tagging mechanism so that the treatment is conveyed and followed consistently.

1.3 Our Contributions

We make the following contributions towards end-to-end (E2E) QoS for modern storage systems,
where our focus is on the differentiation (or relative treatment) of different classes of activities
rather than guaranteed performance.

A. We propose a mechanism to introduce two QoS-aware transport protocols called QTCP and
QRDMA that introduce QoS differentiation into existing base protocols called DCTCP and
DCQCN respectively. We evaluate them for both throughput sensitive and latency sensitive
storage traffic. We show that they cover a much more general scenario and consistently
provide stable and desired differentiation in all cases. We also propose a discrete-time analytic
model for both and demonstrate agreement with the experimental results.

B. We consider the coexistence of QTCP (used for storage) and QRDMA (used for PM) to emulate
mixed PM/storage network traffic and show how we can protect the QRDMA PM traffic from
QTCP traffic and achieve PM latency limited only by the unavoidable head-of-the-line (HoL)
blocking on the storage receive end that accepts both storage and PM requests. To the best of
our knowledge, this is the first detailed examination of mixed PM/storage network traffic.

C. We integrate a comprehensive storage device model (consisting of SSD internals), access
protocol (i.e., NVMe) model, and the detailed implementation of QTCP/QRDMA to enable
experimentation with the implementation of E2E QoS differentiation. We do this in the
simulation domain for several reasons: the ability to modify SSD behavior (which is impossible
in reality, since all SSD internals are invariably proprietary), avoiding the difficulties associated
with kernel programming needed to modify network protocols, and the ability to change
things freely. Our models do make use of available software packages that are extremely
comprehensive.

D. By using the integrated model, we explore the consequences of having or not having QoS
treatment in various places and demonstrate when coordinated QoS is needed and how it
affects performance. To the best of our knowledge, this is the first such exploration and it
provides important insights into how E2E QoS should be configured for networked storage.

The rest of the paper is organized as follows. Section 2 discusses the background and motivation
of our work coupled with the limitations of existing works while section 3 discusses our proposed
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Table 1. Common Abbreviations
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SNIA Storage Networking Industry Assoc. HDD/SSD Hard Disk/Solid State Drive

FTL Flash Translation Layer SLC/MLC Single/Multi (2) Level Cell Flash
TLC/QLC Triple/Quad Level Cell Flash SCM Storage Class Memory

PM Persistent Memory SQ/CQ Submission / Completion Queue

LBA Logical Block Address WRR Weighted Round Robin

PFC Priority Flow Control NVMe Nonvolatile Memory Express Interface
NVMe-oF NVMe over Fabric Interface ECN Explicit Congestion Notification

CNP Congestion Notification Packet HOL Head of the Line

E2E End-to-End QoS Quality of Service

mechanisms. We model our proposed technique in section 3.1.2, followed by extensive evaluation
in section 4. We additionally discuss some more works of interest and their limitations in section 5.
The paper is concluded in Section 6. Table 1 includes some of the key abbreviations used in this
paper.

2 Background and Motivation

In this section, we discuss the necessary background relating to the host-to-device storage access
path. There are 4 elements in this path: host-side storage stack, storage access protocol, network
transport for storage access protocol, and storage device itself. In each case, we point out the QoS
features that are available or in need of development. This discussion would then motivate the
discussion in the rest of the paper about mechanisms that we have either invented or harnessed to
configure a consistent E2E QoS treatment of storage request of various sorts.

2.1 Host Level Storage Stack

The host side of storage interface is quite complex and involves multiple layers. In most cases, the
application’s interaction with storage is through a file-system that the host has defined over the
storage space allocated for it. The file system maps the IO requests to the allocated storage, which
is viewed simply as a sequence of “logical blocks". These are typically 4KB chunks and addressed
using logical block addresses or LBAs. The block layer then interacts with the NVMe layer to submit
the LBA 1/O requests and retrieve completions. For efficiency, the host maintains a “page cache"
in the DRAM that holds the recently accessed and popular blocks (or pages). In general, the page
cache is quite large and helps reduce IO latency substantially, in addition to allowing the real IO to
be done in much larger chunk sizes (e.g., default of 16KB for Linux). In terms of QoS, while it is
possible to give differentiated treatment to requests at multiple points in the host stack, the most
consequential is the page cache. In particular, an I/O request for a higher class may be allowed to
evict a chunk of lower QoS class in order to make room for the new read/write. While there are
many issues in how to do this well, these are all classical caching issues that we have chosen not to
investigate here. Instead, our focus is on EZE treatment of 10 requests that result in a device access.

2.2 High Performance Storage Interfacing

Given the need to serve very high throughput and low-latency storage devices, the storage access
protocols themselves need to be high performance. The NVMe (non-volatile memory express)
protocol [29] is one such complex protocol that supports many features relevant to SSDs, including
a differentiated queuing structure later shown in Fig.4. There are 5 queuing levels (admin, urgent,
high, medium, low), where the (single) "admin" queue is reserved for administrative commands
(highest priority), the “urgent” level is reserved for latency-centric IO operations that get strict
priority over others, and the remaining 3 are for throughput-centric traffic. The last 3 queues
operate according to weighted round-robin (WRR) scheduling, with high, medium, and low having
decreasing weight. Each level could have multiple submission queues, served in a round-robin
manner. We make use of this queuing structure in our exploration. In particular, for the mixed
situation involving both storage and PM, we use the “urgent" queue for PM requests. It is important
to note that the NVMe queuing differentiation does not dictate anything to the device itself - it is
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Fig. 2. Internal Architecture of an SSD
only used by the device to determine how many requests to remove from each queue and in what
order, upon each IO completion. How the device processes them is up to the device.

Extending the storage access over the network requires the local access protocol such as the
NVMe to be transported from the host to the device without changing the basic access semantics.
NVMe over Fabric (NVMe-oF) [30] provides this capability by encapsulating the submission and
completion queue entries into transport-independent “capsules" for transfer between the host and
the storage device. The capsule transport also puts the command queue in the memory of the device
controller, known as the Controller Memory Buffer (CMB), rather than the host memory, thereby
further improving latency. The completion queue stays with the host. NVMe-oF is intended to run
on top of an E2E network transport so that the storage server can be located anywhere on the data
center network and still be accessible to all the hosts. To maintain high throughput, the transport
must be not only reliable but also loss-free, since the management of packet loss causes substantial
disruptions in the delivery of data and hence stalls for the applications. Thus, the clear choices for
appropriate transport are lossless versions of TCP and a lossless implementation of RDMA over
routable Ethernet network (i.e., RoCEv2, which implements RDMA protocol on top of IP layer). For
data center use, there are two widely used [5] [43] protocols that we shall use as baselines. One
is the so-called Data Center TCP (DCTCP) [2] and the other is Data Center Quantized Congestion
Notification (DCQCN)[49]. The latter builds a lossless RDMA service on top of RoCEv2 by using
some data center Ethernet features as described later.

2.3 Characteristics of Emerging Storage Technologies

The dominant storage devices in modern systems are SSDs which are based on the “flash" technology.
The key characteristic of this technology is that it does not allow overwrites. Thus, a "cell" of a
flash (which can store 1, 2, 3 or 4 bits depending on technology) must first undergo a rather slow
erase operation before its stored value can be changed. Frequent erases are avoided by writing the
updated data elsewhere until the fraction of fresh cells falls below some threshold. Managing such
out-of-place writes introduces significant complexity including - (a) the need to distinguish between
the logical address that is apparently written to and the real (or physical) address where the write
occurs, and (b) creation of “garbage” in form of obsolete data, which must be periodically collected,
those cells erased, and returned to the fresh pool. Furthermore, a cell can only be written a certain
number of times (known as its endurance limit) before it wears out, and it is thus important to spread
the write out over all the cells so that they age similarly. Yet another complexity comes from the
organization of the cells. Cells are grouped into “pages", usually of size 4-16KB, and all reads/writes
occur at this granularity. Fig.2 shows backend details of the SSD where the aforementioned pages
are further grouped into “blocks" (or flash-blocks, different from storage system notion of a block),
of sizes 128KB-8MB. Erasures must occur at the level of flash-blocks, which introduces further
complexity. The flash-blocks are further grouped into “planes”, and an erasure generally blocks
the entire plane. Multiple planes form a chip-die, and a physical flash-chip is divided into multiple
dies. Each chip connects to the CPU/memory hub over one or more channels for data transfer. The
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lower-level structures (dies and planes) are also connected via internal busses that often become
bottlenecks.

These complex management tasks are carried out by the built-in firmware of the SSD known
as the Flash Translation Layer (FTL). FTL is generally vendor-specific and proprietary, although
open-source versions such as OpenSSD [31] do exist. Fig.2.s frontend shows the FTL interfaces with
the NVMe controller via a Host Interface Layer (HIL). The HIL transfers requests from the storage
interface queues (ex., the NVMe submission queues explained in 2.2) to a device level I/O buffer and
then passes on the requests to device queue managed by the FTL. Since the FTL performs read/write
at the granularity of a page, larger transfer requests are broken into “transactions"”, each of size
one page, before entering them into SSDs queues. Most implementations have no notion of QoS at
the device level, although a few rather weak mechanisms have been proposed and implemented
in a few SSDs. The best known of these is the notion of “write streaming" [35] [23] [24], wherein
the host provides hints to the FTL about the life-time of the flash-blocks, so they can be handled
more efficiently. This is neither a QoS mechanism, nor easy to implement reliably and thus has not
received much acceptance. One consequence of all the complexity is that the SSD tail latency can
stretch into several milliseconds, for example, when an IO is delayed by a long running garbage
collection.

In addition to flash, there are numerous other storage technologies that are in various stages of
development and commercialization [1], mostly with much lower latency and higher endurance
than flash. The commercially available ones include Intel’s Optane technology' and Kioxia’s XL-
flash technology. These technologies are appropriate for use both as normal storage (with access
latencies in the range 10 — 20 ps [46]) and also as PM with substantially lower access latencies,
typically less than 1ps. On the flash side, even the rather inexpensive SSDs available today are
capable of driving up to 25-35 Gb/sec IO throughput [10] with nominal latencies of under 100us [39].

With storage semantics, the PM access sizes will typically be large (e.g., 4KB), and the thread
requesting PM access will be switched out until the response is received. With the memory model,
the access sizes are typically a few cachelines (e.g., 128 or 256 bytes) and the CPU will stall until the
data is received. This makes the PM access latency crucial. A substantial network delay on the path
would render the memory model worthless. This is particularly true if the PM traffic has to compete
with storage traffic through the network. Thus, providing an urgent QoS to PM traffic becomes
essential. Assuming that the PM traffic forms only a small portion of the overall bottleneck link
capacity, it is desirable to not throttle the PM traffic at all during congestion episodes. Furthermore,
the switches (in addition to the endpoints) should also provide preference to the PM traffic. We will
show that such network level intervention can reduce the PM latency substantially.?

2.4 Network Issues for Remote Storage Access

As stated earlier, the high throughput of modern storage devices can easily congest even high-
speed 100 Gb/sec Ethernet links. Thus managing network congestion and providing differentiated
treatment under network congestion scenarios becomes a crucial part of the transport network
for storage access. We shall use the previously mentioned DCTCP and DCQCN as the baseline
transport protocols to build the QoS features because these protocols are published as IETF RFCs [5]
and available in some switch and NIC implementations[43].

Both DCTCP and DCQCN depend on the notification of congestion to the sending endpoint via
standard mechanisms. In case of DCTCP, it is the explicit congestion notification (ECN) and involves

IRecently Intel discontinued further development of Optane technology for business reasons, but has also released latest
SSDs using this technology

2All of these techniques may not provide low enough latency to make the memory model feasible, in which case, it may
need to use the storage model but with small transfers.
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2 bits in the packet header. One is set when any switch on the forward path experiences congestion,
defined as the queue length in the switch exceeding some predefined threshold. When the packet
reaches the receiver, it sets the second bit (the "echo" bit) to inform the sender of congestion via
TCP ACKs. For low latency, DCQCN is implemented on top of UDP (rather than TCP) and thus
does not have any ACKs. DCQCN still uses the ECN bit for marking packets at congested switches,
but instead of an ACK, the receiver sends an explicit congestion notification packet (CNP) to the
sender. DCQCN also utilizes the data center Ethernet QoS feature called PFC (priority flow control)
for selectively pausing the flow towards a congested destination. The standard PFC mechanism
operates at layer 2 and pauses the flows to all transport destinations on the link. DCQCN tackles
this issue by leveraging both the PFC and ECN mechanism.

As such neither DCTCP nor DCQCN are QoS aware, but we demonstrate how their dynamics
can be changed to make them QoS-aware. A key reason to consider DCQCN based protocol is to
provide low latency for the small transfers needed for remote PM access. However, when PM and
storage traffic share the same network, it is also important to give preferred treatment to PM traffic
at the switches as well. This is because the switch buffer is shared amongst multiple outgoing ports
and this could lead to HoL blocking. We shall propose a simple priority queuing mechanism for
this that can be implemented easily but does require the switches to recognize the PM traffic.

It may be noted that Ethernet networks do provide QoS features at layers 2 and 3, but they are
not useful for our purposes. In particular, the IP layer provides a standard mechanism called DSCP
(differentiated services code point), but was defined for wide area networks, with packet loss-centric
QoS treatment. Furthermore, DSCP defines a "hop-by-hop" QoS treatment (in each router), rather
than a uniform E2E treatment. Thus DSCP, as defined, is not useful for QoS differentiation. We
later on also discuss other QoS aware solutions (ex., HOMA, PDQ, L?DCT, D?TCP and D3) along
with their limitations in 5.2.

3 E2E QoS Differentiation in Networked Storage Transfers

In this section, we divide our E2E QoS discussion into three major parts. We first talk about our
proposed QTCP and QRDMA modifications in the network along with meeting QoS requirements
for ultra low latency traffic. Following this we discuss how we achieve QoS differentiation in the
storage end. Finally, we explore appropriate mechanisms to mark the network packets for E2E
configuration of QoS.

3.1 QoS Differentiation in the Network

3.1.1 QoS aware DCTCP and DCQCN (QTCP and QRDMA) We first define how the QoS metrics are
utilized by our proposed QTCP and QRDMA mechanisms in the network during a congestion
episode. The QoS differentiation is achieved by enforcing a relative ratio of either throughputs
or latencies depending on the objective (throughput or latency). We generally do not mix the
two, since that would result in undesired interactions; however, there could be one case, where
the combined treatment is meaningful: All latency sensitive classes are given strict priority over
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others, and then relative latencies are enforced for high priority classes, and relative throughput
for low priority classes. We assume that the bottleneck bandwidth is known as it can be estimated
from the techniques used in [7] while the target bandwidth is a predefined fraction of the available
bandwidth (depending on its bandwidth objective). For latency differentiation we consider the tail
latency objective to be defined by the same percentile value, ex. 90th percentile latency of 100us®,
while for throughput differentiation we consider the minimum bandwidth requirement of a flow.
As mentioned in 2.4, the ECN mechanism is used to detect congestion.

For our proposed mechanisms, we introduce a new QoS class-specific measure called Quality
Factor, denoted as Q; for a class i. It is defined as the ratio between the target bandwidth and the
actual available bandwidth of that class, where the available measured bandwidth is exponentially
smoothed over. Hence, Q; would then be defined as,

Qi = Air /A, where A}, = (1 = y)Aig + yAl,, i = 1.K (1)

Where, A/, and 4;; denote, respectively, the actual smoothed bandwidth and the target bandwidth,
while y is the smoothing factor. Q; is a unit-less metric as it is a ratio. A value of Q; < 1 denotes that
the flow in question has slack available, meaning that its corresponding window can be squeezed
or reduced to make way for other flows. Q; > 1 denotes that a deficit has been detected and the
flow’s window needs to be increased to meet its QoS requirements. The flow rate for each flow is
modulated separately as it is assumed that flows have separate connections.

We can similarly define Q; for tail latency too. However, in this case, the ratio is reversed to
preserve the understanding that a value of Q; < 1 denotes slack and Q; > 1 denotes deficit as
before. So in this case, Q; looks as follows,

Qi=L,/Liwhere L, = (1 —y)Lig+yLj, i=1.K (2)

Similar to DCTCP, the quantity of interest is the fraction of ACKs or CNPs received in an RTT
window that indicates congestion (i.e. ECN marked). This fraction can be monitored separately
for each flow with a unique QoS class, and we henceforth denote it as f;(n) for ith QoS class and
the nth RTT window. f;(n) can be rather unstable, and thus we use exponential smoothing over it,
exactly as in DCTCP/DCQCN. That is, if «;(n) denotes the smoothed congestion fraction of class i
at RTT n, we have:

ai(n)=(1-g)ai(n—1)+gfi(n—-1) (3)
where 0 < g < 1 is the smoothing constant, and by default is set as 0.5. It may be noted here that in
DCQCN, at most 1 explicit CNP is sent when there is congestion detected in the last interval, and
thus f;(n — 1) can only be 0 or 1.

DCTCP reduces the window per round-trip time (RTT) in proportion to the latest estimate of
a; such that in the limiting case of ¢; = 1, the window is halved. Hence the window controlling
mechanism is formulated as follows:

Wi(m) = Wi(n—1) (1= %) @

Similar to DCTCP and DCQCN, we use the value of ¢; i.e., the fraction of packets that are ECN
marked) along with our new metric Q; to modulate the flow rate for the different flows. We term
this modified version of DCTCP as QTCP and redefine the window size W; for a flow i as follows,

Wi(n—1) +1, No ECN
Wi(n) = {Wi(n-1)(1- %), @ 20andQ; >1 5)
Win-1)(1-3)Q;, @ >0andQ; <1

3In case the percentile value is different, we can attempt to estimate it using known methods such as Chebychev’s inequality
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In fact, if Q; = 1, the above equation reduces exactly to what is used by DCTCP/DCQCN. However,
in that case, no QoS distinction is possible as shown in our results later.

The above is applicable to every update interval, i.e., RTT. As shown in Fig.3, at every interval
QTCP checks for the fraction of ECN marked ACKs received, which signifies congestion. It refrains
from using the quality factor metric when there is no congestion and even when congestion is
encountered, but deficit is detected by the quality factor estimation (i.e., Q; > 1). The latter scenario
demonstrates that QoS requirement has not yet been met for the flow and so only the value of ¢; is
used for flow rate modulation. However, when a slack is detected, i.e., Q; < 1, the QoS requirement
has already been met and so the flow should be backing off to free resources for the other competing
flows whose QoS requirements have not been met.

For RDMA context, however, there is no concept of RTT as it is a connectionless protocol. Hence,
similar to DCQCN which updates the flow rate in every N microsecond intervals, our proposed
QRDMA also updates the flow rate in the same manner. The updated equations look as follows
where RC; is the current flow rate,

RCi(n—1), No ECN
RCi(n) = {RCi(n—1)(1 - %), a;>0and Q; > 1 (6)
RCi(n-1)(1-5)Q;, a;>0andQ; <1

Similar to traditional DCQCN, QRDMA also stores the current flow rate RC; as the target flow
rate RT; as soon as a congestion episode is detected. This is to aid the fast recovery and additive
increase for flow rate increase (when congestion period is over).

3.1.2  Analytical Modeling of QTCP and QRDMA We now model our proposed mechanisms QTCP
and QRDMA. We consider a Discrete Time Model (DTM) where the flow rate changes in every
update interval. Another possibility is the Fluid Flow Model (FFM) similar to the one used for the
analysis of DCTCP [4]. However, a fluid model assumes a continuous and incremental change
in all parameters including the fraction of marked packets, queue length, and the window size.
We believe that a discrete model can capture the dynamics better and is simpler since it needs
difference equations instead of differential equations. The simplicity is helpful since, unlike DCTCP,
we now need to write equations for each class, which results in a coupled system of equations.
Note that both FFM and DTM have their weaknesses since neither captures the precise behavior
of the system in terms of when things are updated. However, we show that DTM provides very
accurate results in all cases.

The current update slot for the DTM is termed as n i.e., the current time slot and it is assumed
that there are i = 1..I active connections, each of which belongs to a specific QoS class. The terms
class and connections are used interchangeably. If we consider the total capacity of a bottleneck
link to be C, then the share allocated to a class i during an update slot n can be denoted as C;(n),
such that ZLI C; = C. The queue length of class j as observed by an incoming class i packet at the
bottleneck egress port of the switch is denoted as qt(li.) (n) at an update interval n while the RTT is
denoted as R;(n). We also need to take into consideration the event that represents the state where
the switch queue buffer is at or beyond the threshold K. This is signified by e;(n) where i denotes
the class whose packet observes this event, thus resulting in its CE (congestion experienced) bit
being set. In the DTM, this event concerns the observed situation in the previous time slot. That is,

ei(n) =1

gl (n-1)2K @)

where I is the indicator function (1 if the condition is true, and 0 otherwise). Even though the
observed distribution of packets in the queue may be different for different incoming classes i,
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Table 2. Description of important terms used in our analysis

C; Allocated bandwidth to flow i R; Round Trip Time for flow i

w; Window size for flow i in number of packets | Q; Quality Factor for flow i

ri Ratio of bandwidth for flow i Gai Queue length observed by packet of flow i
d; Baseline latency a Fraction of ECN marked packets

we assume that the switch marks packets of all classes uniformly once it crosses the threshold K.
'j) (n) has a weak if not negligible dependence on this. Thus we can henceforth denote this
event (i.e., congestion detected) as just e(n). For our DTM, we also need not observe every single

event but just the probability p(n) that the queue is full. Which can be approximated as follows,

(n) = 1—% ifB(n-1) > K
P 0 ifB(n—1) <K

where B(n—1) = Zle qai(n—1).

We now estimate the latency L,;(n) experienced by a class i packet. It can be gauged as
Lai(n) = d; + qqi(n)/Ci(n) where the baseline latency is d;, which encompasses all delays which
are independent of queuing delay, for example, send/receive processing delay at the endpoints,
transmission, and propagation delay, and switch processing delay. It is assumed that the feedback
packets face negligible queuing delay, and the basic delays are symmetric in the two directions. That
is, R;(n) = d;. With QTCP, the feedback uses ACKs, which will be largely implicit if the backward
traffic rate is high, but may involve explicit ACKs whenever there are gaps in the backward traffic.
In either case, the queuing delay experienced by the feedback will be negligible. With QRDMA, the
ACKs are necessarily explicit but must be transmitted at the highest priority for it to work properly,
and thus should experience negligible queuing delay.

Note that the latency here does not include any application level latency which could grow until
a timeout, user abandonment, or service denial via admission control occurs.

Table2 consists of significant terms and their descriptions used in this analysis. We now consider
the two metrics of significance to us.

Throughput: Every class i is allocated a given ratio of bandwidth r;, relative to r; i.e., the
bandwidth of class 1 which is unity. Hence, independent of the update slot, C; = C.r;/}}; r;. We can
safely assume that no packets are dropped from our previous discussion and hence the experienced
throughput can be estimated from the number of transmitted packets W; (t—R;) during the preceding
update slot R;(t — R;), i.e., 4;(n) = Wi(t — R;)/R;(t — R;). Hence the quality factor for a class i can
be described as Q;(n) = C;/A;(n)

Latency: As discussed before, only queuing latency is of importance for our DTM. It is assumed
that the QoS classes are ordered according to a score, such that class 1 is the most significant. The
target latency L;; for all the classes needs to be large enough to ensure that they are attainable.
It is to be remembered that the switches use First Come First Serve (FCFS) treatment for all
incoming packets. * Hence the latency can be described as L;(n) = d + qq;(t — R;) /Ci(t — R;) where
Ci(n) = W;(n)/R;(n). From this we can estimate the Quality Factor Q;(n) as Q;(n) = L;(n)/L;.

From our discussion till now, we can rewrite our equations as follows,

Hence q‘(l

®)

c _ | Curi/Z;ri Throughput control 9
i(n) = 2][’((:__11)) Latency Control ©)
Ci(m)Ri(n-1)
0;(n) = d'+M(-r(lr;—1%)/c-(n,1) Throughput control (10)
’q“‘L—”’ Latency Control
ai(n) = ai(n—1) +y[p(n) —ai(n - 1)] (11)

4Multi-class open-system queuing formulae [20] can be used to gauge the range of usable values.
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Note that all units are in terms of packets and not bytes. We first estimate the probability p(n)
i.e., the event for the queue being full, by observing if the ECN marked packet has been received
depending on the queue length during the previous update slot(qq;(n — 1)). The value of p(n) is
used to determine the ratio of bandwidth allocated to a class during the current time slot i.e., C;(n),
which in turn is used to compute the Quality Factor Q;(n). Followed by this we update the value
of a which helps in calculating all the number of packets that are transferred i.e., W;(n) and the
update interval (R;(n)) during the current time slot. Both W;(n) and R;(n) are then in turn used to
estimate the queue length g,;(n) for the current slot and the process follows for succeeding slots to
keep the evolution ongoing. Hence,

W +1 aij(n)<e
Wi(n) = { Wi[1- %] ai(n) > e&Q;(n) > 1 (12)
Will - “210;(n)  ai(n) > e&Qi(n) <1
R;(n) = 2d; + B/C (13)
qai(n) = max[0, g4 + W;i(n) — CiR;(n)] (14)

It is difficult to seek the steady state for this system when W; and R; change (as seen in equation
12), but it could be sought for the remaining cases when their values do not change from one slot
to another.

We assume in our proposed equations that are always packets to fill up the estimated W; during
each slot. A packet generation process can be included to extend the proposed DTM and also by
keeping track of the packets for class i that have not been transmitted yet - U;(n). The modified
window size for class i, termed as W} (n) can then be represented as the minimum of the estimated
window size W;(n) (from our previous equations) and U;(n). Hence,

M= inf (M) (15)
(=M GI™)>R(n-1)

Ui(n) =Ui(n—1) =W/ (n-1) + M - 1 (16)

W’(n) = min[W (n), Ui(n)] (17)

Gl.(m) is the time elapsed between succeeding packets (m — 1) and m during an RTT slot. This time
measure is governed by the arrival distribution of the packet, which could be bursty in nature.
3.1.3 QoS Differentiation for Mixed Traffic We now look into the mixed network traffic that com-
prises of both storage traffic (with transfer sizes or 1 or more LBAs) and ultra low latency traffic
(ex. PM traffic with transfer sizes of only 2-4 cachelines).

Providing very low latency to a specific class of network traffic requires that such traffic gets
the highest priority in the network switches as well, henceforth called “urgent” priority, following
NVMe terminology. Since the data transfer latencies for storage traffic are rather high and storage
access model is less affected by latency than a memory access model, no in-network priority is
essential for storage traffic. Both types of traffic do need differentiation at network endpoints in
all cases. Furthermore, as already stated, the host, network, NVMe, and the device must apply
consistent QoS treatment, which in turn requires an E2E communication of priority classes.

In this work we use the urgent priority for ultra-low latency traffic in two ways: (a) Ample space
reservation in the egress switch port, and (b) Giving strict (but non-preemptive) priority to the
Urgent class queue over other queues. In summary, if the buffer size is B packets, the best QoS
treatment for Urgent traffic can be achieved if there is a buffer reservation P for it. This traffic
(using QRDMA as a transport) will still have to wait for the ongoing transmission from the other
queue, however, the added delay is at most 1 packet transmission time (120ns at 100Gb/s). A larger
HoL blocking occurs on the receive end, since the receiver will receive packets strictly in the order
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they arrive on the receive side. The egress port buffer would be designed so that it is normally
not overrun and thus the described congestion control mechanism for QRDMA does not kick in.
However, it is not possible to guarantee that the Urgent traffic is not throttled unless the host uses
a suitable admission control mechanism to ensure that this traffic does not exceed the design limits.
We utilize this prioritization technique for our evaluation of PM traffic in 4.4.

3.2 QoS Differentiation at the Storage End

For E2E QoS differentiation, we also need to ensure that the storage end provides QoS differentiation
for incoming flows. As mentioned earlier, the storage end itself is comprised of two components -
the interfacing device access protocol (i.e., NVMe) and the storage device (i.e., the SSD). The NVMe
WRR queue arbitration mechanism can help in throughput differentiation. For example, if the
weights for the queues are in the ratio of 3:2:1, the SSD receives 2 Medium class requests after every
3 High class requests. However, how these requests are scheduled and serviced inside the actual
device is a more complex problem (due to the issues mentioned in 2.3). Hence access latencies can
be non-deterministic. It is also to be noted that requests can be of varying sizes and thus this is not
enough to guarantee latency differentiation. We have extended the WRR principle to the in-device
queues too as shown in 4. We show that even though WRR is used to divide throughput in a fixed
ratio (ex.3:2:1), it can be effective in providing latency differentiation too. Also, chip-level queues
schedule requests in the size of single pages. This gives us more control on the latencies. Thus we
show how this throughput differentiation mechanism can also be used to provide treatment for
latency, although not in the exact WRR ratios (as shown later in 4.2).
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Fig. 4. Extending NVMe WRR inside the SSD

Additionally, the NVMe protocol has introduced the notion of "predictable latency mode" which
allows background operations to be confined to certain periods known as “nondeterministic” (NDT)
periods. We have explored this extensively in [37, 38] to provide deterministic latency to different
applications. We introduced a module called PLMC (i.e. PLM Controller) that allocates the number
of "deterministic” accesses an application can perform based on its QoS class. This could also be
used in conjunction with our proposed NVMe WRR extension in order to tackle the large latency
values caused by background activities. However, that is beyond the scope of this work.

Finally, we have not considered the low-probability scenario where bursty traffic may lead
to request dropping at the storage end since this would be very disruptive to the application.
Application threads attempting to do a read will typically stall until the data is returned, and long
delays and inter-dependencies (between requests) would tend to slow down and ultimately stop
request generation from the application itself. However, data generation type of applications could
continue to pump more data and would ultimately need to be prevented from generating new write
requests using some admission control mechanism. This could, in effect, result in data loss if the
data comes from some physical system that cannot be stopped, but the storage management system
should not explicitly drop requests.
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3.3 End-to-End Configuration of QoS

E2E QoS requires a consistent treatment of QoS in the network, at NVMe level, and in the device.
NVMe already provides a rich QoS classification, and thus we can leverage the available mecha-
nisms. The storage side has no standardized or universal notion of QoS for SSDs, although several
mechanisms have been proposed in the literature and some others implemented by specific vendors
in their products. We have configured a mechanism similar to NVMe for the SSDs as well, namely
4 priority queues including an “urgent” queue and 3 others with WRR scheduling called High,
Medium, and Low priority queues (where a high priority queue has larger WRR weight). This
priority queuing can be at multiple levels within the SSD, the most relevant ones being the (a) chip
level (or coarse grain), and (b) Plane level (Fine grain). The chip level differentiation would account
for priority treatment considering the rather limited bandwidth of internal buses in real SSDs, but
it is rather coarse since the SSD typically has only 2-16 chips. Queuing at the plane level becomes
rather fine-grain since a chip might have many planes (128-1024) but would not add much value
unless except in rather pathological cases of hot spots within each plane. For simplicity, we have
configured it only at the Chip level. It is possible study impact of variable granularity with this
configuration by varying the number of chips and planes/chip, but that level of detail is outside the
scope of this paper.

The 4 QoS classes discussed so far (3 QoS classes for storage traffic and one for PM) need to
be carried from host all the way to the device for each storage read/write operation in order to
support E2E QoS. Furthermore, each layer along the way should be able to access it without much
overhead to provide the desired QoS treatment. While conceptually straightforward, providing this
capability in real storage systems involves the rather cumbersome issues of protocol changes and
standardization, both of which are outside the scope of this exploratory study. Nevertheless, for the
sake of completeness, we briefly discuss how an E2E QoS hinting can be supported in contemporary
storage stacks.

With 4 QoS classes, we need to find at least 2 bits in the headers read and write commands to
convey the QoS class. NVMe read/write commands define a few bits in Dword (double word) #13
that relate to latency and frequency expectations of the traffic. While those bits can be leveraged for
QoS, a better solution is to use two of the unused bits. These would be ignored by configurations
that do not support QoS. If NVMe is used to carry the SCSI command directly, these bits can be
mapped to the "group number" field in SCSI header, which remains unused [26]. In either case,
the network mapping protocol (i.e., NVMe-oF) needs to extract these bits and provide it to the
QTCP/QRDMA layers on the transmit side, which can use it for appropriate endpoint queuing.
This does not suffice for in-network QoS treatment of PM traffic mentioned above in 3.1.3. Switches
cannot do deep packet inspection (DPI) to find the QoS bits from NVMe/SCSI commands; instead,
a direct network level QoS bits are also needed. Since these must be placed in each network packet,
it is most appropriate to make use of IP-level QoS bits. In IPv4, these are the ToS (Type of service)
or DSCP bits. In IPv6, these are the traffic class bits. The transmit side QTCP/QRDMA will set
these in the packet headers following the segmentation of the access PDU into packets. Strictly
speaking, only one ToS bit is needed to differentiate between storage and PM traffic in the network,
but one could carry the 2-bit classification as well. The packet level bits have no relevance beyond
the QTCP/QRDMA receive endpoint since the NVMe and device level actions can use the QoS bits
in the commands directly.

With priority treatment, there is the issue of how the priorities are assigned by the host. There
are many ways to do this, but this aspect is beyond the scope of this paper. Generally, the treatment
will be derived from the application type in terms of transfer sizes, average intensity, SLA, etc.
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4 Performance Evaluation

In this section, we first propose an E2E QoS differentiating simulator, followed by the evaluation
of an NVME-like QoS differentiation inside the device. Finally, we dive into the extensive E2E
evaluation of our proposed mechanisms.

4.1 DiffERSim - A QoS Differentiating E2E Remote Simulator

Evaluation of an E2E scenario which involves the host end, request and response path, storage
access protocol, and the device end is not an easy feat due to the expensive nature of creating such
an environment. The academic and open source community relies heavily on detailed simulators,
however, existing simulators such as NS3[36], Omnet++[42], and MQSim[40] simulate only the
network or the storage end (both device and access protocol) and do not take into consideration
E2E QoS Differentiation. To evaluate the effect of our proposed methodologies on the E2E behavior
of remote applications, we propose a novel QoS Differentiating E2E Remote Storage and Memory
Simulator - DiffERSim. DiffERSim simulates QoS-aware E2E remote storage and memory access.
It utilizes a combination of the popular network simulator NS3 and the widely used NVMe SSD
simulator - MQSim to create a datacenter environment consisting of multiple hosts connected to
multiple storage servers via switches in the network. These storage servers themselves contain
multiple SSDs and Persistent Memory devices. We extended MQSim’s comprehensive DRAM buffer
module to simulate a persistent memory device. We embarked on an extensive exercise to ensure
DiffERSim supports a wide array of functionalities. Some of these features are:

(1) Simulates both request and response path by utilizing NS3’s detailed implementation of the
network i.e., network link which carries host requests and server responses via switches.

(2) Supports multiple SSDs and multiple PMs with varying device configurations.

(3) Simulates NVMe-oF with multiple transport protocol options - ex., DCTCP, QTCP, etc.

(4) Contains an inbuilt traffic generator with storage block trace reading functionalities.

(5) QoS differentiation extended to match NVME Weighted Round Robin queue arbitration
principle. Thus ensuring QoS awareness at the storage access protocol level.

(6) Plug and play address translation module to map requests to the appropriate device.

In order to evaluate DiffERSim’s performance in comparison to a real E2E scenario, we compared
real-life storage accesses (both remotely and locally) with their simulation equivalent configurations
in Fig.5a. We used a storage workload to request data from a “Samsung 970 EVO Plus" SSD, both
locally and over the network (with a 100Gbps link) using TCP as its transport protocol. We also
evaluated the same experimental setup in our simulation environment. From Fig. 5a we can observe
that the MQSim SSD simulator (which DiffERSim utilizes as a module to simulate a single SSD)
performs almost identically as accessing a single SSD locally. Both real and simulated SSD access
in this case report latency values in the range of 40-90us. In Fig. 5a we also see that DiffERSim’s
E2E performance compares to the latency values exhibited in a real E2E storage access. This shows
that DiffERSim simulates both local and E2E storage access latency accurately.
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Fig. 6. Fat tree architecture with simulated storage servers in DiffERSim

In Fig.5b we also evaluated the PM access performance in DiffERSim by using its inbuilt traffic
generator to request memory traffic over the network. In the case of accessing PM locally as a
memory device, it has been reported [11] that its access latency ranges in hundreds of nanoseconds.
In DiffERSim we observed (as shown in Fig.5b) that the native PM latency at the endpoint averages
<900ns while the E2E delay for the remote memory traffic falls in the range of 3-4us. This is an
accurate representation of the performance of PM traffic, both remotely and locally as the latency
values quoted in the SNIA PM Summit [15] talk about how accessing Persistent Memory over the
Fabric results in latency values <4ps.

For the subsequent evaluations of our proposed strict provisioning for PM traffic and QTCP,
QRDMA, we utilize the detailed open sourced NS3 modules of DCTCP (which closely follows RFC
8257) and DCQCN. For the datacenter topology, we use the fat-tree topology as shown in Fig.6. It
is to be noted that in spite of the existence of numerous topologies, data centers still widely use the
fat-tree topology. As depicted in Fig.6, there are three levels of switches - edge, aggregation, and
core switches i.e., the maximum number of hops for each request or response is 6. We use 100Gbps
links for all experiments and utilize a mixture of read and write traffic using DiffERSim’s inbuilt
traffic generator. We evaluate QoS configuration for storage traffic, both in isolation and with PM
traffic, to observe the effect of strict provisioning for memory traffic on storage traffic. However,
we first explore the need for in-device QoS differentiation at the storage end.

4.2 Evaluation of QoS Differentiation at the Storage End

In this section we show how our proposed changes in 3.2 could be used to provide latency differen-
tiation in the storage end. We consider 3 cases based on the treatment each QoS class receives:

e Scenario 1: QoS Agnostic Protocol and Device, i.e., both NVMe and the SSD treat all flows
equally without any QoS differentiation

e Scenario 2: QoS Aware Protocol and QoS Agnostic Device, i.e., NVMe provides WRR differ-
entiation though the SSD queues (i.e. device level queues) do not respect these priorities

e Scenario 3: QoS Aware Protocol and Device, i.e., device queues respect NVMe priorities too

We ran the storage simulation component of DiffERSim in isolation to observe the behavior
of storage workloads in the three different scenarios in Fig.7. We utilize the workloads published
in the SNIA repository [34] by Fujitsu Labs for the three classes of applications. The Fujitsu Lab
traces are read-intensive VDI workloads consisting of wide variations of request sizes. The High,
Medium and Low class applications are in decreasing order of intensities. This results in the average
latency of the High QoS class exceeding 85us for Scenario 1 in Fig.7a. The Medium and Low classes
performed significantly better, reporting latencies less than 70us and 40us respectively. This is
because no differentiated treatment is provided to the workloads. There is no prioritization and
the high intensity of the High QoS class results in it performing significantly worse. Following
this, we engaged the WRR queue arbitration in NVMe for Scenario 2. It is to be noted that for all
our evaluations, the priority weight between the three classes is proportioned as 3:2:1. In Scenario 2,
we observed that the latencies for both the High and Medium classes reduced while the Low class
traffic performed worse than it did in Scenario 1. The gap in performance between the three QoS
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classes reduced but as we can see in Fig. 7a Scenario 2, it is not enough as the High QoS class still
performs worse than the other classes. This is since the queuing latency on the interfacing side
(i.e., NVMe submission queues) is not the only significant component contributing to the storage
latency. As mentioned in 2.3, queuing inside the SSDs coupled with background activities form a
major component of the SSD latency. Hence, we extended the notion of QoS differentiation at the
NVMe side to the device-level queues as discussed earlier in Fig.3.2. This simply ensures that the
device-level queues also follow the WRR queue arbitration while scheduling transactions to the
SSD back end. This simple change brought forth a significant difference in performance for all 3
QoS classes as we can see in Scenario 3 for Fig.7a. We finally observe the desired differentiation
between the three classes. The Low QoS class performs significantly worse to ensure that the other
two classes perform better with the High QoS reporting an average latency value close to 50us
while the Medium class reports close to 60us. It is to be noted that we do not consider the storage
throughput as for remote storage access, the network throughput is the bottleneck as discussed in
1.1. We also see the effect of network throughput on the storage throughput in later sections. We
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Fig. 7. Avg. Latency comparison for Different Storage QoS Scenarios
also tested a less pathological case in Fig.7b with the three applications being a combination of the

TPCC benchmark collected at Microsoft [21]. The intensity of the High and Medium class traffic,
in this case, is lesser in comparison to an intense Low class application. We observed that in this
case, NVMe level QoS differentiation is enough to guarantee QoS as seen in Scenario 2 of Fig.7c.
Extending the QoS notion to the device level queue does not affect the differentiation provided
by the NVMe protocol as shown in Scenario 3 of Fig.7c. Hence we show that even though the exact
latency ratio of 3:2:1 is not achieved, having QoS-aware device-level queues (along with NVMe WRR)
is enough to provide storage end latency differentiation across a wide range of workloads, irrespective
of their intensities. It is to be noted that we do not consider the "urgent" priority for the PM inside
the device. This is because the urgent traffic entering the PM device does not need to compete with
other classes of traffic, unlike storage traffic in the SSDs. We now look into the performance of our
proposed QTCP and QRDMA.

4.3 Evaluation of QTCP and QRDMA

4.3.1 Analytical Model Evaluation We first compare our analytical model (described in 3.1.2) with
DiffERSim’s implementation of QTCP in Fig.8 using the same topology as Fig.6. We measure the
throughput experienced by High, Medium and Low QoS applications, with an offered load of
90Gbps, 60Gbps and 30Gbps respectively. The bottleneck link has the standard data center 100Gps
link bandwidth. Assuming the threshold value K to be 140 (K being approximately 0.17Cd, where C
is the bottleneck capacity and d is the propagation delay) as mentioned in [3], we observe the results
obtained in Fig.8. We see that both the DiffERSim implementation of QTCP and our analytical
model exhibit similar behavior, i.e. the carried throughput for all three QoS classes are almost
identical. In addition to that the target ratios are also respected in between all the applications.
This confirms that our simulation reflects the results exhibited from our analytical modeling and
hence corroborates the accuracy of DiffERSim’s implementation of our proposed mechanism.
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4.3.2 Convergence and stability analysis In this section, we evaluate the behavior of our proposed
Quality Factor metric (Q; for a flow i). We utilize our simulation implementation for all our
evaluations henceforth. In Fig.9 we observe how stably Q; behaves for succeeding RTT slots and
the time taken for it to converge to unity i.e. time taken for each QoS class to receive its target
throughput. We also observe the same for differing mean RTT values with our simulation setup
along with the applications kept the same as 4.3.1’s simulation setup. In Fig.9a we observed that for
amean RTT of 25ps, it took close to 50 RTT intervals (or 1.2ms) for Q; to converge. Similarly for
RTT values of 62us and 98us in Fig.9b and c, it converges within 30-40 RTT slots. The large RTT
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Fig. 9. QF Convergence for Differing RTTs

values result in a slightly larger albeit negligible overall convergence time. Hence our proposed
QTCEP differentiation would be able to react and provide differentiation within 1-3ms. It is to be
noted that not all applications take this long to converge - for example, in Fig.9a, the High class
application converges the fastest (in around 15-20 RTT slots) while the Low class applications take
the longest (i.e. 50 RTT slots). Also, the E2E latency of a request ranges from 3 to 15ms for High
and Low classes respectively. This shows that the convergence time is just a fraction of the E2E
latency of a single request, irrespective of the QoS class. We also observe that after converging, Q;
remained fairly stable within 0.95 to 1 for each class.

In a datacenter environment it is not realistic to assume that all flows start at the same time.
Hence in Fig.10 we also considered a scenario where multiple flows enter the datacenter and cause
congestion at a later time. In this case we plotted the time taken for both DCTCP and QTCP to

converge to their appropriate proportioned throughput division with a mean RTT of 98ys.
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We noticed that QTCP converged faster than DCTCP in Fig.10a by sim5ms i.e., by more than
50RTT slots. This shows that QTCP provides QoS differentiation faster than DCTCP provides
fair treatment. In our previous work [6], we also looked into the behavior of applications with
differing RTT values and showed that DCTCP is biased towards flows with shorter RTTs but QTCP
converges and stabilizes in spite of the differing RTT values. DCTCP’s slow convergence is a widely
discussed problem in the literature [4]; we have also observed this in our simulation.

4.3.3  Evaluation of Throughput Sensitive Applications We now look into the behavior and effect
of QTCP in an E2E context. We utilize DiffERSim to create the simulation setup shown in Fig.6 with
the network links capacity being 100Gbps. In this testbed the storage end consists of 10 storage
servers. Each storage server contains a simulated 1TB NVMe SSD which simulates the Scenario
3 QoS differentiation mentioned in 3.2. The applications generate storage traffic following an
exponential distribution, aimed towards the storage servers, and send them out using the NVMe-oF
protocol. The SSDs in the storage server process the requests and send back the responses to the
requesting hosts. In case of writes, the data to be written is sent out on the forward sender side
link which the SSDs process, and a response is sent to notify the host that the write request is
complete. In the case of reads, the request sent is processed by the SSD and the data is sent back
via the response side link. In this section, we simulate three workloads of significance - a write-only
workload, a read and write mixed workload and a read-only workload. The use of a write-only or
read-only workload helps in creating a pathologically overloaded request or response network link.
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Fig. 11. (a) Workload distribution and (b) evaluation of a scenario with storage bottleneck

For our throughput sensitive performance evaluation, the three applications pertaining to High,
Medium and Low QoS classes push 90Gbps, 60Gbps and 30Gbps of write traffic over the 100Gbps
network link. The requests for all classes are in the size of 4K blocks as that is the standard request
size for storage workloads. The size distribution for the three classes is shown in Fig.11a with the
Low class request size ranging from 5-30 blocks, Medium ranging from 13-75 blocks, and the High
class ranging from 17-98 blocks. Both read and write request sizes follow the same distribution and
hence only the write size distribution is shown. In Fig.12 we compare the throughput differentiation
provided when NVMe-oF uses two different transport protocols i.e., DCTCP and QTCP. We see the
treatment received by the throughput sensitive write-only storage traffic in an E2E context. For
write-only traffic, the bottleneck arises on the sender side. We notice in Fig.12a that for DCTCP, all
three receive close to identical treatment, i.e., the observed throughput for the three applications is
close to 33Gbps. This is because DCTCP treats all flows the same during a congestion episode. It is to
be noted that the Low Class application pushes only 30Gbps of traffic and hence receives the entirety
of its required bandwidth (due to it being less than the DCTCP divided throughput of 33Gbps).
However, our proposed QTCP divides the bottleneck bandwidth into 3:2:1 ratio approximately, thus
providing the required QoS differentiation to the three classes. High class receives close to 48Gbps,
with Medium and Low receiving 31Gbps and 17Gbps respectively. In Fig.12b, for DCTCP, we see
that despite having storage end differentiation, it is not enough as the network is the bottleneck.
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Fig. 13. E2E Behavior of a Read and Write Intensive Workload

It still attempts to provide differentiation but ends up squeezing the Low class traffic to provide
others better treatment. But in the case of QTCP, due to the network level QoS differentiation, the
storage end respects the incoming QoS differentiated traffic. As explained before, the response side
in Fig.12c just carries the response from the storage end to the hosts to signify that the writes are
completed, hence no bottleneck arises on the response side. But again, if the incoming load from
the storage end is differentiated itself, then the bottleneck-less link respects the differentiation - as
in the case of QTCP. It is to be noted that we simulated the same scenario for DCTCP but with a
bottlenecked storage end by reducing the number of storage servers to 3. We noticed in Fig.11b
that in this case even though the forward sender link does not offer QoS differentiation, the storage
end still manages to differentiate based on QoS class. However, this scenario is rare as usually,
the bottleneck is the network. We now look into applications pushing a mixture of approximately
49.1% reads and 50.9% writes in Fig.13. In this case, the bottleneck is present in both the forward
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sender side and the backward response side. This is because the applications are pushing 90, 60
and 30Gbps worth of write data on the forward sender link according to their QoS classes and they
are requesting the same amount of data on the backward response link. This results in an extreme
congestion episode. In the case of the applications using NVME-oF with DCTCP as the transport
protocol, we can see that the High QoS class suffers the most. This is because this application
is squeezed the most and hence takes a longer time to complete both the reads (in Fig.13c) and
writes (in Fig.13a). However, in the case of QTCP as the transport protocol, we observe for the
sender side in Fig.13a, all three classes receive the appropriate 3:2:1 QoS differentiation for their
offered throughput. The writes for the Low class take slightly longer to complete due to it being
squeezed the most. The storage end in Fig.13b again respects the QoS differentiated offered load
due to no bottleneck. However, unlike Fig.12, in this case, the response side is a bottleneck too due
to the existence of reads. Hence in Fig.13c QTCP provides the necessary QoS differentiation to
the experienced bandwidth for each application. We also performed the same experiment with a
read-only workload but we have omitted that experiment from this paper due to its similarity in
behavior with the other experiments (i.e. QTCP succeeds in providing differentiation while DCTCP
doles out fair treatment to all classes).

4.3.4 Adaptive Nature of QTCP We now investigate QTCP’s adaptive nature in case of changes in
the datacenter environment. We tested a scenario where applications of different QoS classes start
and stop in between a simulation period. Fig.14a depicts this scenario where we have one flow per
class present in the datacenter before other flows enter the overall traffic. We introduced another
Low class application around the 50ms mark into the simulation. This resulted in the bandwidth
allocated to the Low class being shared between the two applications pertaining to this class, while
the other classes remain unaffected. Similar behavior is observed for the other two classes. This
is due to the fact that according to our proposed analytical model in 3.1.2, the target throughput
is assigned on a per class basis and not a per flow basis. Hence the introduction of a new flow
pertaining to a QoS class only results in the target throughput of that class being shared between
all flows of that class. We also see in Fig.14a that as soon as an application completes its requests,
the other flows pertaining to that QoS class grab on to its assigned target throughput.
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Fig. 14. Evaluating QTCP with (a) multiple intermittent flows and (b) interfering DCTCP traffic

We also consider the case where not all competing flows may require QoS differentiated treatment.
These non-QoS sensitive flows could run on DCTCP and may be intermittent too. We make
modifications to our proposed QTCP algorithm to accommodate this scenario. QTCP continuously
measures the interference of the other flows and adjusts the bottleneck bandwidth A accordingly.
We assume that A is known initially (can be given or even estimated using methods detailed in [7]).
If the aforementioned non-QoS sensitive flow alters the value of A, then each of the QoS sensitive
flows recognizes this perturbation as detailed in Fig.15a. The target throughput requirement of a
flow i is defined as target; and the measured throughput is actual;. Quality Factor converges to its
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steady state value of 1 pretty fast (as explained in 4.3.2) and hence any variation in that value by
a value greater than o (for our experiments the value for o is taken as 5% or 0.05) is understood
to be caused by an interfering flow - either due to its interference with these flows or due to the
disappearance of interference. This results in target; being re-calibrated by an amount "factor" to
depict the interference and the window size is hence modified accordingly. In the given algorithm,
the fraction of the bottleneck bandwidth assigned is defined as ratio; and the current measured
Quality Factor is depicted as Q;. The current congestion window for flow i is W;.

We evaluated the proposed modification in Fig. 15a, by simulating a scenario in Fig.14b where an
interfering DCTCP flow enters and leaves in the middle of a simulation involving three different
applications pertaining to the 3 QoS classes. We can see in Fig.14b that as the DCTCP flow enters
the traffic around the 75ms mark, the QoS flows back off and then again increase their measure
flow rates when the interfering flow leaves around the 250ms mark. One could argue that reserving
resources for the DCTCP flow can also be a solution, however, this would result in under-utilization
of the network bandwidth when the DCTCP flow is not present.

Normal situation Stressed situation
Wi = Wi(1-a/2)

if (Q; — 1.0 > 0)) factor = —o;
else if (Q; — 1.0 < o) factor = o;
else factor = 0.0

A = (A + factor) X target;

target; = ratio; X A;

Q; = target; /actual;;

if (Q; < 1) Wi = WiQ;
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Fig. 15. (a) Algorithm for handling interfering flows and (b) deadline comparison

4.3.5 Evaluation of Latency Sensitive Applications We now move on from throughput sensitive
applications to look at latency sensitive applications. We first compare our proposed mechanisms in
the network with existing solutions. The QoS classes remain the same as our previous experiments,
with their target latency values being defined as 5,6,8ms respectively. The mean transfer size of the
traffic is 2MB while the flows follow a Poisson distribution with an average utilization of 80%. We
compare the performance of QTCP with DCTCP and D?TCP [41] in Fig.15b - the latter is another
QoS based window modulation mechanism which takes into consideration the "deadline" i.e., the
target latency of each class/flow. D*TCP calculates a ratio d; between the measured delay and the
target delay for a flow i and modifies the window size using al.d" instead of «;. We refrain from
comparing with other deadline aware mechanisms such as D3 as it has been extensively evaluated
to show that D?TCP performs better than D3 in almost all scenarios.

In Fig.15b we compare two different situations - normal and stressed situations. The former
situation deals with High and Medium applications generating traffic at a frequency lower than the
others - 10% and 20% respectively while in the stressed scenario every class contributes equal load.
We can see for the normal situation in Fig.15b that for almost all the applications, QTCP meets the
deadline while DCTCP under performs in comparison, with ~5-8% packets missing their deadlines.
D?TCP meets all the deadlines in the normal situation but it is to be noted that as the higher class
of applications increase their frequency of traffic generation in the stressed situation, D*TCP starts
falling behind QTCP, with QTCP reducing the percentage of missed deadlines from ~35% to ~18%
in the case of the high class application. For the stressed situation, QTCP in comparison to DCTCP
reduces the fraction of traffic with missed target latency from ~30-65% to ~15-18% (i.e., ~71%
reduction as compared to DCTCP).
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We now look at the tail latency performance of QTCP for an E2E context. It is to be noted that
congestion episodes in the case of latency sensitive applications is assumed to be transient and
fleeting in nature. This is due to the fact that in the case of longstanding congestion episodes, E2E
latency of requests can end up being ever increasing because of the long wait times in send/receive
queues. Hence in all of our subsequent E2E evaluations of latency sensitive traffic, we consider
simulations lasting 1-5s, which depicts the time period of a single congestion episode.
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Fig. 16. Effect of coordinated QoS treatment between Storage and Network end

Keeping our DiffERSim setup the same as in 4.3.3, we show only the results for a write only
workload with the three classes of applications writing data to the SSD at a same rate of 40Gbps.
This creates a stressed scenario with bottlenecks both in the network (network link is 100Gbps) and
in the storage end. From our discussion in 2.3 we know that writes are expensive operations in SSD
which in turn can lead to high tail latency values. We first look into the need for consistent and
coordinated E2E QoS treatment in Fig.16. If the storage end is oblivious of the E2E QoS requirement,
it may provide its own notion of QoS at a local level. For example, the FTL in the device may
use request size as a metric to determine QoS class of incoming traffic. In Fig.16a we assume a
scenario where the storage end (i.e. both NVMe and the device) is unaware of the QoS differentiation
provided by the network. This also helps us in determining the effect of storage QoS on E2E QoS. In
spite of storage latency outperforming the network latency, variability in storage latency (caused
by write induced high tail latencies) can affect E2E latency differentiation. In Fig.16a, QTCP in the
network treats 3 applications App1, App2 and App3 as High, Medium and Low classes respectively.
But the storage end assigns its own notion of QoS by treating App1 as Low and App3 as High.
This results in App1 and App2 performing worse than App3, despite App 1 requiring the best
treatment. We remedy this by ensuring both network and storage provide consistent coordinated
QoS treatment in Fig.16b where we observe that the desired differentiation is respected.
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Fig. 17. Tail Latency Comparison
In Fig.17 we observe the aforementioned write triggered large tail latencies for the Low class

application, where the 50th to 99th percentile latency value ranges from 0.7ms to 1.5ms. This is
extremely poor performance for a device whose median latency values are supposed to be less
than 100ps. However, it is to be noted that the storage level QoS differentiation mentioned in
3.2 ensures that while the Low QoS class suffers, High and Medium report values close to 60us
and 100yus respectively. Although the storage end offers QoS differentiation, this is not enough to
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guarantee E2E latency differentiation for the different classes. We see that NVME-oF with DCTCP
as a transport protocol in Fig.17b, fails to provide adequate differentiation while QTCP helps in
providing adequate differentiation between the three classes in Fig.17c (which is a repetition of our
experiment in Fig.16b). The bottleneck at both the network and storage end (along with this being
an E2E evaluation) result in us choosing higher target values. We notice that High class performs
better than the Medium class by close to 50% while the Medium class in turn performs better
than the Low class by close to the same amount. Thus ensuring that relative QoS differentiation is
provided. Differentiation is observed across the board of tail latency percentile values. However,
with DCTCP, the High class performs worse than the Medium by close to 20% in all cases. The
storage end treats the Low class significantly poorly due to the stressed scenario and hence it
performs the worst even in an E2E context with DCTCP.
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Fig. 18. Latency comparison and bandwidth sharing comparison

4.3.6  Evaluation of RDMA Traffic As discussed in 2.4 and 3.1.1, the feedback-based flow control
in DCQCN works nearly identically to DCTCP. This means that the fundamental workings of
QRDMA (i.e., QoS-aware DCQCN) and QTCP remain the same. This behavior was corroborated
in our previous work [6], where we observed that for throughput sensitive applications, DCQCN
treats all the flows equally during the congestion episode while QRDMA differentiates based on
their offered load ratios. Hence we focus on evaluating latency sensitive storage flows utilizing
DCQCN or QRDMA as its transport.

In Fig.18a we evaluated latency sensitive applications for QRDMA in comparison to DCQCN. The
evaluation considers a stressed scenario similar to Fig.15b. It is observed in Fig.18a that QRDMA
outperforms DCQCN, with QRDMA having ~43-80% fewer deadline misses in comparison to
DCQCN. However, QRDMA’s latency deadline misses are more than QTCP’s in Fig.15b. This is
because QRDMA is based on DCQCN and DCQCN requires parameter tuning. We have used the
default parameter settings noted in [49] as parameter tuning is out of the scope of this paper.

Further, from our discussion in 3.1.3, we know that remote PM traffic utilizes QRDMA as
a transport. It is unrealistic to assume that said PM traffic exists in isolation in a datacenter
environment. Due to this need for coexisting DCTCP and DCQCN traffic (along with QRDMA’s
observed similarity in performance with QTCP) we refrain from carrying out QRDMA’s E2E
evaluation and instead focus on the coexistence scenario. We first discuss the need for our Quality
Factor metric in such a mixed traffic scenario.

We first look into the bandwidth sharing between DCQCN and DCTCP followed by QTCP and
DCQCN in Fig.18b and c. We utilize the topology shown in Fig.19a where a bottlenecked 100Gb/s
link is shared by DCTCP and DCQCN traffic. Fig 18b shows the bandwidth distribution when
DCTCP and DCQCN are used with optimal parameter settings. Initially, DCQCN grabs most of
the link bandwidth while DCTCP goes through the slow start phase, but eventually it suffers. This
results from the somewhat different evolution of DCTCP and DCQCN windows.

In the case of DCTCP, no ECN in the last window causes the congestion window size to increase
by 1. In terms of rate increase, if we define it as R4y, during the congestion recovery phase, current
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rate RC; for DCTCP would be RC; = RC; + Ry4y. On the other hand, DCQCN follows a fast recovery
phase which essentially increases its current rate RC; by approximately RC; + Rar which is less
than the DCTCP case. Hence, initially DCQCN flows grab much of the bandwidth but during fast
recovery, DCTCP rate increase is higher than the DCQCN. Thus DCTCP flows gradually end up
grabbing most of the bandwidth and stabilizes. Our experiment in Fig.18b corroborates this analysis,
which is due to DCQCN’s optimal parameter settings that keeps queue depth below the threshold.

The QoS based adjustment of transmission rates using the Quality Factor metric fixes this problem
as shown in Fig.18c and both get equal bandwidth under congestion. Note that original DCQCN
suggests bandwidth reservation for the TCP traffic, in order to provide fairness for DCQCN flows
[49]. But that may lead to under-utilization during non-congestion period.

Notice that the notion of quality factor can also be used to differentiate QoS for individual flows.
Using the topology in Fig.19a for our evaluation, we set the relative ratio of flows as 1: 1.5: 2: 3. We
observe the QoS differentiation within the QTCP flows while also making way for the remaining
DCQCN flows in Fig.19b. We can see similar behavior for DCTCP with QRDMA flows offering the
same relative ratio of offered load in Fig.19c. The ECN parameter setup is in favor of the optimal
performance of DCQCN, not QTCP, thus this makes respecting the target throughput difficult in
Fig.19b. However, in the case of standalone DCTCP flows with QRDMA flows in Fig.19c, the ratio
is approximately equal to the target throughput ratio.

4.4 Evaluation of Mixed PM and Storage Traffic

It is to be noted that for practical reasons, only one of QTCP or QRDMA is likely to be configured or
enabled in the datacenter unless there is a real need to have both. Mixed PM (which is best served
by QRDMA), and storage traffic (which is then better carried by QTCP) is one such scenario. A
mixed QTCP and QRDMA storage traffic scenario may also arise but that is beyond the scope of this
work. In this section, we evaluate the behavior of small-sized PM traffic (using QRDMA) sharing
the same bottleneck link as the larger-sized storage traffic (using QTCP). For this experiment, the
PM traffic is Poisson with a size of 128B or 256B with equal probability while the storage access
size follows the same distribution as in Fig.11a. Also, Persistent Memory over Fabrics (PMoF) [15]
using RDMA is another solution to efficiently support remote persistent memory. However, in
this work, we have considered NVMe-oF (using QRDMA) for our remote PM evaluation as both
NVMe-oF and PMoF are almost identical from a simulation point of view.

We evaluate two different QoS sensitive mixed traffic scenarios - one with read-only traffic
and one with write-only traffic in Fig.20a and Fig.20b respectively. The accompanying workloads
follow the same distribution as in 4.3.3. We observe that for both types of workloads, having no
in-network strict priority for the PM traffic results in it experiencing E2E latency values greater
than 20yus. This is undesirable due to the low latency requirement of the PM traffic. We can see that
the PM access latency itself is in the range of 300-800ns. Grun et al [15] talk about how we can
attain close to 3ms in E2E latency for PM traffic by using RDMA. Fig.20 shows similar performance
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Fig. 20. Comparison of E2E Latency for PM traffic

with QRDMA as the transport. We see that our in-network prioritization (proposed in 3.1.3) results
in 82% improvement, with the E2E latency ranging from 3-4ps consistently. This is despite the
presence of other QTCP traffic i.e., High, Med, Low class QoS sensitive traffic. As mentioned in 3.2,
even though PM receives "urgent” priority in the network and also at the NVMe level, the device
itself does not contain the need to provide QoS differentiation.
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Fig. 21. Effect of PM Traffic

4.4.1 Effect on Throughput Sensitive Flows In 3.1.3 we talk about buffer reservation for PM traffic
packets so as to make way for strict priority small transfer memory traffic. This in turn brings forth
the question as to what effect this reservation has on throughput sensitive large transfer traffic. We
observe in Fig.21 the treatment received by the throughput sensitive QTCP storage flows (High,
Medium and Low classes) in the background for the evaluation shown in Fig.20. The bottleneck
link is 100Gbps while the offered load for the three large transfer applications are 90Gbps, 60Gbps,
30Gbps i.e., a ratio of 3:2:1. We show only the bottlenecked response path for the read only workload
in Fig.21a and the bottlenecked request path for the write only workload in Fig.21b.

In Fig.21 we see that the effect of the PM traffic is negligible due to its small request size. Not
having to make way for the small transfer traffic (when QTCP is in isolation) in Fig.21a and Fig.21b
only increases the throughput of each flow by close to 1Gbps. It is also to be noted that in spite
of the presence of the strict priority memory traffic, the throughput sensitive traffic still receives
differentiation in the offered ratio due to the use of QTCP. Similarly, even on increasing the intensity
of the PM traffic in Fig.22a to 10% and 15%, the carried throughput reduces slightly but QTCP
ensures the QoS differentiation for the other flows is respected. We finally test the bandwidth
distribution of throughput sensitive flows with a different incast degree (1:12) in Fig.22b, for a PM
traffic of 10% intensity. We observe that our proposed methodology still holds its ground with
throughput differentiation still followed and the total carried throughput being 87 Gbps (remember,
PM takes up 10% of the bottleneck link). Similar observations can be made for a larger intensity of
20% keeping the incast degree same.
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Fig. 22. Effect of PM traffic with (a) different intensities and (b) incast degree 1:12
4.4.2 Effect on Latency Sensitive Storage Flows We now look at the E2E behavior of a mixed traffic
scenario comprising of PM traffic and latency sensitive large transfer storage traffic in Fig.23. We
keep the same simulation setup along with the same workloads as discussed in our E2E evaluation
in 4.3.5. We evaluated the tail latency for all 4 of the applications in two separate scenarios to
note the gains we make with our proposed changes. Similar to our evaluation in Fig.20, the first
scenario considers the four flows with the PM traffic being offered no strict priority while the second
scenario is the same but with strict priority. In Fig.23a, we observe similar behavior to what we
observed in Fig.20. However, it is interesting to note that with in-network priority, the latency
observed is fairly consistent within the range of 3-4yus, across the 50th, 90th and 99th percentile.
However, when there is no in-network priority, the latency increases from 17us to 23us. Thus our
proposed change improves PM tail latency by 83%. We also observed that having strict priority
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Fig. 23. Tail Latency comparison of mixed traffic

for PM traffic slightly increases the observed latency for other latency sensitive storage flows in
Fig.23c as compared to Fig.23b. For larger percentile values, the increase in latency was minimal.
For example, the High QoS class latency value changed from 10ms to close to 11ms for the 90th
percentile. Similarly, for the Medium class it increased from 13ms to 15.3ms. The increase in latency
is expected as there is no free lunch i.e., strict buffer reservation for one flow (or even the existence
of another flow) in a congested scenario would always hamper the performance of other flows. But
the QoS differentiation is still maintained in spite of the slight increase in latency due to QTCP’s
stable reaction to background traffic.

5 Related Work
Below we look into some other works and their limitations pertaining to network and storage QoS.
5.1 Storage QoS

Storage servers in the datacenter often deploy a variety of data management techniques such as
sophisticated I/O scheduling mechanisms, tiering/caching across the device hierarchy, and DRAM
caching at the level of device (e.g., a disk controller cache), storage server, host (discussed in 2.1),
etc. All of these modules provide an opportunity of QoS differentiation in order to intelligently
manage the access latency; however, QoS differentiation in these contexts is not widely researched
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or practiced. He et. al talk [18] about a caching methodology that utilizes applications’ SLA metrics
(ex., response time) to evaluate caching candidates. It utilizes "re-cache" likelihood by weighting
evicted data and adjusting it depending on their performance. Our previous work [17] looked into
bridging the gap between succeeding storage layers by caching primarily for the slower device,
thus essentially providing High class treatment to requests that may incur a higher average latency.
Prabhakar et al [33] proposes a dual step QoS aware cache management mechanism for multi
server environments. The first step breaks down the application level QoS requirements to sub-QoS
components expected by the storage server, followed by a feedback control loop-based storage
allocation step to determine cache space allocation depending on QoS metrics.

ElNably et al. [14] delve into how storage servers being multi-tiered systems, face challenges
in providing QoS to clients. It proposes measuring response times at the host end to determine a
reward allocation approach based on [12] and [13]. The proposed algorithm favors clients that are
less expensive on the backend storage device by having a static weight assigned to the client and
by calculating the elapsed time between the time the request was dispatched and the time at which
it is completed. pTrans [32] is another I/O scheduling algorithm that distributes tokens based on
QoS reservation requirement, request demand, and storage server capacity i.e., its availability. It
allocates tokens, which is synonymous with the number of requests a client can make depending
on the solution of an ILP (Integer Linear Programming). On the other hand, Kim et al. [22] proposes
using the host memory buffer as a fast track for processing urgent I/O requests, instead of sensing
these urgent requests into the SSDs through a legacy I/O path. Gugnani et al. [16] design a QoS-
aware NVMe emulator which provides support for weighted round robin and deficit round robin
arbitration mechanisms. However, none of these works delve into the QoS of the requests once
they enter the device. Additionally, these works do not discuss network QoS.

5.2 Network QoS

Network QoS is a deeply examined topic, especially in the context of Ethernet-based networks,
however, much of it concerns the WAN, where packet drops (i.e. loss) are routine and the loss forms
an important QoS parameter. Since our focus is E2E QoS in datacenter networks, the most relevant
related work concerns QoS provisioning for lossless transport protocols. Although the main goal
of conventional transport layer solutions (either TCP or ROCEv2) is fairness (equal sharing of
bottleneck bandwidth) amongst different flows, some variants address the differentiated treatment.
Differentiated treatment in the Transport layer can be classified into two categories:

Credit Based Control: Expresspass [8], Reflex [25] are credit based congestion control mech-
anisms, which offer differentiated admission control by generating tokens in proportion to the
target requirement. The transmitter, receiver, and switches coordinate to control the credit packets
(tokens) per-flow basis, which essentially determines the available bandwidth for data packets in the
reverse direction. However, credit based solution requires changes in the protocol and specialized
hardware to support token exchange operations. In [47, 48] the authors have focused on QoS aware
flow admission control; however, these studies are not in the NVMe transport context.

Flow Rate Based Control: To the best of our knowledge, no work addresses the QoS issue in
data center RDMA transport. But unlike QoS aware RDMA, several works address the issue of QoS
aware differentiated flow control in the TCP context. Homa [27], L2DCT [28], D?TCP [41], PDQ [19],
D? [44] consider QoS in terms of individual flow completion time (i.e., deadline). Homa [27] tackles
the head-of-the-line (HoL) blocking problem that TCP streams present. It uses in-network queue
priority to give small messages (<1000 bytes) low latency. However, it does not consider the effect of
such in-network queuing on other QoS sensitive traffic. In a real-world scenario, latency sensitive
small transfer traffic does not exist in isolation. L’DCT [28] and D?*TCP [41] on the other hand
adjust the TCP congestion window for various flows based on the stated QoS parameter. One of the
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main problems with these methods is that to define the QoS parameters, the administrators need
to be aware of the network delay and RTT. In contrast, QTCP only needs the relative bandwidth
ratio of various flows. PDQ [19] proposes distributed scheduling algorithm, where the switches
coordinate among themselves to schedule the high priority flow earlier (i.e., the flow with a critical
deadline). However, PDQ needs specialized switches and protocol header additions to transmit
the QoS indications. Another deadline aware TCP variation is D; however, D* [45] needs specific
switches, making it impractical as a general solution. Since D? also needs centralized control, the
communication overhead could have a negative impact on scaling.

6 Conclusions

In this paper, we discuss the end-to-end QoS differentiation for networked storage systems by
coordinating together our proposed network transport QoS solution along with existing NVMe
level differentiation and NVMe-like differentiation in the storage device. We also consider the
coexistence of remote persistent memory (PM) and storage traffic in the network and show how
the PM traffic can achieve the very low latency that it required without the need for any specialized
hardware. We demonstrate that a consistent configuration of QoS at all resources in the networked
storage path is essential to achieve expected differentiation and performance. In this work we have
considered only a single class for the PM traffic that uses a low latency RDMA based transport,
where multiple QoS classes are defined for the storage traffic that uses TCP as the transport. In the
future, we will consider multiple QoS classes of RDMA based traffic as well.
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