
Improving System Configurations using Domain
Knowledge Assisted Semi-Supervised Learning

Negar Mohammadi Koushki, Sanjeev Sondur, and Krishna Kant
Computer and Information Sciences, Temple University, Philadelphia, USA

{koushki|sanjeev.sondur|kkant}@temple.edu

Abstract—Given the difficulty in obtaining adequate data from
production systems, characterizing performance as a function
of configuration variables (CVs) via supervised learning is dif-
ficult, and the use of standard semi-supervised learning (SSL)
techniques may or may not help. In this paper, we describe
a knowledge-assisted (KA) SSL algorithm that determines the
confidence level of the generated data independently based on
the domain knowledge. We demonstrate that such an approach
outperforms plain SSL with the most popular SSL algorithms
for all the workloads used in this study.

Index Terms—configuration, semi-supervised learning, data
argumentation, pseudo-labeled data, confidence measure

I. INTRODUCTION

In an enterprise IT infrastructure, every major entity (e.g.,
application, virtual machine/container, infrastructure services,
and hardware) has many Configuration Variables (CVs), which
can be set at run-time to some value within their specified
range. Although many instances of an entity (e.g., servers,
VMs, application instances, etc.) have identical configurations,
there is still a lot of variety in configuration, often necessitated
by different roles, resource amounts, and workloads. There is
often a tendency to define a large number of CVs for each
subsystem without a clear description of what they do. Thus
they are mostly left at their default values, which itself may be
inappropriate. Also, because of the interaction between CVs
and the workload, inadequate/incorrect CV settings may not
be discovered until exposed to unseen workload patterns.

ML models can, in theory, capture various types of corre-
lations across CVs and their interactions with the workload.
However, their accuracy and reliability entirely depend on the
adequacy of the data to cover the Configuration-Workload
Space (CWS) reasonably well. The ML model could well be
trained on a large amount of available configuration data, but
if it does not cover the relevant CWS, the model is unlikely to
be accurate or reliable. Also, since misconfigurations can take
the system to unexpected places in the CWS, a purely data-
driven approach would very likely lead to plainly wrong results
since it has no notion of what behavior is sensible or possible.
(We have demonstrated this in [1]). Furthermore, collecting a
large set of configuration data is often a demanding task [2]
leading to a data bottleneck problem. In addition, ML and AI
are generally domain-agnostic and treat the data-sets in the
same way [3].

This research was supported by NSF grant CNS-2011252

One way to partially address these issues is by generating
new pseudo-labeled data artificially and using it to improve
the training of the ML model. This is clearly the space of
the much-explored Semi-Supervised Learning (SSL) for which
numerous model training methods have been developed [2].
However, the focus in this paper is not to devise a new
SSL method, but instead to explore how well the domain
knowledge-assisted SSL methods (henceforth called KA-SSL)
can work in the configuration management context to deal with
the paucity of data. Thus, the main contributions of this paper
are as follows:

• We introduce a domain knowledge-based method to (a)
generate variants of existing configuration data that pre-
serves the essential dependencies between them, and (b)
a mechanism to evaluate the quality of generated pseudo-
labeled data.

• We demonstrate that the resulting KA-SSL approach pro-
vides definitive improvements in performance predictions
over the plain SSL approach that has been used in the
past.

To the best of our knowledge, this is the first contribution
towards extending KA-SSL techniques to address the limita-
tions of data-bottleneck in configuration studies.

II. DATA DRIVEN MODELING OF CONFIGURATIONS

A. Configuration Management Problem

Consider a system with M CVs denoted by the set C =
{Cj = j = 1..M} where Cj is the name or ID of the jth
CV. Each Cj has a current value between the lower and upper
bounds (”lb”, ”ub”) [lbCj

, ubCj
]. We assume that these CVs

are relevant w.r.t some measurable system behavior O (e.g.,
throughput, latency, etc.) under some workload W . Thus, the
specific values of the triplet (W,C,O) provide the data for
data-driven models, where (W,C) are inputs and O is the
output (or “label” in ML terms). For notational simplicity,
we denote the data as a pair (xi, yi) where yi is the output
and xi is a vector xi = {xij , j = 0..M} where xi0 denotes
the workload measure1 and xij , j > 0 the selected value
of the CV Cj . The entire data-set then can be denoted as
D = (xi, yi), i = 1..N . Note that even if N is large, many
of the data points are likely to be for the same or similar

1The use of a single parameter xi0 to denote workload is for notational
simplicity – one could surely represent workload by several aspects such as
intensity, burstiness, and composition of different types of transactions.

configuration driven by different workload parameter values.
That is, the number of distinct configurations, say Nc, is
generally quite limited.

B. Supervised and Semi-Supervised Models

A supervised ML algorithm attempts to implicitly learn the
dependence of the output yi on the input vector xi. It could
then predict the label for unseen configuration z⃗, as shown
in Fig. 1a. The notion of SSL extends supervised learning by
augmenting the labeled data with additional data to increase
the accuracy of the model [2, 4]. The transductive learning
directly determines the labels for all unlabeled data points
without learning a model first, typically by using the labels of
nearby points [4]. On the contrary, inductive learners assign
pseudo-labels to the unlabeled data and use them (in addition
to labeled data) to learn a model. In this paper, we focus
entirely on inductive methods.

(a) Typical machine learning model

(b) Uncertainty in pseudo labeled data

Fig. 1: Challenges in generating pseudo labels.

C. Characterizing Pseudo-labels

It is clear that a pure-data-driven SSL cannot derive accurate
pseudo-labels for the unlabeled data unless the underlying
marginal data distribution p(x) over the input space x provides
some information about the posterior distribution p(y|x) [2].
Generally, this is stated as a “smoothness” assumption, i.e., if
inputs xi and xj are close, then their labels yi and yj should
also be close. The close relationship is usually not transitive,
which makes it difficult to draw conclusions based on it. Yet
another way to state the same thing is through the clustering
assumption, which states that high-density areas of inputs are
likely to share the same label. Conversely, the boundaries in
the input space that separate the output labels should pass
through the low-density areas of the input.

In applying such properties to the configuration problem, we
first need to transform the input parameters so that one can
meaningfully speak of the closeness. For example, the storage
space (including caches, memory, and secondary storage)
generally (but not necessarily) increases in multiplicative steps
(e.g., 32, 64, or 128 GB memory), and the performance
increase, if any, from doubling is far less than double. Thus
a log compression of the inputs becomes necessary before
considering closeness. Real configurations are also likely to
be limited to discrete values rather than continuous [1]. For
example, based on the available DIMMs, the memory could
be 32GB, 48GB, or 64GB, but unlikely to assume other values
between 32 and 64. Similarly, the NICs may support 10, 40,

or 100 Gb/sec bandwidth. Also, each parameter will have a
range that is sensible based on the domain knowledge, even if
other values are feasible (e.g., minimum memory of 32GB).

On the output side, although the performance would gen-
erally vary smoothly with the resources, this is not true when
bottlenecks are involved. For example, if the bottleneck in the
memory bandwidth causes long access delays for the CPU, a
slight increase in the memory bandwidth could increase the
processing rate quite considerably. Similarly, as the resource
amount goes below some minimum level, an extreme resource
contention (e.g., thrashing) may kick in, thereby killing off the
performance. Another crucial issue in configuration studies is
that the data points (configurations) are far from representative
of the configuration space. Most of the configurations for
which we have the data are those that were chosen simply
because they perform well enough; others are likely to be
much more sparse. Thus, a pure data-driven pseudo-labelling
is likely to fail in configuration problems.

The SSL literature uses the notion of low-dimensional
manifold, which can be thought of as the surface where
points with similar output values (labels) cluster together. In
the configuration context, a manifold often arises because
of the compensatory effect of different CVs; for example,
a configuration of a small amount of DRAM and a fast IO
device may provide similar performance as the one with a
large amount of memory and a slow IO device. The manifold
is generally an approximate, low-dimensional representation
of such behavior, and in practice like the rules of thumb that
the administrators already know.

Consider the 3D configuration space consisting of CPU
speed, memory bandwidth, and memory size. One could then
identify a 3D surface for each performance level (or output
label), which is the true manifold. If the low dimensional ap-
proximation to this manifold is approximately correct, for any
given target performance, very few points should lie outside
the corresponding surface. That is, the density of such points
should be low, and that can be used as a means for identifying
the boundaries of regions with different performance levels (or
labels).

D. Generating Pseudo-labels

The clustering and related assumptions above provide one
way to produce the pseudo-labels [2, 4]. Another one, known
as a wrapper methodology, starts with some base learners that
are initially trained only on the labeled data. These learners
could then be used to predict the pseudo-labels and the pseudo-
labeled data could then be recycled back for further training
of the learners. There are several methods to do this and we
shall discuss them in the following.

It is generally a poor idea to admit all generated data
from the base learners; instead, we need a reliable measure
of confidence in the label prediction, and retain only those
data items for which the confidence level is above some
threshold (e.g., 90%). Although most supervised learning (SL)
algorithms produce a confidence level measure in the last
step (usually using softmax), it is not necessarily a reliable

2

measure. The manifold and clustering ideas assisted by the
domain knowledge can provide an alternate and more reliable
measure instead. The pseudo-labeled data could thus be used
like the labeled data for additional training of the base learners,
either starting with the result of original training or from
scratch with original and pseudo-labeled data intermixed.

III. GENERATING AND LABELLING PSEUDO-LABELED
DATA

A. Generating Artificial Data-set

To generate artificial (or ”fake”) data, we first generate the
input data (z) and then put labels (y′) on it. An obvious
approach is to randomly choose a value for zij in the range
[lbCj

, ubCj
] for each j. However, doing so would ignore the

dependencies between the CV’s and may result in unrealistic
configurations. To address this, we can make use of the domain
knowledge in the form of sensible ranges for CVs relative
to some key CV (e.g., memory relative to CPU capacity or
number of TCP connections for the target throughput). Do-
main knowledge enables the creation of appropriate groupings
either manually or by guiding the clustering algorithm toward
preferred groupings as explored in our earlier work [5].

B. Data Labeling and Estimating Label Confidence

With the typical black-box ML models, it is difficult to
qualify the prediction on the previously unseen data-set (i.e.
confidence on z as shown in Fig. 1b), particularly if the unseen
data is quite different from the data used for training [6].
Although most neural nets provide or can be coaxed to
provide a confidence level for the output label, the probabilities
are generally inaccurate. In particular, the decision trees and
related models (e.g., random forest) are known to provide
a rather poor estimate of the label probability since they
focus on minimizing the tree size and enhancing classification
accuracy rather than the probabilities [7]. Augmenting ML
with explicit domain knowledge can enhance the quality of
the results [3]. In particular, we have examined the notion of
quality of configuration by defining a Configuration Health
Index (CHI) that quantifies how well the system is configured
based on the expected behavior of the output y with respect
to the different components of the configuration vector x⃗ [1].

Intuitively, the CHI measures the variation of yi’s (i.e., the
output) as a function of xij’s (i.e., jth CV or Cj). For example,
if index j refers to CPU cores, the CHI may indicate perfor-
mance vs. #cores. For generality, CHI measure is regarded as
a weight Wj(zj) in the range 0..1 and indicates how well the
system is configured for desired output (usually performance)
with respect to the normalized value zj of CVj in the range
0..1. We assume a specific form for Wj(zj) based on the
domain knowledge. For example, if zj is the resource amount
and Wj() relates to performance, we generally expect Wj(zj)
to rise at a slowing rate w.r.t zj and eventually either saturate
or even droop (due to bottlenecks/overhead). The parameters
of such behavior are determined from the available data. This
method implicitly accounts for the dependencies across the
CVs in addition to the dependency of output on each specific

CV. In addition to being independent of any ML model, we
found it to be extremely successful in accurate performance
prediction even in cases considered to be difficult [1].

ε = 1− ∥y(a) − y(a)e ∥2 (1)

IV. METHODS FOR USING PSEUDO-LABELED DATA

Pseudo-labeled data can be used in many ways [4]. In the
following, we describe and explore some of the key methods
in the configuration context.

A. Self-training

Self-training [8] is the basic method wherein the original
SL classifier is trained further using both original and pseudo-
labeled data. Here one could use an expectation-maximization
(EM) type of approach wherein we include all of the unlabeled
data at once and then iteratively determine the parameters of
the labeling process such that we maximize the likelihood that
the observed data belongs to the assumed distribution of the
labels. For example, Wu et al. [9] use Naive Bayes for the
classification version of the problem. The implicit assumption
here is that each dimension (or configuration variable) k con-
tributes independently to the label. Furthermore, by assuming
that the contribution of each CV has a normal distribution, they
estimate its mean and variance to maximize the likelihood that
the observed data (both labeled and unlabeled) comes from the
computed distribution. The Gaussian distribution is reasonable
for continuous variables; for discrete values, a binomial model
can be used. In Self-training pseudo-labeled data may be given
a lower weight than the original data; either directly (if the
confidence level of each data-point is known) or collectively
through a single hyperparameter.

B. Co-training (Multiview)

Unlike Self-training, Co-training involves training K ≥ 2
largely independent classifiers on the labeled data-set and then
generates pseudo-labeled data for one another. This collab-
orative approach can lead to better accuracy in comparison
with the baseline. In Co-training, multiple models are trained
on different subsets or views of the data, allowing them to
capture diverse patterns and potentially correct errors in the
training data. When one model makes a confident prediction,
its prediction can be used to label the data for the other model,
leading to improved accuracy.

Additionally, Co-training can leverage diversity in the data
due to the use of different subsets or views. For example, in
the case of using Random Forest classifiers, each may capture
different patterns in the data. By combining their predictions,
we benefit from the ensemble effect, which often leads to bet-
ter generalization and higher accuracy. However, it’s essential
to note that if the classifiers are strongly correlated, they will
likely generate very similar labels, and thus the advantage of
having K classifiers is lost. The required data diversity may
be either natural (e.g., multi-modal data-sets such as audio
and video) or induced by having different classifiers focus on
different features [10]. Nevertheless, the selected features for

3

each classifier should be adequate for a good prediction of the
output; otherwise, Co-training could actually hurt the accuracy.

V. EXPERIMENTAL EVALUATION

A. Data-set Overview: A Closer Look at the Data

We applied SSL models to datasets listed in Table I. Most
existing datasets focus on time-series observations of system
parameters with little information on configuration settings.
Our self-collected ES dataset is the only true configuration
dataset [11], while the public BB dataset provides limited
system-specific details [12].

Cloud/Edge Storage Data-set (ES): Edge Storage (ES) is
vital for fast local access at the ”edge” nodes by using a small
local storage as a cache for the essentially unlimited remote
Cloud storage. However, proper configuration of hardware and
software CVs is essential to prevent high latencies and IO
timeouts. Our experiments with ES collected 991 valid data
points with different CV settings (see Table I) where NO refers
to the size of the original data set and NA is the size of the
generated pseudo-data set.

BitBrains Data-set (BB): The BB data-set2 contains
performance logs from 1,750 virtual machines (VMs) in Bit-
Brains’s cloud data center, covering a 5-month period. It was
analyzed by Technical University, Delft, and comprehensively
characterizes requested and used resources, including CPU,
memory, disk, and network resources. See Table I for initial
VM configurations.

Fig. 2: Self-Training results for ES dataset.

B. Experimental Setup

For each data-set, we followed a standard split3 where
approximately 20% of the labeled data (original data) was
set aside as test samples, while the remaining labeled data,
along with artificially generated unlabeled data, was used for
training. Our ML model concerns the prediction of perfor-
mance as a function of the identified CVs, which we pose as
a classification problem. That is, the performance is divided
into 10 equally spaced levels. A similar stratification is done
for the input CV’s to deal with all CVs in a uniform way.

2[BB] http://gwa.ewi.tudelft.nl/datasets/gwa-t-12-bitbrains (RND500) :
3Commonly referred as k-fold validation in ML terminology, k=5

Fig. 3: Co-Training results for ES dataset.

Fig. 4: KA-SSL vs. baseline for BB for different fractions of
fake data added (first line) and confidence levels (second line)

It is well proven that the applicability and performance of
ML algorithms depend on the data characteristics and the
domain [11, 13]. We explored a wide range of ML algorithms
to find the best fit for the configuration problem domain. We
found that the RandomForest works best for ES and BB data-
set.

For evaluation, we start with the baseline model trained
entirely on the labeled data. The goal then is to investigate
the impact of gradually adding unlabeled data at varying levels
of confidence (i.e. Eq. 1) to the labeled data. We added the
unlabeled data in increments of 10% (of the labeled data size)

Fig. 5: Results summary.

4

TABLE I: Data-sets: configuration variables and output.

Data-Set Domain Size (NO, NA) Configuration Variables (CVs) x⃗ Output (Label y)
ES [11] Cloud Storage 991, 14717 No. of CPU Cores, Core Speed, Memory Capac-

ity, Memory Bandwidth, Disk IO Rate, Request
Arrival Rate, Request Size, Metadata Size

Performance

BB [12] Virtual Machines 391, 3504 No. of CPU Cores, Core Speed, Memory Capacity,
Network Data Rcvd., Network Data Transmit,
Disk Read Throughput, Disk Write Throughput

CPU Usage (%)

and considered three confidence levels for adding unlabeled
data: 90%, 95%, and 99%. We explored this in the context of
the SSL algorithms described above.

We used two flavors of SSL: (a) the KA-SSL as described
above, and (b) plain SSL, typical of how SSL is generally
applied. The data generation for the latter has two differences:
(i) All CV values are selected randomly within their specified
ranges (i.e. no domain knowledge), and (ii) The confidence
level is the probabilities directly generated from the ML model
(i.e. dependency on ML again). In particular, we generated
10,000 random data points, which were then used as inputs to
a Random Forest (RF) Classifier trained on the labelled data.
The RF classifier first generates class probabilities through a
softmax layer, whose maximum probability was taken as the
confidence level.

C. Experimental Results
Fig. 2 presents the self-training results for the ES dataset,

comparing KA-SSL, plain SSL, and the baseline model,
which employs Random Forest as the base estimator. The
findings reveal that the intelligent augmentation of artificial
data to the original dataset can significantly enhance accu-
racy, underscoring the benefits of KA-SSL. However, the
indiscriminate addition of noisy data may have an adverse
impact on accuracy. Fig. 3 shows the co-training results for
the same dataset and with the same baseline Random Forest
model. Interestingly, adding noisy data to the model in a co-
training framework may lead to improved accuracy compared
to relying solely on Random Forest as the baseline. This
improvement is attributed to co-training’s ability to reduce or
mitigate noise through the collaboration of diverse models,
including Random Forest, which collectively averages out
errors stemming from noisy data. This ensemble approach
often yields superior accuracy by producing more robust and
precise predictions. Nevertheless, with high confidence level
data addition, KA-SSL outperforms plain SSL.

Fig 4 shows the comparisons for the BB workload. It is
seen that while SSL improves performance over baseline in
all cases, the KA-SSL provides significantly better results.
We also found that co-training and self-training generally out-
perform other SSL methods (not discussed here for brevity).
However, all methods lead to improvement in accuracy. These
results underscore the potential and applicability of KA-SSL
methods in real-world scenarios.

VI. CONCLUSIONS

In this paper, we explored the problem of artificially gener-
ating pseudo-labeled data to enhance machine learning models

to predict performance as a function of configuration parame-
ters. This is necessitated by the difficulty in obtaining adequate
performance data from the production systems. We propose a
domain knowledge-assisted (KA) method for estimating the
confidence level for the generated data in the context of
semisupervised learning (SSL) algorithms. Such a KA-SSL
approach outperforms the Plain SSL approach and improves
the model accuracy even with rather small amounts of fake
data addition. In the future, we will explore a more strategic
way of selecting the fake data points to better fill the uncovered
space.

REFERENCES

[1] Sanjeev Sondur and Krishna Kant. Performance Health
Index for Complex Cyber Infrastructures. ACM Trans.
Model. Perform. Eval. Comput. Syst., 2022.

[2] Van Engelen et al. A survey on semi-supervised learning.
Machine learning, 109(2):373–440, 2020.

[3] Tirtharaj Dash et al. A review of some techniques
for inclusion of domain-knowledge into deep neural
networks. Scientific Reports, 12(1):1040, 2022.

[4] Xiaojin Jerry Zhu. Semi-supervised learning literature
survey. CS Technical Reports, 2005.

[5] Negar Mohammadi Koushki, Sanjeev Sondur, and Kr-
ishna Kant. Automated configuration for agile software
environments. In 2022 IEEE 15th International Con-
ference on Cloud Computing (CLOUD), pages 511–521.
IEEE, 2022.

[6] Maksims Ivanovs et al. Perturbation-based methods for
explaining deep neural networks: A survey. Pattern
Recognition Letters, 150:228–234, 2021.

[7] Foster Provost and Pedro Domingos. Tree induction for
probability-based ranking. ML, 52:199–215, 2003.

[8] David Yarowsky. Unsupervised word sense disambigua-
tion rivaling supervised methods. In 33rd ACL, 1995.

[9] Zhiang Wu, Junjie Wu, and et al. Hysad: A semi-
supervised hybrid shilling attack detector for trustworthy
product recommendation. In 18th ACM SIGKDD, 2012.

[10] Zhi-Hua Zhou and Ming Li. Semi-supervised learning
by disagreement. KAIS, 24:415–439, 2010.

[11] Sanjeev Sondur et al. Towards automated configuration
of cloud storage gateways: A data driven approach. In
Cloud Computing, pages 192–207. Springer, 2019.

[12] Iosup Alexandru et al. The grid workloads archive.
FGCS, 24(7):672–686, 2008.

[13] Mohammad S Sorower. A literature survey on algorithms
for multi-label learning. OSU, Corvallis, 18, 2010.

5

