DE GRUYTER Open Mathematics 2023; 21: 20220589 a

Research Article

Roberto Triggiani and Xiang Wan*

Luenberger compensator theory for heat-
Kelvin-Voigt-damped-structure interaction
models with interface/boundary feedback
controls

https://doi.org/10.1515/math-2022-0589
received January 16, 2023; accepted May 11, 2023

Abstract: An optimal, complete, continuous theory of the Luenberger dynamic compensator (or state esti-
mator or state observer) is obtained for the recently studied class of heat-structure interaction partial differ-
ential equation (PDE) models, with structure subject to high Kelvin-Voigt damping, and feedback control
exercised either at the interface between the two media or else at the external boundary of the physical
domain in three different settings. It is a first, full investigation that opens the door to numerous and far
reaching subsequent work. They will include physically relevant fluid-structure models, with wave- or plate-
structures, possibly without Kelvin-Voigt damping, as explicitly noted in the text, all the way to achieving the
ultimate discrete numerical theory, so critical in applications. While the general setting is functional analytic,
delicate PDE-energy estimates dictate how to define the interface/boundary feedback control in each of the
three cases.
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1 Introduction

The present article was conceived in response to the intents of the special issue of Open Mathematics. In fact, it
provides a new, optimal, rather complete and comprehensive theory on a control theory topic of long standing
relevance to applications, with the focus on a recently introduced, by necessity special, class of coupled partial
differential equation (PDE) models: heat-structure interaction (HSI) models with high, Kelvin-Voigt damping
for the wave-structure, subject to feedback control exercised on the boundary.

Homogeneous (uncontrolled) model. Throughout, Qf € R", n = 2, or 3, will denote the bounded domain on
which the heat component of the coupled PDE system evolves. Its boundary will be denoted here as
0Qr =I5 U Iy, Iy N Iy = @, with each boundary piece being sufficiently smooth. Moreover, the geometry Qs,
immersed within Qf, will be the domain on which the structural component evolves with time. As configured
then, the coupling between the two distinct heat (fluid) and elastic dynamics occurs across boundary interface
I = 0%, see Figure 1. In addition, the unit normal vector v(x) will be directed away from ¢, and so toward €.
(This specification of the direction of v will influence the computations to be done in the following text.)
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Figure 1: The fluid-structure interaction.

On this geometry in Figure 1, we thus consider the following heat-structure PDE model in solution vari-
ablesu = [wy(t, x), uy(t, x), ...,Un(t, x)] (the heat component here replacing the usual velocity field as a first step
in this new investigation), and w = [w;(t, x), wy(t, X), ...,wy(t, x)] (the structural displacement field) with
boundary conditions (BC) and initial conditions (IC):

u-Au=20 in (0, T] x Qf; (1.1a)
(PDE) /

We — Aw — Awy + bw = 0 in (0, T] x Qg; (1.1b)

ulr, =0 on (0, T] x Iy; (1.1c)
(BC) u=w on (0,T] x T (1.1d)

o(w + 0

% = a—‘lj on (0,T] x I (1.1e)
(IC) [W(O, ‘), WI(O’ ')’ u(O, )] = [W()x wq, uO] € Hb- (11D

The constant b in (1.1b) will take up either the value b = 0, or else the value b =1, as explained below.
Accordingly, the space of well-posedness is taken to be the finite energy space

H'(Q)\R x IA(Q) x IX(Q), b=0; (1.2a)
HY(Q) x Q) x IX(Qf), b=1, (1.2b)

b=

for the variable [w, w;, u]. (We are using the common notation H® = [H*]".) H; is a Hilbert space with the
following norm inducing inner product, where (f, g)q = fgfgdg:

%1 ‘71

VZ s ‘72 =

FHT

(Vvy, Vg, + (v2, To)g, + (f,f)gf, b=0;

~ ~ - x (1.20)
(Vvy, Vo, + (v1, Ti)g, + (V2, Vo), + (f. f)ey, b =1

Hj

In (1.2a), the space HY(Q)\R = H'(Q)\const is endowed with the gradient norm. Relevant properties of this
model, obtained in [1], will be reviewed in Section 1.3.
In particular, it was shown in [1] and reproduced in Section 1.3 that homogeneous problems (1.1a)—(1.1f)
can be rewritten as the abstract model
Yy =Ay, y=[w,wy,ul 1.3)

with A = A, the generator of a s.c. contraction semigroup e, which is uniformly stable and analytic on Hj.

Three controlled systems. We consider three cases of boundary/interface control g, as applied to systems

(L1a)-(1.1D).

» CASE 1 (Section 2): the control g acts on the matching of the stresses condition (2.1e) at the interface between
the two media, thus as a Neumann control as follows:

o(w+w) du
2= 1.1eN
v v +g on (0,T] %I ( )

See the entire system (2.1a)-(2.1f) in Section 2.
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» CASE 2 (Section 4): the control g acts this time as a Dirichlet control on the matching of the “velocity”
condition (1.1d) also at the interface between the two media as follows:

u=w;+g on (0,T] xT. (1.1dD)

See the entire system (4.1a)-(4.1f) in Section 4.

* CASE 3 (Section 5): the control g acts, still as a Dirichlet control, but this time as a boundary control on the
external boundary of the heat domain in (1.1c) as follows:

ulp,=g on (0, T] x Iy. (1.1cD)

See the entire system (5.1a)—(5.1f) in Section 5.

In each case, the control g introduces a control operator 8, highly unbounded. Thus, the resulting model is now
y' =Ay+Bg (1.3-controlled)

with the highly unbounded control operator 8 depending on the three cases, see equation (2.2) for CASE 1;
equation (4.2) for CASE 2; and equation (5.13) for CASE 3. The selection of the operators entering into the
development of the Luenberger theory, as described in Section 1.2.2, depends on the three cases.

Objective of the present article, as a template for future work. The initial objective in the present work is to

offer a “continuous theory” of the long-standing, highly relevant topic corresponding to the Luenberger

compensator program. The deliberate goal is to have this first contribution serve as a basis for further
development of investigations in various directions. Among them, we cite:

() replacing the heat component with a fluid component, thus accounting for the pressure variable while
keeping the Kelvin-Voigt structure (model as in [2] (wave) or as in [3] (plate)). The new technique inspired
by the boundary control theory [4], which is required for the extension from the heat component to
the fluid component is described in Appendix A, with a focus on the present uncontrolled model,
following [2].

(ii) replacing the present Kelvin-Voigt damped-wave with a Kelvin-Voigt damped-plate in modeling the
structure. This in turn opens up a variety of different, physically relevant, coupling conditions at the inter-
face between the two media (models as in [3] and [5]);

(iii) obtain a corresponding “discrete theory” or (rigorous) numerical analysis theory, as done in past genuine
PDE models of different types in [4, pp. 495-504], [6-8] and also [9, 10], to name just a few references. This
is a very challenging and technical direction of investigation, and yet highly important in engineering
applications);

(iv) analysis of the same models as in (i) and (ii), and this time, however, with no Kelvin-Voigt damping, such
as in [11- 14] (wave), where the original stability properties are different. Here, in contrast with the heat-
structure case, A = 0 is a simple eigenvalue of the uncontrolled model. Heat-viscoelastic plates are studied
in [15,16];

(v) further extension of both the continuous and the discrete analysis to nonlinear models, with static
interface [17-24], and even with moving interface [25,26].

1.1 Historical orientation on Luenberger’s compensator theory

The Luenberger theory of “observers” was introduced for lumped (finite-dimensional) linear systems in 1971
[27], and it was met with great success [28, p. 48]. It subsequently stimulated investigations for PDE problems
with boundary controls/boundary observations (infinite-dimensional systems with “badly unbounded” control
and observation operators) of both parabolic and hyperbolic types [6-8], [4, pp. 495-504]. It consists, in its first
phase, of a continuous theory, followed next by a rigorous numerical implementation, as in the aforemen-
tioned references. At the level of numerical implementation, it was in a sense rediscovered with the more
recent topic of “data assimilation” that shares the same philosophy as the Luenberger discrete theory. Recent
references include [29-32]. A more detailed description of these topics is given below.
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Step 1. The continuous theory. Here, in a purely informal manner, we shall provide the special setting that
we shall select in our application of the continuous Luenberger’s dynamic compensator theory to heat-structure
models. For a preliminary conceptual understanding, we may regard the operators below as being all finite-
dimensional, in line with Luenberger’s original contribution [27]. Its standard representation is as follows:

y =Ay + Bg, g=Fz= control, y(0)=y,, (1.4a)
Z=(A+ BF - KC)z + K(Cy), z(0) = z,. (1.4b)

The basic idea behind is that the full state y is inaccessible, unknown, beyond any measurement, as is often
the case in applications. What we have instead at our disposal is the partial observation (Cy), where C is the
known observation operator. Examples abound: (i) the actual state within a furnace or (ii) the true distribu-
tion of “noise” within an acoustic chamber are not exactly accessible, and only some information from the
boundary may be available in each case. Thus, the (compensator) z-equation (1.4b) is fed, or determined by,
only the available partial observation (Cy). Subtracting (1.4b) from (1.4a) with Bg = BFz, we obtain after a can-
cellation of the term BFz:

d
Eb’(t) - z(0)] = (A - KOy(t) - z(0)], (L5a)
(@) - z(t)] = eA KOy - z5], t=20. (1.5b)

One next assumes the detectability condition for the pair {4, C}: there exist K and k such that ||e4~KO)|| <
Me™ k > 0. Thus, from (1.5b), we finally obtain

Iy(®) = 2Ol = [y, = zo]ll < Me™|lyy = zol|, =0 (1.6)

and the dynamic compensator z(t), which is fed only by the known partial observation (Cy) of the inaccessible
state y, asymptotically approximates such state y(t), at an exponential rate. This is the key of Luenberger’s
theory in the lumped case where the state of the system is a finite dimensional vector. Nontrivial extensions
were subsequently introduced and studied in the case of distributed parameter systems modeled by partial
differential equations with boundary control/boundary observation [4, pp. 495-504], [6-8].

Step 2. The numerical theory. Particularly in the case of PDEs dynamics, it is critically important to provide
a (finite element) approximation theory of dynamic compensators of Luenberger’s type for partially observed
systems. The aforementioned PDE references include also the discrete/numerical Luenberger theory based on
finite element method. The analysis is very technical.

Connections with data assimilation. In recent years, a numerical procedure called “data assimilation” has
been introduced, particularly with emphasis on nonlinear dissipative PDE dynamics with finite degrees of
freedom, which in spirit is closely related in terms of goals to the discrete Luenberger’s compensator theory.
In common with the Luenberger’s theory, in the presence of inadequate knowledge of the original system,
a suitable data assimilation algorithm is introduced to force its corresponding solution to approach the origi-
nal solution at an exponential rate in time. This is done by having access “to data from measurements of
the system collected at much coarser spatial grid than the desired resolution of the forecast” [30]. As expected,
the efficiency of data assimilation relies also on the finite dimensionality of the proposed algorithm. Inspira-
tion comes from a rigorous result on the 2D Navier-Stokes equations (NSE) given in [33], where it is proved
that if a number of Fourier modes of two different solutions of the NSE have the same asymptotic behavior
as t goes to infinity, then the remaining infinite number of modes also have the same asymptotic behavior.

It seems unfortunate that data assimilation theory introduced in 2014 has not apparently been aware of
the large body of works in Luenberger theory, which was introduced in 1971, to include PDE parabolic and
hyperbolic problems as in [4, pp. 495-504], [6-8]. Luenberger’s theory in these references emphasizes control/
observation on the boundary, unlike the literature of data assimilation. The original Luenberger theory was
for linear models, but it was later introduced for nonlinear models, which are the core of data assimilation.
Moreover, data assimilation is passive in the sense that there is no control action. Mutual awareness and
knowledge of the two communities’ research effort may well benefit both. In this spirit, being this an article on
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the Luenberger theory in systems of coupled PDEs with control/observation at “the boundary,” we are pleased
to provide specific references in data assimilation.

The first main data assimilation was done in [29] in 2014. This gives the AOT algorithm. It describes the
interpolation operators (nodes, modes, and volume averages) and uses the “nudging” algorithm, which is
essentially interior control for the data assimilated problem. The technique utilizes the existence of finitely
many determining functional to capture the essential asymptotic dynamics of the system.

The initial article that does data assimilation for 3D NSE without assuming any regularity of the solution is
[34]. All previous works critically utilized the regularity of the 2D NSE to show asymptotic convergence of
the data assimilated solution to the reference solution. In the absence of global regularity in the 3D case, the
previous article [34] achieved the exact same result for the 3D NSE by imposing conditions on the observed
(model) data. Next, we quote paper [30], which provides results on the Boussinesq system (and also, therefore,
for 3D NSE). While [34] does data assimilation for the 3D NSE with the assumption that the reference solution is
obtained via the Galerkin procedure, the article [30] makes no such assumptions and does data assimilation
for a general (Leray-Hopf) weak solution, which obeys the energy identity corresponding to the system. Also,
the article only uses velocity measurements to perform data assimilation.

Luenberger problems for three interface/boundary feedback controlled models: system (1.1a)—(1.1f)
subject to control action g as in (1.1eN) (CASE 1); or (1.1dD) (CASE 2); or (1.1cD) (CASE 3), in the final form
y’ = Ay + Bg as in equation (1.3-controlled). The goal of the present article is to investigate the Luenberger’s
dynamic compensator theory (continuous version) as applied to a class of fluid-structure interaction models, in the
particular setting where the structure is subject to visco-elastic (Kelvin-Voigt) damping, as in (1.1a)-(1.1f). How to
handle the corresponding fluid-wave model is described in Appendix A. This focuses on the new tricky technique
that is required in the present homogeneous case (1.1a)-(1.1f) following [2]. In summary, in the present article, we
consider a fluid (heat)-structure interaction model with high Kelvin-Voigt damping under three different scenarios:
(D in Part I, with Neumann control g at the interface I as in (1.1eN); (2) in Part II, with Dirichlet control g at the
interface I as in (1.1dD); (3) in Part III, with Dirichlet control g at the external boundary Iy as in (1.1cD).

1.2 Orientation on the contributions of the present article. Conceptual description
of the mathematical setting and ultimate results

To ease the reading of this article, we find it most appropriate to provide a focused, synthetic orientation
regarding both the mathematical setting of the article and its ultimate, sought-after Luenberger-type results.

1.2.1 Uncontrolled, homogeneous model

The uncontrolled model is a coupled heat-structure interaction, where the structure is modeled by a wave with
strong Kelvin-Voigt damping, which interacts with a heat component through the interface between the two
media, see the linear, coupled PDE system (1.1a)-(1.1f) and Figure 1. The state of the system is the triple
y = {w, w;, u}, displacement, velocity of the elastic structure, and temperature. A comprehensive study of this
model was carried out in [1]. Selected results to be used in the present article are reviewed in Section 1.3.
The uncontrolled coupled system is described by an operator A, which is the generator of a s.c. contraction
semigroup e”! on a natural finite energy functional setting. From the purpose of the Luenberger theory to be
here investigated, its main feature is that such semigroup is uniformly (exponentially) stable, Theorem 1.3(ii).
This is due to the Kelvin-Voigt damping. An additional property of such semigroup is that it is analytic in its
natural setting, also Theorem 1.3(ii). This analyticity property — also due to the Kelvin-Voigt damping — adds
a positive feature to the uncontrolled dynamics. One then seeks, successfully, to retain it and propagate it to
the corresponding Luenberger feedback problem, that is, the dynamics of the observer variable z, expressed
in feedback-form with respect to the partial observation (Cy) of the original unknown state y. But analyticity
is not critical for the key Lueberger’s goal to recover asymptotically the originally unknown full state y
by using the observer z.
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1.2.2 Controlled systems y" = Ay + Bg

As already noted, we consider three cases of boundary/interface control g:

Case 1 (Section 2): The control g acts on the matching of the stresses condition (1.1f) at the interface between
the two media (Neumann control). See the entire system (1.1a)—(1.1f) in Section 2.

Case 2 (Section 4): The control g acts this time as a Dirichlet control on the matching of the “velocity”
condition (3.1d) also occurring at the interface between the two media. See the entire system (3.1a)—(3.1f)
in Section 4.

Case 3 (Section 5): The control g acts, still as a Dirichlet control, but this time as a boundary control on the
external boundary of the heat domain as in (4.1c). See the entire system (4.1a)—(4.1f) in Section 5.

CASE 1. Here, the following analysis selects the feedback form g = Fz for the Neumann boundary control g at
the interface, by taking the Luenberger operators as follows: F = -8*, C = 8*, K = 8. This way, the observer
equation becomes: z’ = (A - 288"z + B(B"y), with B8* the observation operator of the entire unknown
state y. Ultimately, the difference [y — z] between unknown state y and known observation z satisfies the

equation d[yd; 4 (A - BBy - z], where the feedback generator A — 88" in equation (2.15a) for CASE 1
is deliberately selected to preserve the property of dissipativity of the original free dynamic operator A. The
ultimate goal of the analysis is then to establish that such feedback generator is uniformly (exponentially)
stable on its natural setting. This is Theorem 3.1, equation (3.14) in CASE 1. This result is established by PDE
methods in Section 3.1.3. This way, the known observation variable z, based only on partial knowledge of
the unknown state y thorough the unbounded observation/trace operator 8, see equation (3.8), approaches
the unknown full state y asymptotically at exponential speed, the key of the Luenberger theory.

CASE 2. Here, the following analysis selects the feedback form g = Fz for the Dirichlet boundary control g at
the interface, by a different choice from CASE 1: in fact, in CASE 2 one takes: F = 8%, C = 8%, K = 8B, so that
the observation equation now becomes: z’ = Az + B(B"y), with trace operator 8, see (4.7). This way the

difference [y — z] between unknown state y and known observation z, satisfies the same-looking equation as

in CASE 1 dLyd;Z] = (A - 88"y - z], with dissipative feedback generator. Again, the ultimate goal is to
establish that such new feedback generator is uniformly (exponentially) stable in its natural setting. This is
Theorem 4.1, equation (4.24). This result is again obtained by PDE methods in Section 4.2.4.

CASE 3. Here, the following analysis selects the feedback form g = Fz for the Dirichlet boundary control g at
the external boundary, which notationally is like CASE 2: F = 8*, C = 8", K = 8B, with a different operator 8

of course, and hence, again observation equation z’ = Az + B(B"y), and finally the same desired form of

ly - z: dLyd; 4 (A — BBy - z]. In this CASE 3, the ultimate goal is again to show that the new feedback

operator (A — B8%) is uniformly stable. This is Theorem 5.1, equation (5.32), whose proof is given in Section
5.2.4. The operator 8" is again a trace operator (cf. equation (5.15)).

Insight on the choice F = -8* versus F = 8~ in the various cases. For CASE 2, this insight is given in (4.15),
and in CASE 3, this insight is given in equation (5.23). In short, this is a purely PDE problem related to the
operator 8* for the purpose to achieve the feedback generator still dissipative. Thus, while the setting of
the analysis is functional analytic, the key technical parts are based on PDE estimates.

Finally, to ease the reading, each case is dealt individually. In other words, one may read CASE 3 without
knowledge of Cases 1 or 2.

1.3 Review of homogeneous heat-structure interaction model with Kelvin-Voigt
damping: b =0,b =1 [1]

We return to the homogeneous problem (1.1a)-(1.1f), which for easy reading, we reproduce here:
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PDE u - Au=90 in (0, T] x Qf; (1.1a)

(PDE) Wi = Aw — Awy + bw = 0 in (0, T] x Q; (1.1b)

ulr, =0 on (0, T] x Iy, (1.1c)

(BC) u=w on (0, T] x I (1.1d)
olw+w) du

- Y= ™ on (0, T] x Iy; (L1e)

(IC) [w(0, ), we(0, -), u(0, )] = [wo, wy, U] € Hy. 116

The constant b in (1.1b) will take up either the value b = 0, or else the value b =1, as explained later.
Accordingly, the space of well-posedness is taken to be the finite energy space
H'(Q)\R x IA(Q) x IX(Q), b=0; (1.2a)

M =110, « 12(9,) x Q) b=1, (1.2b)

for the variable [w, w;, u]. (We are using the common notation H® = [H5]".) H; is a Hilbert space with the
following norm inducing inner product, where (f, g)g = _[Qfng:

%1 ‘71
Va2 \72 =

7

Hp

(Vvi, Wi)g, + (V2 D)o, + (f, ey, b=0;

~ - _ ~ (1.2c)
(Vy, Viy)g, + (vi, T1)g, + (Vo, V2)o, + (f, f)e;y D=1

In (1.2a), the space H'(Qs)\R = HY(Q )\const is endowed with the gradient norm.

Abstract model of the homogeneous PDE problem (1.1a)-(1.1f). The operator A, and its adjoint Aj},
b =0, 1. Basic results [1]. The abstract version of the homogeneous PDE model (1.1a)-(1.1f) is given as a first-
order equation by

w w
—(wr| = w, 1.7
T uz Ap ut s .7
where the operator Ay : Hy D D(Ap) —~ Hy is given by
V1 0 I 0w V2
Ap|Va|=|A-bI A 0OfVz2|=|A(v1+ V) — bvy]. 1.8)
h 0 0 Aflh Ah
A description of {vy, vy, h} € D(A}) is as follows:
®
v, Vo € H{(Q)\R for b = 0; vy, v, € HY(Q;) for b = 1;
so that v, = h, € H2(T,) in both cases; (1.9a)
A(vy + vy) € B(Qs);
(ii) 1
he Hl(gf)) Ah € Lz(gf)) h|1“f = 0) h|1“5 = VerS € HE(I‘S):
(1.9b)
Oh| oWt V)l gy,
ov [, oav L

Remark 1.1. The aforementioned description of D(A}) in (1.9a)—(1.9b) shows that the point {vy, v,, h} € D(A})
enjoys a smoothing of regularity by one Sobolev unit — from I?( - ) to HY( - ) — but only of the coordinates v,
and h, with respect to the original finite energy state space Hj in (1.2a). In contrast, the first coordinate v,
experiences no smoothing: it is in H'(Qy), the first coordinate component of the space Hj. This amounts to
the fact that A has noncompact resolvent R(A, A) on Hy. Consistently, it was shown in [1, Proposition 2.4] that
the point A = -1 belongs to the continuous spectrum of Ay : -1 € g, (Ajp).
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Theorem 1.1. (The adjoint A} of Ap, b =0 or 1 [1, Appendix Al). The Hy-adjoint of the operator A, defined

in (1.7)-(1.9) is given by

! 0 -I o)™ -1
Ay V2|=|-A+DbI A OfV2|=|AV; - ¥y) + bin|, (1.10a)
h 0 0 Alln AR
The PDE version of
d Vv Vv
—|w|=aA;|w (1.10b)
is given by
u-Au=0 in (0, T] x Qr; (1.10c)
@pE) | ' (0, T] x Qf
We — Aw — Aw; + bw = 0 in (0, T] x Q; (1.10d)
Ul =0 on (0, T] x Ty, (1.10e)
(BC) u=-w on (0, T] x T; (1.101)
ow+w)  ou )
" oy on (0,T] x I; (1.10g)

compared with equation (1.1a)—(1.1e). The domain D(A}) of the operator A; in (1.10a) is described as follows
(compared with D(Ayp) in (1.9a)-(1.9b)): {Vy, ¥y, T3} € D(A}) means:
(0
v, vy € Hl(Qs)\[R for b=0; Vv,V € Hl(gs) fOT' b=1,
so that ¥y |, = h |, € H:(Ty) in both cases; (1.11a)
A, - D) € I(Qy);
(@)
heH(Q), MEIHR), Rl =0, Hhly =ty € H(T;
oh| _ (W - %)
ov ov

) (1.11b)
€ H2(Iy).

Ts T
Actually, [1, Appendix A] gives the detailed proof for b = 0. For b = 1, in [1, equation (A.4)] one adds the term
(wy, vy) for the full H'-inner product but also the term —b(w;, wy) with b = 1.

Theorem 1.2. (Generation by A, and A}, b = 0, b = 1 [1, Theorem 1.2])
() The operator A, defined by (1.8), (1.9) and its adjoint A} given by (1.10a) and (1.11) are dissipative:
For [vy, vy, h] € D(Ay), and [v;, v;, '] € D(A}), we have

Vi| |1

Re| Ay vz, V2| = ~[IVwalfy, - (VI <0, (1.12)
) Lnl,
vi | v

Re[Apv; |, [v; || = =IIVvsl, - V]G, < 0, (113)
)y,

in the I!( - ) norms of Qs and Qy.
(i) Thus, A, and A}, are maximal dissipative on Hy,. Then [35] gives that Ay generates a s.c. (Cp)-contraction
semigroup e’ on Hy, which gives the unique solution of problems (1.1a)-(1.1f):
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Wy W(t) Wo
wi| € Hy = |wi(t)| = e?twi| € C([0, T];Hp). (1.14)
Uop u(t) Up

The same generation results hold also for A; on Hy, with e”# solving system (1.10¢)—(1.10g).

Again, [1, Section 2] gives the proof only for b = 0. For b = 1, in [1, equation (2.2a)], one adds the terms
(vy, vy) for the full H'-norm and the term —b(vy, v;), b = 1, leading now to a new version of such equation (2.2a)
in [1] given by =||Vvy|* = ||VA|]? + 2Im(Vv,, Vvy) + 2Im (v, v4). Thus, taking the real part of the aforementioned
expression, one obtains (1.12) for b = 0 and b = 1.

Theorem 1.3. With reference to the operator A, in (1.7)—(1.9) and its adjoint A}, in (1.10a) and (1.11), both defined
onHy, b = 0,1, we have
)]

0 € p(Ap), 0€p(AL), p()=resolvent set 1.15)

with explicit expression of A} given in [1, Lemma 2.2].
(i) [1, Theorem 1.4] The contraction semigroups e”# and e”# generated by Theorem 1.2 are analytic and
uniformly stable on Hy, b = 0, 1; there exist constants M 2 1, § > 0, such that

lle| cay + lle™| oy < Me™®,  t20, b=0,1 (1.16)

Remark 1.2.

(1) Section 1.3 (a subset of [1]) shows that the natural functional setting for problems (1.1a)—(1.1f) is: the energy
space Hy-¢ in (1.2a) for b = 0; and the energy space Hy-, in (1.2b) for b = 1. In each such case, b = 0 and
b =1, the free dynamic operator is maximal dissipative, it defines a corresponding expression for the
adjoint A} and the resulting contraction semigroups e and e are analytic and uniformly stable.
Analyticity in Theorem 1.3(ii) above is consistent with abstract results [36-38], in view of the Kelvin-Voigt
damping.

(2) If, however, one insists in considering problems (1.1a)-(1.1f) with b = 0 in the energy space Hy-; with full
H'-norm for the position variable, then stability is lost: more precisely, one can readily prove or verify
that:

A = 0 is a simple eigenvalue of the free dynamics operator A,-o (with b = 0)

1.17
with corresponding eigenvector e = [1, 0, 0] € D(Ap-g) C Hp-1. 17

In fact, setting equal to zero equation (1.8) with b = 0 implies v; = 0; hence, h = 0 from Ah =0, h Irf =

oh

=5 . = 0 by (1.9b), whose normalized solution is v; = 1

0,h |r, = vy |r, = 0. This yields Av; = 0 in Qg, 22

Sy gy L

in HY(Q,) (while it would be v; = 0 in HY(Q,)\R).
(3) In this case, we may view the problem with b = 1 on H;-; as having “stabilized” (and regularized) the same

V1 0
problem with b = 0 on Hy-1: Ap-1 = Ap-o + S, with stabilizing operator S[Vz| = |~V1|.
h 0

2 CASE 1. Heat-structure interaction with Kelvin-Voigt damping:
Neumann control g at the interface I

The present article begins with this section. In the present CASE 1, we consider problem (1.1a)-(1.1f) subject this
time to control g acting in the Neumann interface condition (1.1e); that is,
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u - Au=20 in (0, T] x Qf; (2.1a)
(PDE) _ _ _ : .
W = Aw = Aw, + bw = 0 in (0, T] x Q; (2.1b)
uly, =0 on (0, T] x Iy, (2.1c)
(BC) u=w on (0, T] x T; (2.1d)
o(w+w) _ ou :
v " av +g on (0,T] x T (2.1e)
(IC) [W(O) .)) WI(O) ')) u(O) )] = [WO) wq, uO] € Hb) (21f)

with Neumann boundary control g acting at the interface I;. The constant b in (1.1b) will take up either the
value b = 0, or else the value b = 1, as explained earlier. Accordingly, the space of well-posedness is taken to be
the finite energy space defined in (1.2a), or (1.2b).

2.1 Abstract model on Hy, b = 0, 1, of the nonhomogeneous PDE model (2.1a)-(2.1f)
with Neumann control g acting at the interface I

This topic was duly treated in [39], at least for b = 0. This will be reviewed below and complemented by the
case b = 1. In either case, the abstract version of the nonhomogeneous PDE model (2.1a)-(2.1f) is given by

w w
—|we| = A w| + BYg, 2.2)
de |, 3

with the full dynamic operator A given by (1.8) and (1.9). The definition of the Neumann control B8Y depends
on the two cases b = 0 and b = 1, on the respective space H,. We shall provide a unified treatment covering
the two cases b = 0 and b = 1, which will recover the case b = 0 in [39].

We first define the positive self-adjoint operator Aﬂ’)s by
0 € H2(Q)\R for b=0 09

» By —
- =(A-bhp, DA = :
N,sP ( )(P ( N,s ) c HZ(QS) for b=1 ov

(2.3)

3

Iy

so that A,(vb, )s is defined on the first component space of the state space Hy, b = 0, or b = 1. Next, following an
established procedure [40], [4, Chapter 3], we define the following Neumann map Ns(b) on the structure domain
Qs by

(A-bDY=0 in Q,

b= NPu =0y @4
ov . Bl
with regularity [40-43]
3
Hz2*"(Q)\R for b =0,
N®  H(T,) - z @)\ r real,
H2*"(Q) for b =1,
HI(Q)IR C HI#(@Q)\R = D|A{)i| for b=0, 5)
N® 1T - ) . . continuously
HiIQ,) € HI%(Q) = Dl@afhi=]  forb=1
or (A} *N® € LAXT)IXQ,), b=0or b=1[30,p.195]

Next we return to (2.1b) and rewrite it via (2.4) and (2.1e) [40], [4, Chapter 3]
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ou
+ - N ==
(w + wy) 5 3y

Wy = Aw + w;) — bw = (A - bI) + b(w + wy) — bw. (2.6)

+g|rsl

Is

(b)

By (2.1), (2.1e), the term satisfies the zero Neumann B.C. of Ay in (2.3), so we can

_ | ou
(W+Wt) Ns [av

L +g|r]

rewrite (2.6) as follows:

0
Wy = = J(Vb)s w+wy) - Ns(b)[a_;l + g]l +b(w + wy) - bw € I¥(Qy), @7
Ts
o ~ ou ~
W = =Aya(w + w) + AﬁfﬁiNs@‘g ] +b(w +w) - bw + Ay \NPg € [DAYLT, 28)
I

where now Alf,lg is the isomorphic extension I#(Qs) — [Z)(Afvlf)s 1" = dual Of@(AIg),)s) with respect to IX(Qs),
(b)

of the original operator Ay in (2.3). Next, we pass to the “fluid” domain Q. We let —Ap r be the negative, self-
adjoint operator on I*(Qy) by
-Aprp = Dp, D(Aps) = HY(Qy) N HY(Qy), 2.9
while Dy, is the Dirichlet map from I to Qr defined by
Ap =0 in Qf; (2.10a)
PEDHZ ol =0, gl =x. (2.10b)

The following regularity holds true for Dy ;: for any r,

Dy H'(0Qp) — H'*2(®y),  [33] 2.11a)
1_
Dy IN0Qp) — HH(Q) C H () = D(AZ, ); [31, p. 181], [48] (2.11b)
continuously. Then, as usual [1], we rewrite the u-problem in (2.1a) via (2.10) as follows:

ur = AMu = Dy s(Wy Ir,)) in (0, T] x Qf; (2.12a)

[u - Dy s(w; |t)l, =0 in (0, T] x I; (2.12b)

[u = Dps(W It)]r; =0 in (0, T] x I'y; (212¢)

u = ~Apy(u - Dy s(w, Ir)) € I(Q); U = ~Aps(u + Ap Dy (W Ir)) € [D(Apy)], 213

where AD,f is its isomorphic extension I(Qs) — [D(Apy)]’ = dual of D(Ap) with respect to I}(Qy) as a pivot

space. Henceforth, as in [4, Chapter 3] we drop the ~ for the extensions Ajf,b)s and AD,f for notational easiness,
as no misunderstanding is likely to arise.
By combining (2.8) and (2.13), we obtain

I
0
d w 9 w
<= Vs —Ays + DI Az%”,)st(”)[E ] we| + | ADNDg . (2.14)
u u
0 ApsDrs(lr)  —Aps 0

The operator in (2.14) acting on [w, w;, u](g = 0) is the same operator A; in (1.8)—(1.9), except that in (2.14)
the relevant BCs (1.9) are included in the operator entries.
Thus, in conclusion, the abstract model for the nonhomogeneous PDE model (2.1a)-(2.1f) is given again
by (2.2), where now
0
Bg\l;’)g _ Afvb,)st(”)g ) (2.15)
0
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®
1 /
8% . continuous IA(Ty) - [D[(A&fi)l*s]] , (2.16)
®

recalling (2.5). The adjoint operator Bg\l,’)* (which, in fact, does not depend on b) is given by

X1 1
B8P x| = -x I, X € H:*%(Q,); 8P : continuous|D (A,E,’f)s)4+s} - IXTy), 2.17)
X3

with x, € Z)[(AI(V”,)S)%*E] = H2*2(Qy), in the following sense. For g € I(Ty) and {x, X, X3} € [@, D[(A]Elb,?s)}l+£]’ ®|,
we compute as a duality pairing via (1.2a)-(1.2b) and (2.15):
0

X1 X1
B%’)g Xl = AI(\;t)st(b)g %) = (AJ(\?,)st(b)g s X)) = (& N A](Vb,)sXZ)LZ(Fs) (2.18)
X3 X3
Hj 0 Hp
X1
=g % lew = |8 8V | %| . 2.19)
Bl
where we shall establish that
NARDG = x|, for x € HE*2(Qy) (2.20)

for the operator A} as in (2.3) and N as in (2.4).

Proof of (2.20). [see also [4, pp. 195-196].] Take initially f € Z)(Afvb, )S) in (2.3), so that Z—}; X =0, and g € IXTy).

We compute by means of the second Green’s theorem, where we recall that on I, the normal v is inward.
We obtain by (2.3) and (2.4):

(A%, N8)q, = ((a - bD)f, N"g)q, (2.20)
o ¥ oy 9 b
=(f. (@ =bBNTg)g - | NOg| +|f oy, (2.22)
T I, s I
=(fl- &) (2.23)

In the aforementioned computation we have used (2.4) and g—{ LT 0, thus accounting for the two vanishing

terms. For the last equality, we have invoked the BC in (2.4). In conclusion from (2.23)

(NS"AV ey = ~(f I ey, forany g € IX(T) @29
initially for f€ D(Aﬂ’,)s). Thus, (2.20) follows for x, € D(AJ(V”,)S). Moreover, (2.24) can be extended to all
f € H:*2(Q,) [40], [4, Chapter 3. O

In conclusion:

Theorem 2.1. Let b = 0 or 1. Then the abstract model of the nonhomogeneous PDE problem (2.1a)—(2.1f) on
the respective energy space Hy in (1.2a)-(1.2b) is given by
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w w 0
—|w|= A w|+8Vg, 8P =|aDND (2.25)
de |, " ’

with Ay is given by (1.8), (1.9), or alternatively by (2.14), B%’) is given by (2.15), and for x; € H2*2%5(Qy) =
laf)]

X1
B8V x| =%l NADX = x|, (2.26)
X3

in both case, b = 0 and b = 1, see (2.17), (2.20).

Henceforth, in light of Theorem 2.1, we shall omit the qualifying parameter “b” for CASE 1, as the model
(2.25) and (2.26) applies to both cases b = 0 and b = 1.

3 The Luenberger’s compensator model for the heat-structure
interaction model (1.1a)-(1.1f) with Neumann boundary control g
at the interfaceI;, b=0,and b =1

3.1 Special selection of the data

With reference to the representation (1.4) in Step 1 of the Orientation in Section 1.1, we take in our present case

A “exponentially stable”: |[e4!|| < ce™®, §>0, t =0, (3.1a)
F=-B, C=B", K=B. (3.1b)

Thus, the special setting becomes, in this case,
[ partial observation of the state y] = Cy = B*y, control g = Fz = -B*z, (3.2)

leading to the Luenberger’s dynamics

y = Ay - BBz, (3.3a)
= (A - 2BB")z + B(B'Y), (3.3b)

and hence,
Ly -2 =@A-BBYy -2k YO - 200] = ANy, - ], (34

dt

As noted in Section 1, Step 2, it is the PDE argument to be carried out in Section 3.1.3 in the present case of
Neumann control on the interface T, that will determine that the infinite dimensional version of eA-BB jg
exponentially stable, as desired, as well as analytic.

Insight. How did we decide that F = —B* in (3.1b); that is, that the preassigned control g = Fz is given by
g = -B*z or F = -B*? We first notice that, regardless of the choice of F, the Luenberger scheme in (1.4)-(1.6),
yields that (A - KC) is the resulting sought-after operator in characterizing the quantity [y - z] of interest.
As A is, in our case, dissipative and we surely seek to retain dissipativity, then we choose KC = BB*,
or K = B, C = B*. Then, the (dissipative) operator (A - BB*) is the key operator to analyze for the purpose
of concluding that the semigroup e8¢ is (analytic as well as) uniformly stable. Thus, at this stage, with
F yet not committed and K = B, C = B* committed, the z-equation becomes Z = [A - BF — BB*|z + B(B"y).
It is natural to test either F = B* or else F = —-B*, whichever choice may yield the desired properties for the
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feedback operator Ar = A — BB*. What is the right sign? Thus, passing from the historical scheme (1.4a)-(1.4b)
to our present PDE problem (2.1a)-(2.1f), the corresponding operator B} is critical in imposing the

boundary conditions for the feedback operator ﬂg’j\, = Ap - ByBYy in our CASE 1. In our present CASE 1,

4

if we choose F— -8y and so g=-8y|2|= 7| by (2.26), this then implies the boundary condition
Z3

St = a |+ valr, for {v, vz, h} in D(Apx) as in (3:17b) below, via (L9b). With this B.C, the argument

in (3.34) and (3.35) leads to the trace term -iw ||k |g|P* in (3.37a), and hence to the critical term
w[||Yvo|P* + |IVR|P? + ||h|]*] in (3.38), with the correct “minus” sign “~” for the argument of Theorem 3.4,

o(w + wy) _ ou

in particular estimate (3.32), to succeed. Therefore, in view of the interface condition EYR . +g
w w
. a(vy +Vvp) oh *
in (2.1e), the B.C. T I =5 X + Vp|r, confirms that g = vy, or g = F|Wt| = -By|Wt|=w; |,. Hence,
S S u u

the choice F —» -8B, as in (2.1b) is the correct one in our present CASE 1.

3.1.1 The counterpart of y = Ay — BB*z in (2.3a) for the heat structure interaction (2.1a)-(2.1f),
with F > 8

Accordingly, for z = [z, 2, 3], the Luenberger’s compensator variable, in line with (3.2), we select the Neu-
mann control g in (2.1e) in the form

1

g=-8yz=nly 7€ DA, |=H'=Q), 35)

where we have critically invoked the trace result (2.26) of Theorem 2.1 in both cases b = 0 and b = 1 (we are
omitting the superscript “b”). With y = [w, w;, u], the PDE version of (3.3a) corresponding to the abstract
feedback problem (b = 0,b = 1):

Wy
y = Ay - ByByz, or % MM:t = [A(w + wp) - bw| + By(z|r) (3.6)

u Au

from problem (2.25), A, as in (1.8), (1.9), alternatively in (2.14), with g as in (3.5), is

u - Au=0 in (0, T] x Qf; (3.7a)
We — Aw = Aw; + bw = 0 in (0, T] x Q; (3.7b)
ul, =0 on (0,T] xTy; u=w, on (0,T] xTy; (3.7¢)
w = % + 7 on (0,T] x I, (3.7d)

3.1.2 The counterpart of the dynamic compensator equation z = (A - 2BB*)z + B(B"y) in (2.3b)
for the heat-structure interaction (2.1a)-(2.1f)

With partial observation as in (3.2) according to (2.26)

w w
BS\I;)*y = 80w | = —-w|r, = partial observation of state y = | W¢|, (3.8)
u u

the compensator equation (3.3b) in z = [z, 2, z;] becomes
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4
2
Z3

7= —

= 3112| = A - 288z + B (-wilr) (39)

or, via (1.8) for A, (2.15) = (2.25) for 8, (2.26) for 8Y"

it 2 0 0
2| = |Mz + 2) - bz | - 2| AN (-z1) | + [ADAND (~wil) |, (3.10)
Z3t Azg 0 0

whereby z, = 2, 7, = Zy, and thus (3.10) is re-written as follows:

VA Lt 0
—|ze| = |Az + z1) = bz | + | ADAND 22,1, - wil] | (3.11)
Z3 Azg 0

The PDE version of the abstract z-model (3.11) with partial observation —w;|r, in the Neumann condition at
the interface I (see (3.8)) is

Zye — A3 =0 in (0, T] x Qf; (3.12a)
Zie — A7y — Azgy + bz = 0 in (0, T] x Qg; (3.12b)
z3|r, = Oon O, T xTy; =2 on (0, T] x T; (3.12¢)
6(21 + 7 ) 623

T‘ =5, * 122 - wl on (0, T] x L. (3.12d)

3.1.3 The dynamics d= (Ap - B%)B(I\’?*)d, d(t) = y(t) - z(t), corresponding to (3.4): analyticity,
b=0andb=1

We are omitting the superscript “b” on By, 8. The main result of the present section is as follows:

Theorem 3.1. Let b = 0, 1. The (feedback) operator
ALY = Ap - ByBy, Hy D D(AFN) = {ix € Hy: (I - AFByB )X € D(Ay)} (3.13)

is the infinitesimal generator of a s.c. contraction semigroup e7Fxt on H,, which moreover is analytic and
exponentially stable on Hy: there exist constants C 2 1, p > 0, possibly depending on “b,” such that

(b) —B.R* -
e EM | cquyy = (€A BNENE| gy < CePt, £ 2 0. (3.14)
A more detailed description of Z)(ﬂ(Fij) is given in (3.17a)—(3.17b).

The proof of Theorem 3.1 is by PDE methods, which consist of analyzing the corresponding PDE system
(3.16). We proceed through a series of steps.

Step 1. Identification of the [y — z]-abstract equation.

Lemma 3.2. Let b = 0,1. With d = [d,, dy, d5] € Hy, (d = difference = y - z), the abstract equation

0
d=APNd = (Ap - ByBY), By(Byd) = | AN (-dy|r) (3.15a)
0
recalling (1.8) for Ay, (2.25) and (2.26) for By and By
dy d, 0
dy| = Ay + d) = behy| - | APANS (~dy |1 (3.15b)

ds; Ads 0
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so that d, = dy, dy = dyyy corresponds to the following PDE system, where we relabel the variable
[dy, dy = dy, d3] =[W, W, U] for convenience

i, - Al =0 in (0, T] x Q; (3.16a)
Wy — AW — AW, + biv = 0 in (0,T] x Qs (3.16b)
Uly, =0on (0, T] x Iy; U =W, on (0,T] x T (3.16¢)
ow+w) ou

T‘ =5, t on (0,T] x T. (3.16d)

Remark 3.1. We note that the term % and W, have the same sign across the equality sign in (3.16d). This is due
to the normal vector v being inward with respect to Qg as shown in Figure 1 and as noted in (2.20). This is
consistent with the fluid-structure interaction model in [12], [39, equation 2.16.1e, p. 128], also with v being
inward with respect to Q;. This model without the Kelvin-Voigt term is known in these references to be
uniformly stable by PDE-techniques.

Description of D(AY)). We have {v;, v;, h} € D(ALY) = D(A, - ByBYy) if any only if
@)
vy, V2 € HY(Q)\R for b =0; vy, v, € HY(Q,) for b =1;
so that vy, = A, € Hé(l“s) in both cases; (3.17a)
A(vy + vp) € TH(Qy);

(ii)
h€H(Qy), MREIXAQ), hl, =0, Rl = vl € Hi(T);
oh| A+ vy) B (3.17b)
= =22y e HITY).
v N v N V2|1"s 2(Ty)

*

The adjoint operator ﬂ}”}, = Ay - ByBYy. For [vy, vy, h] € D(ﬂ@v) (to be characterized below), we have

V1
recalled A} in (1.10a) and By|V2| = —v|r, in (2.26):
h
V1 %1 —Vy
AR V2| = (@A - ByBy)| V2| = [AWy = v1) + byy| = By(-vy |1) (3.18)
h h Ah
-V 0
=|A(vy = v1) + by | - [APAND (=v, |1, (3.19)
Ah 0

recalling also By in (2.25) = (2.15).

Description of z)(ﬂ%};). We have {vy, vy, h} € D(A Ewb}v) = D(A} - ByBYy) if and only if the same conditions
for Z)(?{S:b}v) in (3.17a)-(3.17b) apply, except that new (3.17a) is replaced by A(v, — v;) € I#(Q;) and (3.17b) is
replaced by

oh

vy = v1) 1
—| =———| +w € H(Ly). 3.20
v | v alr ) (3.20)
d wy wy
The PDE corresponding to ﬂ(pb%f} is given by | wa| = &7{%’} W | or
u u




DE GRUYTER Luenberger compensentor theory for HSI with feedback controls = 17

hs—=Ah=0 in (0, T] x Q; (3.21a)

Wi — Awy — Awye — bwy = 0 in (0, T] x Qg; (3.21b)

h|rf =0 on (0, T] x Iy, (3.21c)
o(wy + wyp) oh

hig = —W1t|rs;% X = "oy X +wylr, on (0,T] x T, (3.21d)

(Where wy = —w, by (3.18), top line) on Hj, with {wy, wy, ho} € Hy, recalling (1.10b)-(1.10g) for Aj,.
Step 2. (Analysis of the PDE problem (3.16): the operator ﬂg’}v = Ap - ByBy in (3.13)

Proposition 3.3. Let b = 0, 1. The operator ﬂ%’}v = Ap - ByBYy in (3.13) and its Hb-adjoint?(%b}(} = A} - ByBn
are dissipative

Vil |1

Re|(Ap = ByB)| V2|, [V2|| = ~[IVval, = [IVRIR, = V2 Il {vr, va, B} € DAY, (3.22)
hilhl),
v [vi

Re|(A; = BuBW|v; [ |vs|| = ~IVvlig, = VK[, = IIvs I, vi, v, B} € DAFN)  (3.23)
el LR Iy,

in the IZ(-)-norms of Qs and Qy, and the I¥(Ty)-norm on Ty. Hence, both ﬂ%”}v and ﬂ%’} are maximal dissipative

and thus generate s.c. contraction semigroups e?FNt and e?FAt on H,, [35]. Explicitly in terms of the corre-
sponding PDE systems, we have:

w(t) Wo Wy
W()| = ety | = eAr-ByBi| iy (3.24)
u(e) iy iy

for the {w, w,, t}-fluid-structure interaction model given by (3.16a)—(3.16d) on Hy: with LC. {Wy, Wy, lip} € Hj,.
Similarly,

wi(t) Wi W1
wy(t)| = e ALt Wyt | = o(A-ByB W Wy (3.25)
h(t) ho ho

for the {wy, wy; = —w,, u}-fluid-structure interaction model given by (3.21a)—(3.21d).

Proof of (3.22). For {vy, v, h} € Z)(ﬂ%b}v), we compute via (3.15a)—(3.15b)

V1] (V1 Va2 121
Re|(Ap - ByBy)| V2|, [V2|| = Rej||A(v1 + v2) = by, [V2][ + &y, (3.26)
hLnl)y, AR hlfy,
where
0 v
& = -[[ADINO (v, )|, [v2 (327
0 0,
= vz I, N"AQWo)E, = =[Ivz [ 12 (328)

recalling (2.26). On the other hand, the first term on the right-hand side (RHS) of (3.26) is equal to
[=IIVv2|* = ||VA|P*] by (1.12), which added to (3.28) yields (3.22). Similarly for (3.23), starting from (3.19). O

Step 3. This step provides the key PDE-energy estimate, b = 0 and b = 1, of the entire present section. The case
b =1 is more challenging.
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Remark 3.2. Given {v;, v;, i’} € H;, and w € R\{0}, we seek to solve the equation

vy 0 I offv] |w
(iwl = APV V2| = liwl - [A - bI & Offva] =|v;
h 0 0 Aflr] |p
in terms of {vy, v, h} € Z)(ﬂg’jv) uniquely. We have
Vi 124
V2| = R(iw,ﬂg’}v) 1248
h h
v 0 I 0w Va
APNR(w, AN\ vs| =8 - bI & 0 V2] =|Avy +vp) = by,
e 0 0 Alh AR
Theorem 3.4. Let b = 0,1. Let w € R and
Vi 124
(iwl - A\ V2| = |v;| € Hy (3:29)
h h

for {vy, vy, h} € D(ﬂ%,) identified in (3.17a)—(3.17b). Then:
() the following estimate holds true: given € > 0 sufficiently small, there exists a constant C; > 0 such that:
[1Av1 + v2) = vy + [[AR|P + [[Vvgl* + bl|vs|* + [IRIg|* + (VAP

< CAIVVIIP + DIVIIP + vzl + [IRIF - VYiw] 2 & > 0.

(3.30)

(i) (Analyticity) In view of Remark 3.2, Estimate (3.30) without the term [||h|r|? + ||[Vh|[*] is equivalent to
IAFNRGw, ALV oy < Cor - VIw] 2 € >0, (331)
R(iw, ﬂ%b}v) = (iwl - j‘lﬁrb}v)‘l, which in turn is equivalent to

. C,
IR(iw, AL ey < W Vw2 &> 0. (3.32)

Thus, the s.c. contraction semigroup eA¥N asserted by Proposition 3.3 is analytic on Hy by [4, Theorem 3E.3

p- 334] and similarly for e”¥t on Hy. Their explicit PDE version is given by (3.24) for system {w(t), W(t), ti(t)}
in (3.16a)—(3.16d) and, respectively, by (3.25) for system {wy(t), wy(t), h(t)} in (3.21a)—(3.21d).

Proof. (i) The proof of estimate (3.30) follows closely the technical proof of [1, Section 3] for the operator A
except that now the argument uses the B.C. of Ar y rather than of A, b = 0 and b = 1. We indicate the relevant
changes.

Step 1. Return to (3.29) re-written for {vy, v, h} € Z)(?lg’}v) and {v{, v;, h*} € Hj,

iwvy = vy =V, (3.33a)
iwvy = [A(vy + vy) = bvy] = vy, (3.33b)
iwh — Ah = h*, (3.33¢)

Step 2. Take the I*(Qs)-inner product of equation (3.33c) against Ah, use Green’s First theorem, recall the B.C.
h Ir, = 0 in 3.17b) for OD(Ar ) and obtain the counterpart of [1, equation (3.10)]

CroR *
iw[hZdL ~ Ww]VRIP ~ [8AIF = (i, Ah). (334
I

s

Similarly, we take the I?(Qs)-inner product of (3.33b) against [A(v; + v;) — bvy], use Green’s first theorem to
evaluate IQ VoA(Dy + 12)dQs, recalling that the normal vector v is inward with respect to Q;, and obtain (see [1,
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equation (3.11)])

AW, +
—iwjvzudl} — (Vg V(v1 + 1)) — (v, bVy) — [|A(W; + V) — by
1 ov (335

= (vz, [A(v1 + ) = bwi]).

_ oh

I ov

vy +vy)

o + o|r, for {vy, vy, A} in D(ﬂ(Fb}V) (see (3.17)), and we

We now invoke the B.C. k|, = v;|r, and

L
rewrite (3.35) as follows:

oh _
—ith — + h|dT; — iw||Vv|? = iw(Vvy, Yvy) = iw(vy, bvy) = ||A(vy + Vo) — byy|P
L ov (3.36)
= (vz, [A(v1 + vp) = bv1]).
Summing up (3.34) and (3.36) yields after a cancellation of the boundary term iwfrsh%dl"s:
~wlIhIg)P = WVl + VAT = 1A + v2) = burlP + IARIF + (v, buo) + i0(Pvp, W) oo
+ (vz, [A(v1 + vp) = b)) + (1", Ah).
Using, via (3.33a), the identities
—iw(Vvy, Vvy) = (Vg, V(iwvy)) = [|Vvy|[* + (Vvy, VVy), (3.37b)
=iw(vy, v1) = (vy, iwvy) = [[a|f? + (v2, vp), (3.37¢)
we obtain from (3.37a) the final identity
I80vy + v2) = bl + [|ARIE + il vzl + [VRIF + [|hlg] -
= [|[Vva|? + Bl[va|* + (Vvz, Vvy) + b(va, Vi) = (v3, [A(v1 + v3) = bwi]) = (R, AR).
Step 3. We take the real part of identity (3.38), thus obtaining the new identity:
18Qvs + v2) = bl + [IARIE = [[Fvalf* + Bl + Re(¥vy, Vvf) + bRe(vz, vi) (339
- Re(v;, [A(v; + vy) = bv]) = Re(k, Ah) '
or
(A - ©ll|Avy + v2) = bwy|[* + [|AR|P] (3.40)
< @+ O|IVval* + DlIvalP] + CLIVVIIE + blviI? + [Ivs > + (7P
Step 4. We now take the imaginary part of identity (3.38), thus obtaining the new identity
W{|[Vval* + [[VRIP + [|R|g P} = Im(Tvy, Vop) + bIm(vy, vp) = Im{(v;, [A(vs + Vo) = bvi]) + (K", Ah)}, (34D
g2 el
W[l + |IVRIP + [l ]P} < QIIVVzII2 + ngIVzIIZ + ]|y + v2) = bwy|* + [|ARIP] (3.42)
+ Cl|[Vvi|P + BlIvi[P] + ColllvaIP + [1R°]P]
or
lw] - £ V2l + lwl[lIVAIP + lIAl5]P] < b8—3IIVzIIZ + %[|As + v2) - bl + [|AR|P]
2 ¢ 2 (3.43)
+ Gl I + DllvrIP + (v I + (IR
Take now
2 82
el < |w| - ) e <), (3.44)

so that (3.43) yields for |w| as in (3.44):
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g el
—||Vvo|[2 + €||VA|E + [|h ||lP] € b—=]||vy|P + 3[||A(v1 + V) — bvy|* + ||AR|]2
IValP + TR + (IR 12T < B valP + e1avs + vo) = bui + [[3hIP] 015
+ CLIIVVi|P + blvyI* + (v IF + (IR
hence, for |w| as in (3.44)
(IVva|* + [[VRI + [[R [5]* < Del[va|* + 2e[[|A(vy + vo) — bwy|f* + [|AR|[]

+ G|+ blvrlP + [lvs I + (IR

(3.46)

Remark 3.3. In the case b = 0, the proof on the space Hj-o, hence with the first component in H'(Q,)\R
topologized by the gradient norm, proceeds as follows. Estimate (3.46) is “too good for our purposes”:
we drop the terms ||VA|[? + ||k |r,||* and substitute the new estimate on ||Vv,|[> on the RHS of (3.40) with b = 0.
We obtain

(1 - )18 + VoI + [JARIP] < (L + )2el][Avy + v + [BRIE] + (L + eXGITviIE + [lvs| + [/IF] (347)
or
[(1- &) - (@ + e)2el[llAv + VI + I8RIE] < CLITVIE + flusIP + (17 ] (348)
or
1A; + VoI + 18RI < GLIVvIIE + V1P + 7P, (3.49)

Estimate (3.48) coincides with estimate [1, equation (3.26)], case b = 0.
Next, substitute estimate (3.49) into the RHS of estimate (3.46) with b = 0, to obtain for |w| as in (3.44):

[[Vval P + (IVRI + [ gl < GIOvElR + [[vs|? + [1h7]R]. (3.50)
Summing up estimate (3.49) with estimate (3.50) finally yields for |w| as in (3.44):
181 + VI + (BRI + [[Vva|? + |IVAIP + (R[5l < GV + (vl + [[R]F] 3.5D)

for all points iw, with |w| = %2 as in (3.44). Then estimate (3.51) coincides with (3.30) with b = 0 as desired.
In view of Remark 3.2, such estimate is equivalent to

APNRw, AW |2y < G VIw] = &> 0. (352)

The analyticity of the s.c. contraction semigroup e PNt = o(A-BNEWL o Hj-( is established and similarly
0)*
for e”1Ent,

Step 5. We proceed now with the proof of analyticity in the case b = 1 on Hy-,. This case is more challenging
and requires the following additional result (in substitution of the Poincare inequality, which does not hold
true for v, on Q).

Lemma 3.5. [44, p. 260] On a sufficiently smooth bounded domain Q in R", let ¥ € H'(Q). Then:

>

@ [|PRdQ < o [IVPPdQ + [|PRdr
Q T

Q
(b) [IwPdr < of[1%P + [VPPlde,
T Q

(c) hence for positive constant 0 < k; < k; < oo,
kflwe + (veplde < [[verde + [|wpdr < k(1w + veplde,
Q Q y Q
where T is any fixed portion of the boundary T = dQ of Q of positive measure.
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We now return to inequality (3.46) with b = 1, where we use h|r, = v;|r, from (3.17a) on its left-hand side
(LHS) and then invoke Lemma 3.5(a) for ¢ = v, to obtain

1
—lvaAP + VAR < [[9uslP + [VAIR + vz || < Defval? + [ OKe ], (353)
1
= 22{[[Avs + v2) = bvll* + IARIE] + CAIVEIE + BlIviIE + 3IE + IRIP), (3.530)
hence,
1 1
s TP + VR < [;1 - be]nvznz + VAP <[ OK. | (35
by taking Cll - bS] > 2% (where b = 1), which yields b||v,|[* < 261, which along with the RHS inequality

in (3.53a) gives the desired estimate for b = 1:
92| + Bllvall? + IVRI? + l1va [P < bellvall? + + bl
=1+ )byl + < [+ e)2q + 1] OK, | 355
< 2¢[(1 + €)2¢ + TH[||A(v1 + v2) = bva|* + [[ARIP] + Col[|IVvf][?
+ bllvfIP + [lvs I + (|-
The LHS in (3.55) estimates the two terms [||Vvy|[* + b||v;||*] on the RHS in (3.40). We may now proceed as in
going from (3.47) to (3.51) in Remark 3.3 for b = 0.
Step 6. We substitute the new estimate (3.55) on the RHS of (3.40). We obtain
(1 = Iy + vp) = bvy|* + [|AR]]
< (1+ e)2e[(L + €)2q + 1][[|AW; + v5) = buylf? + [|ARJP] (3.56)
+ ClIVvi|? + DllvyIP + Ilv > + [IR°]P]

or
{d-8) - A+ )2+ e)2a + 1[|Aws + v) = bvi|f + ||AR|P] (357)
< GIvi|P + bIvy|E + [lvs]P + [[A°]]
or
18V + vy) = bur|? + [|ARIE < ClIWi|E + BIIviIP + [[vzI* + [[R]P]. (3.58)
Estimate (3.58) for b = 1 is the counterpart of estimate (3.49) for b = 0.
Step 7. Summing up estimates (3.58) with estimate (3.55) finally yields for |w| as in (3.44):
18Qv1 + v2) = Dyl + [[ARIE + [Vl + bl + [[VAJ? + vz |5 P 359)

< C[IIVVfIIZ + DIVIP + (v + [I°]P]

for all points w, with |w| 2 = as in (3.44). Then estimate (3.58) coincides with estimate (3.30) as desired.

The analyticity of the s.c. contractlon semigroup e Nt = e(F-ByBI op H)-, is established. Similarly for

eﬁ%‘ b=1. O

3.1.4 Exponential stability of et and e”¥At on H,,b=0,1

In Proposition 3.6, we shall prove, in both cases b = 0 and b = 1, that we have
0€pAly), 0epAPy, @P)te £LH,), @AY e L£(H)y), (3.60)

p(-) denoting the resolvent set, so that there exists a disk Sy, centered at the origin and of suitable radiusr, > 0

such that S,, C p(ﬂ(b) ). Then, the resolvent bound (3.32) combined with (ﬂ(b Wte L(Hp) in (3.60) allows one
to conclude that the resolvent operator is uniformly bounded on the imaginary axis iR:
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IR(iw, AP @, S const, w €R. (3.61)

Hence, [45] the s.c. analytic semigroup eFNt is, moreover. (uniformly) exponentially bounded: There exist
constants M = 1, § > 0, possibly depending on b, such that
e || par,y < MeS, t20,b=0,b=1. (3.62)

Similarly for the adjoint ﬂ(Fb};

Proposition 3.6. Statement (3.60) holds true. Hence, the exponential stability for e¥t in (3.62) holds true. More
precisely, with reference to ?(}ij, we have: given {v{, v,, h'} € Hy, the unique solution {vy, v, h} € Z)(?((Fb}v) of

Vq V2 Vl*
A V2| = (A1 +v2) = bvi| = |v; (3.63)
h Ah n
is given explicitly by
- (b) \-1 * * |9 -1 1 x ovy .
vy = (Ays) " [-Avy + v;] + Ny a_v[_AD,fh + Dy s(vilr)] = v |tV |z,
. (3.64)
HY Q,)\R for b =0;
H Q) for b=1
HY{QH)\R for b =0,
V= vy (@R h = —ApL R + Dy vy I,) € HY(Q)). (3.65)

H'(Qy)  for b=1,

where the positive self-adjoint operator Ap and the Dirichlet map Dy s from I into Qf were defined in (2.9) and
(2.10), and are repeated as follows:

~Apso = Ap in Q; @ € D(Apy) = HAQy) N HY(Qp); (3.66)

Ay =0 in Qf; (3.67a)

Df s : HY(0Q) » H*2(Qf),s €ER : Df i = 1) &
r,s + H(0Qy) (L) fst =Y Sy, =0, Yl =u (3.67b)

While AY) and N®, b = 0,1, are defined in (2.3) and (2.4), respectively. In the operator form, we have

* * a - * * av* *
v vl | AV aY] + vl +N§”)[5[—AD},«h + Dps(uile)] - =+ Vil
V2| = (AN vs| = . " (3.68)
h n* Vi
= Apyh + Dy ()
APy + NO2 D 1y w () - L (ca®yt N
(VS8 + NP2 D sCle) + () = 50| - AT =Ny i
= [ 0 0 vil, (3.69)
Dy 1) 0 -5y "
1V, va, R]llw, < cli[ve, vz, K]l 3.70)
Proof. Identity (3.63) yields by (3.17b)
Ah = h* € L(Qy); (3.71a)

vy = v * 1
Rl =0, hiy=valy = v I €H(Ty), (3.71b)
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and the h-problem in (3.71) yields the solution h in (3.65).
Moreover, (3.63), v; = v; in (3.65) and (3.17b) yield

Ay + V) = by = vy, or Avy; - bvy = —Av] + vy; (3.72a)
Oy *+vi) _on + Vv |, or M| _ovi + oh + v (3.72b)
ov | oavl T oV I, ov av | '

from which the expression for v; in (3.64) followed by invoking the operator A,(\ff)s and N® in (2.3) and (2.4).
The proof is complete. O

4 CASE 2. Heat-structure interaction with Kelvin-Voigt damping:
Dirichlet control g at the interface I: abstract model

We return to the homogeneous heat-structure interaction model (1.1a)-(1.1f) with Kelvin-Voigt damping. In this
CASE 2, we insert a control g in the Dirichlet interface condition (1.1d). Thus, with the same geometry (Figure 1)
and notation {w, w;, u} as in Section 1.3 for the uncontrolled problem, in the present CASE 2, we consider the
following controlled problem:

(PDE) u—-Au=20 ?n (0, T] x Q; (4.1a)
Wy — Aw = Aw; + bw = 0 in (0, T] x Qs; (4.1b)
ulr, =0 on (0, T] x Iy; (4.1c)

(BC) l;;vmf :Vj . on (0,T] x T (4.1d)
B = ™ on (0,T] x I (4.1e)
(IC) [w(O, -), w(0, +), u(0, )] = [wp, wy, Ug] € Hy, (4.19)

this time with Dirichlet control g acting at the interface I;. Compare against model (2.1a)-(2.1f) of CASE 1
with Neumann control g at the interface I, as in (2.1e). We shall likewise consider two cases: b = 0 and b = 1.
H; is the same finite energy space as in (1.2a)-(1.2b).

4.1 Abstract model on Hy, b = 0, 1 of the nonhomogeneous PDE model (4.1a)-(4.1f)
with Dirichlet control g acting at the interface I

This topic was duly treated in [39, Section 6]. Here, it was shown that the abstract version of the nonhomo-
geneous PDE model (4.1a)-(4.1f) is given by

w w
—|We| = Ap|We| + Bpg, 4.2)
de| 4 u

where the operator Ay : Hy D D(Aj) — Hy is of course the same as given by (1.8) and (1.9). Instead, the
(boundary) control operator Bj is given by

®
0 ®

Bpg = 0 ,  Bp: continuous I%T;) - 3, 4.3)
ApDy 8 D|Ap,

Here, -Ap is the negative, self-adjoint operator on I*(Qy) defined by (2.9) = (3.66), i.e., by
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-Apso = Ap, D(Apy) = HXQy) N HY(Qyp), 4.4
while Dy ; is the Dirichlet map from I to Q; defined by (2.10) = (3.66), i.e., by

Ap =10 in Qf; (4.5a)

=D s =
¢ 1k (plrfz 0, (P|FS=X- (45b)

The following regularity holds true for Dy ; [40,41], [4, Chapter 3]:
1_
Dy IAT) ~ DAL, ) = H2(Qy), (4.6a)

l—é‘
or Apy Dys € LIAT)IAQ)). (4.6b)

3
Thus, with x; € D Aﬁ}g c H%*ZS(Qf), we have:

®
X1 3 ®
* _ X3 * . 2
Byl X|=-—1; Bp: continuous 3.~ Ed) 4.7)
X3 v I, D[Aﬁ ]
. . 3+ . . .
in the following sense. For g € I*(Ty) and {x, %, X3} € |®,8,D Aps |l we compute as a duality pairing via
(1.2a)—(1.2b) and (4.3):
X1 0 X1
Bpg, ||| = 0 .| 4.8
X3 H AD,fo,sg X3 H
= (A Dy s8, X3)iep) = (& D A X)) 4.9
X1
ox: .
=[g’ _a_vs |F5 2 = gaBD Xz 3 (410)
L'(To) X3 2w
where we have recalled (the normal v is outward with respect to Q)
6x3
Dt Apsxs = —— (4.11)
15701 av Ir,

from [1, p. 181], [4, Chapter 3]. Thus (4.7) is established. The proof initially takes x3 € D(Apy), and thus,
X3 |ag, = 0, and proceeds analogously to thse path (2.21)-(2.23) via Green’s second theorem to obtain (4.11) in
this case. Next, we extends (4.11) to x3 € H2 *28(52]«) = Z)(Ag}s).

As noted in Theorem 0.3 from [1], the operator A, in (1.8) and (1.9) is boundedly invertible on Hy:
A;! € L(Hy) is explicitly given by [1], from which it then follows that A;'Bp € L(Hz(Ty);Hy).

4.2 The Luenberger’s compensator model for the heat-structure interaction model
(4.1a)-(4.1f) with Dirichlet control g at the interfaceI;, b = 0,1

4.2.1 Special selection of the data

For the present heat-structure interaction problem with Dirichlet control at the interface I, we shall modify
the special selection made in CASE 1 of Neumann control at the interface I, on the basis of the representation
(1.4) in Step 1 of the orientation in Section 1.1. In fact, in the present case, we now take, in the notation of
(1.4)-Q.6):
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A “exponentially stable”: ||e4!]| < ce™®,§ > 0,t = 0, (4.12a)
F=B; C=B', K=B. (4.12b)

Thus, the special setting becomes, in this case,

[partial observation of the state y] = Cy = B'y, controlg = Fz = Bz, (4.13)
leading to the Luenberger’s dynamics

y = Ay + BB’z, (4.14a)
z= Az + B(By) (4.14b)

(as BF - KC = 0 in the present case) and hence to

d .
Fribe z]=(A-BB)[y - z]; [y(t) - z(t)] = e@A BBy, — z]. (4.15)
This is the setting that will be selected in the study of the Luenberger’s theory below, as applied to heat

(fluid)-structure interaction models with Dirichlet control g at the interface I, as in (4.1d).

Insight. How did we decide that F = B* in (4.12b); that is, that the preassigned control g = Fz is given by
g = B’z or F = B*? We first notice that, regardless of the choice of F, the Luenberger scheme in (1.4)-(1.6),
yields that (A - KC) is the resulting sought-after operator in characterizing the quantity [y - z] of interest.
As A is, in our case, dissipative and we surely seek to retain dissipativity, then we choose KC = BB*, or
K = B, C = B". Then, the (dissipative) operator (A — BB*) is the key operator to analyze for the purpose of
concluding that the semigroup 28"t is (analytic as well as) uniformly stable. Thus, at this stage, with F not
yet committed and K = B, C = B* committed, the z-equation becomes z = [A - BF - BB*|z + B(B"y). It is nat-
ural to test either F = B* or else F = -B*, whichever choice may yield the desired properties for the feedback
operator Ar = A - BB*. What is the right sign? Thus, passing from the historical scheme (1.4a)-(1.4b) to our
present PDE problem (4.1a)-(4.1f), the corresponding operator By is critical in imposing the boundary condi-
tions for the feedback operator &*’{Erbj) = A, — BpBY in our CASE 2. But in our present CASE 2, if we choose
il
)
Z3

for {vq, vy, h} in Z)(A}{’l))) as in (4.28b). With this B.C., the argument in (4.46), (4.47) leads to the trace term

2
FSH

“minus” sign “” for the argument of Theorem 4.4, in particular estimate (4.52), to succeed. Therefore,

oh

F—- 87} and so g = B} rby (47) . This then implies the boundary condition h |r, = v, |r, = 5 .

__om
Y

2
—iw in (4.48), and hence to the critical term iw|||Vvo|[* + ||Vh|? + in (4.50) with the correct

oh
ov

oh
ov I,

in view of the interface condition u = w; + g in (4.1d), the B.C. u = w; - %‘r confirms that g = —Z—z X
S S
w w R
or g = F|W| = Bp|Wr| = —a—"f X Hence, the choice F —» 87 as in (4.12b) is the correct one in our CASE 2.
u u s

4.2.2 The counterpart of y = Ay + BB*z in (4.14a) for the HSI model (4.1a)-(4.1f) with F - 8],

Accordingly, for z = [z, 2, z3], the Luenberger’s compensator variable, we select the Dirichlet control g in
(4.1d) in the form

oz 3
g=8p= —6—5 , zeD|AL | c By, (4.16)

Is

i.e.,, with F » 87, where we have critically invoked the trace result (4.7). With y = [w, w;, u], the PDE version
of (3.3a) corresponding to the abstract feedback problem
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alw e 0z
y = Apy + BpBpz, or —|Wi|=|Aw +w;) - bw|+ BDI——3 417
dt| 4 Iy
Au s
from problem (4.2) with operator A as in (1.8) and with g as in (4.16), is
u—Au=20 in (0, T] x Qf; (4.18a)
Wi = Aw = Awy + bw = 0 in (0, T] x Q; (4.18b)
5}
wlr,=0on (0,T] x5 u=w - a—fj on (0,T] x Ty; (4.18¢)
o(w+w) odu
a—vt =3 on (0, T] x L. (4.18d)
4.2.3 The counterpart of the dynamic compensator equation Z = Az + B(B"y) in the special setting
(4.14b) for the HSI model (4.1a)-(4.1f)
With partial observation as in (4.13), C — 87, according to (4.7)
w w
Cy —» BLy = Bp|W| = Vi partial observation of statey = |W|, (4.19)
u Is u
the compensator equation (4.14b) in z = [z, 2, z3] becomes in our present HSI case
|
ou
I T
dt|, ov I,
or via (1.8) on Ay, (4.3), (4.7) on By, B}
0
Iyt Z 0
Ze| = |A(z + 25) - bz | + ou s 4.21)
Z Ap rDr | ——
3t Azg p,rDr,s v I
whereby z; = 7, z: = z;. The PDE version of the abstract z-model (4.21) with partial observation —g—': X in
the Dirichlet condition at the interface I as in (4.19) is given as follows: )
Zye — N3 =0 in (0, T] x Qf; (4.22a)
Zie — A7y — Azyy + bz = 0 in (0, T] x Qg; (4.22b)
ou
zly, =0 on (0, T] x Iy; 23 = zi|r, = e on (0, T] x I; (4.22c)
I
oz + z¢) Oz
# = a—j on (0, T] x L. (4.224)

4.2.4 The dynamics d = (A,-BpB)d, d(t) = y(t)-z(t) corresponding to (4.15): analyticity and
exponential decay, b = 0,1

The main result of the present section is as follows:
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Theorem 4.1. Let b = 0, 1. The (feedback) operator
AFh = Ay - BBy, Hy D D(Arp) = X € Hy: (I - A'BpBHX € D(AY)} 4.23)
in the infinitesimal generator of a s.c. contraction semigroup e”Ent on H,, which moreover is analytic and
exponential stable on Hy: there exist constants C > 1, p > 0 possibly depending on “b” such that
e E5 ]y = [l BoBD|| ) < Ce, 12 0. 4.24)
A more detailed description of D(A %)1)) is given in (4.28a)—(4.28b). The proof of Theorem 4.1is by PDE methods,

which consists of analyzing the corresponding PDE system (4.27).
Step 1.

Lemma 4.2. Let b = 0,1. With d = [d;, dy, d5] € Hy, the abstract equation

d=AYyd = (A, - BpB})d (4.25)
or via (1.8) on Ay, (4.3) and (4.7) on Bp, B}
0
dy d 0
dy| = |A(dy + dy) - bdy | - ad, (4.26)
ds; Ad; Ap Dy s Y !

so that d, = dy,dy = diy, corresponds to the following PDE system, where we relabel the variable
[dy, dy = dy, d3] = [W, W,, Q] for convenience

fi, - Mi =0 in (0, T] x Qp (4.27a)

W = AW - AW, + biv = 0 in (0, T] x Q4 (4.27b)
. ou

il =0 on (0,T] xTy; @ = - a—ﬁ on (0, T] x Ty; (4.27¢)

ow +w) ol

Tt =5 on (0, T] x T (4.27d)

Description of D(AY)). We have {vy, vy, h} € D(AL)) = D(A, - BpB}) if any only if

()]
HQ@IR for =0, ot valr = hly. € HT) in both case
V1, V. SO that v = 2 In potn cases;
PEEQ)  for b=1, 2L = T s (4.282)
Ay + vy) € IX(Qy);
(i)
oh .
he H(Qs), AhE€TIXQ), hlr, =0, hi = v - v € He(T);
ol a : b (4.28D)
v+ vy 1
- = - 4 (= .
v v I H2(I5)

The adjoint operator ﬂ(Fb}; = A} — BpBYp. For {vy, vy, h} € D(ﬂ(pb,};) (to be characterized later), we have after

1%
recalling A} in (1.10a) and B} V2| = —Z—C - from (4.7)
h S
V1 %1 —Vy
OR I¥N - . _ _ oh
Arp|Vz| = (A} - BpBp)| V2| = [A(vz = vy) + bvy | - Bp|-— (4.29)
h h AR ov I,
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0
-V,
=[A(vy = vy) + bvy| - (4.30)
Ah Ap rDs s ——‘ l

recalling By in (4.3).

Description of D(ﬂ(b)*) We have {vy, vy, h} € D(ﬂ%‘ = D(A} - BpBYp) if and only if the same conditions

for Z)(&Z{(b) ) in (4.28a)—-(4.28b) apply, except that now (4.28a) is replaced by A(v, - v;) € IX(Q,) and (4.28D) is
replaced by

ovy — Vp oh 1
——| = —| € H:(L). 431
v 5 v . 2(Ty) ( )
W1 w1
The PDE version corresponding to the adjoint operator ‘ﬂ D is given bY ar| W ﬂ(b) w, | or (counterpart of
(3.21a)-(3.21d)) u u
he - AR = 0 in (0, T] x Qf; (4.32a)
Wiee — Awy — Awye + bwy = 0 in (0, T] x Q; (4.32b)
h|rf =0 on (0, T] x Iy, (4.32¢)
oh o(wq + wyy) oh
hlv = — -, 2=/ == 0,T] x L, 4.32
Ir, = —wielr, vl EY X ov on (0, T] x I (4.32d)

(where wy; = ~w; by (4.29), top line) with 1.C. in Hj,
Step 2. (Analysis of the PDE problem (4.27): the operator ﬂ%”}) = Ay - BpB) in (4.23))

Proposition 4.3. The operator ?{FD = Ay - BpBp in (4.23) and its Hy-adjoint 5‘{%”,)5 = Ay, - BpBy are
dissipative

Vil |1
oh
Re|(Ap = BpBp)| V2|, V2 =—||VVzl|és—||Vh||éf—‘a— . v EDARY,  (433)
hl [y, Ve,
vil [vi on
Rel(A} = BoBp)\vs | |vs [t = =IVillg, - VIR, = || 5| || ©viovi hH € DARD) (439
nl ], bl

in the I2(-) norms of Q; and Qr, and the IX(T,) norm on I. Hence, both ﬂ(b) and 5‘{(1’) are maximal dissipative

and thus generate s.c. contraction semigroups e”Eht qnd e”F. D‘, respectively, on Hy. Explicitly in terms of the
corresponding PDE systems (4.27) we have:

W(t) o Wo
W) = eAE| W, | = e(Ar-BoB| iy (4.35)
u(e) {i iy

for the {w, w,, t}-fluid- structure interaction model given by (4.27a)-(4.27d) on Hy: with LC. {W,, Wy, iy} € Hj,
similarly, for the adjoint Al F 4 corresponding to model (4.32a)-(4.32d).

Proof of (4.33). For {vy, vy, h} € D(Arp) in (4.28a) and (4.28b), we compute via (1.8), (4.26):

Vi| |1 V2 1%1
Re{(Ap - BpBYy)| V2, [Va|f = Ref|[Awr + v) = by, [va|| - [1p ], (4.36)
hlLh g, AR nlfg,
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where recalling (4.3) for Bp and (4.7) for 8},

0
0 V1
1p|= LV =|-—| , D; h 4.37
D _oh hz ov f,sAD,f]Z 437
ik Py AT
s Hp
2
_||2k , (4.38)
M, AT

recalling D}’SAD,fh = —% . from (4.11). On the other hand, recalling (1.12)

V1| |1
Re{ Ay V2, [Vt = —|[Vwyll2 - (IVRIP. (4.39)
hllh

Hp

Thus, (4.38) and (4.39), used in (4.36), yield (4.33), as desired. Similarly for (4.34) starting from (1.10a) for Aj}.

O
4.2.5 Analyticity of e/t and eA¥5t on H,b=0,1
Remark 4.1. Given {v;, v;, i’} € Hp, and w € R\{0}, we seek to solve the equation
v 0 I ofjw] |w
(iwl - AFP)|V2| = Yiwl - |A - bI A O|fvz]=]|v;
h 0 0 Allr] |p
in terms of {vq, vy, h} € D(A 55’}1)) uniquely. We have (counterpart of Remark 3.2)
%1 2%
V2| = R(iw, AL v; |
h h
12} 0 I 0]w vy
ALRw, AP\ v;[=|a - bI A 0ffva] =|AWy + vy) = by .
h* 0 0 Allh Ah
Theorem 4.4. Let b = 0,1. Let w € R and
Vi 2%
(iwl = APY)|v2| = |v;| € Hy (4.40)
h n
for {vy, vo, h} € Z)(ﬂ}b,)D) identified in (4.28a)—(4.28b). Then:
(D) the following estimate holds true: there exists a constant C; > 0 such that:
2
D||vo|[* + ||VvyP + [|A(v1 + vq) = bvy|* + ||AR|[Z + ||VA|]? +
[[val[* + [[Vwa][* + [[A(vy + vy 1" + [|AR|[* + || VA]| e @41)

< GAbIVIP + IVviIP + [lvs I + (IR} Vel 2 & > 0;
(i)) In view of Remark 4.1, estimate (4.41) is equivalent to

AL LR W, AP coy < G VW] 2 &> 0, (4.42)
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R(iw, ﬂg’,)p) = (iwl - ﬂ}b}))‘l, in turn equivalent to estimate

IRGiw, AL £y < V|w| 2 > 0. (4.43)

L

lw]”
Thus, the s.c. contraction semigroup e et gsserted by Proposition 4.3 is analytic on Hy, by [4, Theorem 3E.3
p. 3341, similarly for eAE5t on H,. The explicit PDE version of (4.35) is system {W(t), W,(t), u(t)} in
(4.27a)-(4.27d).

Proof. (i) The proof of estimate (4.41) follows closely the technical proof of estimate (3.30) for the operator ﬂg’}v

except that now the argument uses the B.C. of ﬂfp% rather than of &’l}b}] This, in particular, requires a different

argument to handle the more challenging case b = 1, with full H'(Q)-norm on the first component space.

We indicate the relevant changes.

Step 1. Return to (4.40), re-written for {vy, vy, h} € Z)(ﬂ%b,)p) and {v, v,, h*} € Hy:

iwvy = vy = vy, (4.44a)
iwvy = [A(vy + vy) = bvy] = vy, (4.44b)
iwh = Ah = h*. (4.44c)

Step 2. Take the I*(Q)-inner product of equation (4.44c) against Ah, use Green’s First theorem, recall the B.C.
h |r, = 0 in (4.28Db) for D(ﬂ%b,)p) and obtain the counterpart of [1, equation (3.10)] or (3.34)

R *
iR dry ~ Ww]VRIP ~ [8AIF = (i, Ah). (445)
I

S

Similarly, we take the I#(Qs)-inner product of (4.44b) against [A(v; + v,) — bvy], use Green’s First Theorem to
evaluate Ig VoA(Vy + V2)dQs, recalling that the normal vector v is inward with respect to Qg, and obtain as in (3.35)

o(vy + V.
—iw_[vz Mdrs — iW(Vvy, V(v + V) = iw(vy, bvy) = [[A(v; + vy) = by
ov
I, (4.46)
= (vy, [A(vy + vp) = bvq]).
. B oh owi+vy) | _ on . ®
We now invoke the B.C. Al = vyr, - vl and rTE i for {vy, vy, i} in D(AFrp) (see (4.28b)),

we rewrite (4.46) as follows:

ohloh
—iw_[ h + — |=—=dT; - iw||[Vvy|* - iw(Vvy, Yv1) — iw(vy, buy) — ||A(V; + vy) — bvy|f?
ov |av (4.47)
Iy .
= (v, [A(v1 + v2) = bvi]).
Summing up (4.45) and (4.47) yields after a cancellation of the boundary terms iwj'rsh%dl"s:
2
-i — — iw[||[Vvy|? + [|[VA|[2] = ||A(vy + V) = byy|[* + ||AR|* + iw(vy, bvy) + iw(Vvy, Vv
@ || Gy || = TlIvalP + IVRIPT= 801 + v2) = buiP + [BRIP + fova, o) + i T,
+ (v3, [A(v1 + ) = bvi]) + (I", Ah).
By using via (4.44a), the identities
—iw(Vvy, Vvy) = (Vy, V(iwvy)) = ||Vvo| + (Vvy, Vvy), (4.49a)
—iw(vy, V1) = (Vg, lwVy) = [[Vol[2 + (v, V), (4.49b)
and we obtain the final identity
2
+ _ 2 4 247 2 4 2 4 || 28
18061+ v2) = buif + 8RIF + i Vv + IVRIP + || 201 ] @50

= |9l + Dol + (Wvy, V) + b(vz, vi) = (vg, [A(v1 + v2) = bvi]) = (K", Ah).
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Step 3. We take the real part of identity (4.50), thus obtaining the new identity:

[IAvy + vz) = buy|* + ||ARIP = [[Vvalf* + bl[va|* + Re(Vvg, Vvy) + bRe(vy, vy)

(4.51)
= Re(vy, [A(v; + vy) = bvi]) — Re(h", Ah)
or
(1 - oll|Aw1 + vp) = bv|P + [[AR|P] < (1 + &)[|| Wyl + ] |va|] 452)
+ GV P + bIviIP + [[vz]* + [IR°]P].
Step 4. We now take the imaginary part of identity (4.50), thus obtaining the new identity
2
Wi||Vvy|? + ||VR|F + || — = Im{(Vvy, VW)} + bIm{(vy, v} = Im{(v,, A(vy + Vy) — bv
[IVVall* + |IVA| ov {(Vvy, Vv)} {(vo, v} {(vy, A1 + vp) 1) 453)
+ (h°, Ah)},
2 2 | e 2y pE 2 3 2 2
wl{||Vv +Vh+—‘ < —||Vvy[* + b—||vo||* + €[||A(v1 + Vo) = bv{||* + ||AR
jwlfIvvalP + VR + || = 3 1P+ b livalP + a0 + vo) = buif + R
+ Cl|[ V| + bllviIP] + Cealllvs|P + [1R°F]
or
2
lwl = £ ([l * + |wl|[IVRI + %‘ < bg—BIIVzIIZ + e%[||A(v1 + v2) = bvy|[* + [|AR|P]
2 ov Iy, 2 (4.55)
+ ClIVviIP + bIviIP + [vs|P + [R7[P]-
Take now
g2 g2
0 < |w| - 7<=>£2 < |w| (4.56)
so that (4.55) yields for |w| as in (4.56):
2
S—ZIIVVzIIZ + e |IVAIP + || = < b8—3IIVzII2 + [|A(v1 + v2) = bwif? + [|AR(E]
2 ov I 2 (4.57)
+ ClIWr | + bllvy|P + [IvsIP + (1R
hence for |w| as in (4.56)
on| |f
sl + [[VRIP + || == < De||va| + 2e[||Avs + v2) = bwi|[* + [|AR]F]
L (4.58)

+ ClIVViI? + bl + vz I+ [1h°IF].

Remark 4.2. In the case b = 0, the proof on the space Hj-o, hence via (1.2a) with the first component in
HY(Q)\R topologized by the gradient norm, proceeds as follows. Estimate (4.58) is “too good for our purposes

2
]
av I

remaining ||Vv,|* on the RHS of (4.52) with b = 0. We obtain

at this stage”: on its LHS, we drop the terms |||Vh|]* + and substitute the new estimate on the

@ = OlIAW; + vo)IP + [IARIP] < (1 + &)2el[|Awy + vo)I* + [|ARIP]
+ L+ G| + (vl + [IR]P] (4.5%)
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or
[(1- &) = (1 + e)el[J]Avs + VI + [IARIR] < GV + V3] + [1A°|R] (4.600)

or
1A + VoI + [IARI < CAIVvi I + (V51 + [17e]]. (4.61)

Estimate (4.61;) coincides with estimate [1, equation (3.26)], case b = 0.
Substitute estimate (4.61;) into the RHS of estimate (4.58) with b = 0 to obtain for |w| as in (4.56):

2
[[Vvalf* + [IVAIP +

< GIIVViIP + (v 1P + (IR (4.620)

s

Summing up estimate (4.61¢) with estimate (4.62) finally yields for |w| as in (4.56):

2

1AQvs + VI + [[ARIE + [[WvaP + VR + < GV + V1P + 1R[] (4.63)

Is

2
for all points iw, with |w| > % as in (4.56). Then estimate (4.63,) coincides with estimate (4.41) with b = 0 as
desired.

Step 5. We proceed now with the proof of the case b =1 on the space Hy-; via (1.2b) with HY(Q,) first
component. As in the Neumann control on Iy of CASE 1, this case is more challenging and requires the
same Lemma 3.5 of CASE 1. However, its use will be tuned to the present case of Dirichlet control on T,

with trace % : characterized by (4.28b) in D(Af p):

oh
E Volr, — Al (4.64)

Is

Thus, with b = 1, we return to estimate (4.58) where on its LHS we use (4.64):
|[9va|> + (VR + [[valr, = Rl | < bef|va* + [ OK. ], (4.59)
where
= 26[||A(v1 + v2) = buy|P + [|ARIR] + CLIOVIP + blvi | + [lvsIP + (1A (4.60,)

For 0 < & < 1 to be chosen below, we return to (4.59,) and readily obtain, also after adding & ||k |r||* to both
sides:

IVualP + IVRIE + & [[valr, = RIg)P + illh [P < bef[val? + & IRl + [ OK: | (4.61)

Next from
VIl = I (valr, = hlg) + higl? < [Ivalr, = higll + HRIGIE < 2 Ivalr, = higl? + 2 [1RIglE, (4.62,)

and hence,
% Valgl < & [valr, = hIgl? +&r IRIgIE. (4.63))

Using (4.631) on the LHS of (4.61)) yields (& < 1)
€
“lvalg P + 19221 + [IVAIE < be [[v|? + &llhlg? + [ OKe ] (4.649).
2

Next we invoke Lemma 3.5(a) on the term [ ] on the LHS of (3.64,), to obtain
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&
[ﬁ i ”5] V2P + IIVRIE < & 1Al + (4.65)
1
< &G, IVRIP + [ OK, ], (4.661)

where going from (4.65;) to (4.65;) we have invoked the Poincare inequality
IRl < G IIVAIP, (4.67,)

which is legal since h|r, = 0 by (4.28) on @(ﬂﬁ!ﬁ},). Then (4.66,) is rewritten as follows:

&
[—1 = be| w2l + (1 - G)IIVAIP <[ OK. | (4.68,)

2q

Now we select1 = & > 0 (b = 1) so that

&
ﬁ<§—bs or 20(JE +€)<g <, (4.69,)
1
and
1<1—e3C or £<i<1 (4.70)
2 1“p 1 ZCp_ WAV

(we can always take C, 2 %). Using (4.69;) and (4.704) in (4.68,) yields
24 1 2 2 2 -2 -2 12 |12
VeIV + 5 IIVAIF < 2e[[|A(vy + v2) = bval[* + [JARIF] + GlIVvrI® + BIlvr[® + [vz]F + |IR°]F] (4.71)
recalling in (4.60,), for |w| = €% as in (4.56).
We finally obtain the desired estimate also for b = 1 to include also ||v,|[*:
[[val? + IVRIP < 4VE[[|Avs + v2) = burl + [IARIE] + GV | + bI[vi]P + (v + [Ih°|] (4.721)

for |w| = €% as in (4.56). Substituting the estimate for ||v|* from (4.2.5) into the RHS of (4.58) with be < b yields

2
Vv,l* + [IVRI? +

< 4beVE([|A(v1 + v2) = byl + [|ARF]

I
+ CllIVvr|? + by + [[vs|? + [IW7IP]. (4.731)

Now, add the estimate for ||v,|[? in (4.721) to (4.731) and obtain
2

b [[valP + [IVval* + [IVRIP + < 4JVE(L + be)[||A(vs + vo) = bvi|f + [|ARIP]

I
+ ClIIVvi [P + Dllvr|P + [vsI* + (IR (4.73)

Estimate (4.731) is the counterpart of estimate (4.58) for b = 0.

Step 6. The rest of the proof for b =1 now proceeds as in the case b = 0. In (4.73]) we drop the terms

2
%‘
ov L

(A = &)llIAWy + v2) = buy|* + [JARIP] < (1 + e)4VE(L + be)[||Avy + v2) = by| + [|AR|P]
+ (L + G| + bllvr P + [lvsI? + [I7P] (4.741)

|IVR|* + and substitute the resulting estimate for [b ||v,|* + ||Vv.|[?] into the RHS of (4.52) and obtain

or,since[(1-¢€) - (1 +¢&)dJe(l + be)] 2k >0,
Ay + vy) = by + [|ARIE < CLIIVvi|? + bllvyIE + [lvs I + (1|12, (4.751)

which is a counterpart of (4.63;) for b = 0. By substituting (4.75;) into the RHS of (4.73}), we finally obtain
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2

b IvalP + IVvslf2 + [[VRJE + < GVl + bIvIR + V311 + IR, (4.761)

ov L

Finally, summing up (4.75;) and (4.76,) yields

2
b (vl + [I9v,]* + [|ACvy + v2) = bwa|[* + [JAR|[* + [|VA|* +

I
< GLIWVIP + DllviI + [valP + [IR°]P], (4.77)

for all |w| > &2, as in (4.56).
Estimate (4.77;) is the sought-after estimate (4.41) for » = 0,b = 1. O

4.2.6 Exponential stability of eA¥st and e”¥5t on H,,b=0,1

In Proposition 4.5, we shall prove that, in both cases b = 0 and b = 1, we have

. -1 1
0 €p(ALY), 0€p(AFy), APy €LH,), AP, € L(H)), (4.78)
so that there exists a disk S;, centered at the origin and of suitable radius r; > 0 such thatS,, C p(A }I’,)D). Then,

the resolvent bound (4.43) combined with ﬂ%'l € L(Hp) in (4.78) allows one to conclude that the resolvent is

uniformly bounded on the imaginary axis iR:
IRGiw, ALp)| ) < const, w €R. (4.79)

Hence, [45] the s.c. analytic semigroup et is, moreover, (uniformly) exponentially stable: There exist
constants M = 1, § > 0, possibly depending on “b” such that
e 75| par,y < Me™®, ¢ 2 0. (4.80)

It was similar for the adjoint ﬂﬁ!’}g.

Proposition 4.5. Statement (4.78) holds true. Hence, the exponential stability for e¥5t in (4.80) holds true. More
precisely, with reference to ﬂﬁ:”j), we have: given {v{, v,, i’} € Hy, the unique solution {vy, vy, h} € D(ﬂ%) of

\2) V2 vy
ﬂg’))p Va2 | = A1 + vy) = by | = |y (4.81)
h Ah h*

is given explicitly by

R . . ) *
v = (A v; - vyl + N§b>‘5[—AR,fh R 1) - vi ]t € HY@)IR, ws)
HY(Q)\R for b =0, 3
Vo = V7 h=-ALh* + R (v € HAQ). 4.83)
P TRy forb=1, Rf r,s(V1 Ir,) € H2(%y)

In the operator form, we have

v @)y —v2]+N§”>[5[—AR}h + Ry sy In,) - vy m]

V1
VZ = ﬂg—'l'l,)D_l VZ* = * ’ (4843)
h h* 1%

~Apeh* + Ry (Vi)
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b) \— o] B 0 )
(Va8 + N ——[-ResCle)] -Axls ~N» = Apy[[v;

Rrs( I) 0 -ap I
I[ve, v, hlll, < clilvs, vs, B[, » (4.84c)

where the operators A,f}’)s N® are defined in (2.3), (2.4). Moreover, —Agy is the Robin Laplacian on Qy:

5}
—Apfo = Mg in Q; @ € D(Agy) = ¢ € HX(Qy) : @I, = 0, [6_(5 +¢| = O], (4.85)
L
and Ry s is the Robin map from Ty to Qy:
AY =0 in Qf; (4.86a)
Rp s : H5(09Q) » H*2(Qr),s €ER : Rr g = F)
f,s ( f) 2( f) S f,Sl’l l/) = w|rf - 0’ [_lp + ¢ = U. (486b)
ov L
Proof. Identity (4.81) and the characterization of z)(m%) in (4.282)—(4.28Db) yield
Ah = h* € IX(Qp); (4.87a)
o [H@IR forp=o, )
Vy =V
T lm@)  forb=1 ki =0, | Rl =Vl (4.87b)
L

and the h-problem in (4.87) yields the solution h in (4.83). Moreover, (4.81), v; = v;" in (4.87a) and (4.87b) yield

A(vy + vp) = bvy = vy, or Avy = bvy = =Av]" + vy, (4.88a)

(v, + v oh ov ovy oh

o tv) | _ ok , or 2 =L s = eH(n). (4.88D)
ov L OVl v I, o A

Then, the solution of problem (4.88) is given by (4.82) via (4.83), where the operators A\ and N were defined
in (2.3), (2.4), and recalled as follows:

H%(Q,)\R for b=0 b510)
-A%0 = (A - BDp, DAY =1{p € * C o = | =0, (4.89)
N,s@ ( )@ ( N,s 0 HZ(QS) for b = 1, v L
where N{?) is the Neumann map
A-bDyY =0 in Qg
Y =N"u 0y (4.90)
ov |,
Proposition 4.5 regarding (4.79) and (4.80) is proved. O

5 CASE 3: Heat-structure interaction with Kelvin-Voigt damping:
Dirichlet control g at the external boundary Iy

We return to the homogeneous heat-structure interaction model (1.1a)-(1.1f) with Kelvin-Voigt damping. In the
present CASE 3, we apply a Dirichlet control g on the external boundary Iy. Thus, with the same geometry
(Figure 1) and notation {w, w;, u} as in Section 1.3 (see (1.1a)-(1.1f)), in the present CASE 3, we consider the
problem
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PDE u—Au=0 in (0, T] x Q; (5.1a)

(PDE) Wi — Aw — Aw; + bw = 0 in (0, T] x Q; (5.1b)

ur, =g on (0, T] x Iy, (5.1c)

(BC) u=w on (0,T] x I (5.1d)
olw+w) ou

T‘ =5 on (0, T] x T; (5.1¢)

(IC) [w(0, -), w(0, -), u(0, -)] = [wo, w1, ug] € H, (510

with Dirichlet boundary control g acting at the external boundary I'y. Compare against model (2.1a)-(2.1f) of
CASE 1 with Neumann control g at the interface I, as in (2.1e), and against model (4.1a)-(4.1f) of CASE 2
with Dirichlet control g at the interface I, as in (4.1d). We shall likewise consider two cases: b = 0 and b = 1.
H, is the same finite energy space defined throughout in (1.2a)-(1.2b).

5.1 Abstract model on H, b = 0, 1, of the nonhomogeneous PDE model (5.1a)-(5.1f)
with Dirichlet control g acting at the external boundary Iy

This is the counterpart of the treatment in [39], where an interior Neumann or Dirichlet control acts at the
interface I. To this end, we define two boundary — interior maps, with interior Q;: the map Dy s (introduced in
(2.10) = (3.67) = (4.5)) acting from Ty, and the map Dy s acting from I:

Ap =0 in Q; AY=0 in Qf; 5.22)
=D = =D = )
PEDH o =0, pin=x VTPl vl
Dy, Dyy: H'(0Qp) —» H'*2(®y), forany r €R, (5.2b)
1 1 l_f
Dps, Dy : Lz(an) - Hf(.Qf) C Hf_zg(gf) =D A,S{f ], (5.20)

[40,41], [4, p. 181], [39], where —Ap is the negative, self-adjoint operator on LZ(Qf) defined in (2.9) = (3.66) = (4.4)
and repeated here

-Apso = Ap, D(Apy) = HX(Qr) N Hy(Qy). (5.3)
Similarly, we recall from (2.4) the Neumann map N{? on Q:

A-bDy=0 in Q;
Y = NP 09
ov

(5.4

’

Is

with regularity given by (2.5), as well as the Neumann-Laplacian in Qg; —A,ﬁ}’, ) the negative self-adjoint operator
on I#(Qy), introduced in (2.3) and repeated here

HY(Q)\R forb=0,  dp | _ 0’ 55
T

—AVy0 = (A-DDp =0, DA ={p € :
N,sP ( )(P ( N,s o HZ(QS) for b =1, v

To obtain the abstract model of problem (5.1), we proceed as usual [4,39]. We re-write the u-problem in (5.1) as
follows:

us = Mu - Dy sg - Dy s(W; Ir) in (0, T] x Qf; (5.6a)
g£-¢-0 onlIy

U~ Dfsg — DpsWilag, = 0 =
[ 7.r8 = Yf.s t]‘mf w,—0-w;, on I

in (0, T] x 8. (5.6b)
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u; = —Apsu - Dy g = Dy s(W; Ir,) € TA(Qy); (5.7a)
ue = ~Apgu + Ap Dy g + Ap Dy (W |r,) € [D(Apy)], (5.7b)

where AD,f is the isomorphic extension of the operator Ap in (5.3): LZ(Qf) - [D(Aps)]’ = dual of D(Ap) with
respect to I(Qs) as a pivot space. Similarly, we re-write the w-problem in (5.1b) via the RHS of (5.1e) as
(compare with (2.6) of CASE 1):

Wy = AW + wy) — bw = AbI + b(w + wy) = bwin (0, T] x Q. (5.8)

ou
+ - N =
(w + wp) = Ng oy

Is

The term |(w + w;) - Ns(b)[% ‘r ] satisfies the zero Neumann B.C. of the operator Af\ff )S in (5.5), so we can re-write

(5.8) as (compare with (2.7) and (2.8) of CASE 1):

0
Wi = ~AN | (W + wp) - Ng”)[a—z ] +b(w + w) - bw € IX(Qy), (5.92)
T
~ ~ ou
Wy = = z(vlfi(w +wp) + AlfllgNs(b)[a—V l +b(w +wy) - bw € [@(AI(Vb,)s I (5.9b)
Ts

where Ajf,bi is the isomorphic extension of the operator AJ(\]If )s in (5.5): I#(Q) — [D(A,(Vb, )s ] = dual of D(A,(vlf )s
with respect to I*(Q,). Henceforth, as in CASE 1, we write simply AI(\,If )s to denote also the extension Aﬁfi, and
likewise Ap s to denote the extension AI(,{’}. The action of —A,(vb, )s on the terms (w + wy) in (5.9a) is AbI(w + w;) and
(5.9a) has an extra term b(w + w;) and their combination produces a cancellation of the term b(w + w;) for
b = 1. Thus, (5.9b) yields via (5.5)

~ ou
Wy = ~APMw + wy) - bw + ALIND R (5.10)
I,
ultimately via (5.5) with b = 0
~ ou
wie = Aw + wy) - bw + AVAND ol G.11)
I

Combining (5.10) for the w-problem with (5.7) for the u-problem, we obtain the corresponding first order
system

0 I 0
w 0 w 0
di w| = [-AQ) - bI -AD A}Vb}szvs(’ﬁE wl+| 0 | (5.12)
u Is u AD’fo’fg
0 ApsDr (- It -Apf

The operator in (5.12) on [w, w;, u](g = 0) is of course the same operator A, in (1.8)-(1.9), except that in (5.12)
the relevant BCs in (1.9a)—(1.9b) are included in the operator entries. Equation (5.12) can be rewritten as
follows:

w w
—|w | = A, |\w|+Byg, (.13)
dt |, 3

where the operator Ay : Hy D D(Ap) —» Hy is of course the same as given by (1.8) and (1.9), while the
(boundary) control operator By is given by
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®

0 ®
Bpg = 0 , Bp: continuous I%T) — 3. (5.14)

Ao D8 @[Aﬁf ]
The adjoint operator B}, of Bp in (5.14) is given by
®
X1 3 ®
. _ o3 .. . 9
Bp|%| = "oy | By : continuous 3.~ B (5.15)
X3 vy D[Ag,f ]
3
in the following sense. For g € I#(T;) and {x;, X, X3} € ®,®,Z)[A5}SJ , we compute as a duality pairing via (5.14).
X1 0 X1
Bpg, | %|| = 0 % (5.16)
X: ApsD X:
31)u pfUrr8| | X3 1,
= (Ap Dy r8, %)y = (& Df pAp %)) (5.17)
X
ox:
= [ ) —a—3 = gy [B*D X s (518)
LY S e

where we have recalled from [4, Chapter 3] (same technique as in obtaining (2.24), CASE 1 or (4.11), CASE 2)

. 0X;
Df’fAD,fXg = -

oy (5.19)

Iy .

Thus, (5.15) is established. As shown in (4.11), the proof initially takes x3 € D(Apy), i.e. X3 a9 = 0, and uses
3

Green’s second theorem to establish (5.19) in this case. Then (5.19) is extended to Z)(A,j‘,}s) c H%*ZE(Qf).

5.2 The Luenberger’s compensator for the heat-structure interaction model
(5.1a)-(5.1f) with Dirichlet control g at the external boundary I'y, b = 0, 1

5.2.1 Special selection of the data

For the present heat-structure interaction problem with Dirichlet control at the external boundary Iy in
the notation of (1.4)-(1.6), we take

A “exponentially stable”: |le4!]| < ce™®,§>0,t = 0, (5.20a)
F=B C=B', K=B, (5.20b)

as in CASE 2, and unlike CASE 1. Thus, the special setting becomes, in this case,
[ partial observation of the state y] = Cy = B"y, control g = Fz = B*z (5.21)
leading to the Luenberger’s dynamics

y =Ay + BBz, (5.22a)
z = Az + B(By) (5.22b)

(as BF — KC = 0 as in CASE 2, unlike CASE 1) and hence to

% ~z]=(A-BB)y - zI; [y(0) - z(t)] = €A BBy, ~ 7). (5.23)
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Insight. How did we decide that F = B* in (5.20b); that is, that the preassigned control g = Fz is given by
g =B’z or F = B*? We first notice that, regardless of the choice of F, the Luenberger scheme in (1.4)-(1.6),
yields that (A - KC) is the resulting sought-after operator in characterizing the quantity [y — z] of interest.
As A is, in our case, dissipative and we surely seek to retain dissipativity, then we choose KC = BB*, or
K = B, C = B". Then, the (dissipative) operator (A — BB") is the key operator to analyze for the purpose of
concluding that the semigroup e~28 is (analytic as well as) uniformly stable. Thus, at this stage, with F not
yet committed and K = B, C = B* committed, the z-equation becomes z = [A - BF - BB*|z + B(B"y). It is nat-
ural to test either F = B or else F = —-B*, whichever choice may yield the desired properties for the feedback
operator Ar = A - BB*. What is the right sign? Thus, passing from the historical scheme (1.4a)-(1.4f) to our
present PDE problem (5.1a)—(5.1f), the corresponding operator Bj, is critical in imposing the boundary condi-

tions for the feedback operator A(FI’,)D = Ap - BpB} in our CASE 3. But in our present CASE 3, if we choose

)
)
Z3
{v1, vy, h} in D(A%’}D) as in (5.34) below. With this B.C., the argument in (5.51)-(5.53) below leads to the trace
term —iw ||h |r,||* in (5.54), and hence to the critical term iw[||Vv,|* + [[VA|[* + |||, |*] in (5.57), with the correct

“minus” sign “~” for the argument of Theorem 5.4, in particular estimate (5.47), to succeed. Therefore, in view of the

. confirms that g = o
¥

=9
T v

F- B} and so g =B}

rby (5.15) , this then implies the boundary condition h |r, = | for
¥ ¥

ovr

interface condition u |y, = g in (5.1c) at the external boundary Iy, the B.C. h |r, = o

ov ov l“f’
w w
or that g = F|We| = Bp|We| = -2~ ‘r . Hence, the choice F — B} as in (5.20b) is the correct one in our CASE 3.
u u Y

5.2.2 The counterpart of y = Ay + BB*z in (5.22b) for the HSI model (5.1a)-(5.1f) with F - B},

Accordingly, for z = [z, z, 3], the Luenberger’s compensator variable, in line with (5.21) we select the Dirichlet
control g in the form

0z 3
g=Byz=-—> Al c H(Q)) (5.24)

, BBLED
ov 3

Ty

by (5.15). With y = [w, w,, u], the PDE version of the abstract feedback problem corresponding to (5.22a)

a|w W 0z
y = Ay + BpBpz, or —|Wi|=[Aw+w;)-bw|+Bp = ] (5.25)
dtf Vi
Au f
recalling Ay from (1.8) and B}, from (5.15), with g as in (5.24), is
U -Au=0 in (0, T] x Qf; (5.26a)
Wy = Aw = Awy + bw =0 in (0, T] x Q; (5.26b)
0z
uly, =-—>| on (0,TIxTy; u=w  on(0,T]xT (5.26¢)
ov I
ow+w) ou
P iy on (0, T] x Ts. (5.26d)

5.2.3 The counterpart of the dynamic compensator equation Z = Az + B(B"y) in (5.22b) for the HSI model
(5.1a)-(5.1f)

With partial observation as in (5.21) according to (5.24) or (5.15)
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w w
g=BpLy =Bp|Wi|=-—| = partial observation of state y = |W|, (5.27)
u Viry u
the compensator equation (5.22b) in z = [z, 2, z3] becomes in our present HSI case
il
5}
i= zl=az+ By~ (5.28)
de Z Vi
or via (1.8) for A, and (5.14) and (5.15) for By, B}, respectively,
0
Ze Z 0
Z| = |Mz + 2) - by | + ou , (5.29)
Z A Ap rDf ¢l ——
3t Z3 D.f Ut f v .
whereby z; = 7, z; = 7. The PDE version of the abstract z-model (5.29) with partial observation —g—"f : in
the Dirichlet condition at the external boundary Iy as in (5.27), is via (5.24)
Zy — A3 =0 in (0, T] x Qf; (5.30a)
Zut — Dz — Azgy + bzy = 0 in (0, T] x Q; (5.30b)
u
zly=-——| on (0, T] xTy 2=z on (0, T] x I; (5.30c)
ov I
0z +z) 0z
" oy on (0, T] x L. (5.30d)
5.2.4 The dynamics d=(Ap- BpBp)d, d(t) = y(t) - z(t), corresponding to (5.23): analyticity and
exponential decay, b = 0,1
The main result of the present section is as follows:
Theorem 5.1. Let b = 0, 1. The (feedback) operator
AL = Ay - BpBp, Hy D D(AF)) = {x € Hy: (I + A;'BpBp)X € D(A)} (5.3

is the infinitesimal generator of a s.c. contraction semigroup eAPht on H,, which moreover is analytic and
exponentially stable on Hy: there exist constants C 2 1, p > 0 possibly depending on “b” such that

175,y = [l BoBDY ||,y < Ce P, £2 0. (5.32)
A more detailed description of Z)(A%”},) is given in (5.35a) and (5.35h).

The proof of Theorem 5.1 is by PDE methods, which consist of analyzing the corresponding PDE system
(5.30). We proceed through a series of steps.

Step 1.
Lemma 5.2. Let b = 0, 1. With d = [d;, dy, d5] € Hy, the abstract equation
d = A¥)d = (A, - BpBp)d (5.33a)

or via (1.8) on Ay, (5.14) and (5.15) on Bp and B}, respectively
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0
dit d 0
dy | = A(dl + dz) - bdl - ads s (5.33b)
dy; Ads ApDrf|= 5,

so that d, = dy, dy = dyyy corresponds to the following PDE system, where we relabel the variable
[dy, dy = dy, d3] = [W, W,, @] for convenience

i -Aii=0 in (0, T] x Q; (5.34a)

Wy = AW — AW, + biv = 0 in (0, T] x Q; (5.34b)

R on A

ulrf =-—| on (0, T] xIy;, u="w on (0,T] x T (5.34¢)

ov Ir,

ow +w) ol

—_ = — T] x Ts. .34
v 3y on (0, T] x Iy (5.34d)

Description of D(AY)). We have {v;, v,, h} € D(AY)) = D(A, - BpB?) if any only if

)
HQIR for b =0, "1 at wilr = Al € HYE)  in both
V1, V SO tha % = 2 1n potnh cases;
PR Q) for b=1, 2L = s s (5.35a)
A(vy + vy) € I(Qy);
(ii)
1 2 oh 1
h € H(Q), Ah€IA(Q), hiy= vl € Hz(Ty);
onl o ) g (5.35h)
V1 + Vg 1
= e = [ .
hlr, = v, o | P I, € H2(Iy)

The adjoint operator A}b}; = Ay - BpBJ. For {vy, vy, h} € D(A%‘) (to be characterized below), we have after

%

N

recalling A} in (1.10a) and B}, ™

from (5.15)
Ty

V1 %1 —V

. oh
APS| V2| = (A} - BpBp)| V2| = [A(vy = v1) + by | - Bp|-— (5.36)
h h AR Iy
0
—v, 0
=|A(vy = v) + bvy| - oh (5.37)
Ah AD’fo’f _5 X
f

recalling B in (5.14).

Description of Z)(Ag’};). We have {v,, v,, h} € Z)(A%’ = D(A} - BpB}) if and only if the same conditions
for Z)(A%b,),g) in (5.35a) and (5.35b) apply, except that now (5.35a) is replaced by A(v, — v;) € I¥(Q,) and (5.35b) is
replaced by

aVZ -V
ov

_on

€ H:(Ty). (5.38)

L L

The PDE version corresponding to the adjoint operator A}b,),f is given by
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h-Ah=0 in (0, T] x QF; (5.39a)
Wy = Awy — Awye + bwy = 0 in (0, T] x Q; (5.39b)
wq w1 oh
—{wy| = AEy|wa| or (i =-—- on (0, T] x Ty; (5.39¢)
dt u u ov rf
o(wy + wyy) oh
hlr, = =wie |5 == T, @I (5.39d)

(where wy; = —w; in (5.36), top line) with I.C. in Hy, (counterpart of (3.21a)—(3.21d) in CASE 1, and (4.32a)—(4.32d)
in CASE 2).

Step 2. (Analysis of the PDE problem (5.34): the operator AE:”}; = Ap - BpB} in (5.33a))

Proposition 5.3. The operator A% = Ap — BpB} in (5.33) and its Hy-adjoint A(Fb,)ﬁ = A - BLBp are dissipative

Vil V1

* ah
Re(7A = BoBY)| V2 |V2|t = -IWvallg, = VRIS, = || 50 || o fvyve i} € DAY,  (540)
Rl Rl Ul
vi [vi o
Rel(A; = BoBp) v | vz |t = =IWilis, — VR, = || 57| || > @i vi W'} € D(ARD), (54D
wl n ), Uy

in the I?(-)-norms of Qs and Qr, and the IX(T,)-norm onT;. Hence, both A%b}, and A(Fb}; are maximal dissipative and

thus generate s.c. contraction semigroups eAFat and eAF5t on H;. Explicitly in terms of the corresponding PDE
systems we have:

w(t) Wo Wo
W) = eAb| iy | = e(Ar-BoBYY| i, (5.42)
uct) iy iy

for the {w, W, ti}-fluid-structure interaction model given by (5.34a)—(5.34d) on Hy: with LC. {Wy, Wy, o} € Hy.

Similarly, for the adjoint Ag’,)ﬁ, corresponding to the model (5.39a)—(5.394d).

Proof of (5.3). For {v;, vy, h} € D(AY}) in (5.35a) and (5.35h), we compute:

2

Vil W1 Vi| (W1 V1
Rej(Ap — BpBp)| V2|, | V2 = Re[Ay| V2|, |V2 - || Bp| V2 (5.43)
h]Lh]y, R LRy, h
oh
= =[|Vval? = |IVRIP - || == : (5.44)
ov Ir, 2
Tr)
recalling (1.12) and (5.24). Thus, (5.40) is established. Similarly for (5.41) recalling (1.13) for A}, O

5.2.5 Analyticity of eA*»¢ and e**5¢ on Hy, b = 0, 1

Remark 5.1. A remark such as Remark 3.2 (CASE 1) or Remark 4.1 (CASE 2) applies in the present case, to justify
(5.47) from (5.46).
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Theorem 5.4. Let b = 0,1. Let w € R and

Vi 2%
(iwl - APp)|v2| = |v;| € Hy (5.45)
hl g

for {vy, v, h} € Z)(Ag’,)y) identified in (5.35a) and (5.35b). Then:

(i) the following estimate holds true: there exists a constant C. > 0 such that:

A1 + ) = bvi|* + [|ARI + b|val* + [[Vwa|* + [IVRIP +

)y (5.46)

< GAIWiIP + DIviIP + vz I + (IR}, Vlw] 2 €> 0.

2
(i) In view of Remark 5.1, estimate (5.46) without the term |||Vh|}* + %L H is equivalent to
¥
®) pri (b) (5.47)
”AF,DR(M)J AF,D)”L(Hb) < CE) VIU)' z2E> 0; B
R(iw, A(F’f)l)) = (iwl - A%)‘l, which in turn is equivalent to
. C

IRGe, AED) |y < -0 Vol 2 &> 0. (5.48)

o]’
Thus, the s.c. contraction semigroup eAPht asserted by Proposition 5.3is analytic on Hy by [4, Theorem 3E.3

p. 334]. Similarly for eAF5t on Hy. The explicit PDE version of (5.33) for system {w(t), w,(t), u(t)} is given by
(5.34a)—(5.34d).

Proof. (i) The proof of estimate (5.46) follows closely the technical proof of estimate (3.30) for the operator ﬂ}b}v

in CASE 1, or (4.41) for the operator ﬂ(Fb}J in CASE 2 except that now the argument uses the B.C. of A% rather

than the B.C. of ﬂ%”)N or the B.C. of ..7[5:1‘7,)[). This, in particular, requires an argument different from CASE 1 and
CASE 2 to handle the more challenging case b = 1, with full H(Q)-norm on the first component space.
We indicate the relevant changes:

Step 1. Return to (5.45), re-written for {vy, v,, h} € Z)(A%b,)p) and {v{, vy, h*} € Hy:

iwvy = vy = vy, (5.49a)
iwvy = [A(vy + Vo) = bvy] = vy, (5.49Db)
iwh — Ah = h". (5.49c¢)

Step 2. Take the I?(Qy)-inner product of equation (5.49c) against Ah, use Green’s First theorem (counterpart
(4.45))

oh oh
., 0h ., 0h . - 2 _
iw[h ~dr+ iw[h ~ L = wl|VhIE - |RIF = (i, Ah). (5.50)
Iy L,
Similarly, we take the I#(Q)-inner product of (5.49b) against [A(v; + v3) — bv], use Green’s First Theorem to

evaluate IQ VAV + 1,)dQs, recalling that the normal vector v is inward with respect to Q;, and obtain (4.45),
repeated here

. o(vy + v . . X
_lw.[ Vz%drs = 1w(Vy, V(vy + Vp)) = iw(vy, bvy) = ||A(vy + Vo) = bvy|* = (vy, [A(vy + Vo) = bni]).  (551)

Ty

Now we invoke the B.C. in (5.35a) and (5.35b) for D(A¥)):

oh A(vy + vy)
— | hln=wly —
v, I, = vzl P

oh

in DAY .
LT o (Arp (5.52)

h|1"f ==

s
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and re-write (5.50) and (5.51) as follows, respectively

oh
~i[IPdLy + i [hZdT, ~ | VRIP - [[ARIE = (i, Ah), (5.53)
Iy I

oh
—ith—dl"s — 1w||Vvo|? + (Vvy, V(iwvy)) — iw(vy, bvy) — ||A(vy + V) — bvy|?
ov (5.54)
I, .
= (vy, [A(v1 + vp) = bwy]).

Summing up (5.53) and (5.54) yields after a cancellation of the boundary terms in} h‘;—zdl“s:

—iw (1Rl 2 = W[|[Vval + [IVRIR] = [[AVs + v2) = bur]l2 + [|ARIP + iw(vs, bvy) + iw(Vvy, Vvy)

(5.55)
+ (v, [A(v1 + v2) = bvi]) + (I", Ah).
We now use the identities from (5.49a)
—iw(Vvy, V1) = (Y, V(iwvy)) = ||[Vvy| + (Vvy, V), (5.56a)
=iw(Vz, 1) = (v, iwvr) = [[V|* + (v, vy) (5.56b)
to obtain the final identity from (5.55)
[1Avs + vz) = bur| + [[ARIE + iw[][Vval* + [[VAIP + [Ihlr, ] 557

= |[Vall* + blval* + (Vvg, Vi) + b(vy, Vi) = (v3, [A(v1 + V) = bwy]) = (K", Ah).
Identity (5.57) is the counterpart of identity (4.50) for Dirichlet control g on the interface I, after replacing

oh

2
2 |l in (@50) with

2
= ||h|rf||2 in (5.57). Identity (5.57) is also the counterpart of identity (3.38) for

oh
ov

Is

2
Neumann control g at the Interface T, after replacing ||hlr, ||* in (3.38) with % = ||l |Iin (557). O

Step 3. We proceed as in Step 3 of CASE 1 or of CASE 2. We take the real part of identity (5.57) and next obtain
(A = &)llIAy + v2) = buy|P + [JARIP] < (1 + )[|[Vval* + Dllvall*] + ClIIVviIF + bllvy[P + [lv; | + [I°IP], - (5.58)

the counterpart of estimate (4.52) CASE 2, or estimate (3.40), CASE 1.

Step 4. We now take the imaginary part of identity (5.57), and proceeding as in Step 4 of CASE 1 or CASE 2,
we arrive at the following estimate

1V |[2 + [VRJ + [IRlr, I < eblvglf? + [ OK. |, (5.59)
= 2¢[||A(Vy + v5) = bva2 + [[ARJE] + CLJIVVi|2 + bIvy|R + [[vs|2 + [1h*|]. (5.59b)

Equation (5.59a) and (5.59b) are the counterpart of (3.46) (CASE 1) or (4.59;) and (4.60,) via (4.64) (CASE 2), the
difference being that the boundary term ||l ||*> on the LHS of (3.46) (CASE 1), respectively, and the boundary

2
term on the LHS of (4.59,) (CASE 2, where %‘ = Vy|r, — h|r, holds as in (4.64)), is now replaced by

s

oh
av L,
the boundary term ||h|rf||2 on the LHS of (5.59a).

Case b = 0. In the case b = 0, the rest of the proof is the same as in Remark 3.1 (CASE 1, with Neumann

control on Iy) or as in Remark 4.2 (CASE 2 with Dirichlet control on [y) by replacing the term ||kl |[? in (3.46),

2
oh

2
in (4.58) with the term ||h|r, |I* = || 3, :
7

respectively, by replacing the term in (5.59a). Thus, in the

%|
ov I

case b = 0, the sought-after estimate (5.45), and hence, (5.47) are established in the space Hj-.
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Step 5. Case b = 1. In the present case, as in CASE 2 of Dirichlet control on I, there are additional challenges in
establishing the sought-after estimate (5.46) with b = 1, i.e., in the space Hy-,. The required argument is pro-
vided in the present step, which is the counterpart of Step 5 in Section 3 (CASE 1) or of Step 5 in Section 4
(CASE 2). In line with these two cases, it will rely on Lemma 3.5.

We return to (5.59a) and add the term & ||vy|,|[* to both sides, 1 2 & > 0 to be chosen below, where on
the RHS, we use v, |, = h |1, by (5.52).

We obtain

[VvalP + 1 IValgl + IVRIR + [IRIg I < ebl|val + & IRl + [ OK, |, (5.60,)

for|w [> = & > 0, hence

1 1
all[Vval* + [valglP] + S [IVRIE + | SIIVRIE + IRl

< b||vaP* + &[|[VRIE + [|RIF] + [ OK | (5.61)
In going from (5.60,) to (5.61;), we have used: on the LHS, that 0 < & < 1; on the RHS, that the I*(T;)-norm of

[h |r] is dominated by the H'(Q)-norm of h. Next, on the LHS of (5.61;), we invoke Lemma 3.5(a) for both v, in
Qs and h in Q. We obtain

&
EIIVzII2 < &f||Vo|P? + [Ivaln ], (5.62))

1 1
z—qllhll2 < SUIVRIE + lIRlg |- (5.631)

Invoking (5.62,), (5.63;), we re-write (5.61;) as follows:

& _ 2 4|1 2| L 2 2
[;1 eb] vl +[§ el]nwln *l2g ~@fImP <[ OKe] joP 2 e>0. (5.64)

We now select1 2 &> 0 (b = 1) as follows:

JE<%—8; %<%—81; 4ic1<2ic1_81; (ﬁ+8)<81smin1,4—cl, (5.651)
(we can always assume ¢ > 1, see Lemma 3.5(a)). Using (5.65;) on the LHS of (5.64,) yields
VE Ialf + 3 VAP + 5 IRIP = 2ea0s + vo) = b + 18k
+ GV + bIviIP + [lvsIP + (1771, (5.661)
for |w| = €2, after invoking (5.59b) for . Finally, (b = 1 and /€ < % Je < 4%1), we obtain
b llval? + IVRIP + IRl < 2VE[||Ay + v2) = bwy|* + [|ARIP]
+ GLIVVIIP + DIy |P + [vz ] + (1] (5.67)

for |w| = €% as in (4.56) (CASE 2). Estimate (5.67;) is a counterpart of estimate (3.55) (CASE 1) or estimate (4.2.5)
(CASE 2). Estimate (5.67;) corresponds to (5.59) for b = 0.
Substituting the estimate for b||v,|* from (5.67;) into the RHS of (5.59a) yields

IVv2l> + [IVAIE + ||l 2 < {2V [||AV: + v2) = buy|P + [|ARJE]
+ GLIVV IR + BlviIR + sIP + [WIPT + [ OKe | (5.67))
Next add to (5.67;) the estimate for b||v,|[? in (5.67;) to obtain
bIVaIP + IVl + [[VRIZ + [|Alg |2 < [24E( + €) + 2€][|[AW; + v2) = bvg|2 + ||ARIP]
+ GLIVVIR + BIviI? + (vl + 17|, (5.681)

recalling from (5.59b). Estimate (5.68;) is the counterpart of estimate (5.59) for b = 0.
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Step 6. The rest of the proof for b =1 now proceeds as in the case b = 0. In (5.68;), we drop the terms
[IVA|P + [|hlI*] and substitute the resulting estimate for [b||vy|[* + ||Vv,|[*] into the RHS of (5.58) and obtain

@ = OllAW + vp) = buy|* + [IARIP] < (A + e)[2VEQ + &) + 2¢][[|A(v1 + v5) = bva| + [|AR|P]
+ @+ G|V | + blvi | + [lvs I + (10771, (5.691)
or,since {(1-¢) -1+ ¢&)[2Je(d + €) + 2¢]} =2 k > 0, we obtain
[IAQvs + vz) = buy|? + [|ARIE < CL[[9vy | + bllvi|? + [[vs| + (|7, (5.704)
which is the counterpart of (3.58) in CASE 1, and (4.75;) in CASE 2. By substituting (5.70,) into the RHS of (5.68,),
we finally obtain
DIl + [[Vval* + IVRIE + [[R gl < CLI[Vi|P + BI[vy| + [[v5]* + [IK°[]. (5.71)

Summing up (5.70) and (5.71;) yields
blIvalP* + |Va]* + [[ACvy + v2) = bws|[* + [[ARI + [[VRIP + [|A]r|P
< GLIVvIP + bllvrIP + flvzlP + (IR, (5.721)

oh

which is the sought-after estimate (5.15), b = 0, b = 1, ||h|rf||2 =l 5

Ty

5.2.6 Exponential stability of e”¥bt and eAE5t on Hy,,b=0,1

In Proposition 5.5, we shall prove that, in both cases b = 0 and b = 1, we have
* -1 =1
0€p(AP)), 0€pALY), APy € LH), APy € L(Hy), (5.73)

so that there exists a disk Sy, centered at the origin and of suitable radius rp > 0 such that S, C p(A(Fb,)D). Then,
the resolvent bound (5.48) combined with A%_ € L(Hp) in (5.73) allows one to conclude that the resolvent is
uniformly bounded on the imaginary axis iR :

|IRGiw, AYD)|| cqaryy S const. (5.74)

Hence, [45] the s.c. analytic semigroup eAEDt is, moreover, (uniformly) exponentially bounded: There exist
constants M = 1, § > 0, possibly depending on “b” such that

1eX¥5!| pqayy < M8, ¢ 20, (5.75)

It is similar for the adjoint A(Fb};.

Proposition 5.5. Statement (5.73) holds true. Hence, the exponential stability for et in (5.75) holds true. More
precisely, with reference to A%, we have: given {v{, v,, h'} € Hy, the unique solution {v, vy, h} € Z)(Ag’,)p) of

%1 V2 vy
Agfb,}) V2| = |A(vy + vy) = byy| = vy (5.76)
h AR b
is given explicitly by
OV Av* + v + NOL 1ALy 4 5. (v ov; 1
V1= (_AN,s (_Avl + Vz) + Ny a_v[_AR,fh + Df,s(Vl IFs)] - E € HY(Q), (5.77a)
I
H'(Q)\R for b =0, _ 3
. h=~Agyh* + Drs(vi |) € Hx(Qy). (5.77b)
2SSl forb-1 Zhh+ Dy (v ) € HA@y)

Here, Aﬁ’, ) and N® are defined in (5.5) and (5.4). Moreover, the operator —Agy is defined in (4.85). A new operator
is the Dirichlet map Dy s defined by
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Ap=0 in Qp (5.78a)
Dr st = Y
f,S.u w l/) |rs

_ oy _
ST P l/)Lf = 0. (5.78b)

In operator form, we have

., 0 = [ vy
v v AV ]+ vp) + NS’)‘a—V[—AR}fh + Dps(vi )1 - 5
V| = Ag:l?,)D_l VZ* = . I (5793)
h h* Vl
~Agfh" + Dy s(vir,)
a0yt a e N O | Ay a9 el
( AN,s ( A )+Ns v ( AN,s) Ns aV[ AR,f] Vq
T
= N * 5.79b
0 I 0 ‘;l{ ’ (5.79)
Dro( - In) 0 -Apy
I[vi, vo, Rl < cll[vy, vy, B*] ||, (5.79c)
where the operators ALY, Ary, Dy g, and N, are defined in the following proof.
Proof. Identity (5.76) and the characterization of Z)(AS:’{})) in (5.35a) and (5.35b) yield
AR = It € IXQy); (5.80a)
= vysi[oh
270 v + h] =0, hlg =Vl = vilg, (5.80b)

and the h-problem in (5.80) yields the solution h in (5.77b), invoking Agy from (4.85) and D'f,s from (5.78).
Moreover, (5.76), v, = v; in (5.80) and (5.35b) yield

AQvi +vy) = bvy = vy, or Av; - bvy = —Av] + vy; (5.81a)
o(vy + oh 0 ovy oh
oirwy) ) _on) o wp_ ow) o) (5.81b)
ov L OVl ov Ir, ov i, OV
Then, the solution of problem (5.81) is given by (5.77a) via (5.77b). O

Remark 5.2. A recent contribution of a heat-plate interaction with the plate subject to a (formal) “square root”
damping in [46].
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Appendix A

The genuine fluid-structure interaction model with Kelvin-Voigt
(viscoelastic) damping [2,12,14]

In this article, we have deliberately chosen to consider the simpler heat-viscoelastic structure model, as a first
step of an entirely new investigation regarding the corresponding Luenberger theory. To be sure, replacing the
heat equation with a fluid equation introduces conceptual and technical difficulties. These however have
already been dealt with and ultimately resolved in prior work by one co-author, for a structure model
originally without viscoelastic damping [12], and next with viscoelastic damping [2]. A first serious obstacle
is faced at the very outset: because of the coupled nonhomogeneous boundary conditions involving the
linearized Navier-Stokes equations, it is not possible to use the classical, by now standard idea of N-S problems
with no-slip boundary conditions to eliminate the pressure by applying the Leray projector on the equation
from L?(Q) onto the classical space {f € (I*(Q))? : divf = 0 in Q; f- v = 0 on 0Q} [47, p. 7]. Accordingly, [12]
introduces an entirely new idea that is inspired by boundary control theory. This is explained below in the
context of the problem under present consideration.
We thus consider the following fluid-plate PDE model in solution variables

u = [wy(t, x), uy(t, x), ..., ug(t,x)] (the velocity field)
and

w = [wy(t, x), wy(t, X), ..., wy(t, x)] (the structural displacement field),

while the scalar-valued p denotes the pressure:

u-Au+vVp=20 in (0,T] x Qf = 0/ (A.la)

(PDE) divu =0 in Qf; (A.lb)

Wi = Aw = Aw; + bw =0 1in (0,T] x Qs = Q; (Alc)

ulrf =0 on (0, T] x Iy = %; (A1d)

(BC) u=w on (0, T] x Is = X; (Ale)
ou ow+w) _ ,

P FY = on X (A1)

(IC) [u(0, -), w(0, -), w(0, )] = [uo, wo, w1] on Q. (Alg)

The constant b in (Al.c) will take up either the value b = 0 or else the value b = 1, as in the article. Accordingly,
the space of well-posedness is taken to be the finite energy space:

(HY(Qo)/R) x (IX(Qy))? x Hy, b =0; (A.2a)
Pl @t x @@ x Hy, b =1, (A.2b)

for the variable [u, w, w;], where
Hr={f€LyQ))?: divf=0 inQ; f-v=0onI} (A3)

The norm-including inner product on H} is given in (1.2a)-(1.2b).

Abstract model for the free dynamics (A.1a)-(A.1g)

The previous article [12] (as well as paper [48], where the d-dimensional wave equation (Al.c) is replaced by
the system of dynamic elasticity) eliminated the pressure by a completely different strategy. Following the idea
of [49-52] (see also [4]), [12,48] identify a suitable elliptic problem for the pressure p, to be solved for p in terms
of u, w and w;.
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Elimination of p, by expressing p in terms of u, w, and w;. A key idea of [11,12,48] is that the pressure p(t, X)
solves the following elliptic problem on € in x, for each t:

Ap =0 in (0,T] x Q = Qf; (A.4a)
ou o(w + wy)
=E'V_Tt'v on (0, T] x Iy = Z; (A.4D)
op
e = Au-v on (0, T] x Iy =X, (A4c)

In fact, (A.4a) is obtained by taking the divergence div across equation (A.1a), and using div u; = 0 in Q; by
(A.1b), as well as div Au = Adivu = 0 in Qy. Next, the B.C. (A.4b) on I is obtained by taking the inner product of
equation (A.1e) with v. Finally, the B.C. (A.4c) on Iy is obtained by taking the inner product of equation (A.1a)

restricted on Iy, with v, using u I, =0 by (A.1d), so thatonT;: Vp-v = % Ir;- This then results in (A.4c).
Explicit solution of problem (A) for p. We set
p=p;+p, in Qf; (A.5)

where p; and p, solve the following problems:

Ap, = n Q; Ap,=0 in Qp; (A.6a)
p= % - a(Wa; L on Z; p,=0 on Lg; (A.6b)
op
op; 2| =pu-v onZk (A.6c)
— =0 Zr; / '
ov 5 on 2 ov Zr

Accordingly, define the following “Dirichlet" and “Neumann" maps D; and Nj:

Ah=0 in Qp; AY=0 in I§; (A.7a)

= . = I5; A7
hEDsgﬁa: g onTg wENﬁl:)allpp 0 onT (A.7Db)
5 =0 on Iy; a_v =uU on If. (A.7c)

Elliptic theory gives that D; and Ny are well defined and possess the following regularity [43]:
D : continuous H'(Ty) - H ”%(Qf), r eR, (A.8a)
Ny : continuous H'(Ty) - H”%(Qf), r €eR. (A.8b)

Accordingly, in view of problems (A.7), we write the solutions p, and p, in (A.6), finally p in (A.5), as follows:

_ ou o(w + wy) ) _ .
p; = Ds > VT .f P, = N[(Qu-v)z] in @, (A.9)
P =p; *+ Py = Th(w + wy) + Th(uw) (A.10a)

_ ou o(w + wy) .
= Dy [a—v V- T Y 5 + Ny[(Au - V)gf] n Qf’ (A.10Db)
where
Hl(W + Wt) = _Ds [M . V] ]’ (Alla)
ov 5

- p[ i Al1b
IL,(u) = D; S -V 5 + Ne[(Au - v)zf] in Qf, (A.11b)




52 —— Roberto Triggiani and Xiang Wan

hence via (A.10a) and (A.10b):
Vp = -Gi(w + wy) = Go(w) = VIL(w + wy) + VIIp(u)

= ViD; + VN [(Au - v)5])  in Qp;

ov v ov

[6_u. _M.V]
Zs

where

Gl(W + Wl) = =-VIL(w + W[) = ViDg

[6(w + W) ] ]
owrw)
ov 5

[3—5 : V]EJ + Nr[(Au - v) zf]’ in Q,

in Qf}

Gz(W) = =VILu = ViD;
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(A.12a)

(A.12Db)

(A13)

(A14)

The linear maps G; and G, in (A.12)—(A.14) are introduced mostly for notational convenience. Equations
(A.10a), (A.10b), and (A.12) have managed to eliminate the pressure p, and, more pertinently, its gradient Vp, by
expressing them in terms of the three key variables: the fluid velocity field u and the wave solution {w, w,}. By

using (A.12a), we accordingly rewrite the original model (A.1a)-(A.1g) as follows:

U= Au + Gi(w + wy) + Gyu in Qf;

(PDE) {divu =0 in Qp;
Wy = Aw + Aw, — bw in Q;

ulr,=0 on Xr;

(BC) Ty f
Uu=w on Lg;

(IC) [u(0, -), w(0, -), wy(0, -)] = [ug, wy, w1] on L,

only in terms of u, w, and w;, where the pressure p has been eliminated, as desired.

Abstract model of system (A.15). The abstract model of system (A.15) is given by

alw 0 I 0 w w
EWt:A_bI A 0 We| = Ap[We
u Gy G, A+ G|lu u
We
= Alw + wy) — bw ,
Au + Gi(w + wy) + Gau

[w(0), wi(0), u(0)] = [wo, wi, Uo] € Hy,

(A.15a)
(A.15b)
(A.15¢)

(A.15d)
(A.15e)

(A.15)

(A.16a)

(A.16b)

(A.16c)

where the matrix form for A on the L.H.S of (A.16a) is formal and means the action described in (A.16b).

The operator Aj. Recalling (A.13) and (A.14) prompts the introduction of the operator

0 I 0
A=|-N -pr 0
Gq G, A+ Gs
0 I 0
- N pA 0|
VIDS[((A ) V)5, 1} ax3 az
a.
as; = A - ViDq [a_ . v] + Ne[((A -) V)rf]’,
1% T

Hp D D(Ap) = Hp.

(A17a)

(A.17b)

(A.17¢)

(A17d)
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The finite energy space Hj, of well-posedness for problems (A.la)—(A.l1g), or its abstract version
(A.16)-(A.17) is defined in (A). The domain D(Ap) of A, will be identified below. To this end, we find it
convenient to introduce a function 7, whose indicated regularity was ascertained in [12].

The scalar harmonic function 7. Henceforth, with reference to (A.17b), for [vy, Vo, f] € D(A), we introduce
the harmonic function 7 = 7(vy, vy, f):

o)

[_f . V]
ov I
(compare with (A.10b) for the dynamic problem). According to the definition of the Dirichlet map D; and

Neumann map Ny given in (A.7a)-(A.7c), m = (v, vy, f) in (A.18) can be equivalently given as the solution of
the following elliptic problem (compare with (A.4a)-(A.4c) for the dynamic problem):

oL+ va)

=D
=5 v

+ N;[(&f - V)r,] = Ds € Ly(Q) (A18)

s

At =0 in Qf; (A19a)
of A(v1 + vp) 1
n= v # ‘VEHI) only (A19b)
2
6—75 = Af-v € BT on I. (A19¢)

It then follows from Aj in (A.17b) and (A.18) via the function 7 defined in (A.18) that

*

\%1 Vs Vq V1
A V2| = [dvi +v2) = bvi| = vyl e H,, V2| € D(AY). (A.20)
f A -V f: f
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