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Abstract: An optimal, complete, continuous theory of the Luenberger dynamic compensator (or state esti-

mator or state observer) is obtained for the recently studied class of heat-structure interaction partial differ-

ential equation (PDE) models, with structure subject to high Kelvin-Voigt damping, and feedback control

exercised either at the interface between the two media or else at the external boundary of the physical

domain in three different settings. It is a first, full investigation that opens the door to numerous and far

reaching subsequent work. They will include physically relevant fluid-structure models, with wave- or plate-

structures, possibly without Kelvin-Voigt damping, as explicitly noted in the text, all the way to achieving the

ultimate discrete numerical theory, so critical in applications. While the general setting is functional analytic,

delicate PDE-energy estimates dictate how to define the interface/boundary feedback control in each of the

three cases.
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1 Introduction

The present article was conceived in response to the intents of the special issue of Open Mathematics. In fact, it

provides a new, optimal, rather complete and comprehensive theory on a control theory topic of long standing

relevance to applications, with the focus on a recently introduced, by necessity special, class of coupled partial

differential equation (PDE) models: heat-structure interaction (HSI) models with high, Kelvin-Voigt damping

for the wave-structure, subject to feedback control exercised on the boundary.

Homogeneous (uncontrolled) model. Throughout, ⊆Ωf
n� , =n 2, or 3, will denote the bounded domain on

which the heat component of the coupled PDE system evolves. Its boundary will be denoted here as

∂ = ∪Ω Γ Γf s f , ∩ = ∅Γ Γs f , with each boundary piece being sufficiently smooth. Moreover, the geometry Ωs,

immersed within Ωf , will be the domain on which the structural component evolves with time. As configured

then, the coupling between the two distinct heat (fluid) and elastic dynamics occurs across boundary interface

= ∂Γ Ωs s; see Figure 1. In addition, the unit normal vector ν x( ) will be directed away fromΩf , and so towardΩs.

(This specification of the direction of ν will influence the computations to be done in the following text.)
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On this geometry in Figure 1, we thus consider the following heat-structure PDE model in solution vari-

ables =u u t x u t x u t x, , , , …, ,n1 2[ ( ) ( ) ( )] (the heat component here replacing the usual velocity field as a first step

in this new investigation), and =w w t x w t x w t x, , , , …, ,n1 2[ ( ) ( ) ( )] (the structural displacement field) with

boundary conditions (BC) and initial conditions (IC):
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The constant b in (1.1b) will take up either the value =b 0, or else the value =b 1, as explained below.

Accordingly, the space of well-posedness is taken to be the finite energy space

=
⎧
⎨
⎩

× × = ( )

× × = ( )

b

b
H

H L L

H L L

Ω \ Ω Ω , 0; 1.2a

Ω Ω Ω , 1, 1.2b
b

s s f

s s f

1 2 2

1 2 2

�( ) ( ) ( )

( ) ( ) ( )

for the variable w w u, ,t[ ]. (We are using the common notation ≡ HHs s n[ ] .) Hb is a Hilbert space with the

following norm inducing inner product, where ∫≡f g fg, ¯dΩΩ Ω
( ) :
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In (1.2a), the space =H HΩ \ Ω \consts s
1 1

�( ) ( ) is endowed with the gradient norm. Relevant properties of this

model, obtained in [1], will be reviewed in Section 1.3.

In particular, it was shown in [1] and reproduced in Section 1.3 that homogeneous problems (1.1a)–(1.1f)

can be rewritten as the abstract model

′ = =y y y w w u, , ,1 2� [ ] (1.3)

with = e Hthe generator of a s.c. contraction semigroup , which is uniformly stable and analytic onb
t

b� �
� .

Three controlled systems. We consider three cases of boundary/interface control g , as applied to systems

(1.1a)–(1.1f).

• CASE 1 (Section 2): the control g acts on the matching of the stresses condition (2.1e) at the interface between

the two media, thus as a Neumann control as follows:

∂ +
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∂
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+ ×
w w
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u

ν
g Ton 0, Γ .

t
s

( )
( ] (1.1eN)

See the entire system (2.1a)–(2.1f) in Section 2.

Figure 1: The fluid-structure interaction.
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• CASE 2 (Section 4): the control g acts this time as a Dirichlet control on the matching of the “velocity”

condition (1.1d) also at the interface between the two media as follows:

= + ×u w g Ton 0, Γ .t s( ] (1.1dD)

See the entire system (4.1a)–(4.1f) in Section 4.

• CASE 3 (Section 5): the control g acts, still as a Dirichlet control, but this time as a boundary control on the

external boundary of the heat domain in (1.1c) as follows:

= ×u g Ton 0, Γ .fΓf∣ ( ] (1.1cD)

See the entire system (5.1a)–(5.1f) in Section 5.

In each case, the control g introduces a control operator� , highly unbounded. Thus, the resulting model is now

′ = + -y y g 1.3 controlled� � ( )

with the highly unbounded control operator � depending on the three cases, see equation (2.2) for CASE 1;

equation (4.2) for CASE 2; and equation (5.13) for CASE 3. The selection of the operators entering into the

development of the Luenberger theory, as described in Section 1.2.2, depends on the three cases.

Objective of the present article, as a template for future work. The initial objective in the present work is to

offer a “continuous theory” of the long-standing, highly relevant topic corresponding to the Luenberger

compensator program. The deliberate goal is to have this first contribution serve as a basis for further

development of investigations in various directions. Among them, we cite:

(i) replacing the heat component with a fluid component, thus accounting for the pressure variable while

keeping the Kelvin-Voigt structure (model as in [2] (wave) or as in [3] (plate)). The new technique inspired

by the boundary control theory [4], which is required for the extension from the heat component to

the fluid component is described in Appendix A, with a focus on the present uncontrolled model,

following [2].

(ii) replacing the present Kelvin-Voigt damped-wave with a Kelvin-Voigt damped-plate in modeling the

structure. This in turn opens up a variety of different, physically relevant, coupling conditions at the inter-

face between the two media (models as in [3] and [5]);

(iii) obtain a corresponding “discrete theory” or (rigorous) numerical analysis theory, as done in past genuine

PDE models of different types in [4, pp. 495–504], [6–8] and also [9, 10], to name just a few references. This

is a very challenging and technical direction of investigation, and yet highly important in engineering

applications);

(iv) analysis of the same models as in (i) and (ii), and this time, however, with no Kelvin-Voigt damping, such

as in [11– 14] (wave), where the original stability properties are different. Here, in contrast with the heat-

structure case, =λ 0 is a simple eigenvalue of the uncontrolled model. Heat-viscoelastic plates are studied

in [15,16];

(v) further extension of both the continuous and the discrete analysis to nonlinear models, with static

interface [17–24], and even with moving interface [25,26].

1.1 Historical orientation on Luenberger’s compensator theory

The Luenberger theory of “observers” was introduced for lumped (finite-dimensional) linear systems in 1971

[27], and it was met with great success [28, p. 48]. It subsequently stimulated investigations for PDE problems

with boundary controls/boundary observations (infinite-dimensional systems with “badly unbounded” control

and observation operators) of both parabolic and hyperbolic types [6–8], [4, pp. 495–504]. It consists, in its first

phase, of a continuous theory, followed next by a rigorous numerical implementation, as in the aforemen-

tioned references. At the level of numerical implementation, it was in a sense rediscovered with the more

recent topic of “data assimilation” that shares the same philosophy as the Luenberger discrete theory. Recent

references include [29–32]. A more detailed description of these topics is given below.

Luenberger compensentor theory for HSI with feedback controls  3



Step 1. The continuous theory. Here, in a purely informal manner, we shall provide the special setting that

we shall select in our application of the continuous Luenberger’s dynamic compensator theory to heat-structure

models. For a preliminary conceptual understanding, we may regard the operators below as being all finite-

dimensional, in line with Luenberger’s original contribution [27]. Its standard representation is as follows:
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⎨
⎩
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= + − + = ( )
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The basic idea behind is that the full state y is inaccessible, unknown, beyond any measurement, as is often

the case in applications. What we have instead at our disposal is the partial observation (Cy), where C is the

known observation operator. Examples abound: (i) the actual state within a furnace or (ii) the true distribu-

tion of “noise” within an acoustic chamber are not exactly accessible, and only some information from the

boundary may be available in each case. Thus, the (compensator) z-equation (1.4b) is fed, or determined by,

only the available partial observation Cy( ). Subtracting (1.4b) from (1.4a) with =Bg BFz, we obtain after a can-

cellation of the term BFz:
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One next assumes the detectability condition for the pair A C,{ }: there exist K and k such that ≤−e A KC t‖ ‖( )

>−Me k, 0kt . Thus, from (1.5b), we finally obtain

− = − ≤ − ≥− −y t z t e y z Me y z t, 0A KC t kt
0 0 0 0‖[ ( ) ( )]‖ ‖ [ ]‖ ‖ ‖( ) (1.6)

and the dynamic compensator z t( ), which is fed only by the known partial observation (Cy) of the inaccessible

state y, asymptotically approximates such state y t( ), at an exponential rate. This is the key of Luenberger’s

theory in the lumped case where the state of the system is a finite dimensional vector. Nontrivial extensions

were subsequently introduced and studied in the case of distributed parameter systems modeled by partial

differential equations with boundary control/boundary observation [4, pp. 495–504], [6–8].

Step 2. The numerical theory. Particularly in the case of PDEs dynamics, it is critically important to provide

a (finite element) approximation theory of dynamic compensators of Luenberger’s type for partially observed

systems. The aforementioned PDE references include also the discrete/numerical Luenberger theory based on

finite element method. The analysis is very technical.

Connections with data assimilation. In recent years, a numerical procedure called “data assimilation” has

been introduced, particularly with emphasis on nonlinear dissipative PDE dynamics with finite degrees of

freedom, which in spirit is closely related in terms of goals to the discrete Luenberger’s compensator theory.

In common with the Luenberger’s theory, in the presence of inadequate knowledge of the original system,

a suitable data assimilation algorithm is introduced to force its corresponding solution to approach the origi-

nal solution at an exponential rate in time. This is done by having access “to data from measurements of

the system collected at much coarser spatial grid than the desired resolution of the forecast” [30]. As expected,

the efficiency of data assimilation relies also on the finite dimensionality of the proposed algorithm. Inspira-

tion comes from a rigorous result on the 2D Navier-Stokes equations (NSE) given in [33], where it is proved

that if a number of Fourier modes of two different solutions of the NSE have the same asymptotic behavior

as t goes to infinity, then the remaining infinite number of modes also have the same asymptotic behavior.

It seems unfortunate that data assimilation theory introduced in 2014 has not apparently been aware of

the large body of works in Luenberger theory, which was introduced in 1971, to include PDE parabolic and

hyperbolic problems as in [4, pp. 495–504], [6–8]. Luenberger’s theory in these references emphasizes control/

observation on the boundary, unlike the literature of data assimilation. The original Luenberger theory was

for linear models, but it was later introduced for nonlinear models, which are the core of data assimilation.

Moreover, data assimilation is passive in the sense that there is no control action. Mutual awareness and

knowledge of the two communities’ research effort may well benefit both. In this spirit, being this an article on
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the Luenberger theory in systems of coupled PDEs with control/observation at “the boundary,” we are pleased

to provide specific references in data assimilation.

The first main data assimilation was done in [29] in 2014. This gives the AOT algorithm. It describes the

interpolation operators (nodes, modes, and volume averages) and uses the “nudging” algorithm, which is

essentially interior control for the data assimilated problem. The technique utilizes the existence of finitely

many determining functional to capture the essential asymptotic dynamics of the system.

The initial article that does data assimilation for 3D NSE without assuming any regularity of the solution is

[34]. All previous works critically utilized the regularity of the 2D NSE to show asymptotic convergence of

the data assimilated solution to the reference solution. In the absence of global regularity in the 3D case, the

previous article [34] achieved the exact same result for the 3D NSE by imposing conditions on the observed

(model) data. Next, we quote paper [30], which provides results on the Boussinesq system (and also, therefore,

for 3D NSE). While [34] does data assimilation for the 3D NSE with the assumption that the reference solution is

obtained via the Galerkin procedure, the article [30] makes no such assumptions and does data assimilation

for a general (Leray-Hopf) weak solution, which obeys the energy identity corresponding to the system. Also,

the article only uses velocity measurements to perform data assimilation.

Luenberger problems for three interface/boundary feedback controlled models: system (1.1a)–(1.1f)

subject to control action g as in (1.1eN) (CASE 1); or (1.1dD) (CASE 2); or (1.1cD) (CASE 3), in the final form

′ = +y y g� � as in equation (1.3-controlled). The goal of the present article is to investigate the Luenberger’s

dynamic compensator theory (continuous version) as applied to a class of fluid-structure interaction models, in the

particular setting where the structure is subject to visco-elastic (Kelvin-Voigt) damping, as in (1.1a)–(1.1f). How to

handle the corresponding fluid-wave model is described in Appendix A. This focuses on the new tricky technique

that is required in the present homogeneous case (1.1a)–(1.1f) following [2]. In summary, in the present article, we

consider a fluid (heat)-structure interaction model with high Kelvin-Voigt damping under three different scenarios:

(1) in Part I, with Neumann control g at the interface Γs as in (1.1eN); (2) in Part II, with Dirichlet control g at the

interface Γs as in (1.1dD); (3) in Part III, with Dirichlet control g at the external boundary Γf as in (1.1cD).

1.2 Orientation on the contributions of the present article. Conceptual description

of the mathematical setting and ultimate results

To ease the reading of this article, we find it most appropriate to provide a focused, synthetic orientation

regarding both the mathematical setting of the article and its ultimate, sought-after Luenberger-type results.

1.2.1 Uncontrolled, homogeneous model

The uncontrolled model is a coupled heat-structure interaction, where the structure is modeled by a wave with

strong Kelvin-Voigt damping, which interacts with a heat component through the interface between the two

media, see the linear, coupled PDE system (1.1a)–(1.1f) and Figure 1. The state of the system is the triple

=y w w u, ,t{ }, displacement, velocity of the elastic structure, and temperature. A comprehensive study of this

model was carried out in [1]. Selected results to be used in the present article are reviewed in Section 1.3.

The uncontrolled coupled system is described by an operator � , which is the generator of a s.c. contraction

semigroup e t� on a natural finite energy functional setting. From the purpose of the Luenberger theory to be

here investigated, its main feature is that such semigroup is uniformly (exponentially) stable, Theorem 1.3(ii).

This is due to the Kelvin-Voigt damping. An additional property of such semigroup is that it is analytic in its

natural setting, also Theorem 1.3(ii). This analyticity property – also due to the Kelvin-Voigt damping – adds

a positive feature to the uncontrolled dynamics. One then seeks, successfully, to retain it and propagate it to

the corresponding Luenberger feedback problem, that is, the dynamics of the observer variable z, expressed

in feedback-form with respect to the partial observation Cy( ) of the original unknown state y. But analyticity

is not critical for the key Lueberger’s goal to recover asymptotically the originally unknown full state y

by using the observer z.

Luenberger compensentor theory for HSI with feedback controls  5



1.2.2 Controlled systems == ++y y g′ � �

As already noted, we consider three cases of boundary/interface control g :

• Case 1 (Section 2): The control g acts on the matching of the stresses condition (1.1f) at the interface between

the two media (Neumann control). See the entire system (1.1a)–(1.1f) in Section 2.

• Case 2 (Section 4): The control g acts this time as a Dirichlet control on the matching of the “velocity”

condition (3.1d) also occurring at the interface between the two media. See the entire system (3.1a)–(3.1f)

in Section 4.

• Case 3 (Section 5): The control g acts, still as a Dirichlet control, but this time as a boundary control on the

external boundary of the heat domain as in (4.1c). See the entire system (4.1a)–(4.1f) in Section 5.

• CASE 1. Here, the following analysis selects the feedback form =g Fz for the Neumann boundary control g at

the interface, by taking the Luenberger operators as follows: = − = =∗ ∗F C K, ,� � � . This way, the observer

equation becomes: ′ = − +∗ ∗z z y2� �� � �( ) ( ), with ∗� the observation operator of the entire unknown

state y. Ultimately, the difference −y z[ ] between unknown state y and known observation z satisfies the

equation = − −− ∗ y z
y z

t

d

d
� ��( )[ ]

[ ]
, where the feedback generator − ∗� �� in equation (2.15a) for CASE 1

is deliberately selected to preserve the property of dissipativity of the original free dynamic operator� . The

ultimate goal of the analysis is then to establish that such feedback generator is uniformly (exponentially)

stable on its natural setting. This is Theorem 3.1, equation (3.14) in CASE 1. This result is established by PDE

methods in Section 3.1.3. This way, the known observation variable z, based only on partial knowledge of

the unknown state y thorough the unbounded observation/trace operator ∗� , see equation (3.8), approaches

the unknown full state y asymptotically at exponential speed, the key of the Luenberger theory.

• CASE 2. Here, the following analysis selects the feedback form =g Fz for the Dirichlet boundary control g at

the interface, by a different choice from CASE 1: in fact, in CASE 2 one takes: = = =∗ ∗F C K, ,� � � , so that

the observation equation now becomes: ′ = + ∗z z y� � �( ), with trace operator ∗� , see (4.7). This way the

difference −y z[ ] between unknown state y and known observation z, satisfies the same-looking equation as

in CASE 1: = − −− ∗ y z
y z

t

d

d
� ��( )[ ]

[ ]
, with dissipative feedback generator. Again, the ultimate goal is to

establish that such new feedback generator is uniformly (exponentially) stable in its natural setting. This is

Theorem 4.1, equation (4.24). This result is again obtained by PDE methods in Section 4.2.4.

• CASE 3. Here, the following analysis selects the feedback form =g Fz for the Dirichlet boundary control g at

the external boundary, which notationally is like CASE 2: = = =∗ ∗F C K, ,� � � , with a different operator�

of course, and hence, again observation equation ′ = + ∗z z y� � �( ), and finally the same desired form of

−y z[ ]: = − −− ∗ y z
y z

t

d

d
� ��( )[ ]

[ ]
. In this CASE 3, the ultimate goal is again to show that the new feedback

operator − ∗� ��( ) is uniformly stable. This is Theorem 5.1, equation (5.32), whose proof is given in Section

5.2.4. The operator ∗� is again a trace operator (cf. equation (5.15)).

• Insight on the choice = − ∗F � versus = ∗F � in the various cases. For CASE 2, this insight is given in (4.15),

and in CASE 3, this insight is given in equation (5.23). In short, this is a purely PDE problem related to the

operator ∗� for the purpose to achieve the feedback generator still dissipative. Thus, while the setting of

the analysis is functional analytic, the key technical parts are based on PDE estimates.

• Finally, to ease the reading, each case is dealt individually. In other words, one may read CASE 3 without

knowledge of Cases 1 or 2.

1.3 Review of homogeneous heat-structure interaction model with Kelvin-Voigt

damping: == ==b b0, 1 [1]

We return to the homogeneous problem (1.1a)–(1.1f), which for easy reading, we reproduce here:
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The constant b in (1.1b) will take up either the value =b 0, or else the value =b 1, as explained later.
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Abstract model of the homogeneous PDE problem (1.1a)–(1.1f). The operator b� and its adjoint ∗
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1

2

1

2

2

1 2 1� ( ) (1.8)

A description of ∈v v h, , b1 2 � �{ } ( ) is as follows:

(i)
∈ = ∈ =

= ∈
+ ∈

v v b v v b

v h

v v

H H

H

L

, Ω \ for 0; , Ω for 1;

so that Γ in both cases;

Δ Ω ;

s s

s

s

1 2
1

1 2
1

2 Γ Γ

1 2
2

s s

1
2

�( ) ( )

∣ ∣ ( )

( ) ( )

(1.9a)

(ii)
∈ ∈ ≡ = ∈

∂
∂

=
∂ +

∂
∈ −

h h h h v

h

ν

v v

ν

H L H

H

Ω , Δ Ω , 0, Γ ;

Γ .

f f s

s

1 2
Γ Γ 2 Γ

Γ

1 2

Γ

f s s

s s

1
2

1
2

( ) ( ) ∣ ∣ ∣ ( )

( )
( )

(1.9b)

Remark 1.1. The aforementioned description of b� �( ) in (1.9a)–(1.9b) shows that the point ∈v v h, , b1 2 � �{ } ( )

enjoys a smoothing of regularity by one Sobolev unit – from ⋅L2( ) to ⋅H1( ) – but only of the coordinates v2

and h, with respect to the original finite energy state space Hb in (1.2a). In contrast, the first coordinate v1

experiences no smoothing: it is in H Ωs
1( ), the first coordinate component of the space Hb. This amounts to

the fact that� has noncompact resolvent R λ, �( ) on Hb. Consistently, it was shown in [1, Proposition 2.4] that

the point = −λ 1 belongs to the continuous spectrum of − ∈ σ: 1b c b� �( ).
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Theorem 1.1. (The adjoint ∗
b� of b� , =b 0 or 1 [1, Appendix A]). The Hb-adjoint of the operator b� defined

in (1.7)–(1.9) is given by

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

⎡

⎣
⎢

−
− +

⎤

⎦
⎥
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

⎡

⎣
⎢
⎢

−
− +

⎤

⎦
⎥
⎥

∼ ∼ ∼
∼ ∼ ∼∗

v

v

h

I

bI

v

v

h

v

v v bv

h

0 0
Δ Δ 0

0 0 Δ

Δ

Δ ˜

.b

1

2

1

2

2

2 1 1 � ( )

͠ ͠

(1.10a)

The PDE version of

⎡

⎣⎢
⎤

⎦⎥
=

⎡

⎣⎢
⎤

⎦⎥
∗

t

v
w
u

v
w
u

d

d b� (1.10b)

is given by

⎧
⎨
⎩

− = × ( )
− − + = × ( )

u u in T

w w w bw in T
PDE

Δ 0 0, Ω ; 1.10c

Δ Δ 0 0, Ω ; 1.10d

t f

tt t s

( )
( ]

( ]

⎧

⎨
⎪

⎩
⎪

= × ( )

= − × ( )
∂ +

∂
= −

∂
∂

× ( )

u on T

u w on T

w w

ν

u

ν
on T

BC

0 0, Γ ; 1.10e

0, Γ ; 1.10f

0, Γ ; 1.10g

f

t s

t
s

Γf

( )

∣ ( ]

( ]

( )
( ]

compared with equation (1.1a)–(1.1e). The domain ∗
b� �( ) of the operator ∗

b� in (1.10a) is described as follows

(compared with b� �( ) in (1.9a)–(1.9b)): ∈∼ ∼ ∼ ∗v v v, , b1 2 3 � �{ } ( ) means:

(i)

∈ = ∈ =

= ∈
− ∈

∼ ∼ ∼ ∼

∼
∼ ∼

v v for b v v for b

so that v h in both cases

v v

H H

H

L

, Ω \ 0; , Ω 1;

˜ Γ ;

Δ Ω ;

s s

s

s

1 2
1

1 2
1

2 Γ Γ

2 1
2

s s

1
2

�( ) ( )

∣ ∣ ( )

( ) ( )

(1.11a)

(ii)

∈ ∈ ≡ = ∈

∂
∂

=
∂ −

∂
∈

∼

∼ ∼
−

h h h h v

h

ν

v v

ν

H L H

H

˜ Ω , Δ ˜ Ω , ˜ 0, ˜ Γ ;

˜
Γ .

f f s

s

1 2
Γ Γ 2 Γ

Γ

2 1

Γ

f s s

s s

1
2

1
2

( ) ( ) ∣ ∣ ∣ ( )

( )
( )

(1.11b)

Actually, [1, Appendix A] gives the detailed proof for =b 0. For =b 1, in [1, equation (A.4)] one adds the term

w v,2 1( ) for the full H 1-inner product but also the term −b w w,1 2( ) with =b 1.

Theorem 1.2. (Generation by b� and = =∗ b b, 0, 1b� [1, Theorem 1.2])

(i) The operator b� defined by (1.8), (1.9) and its adjoint ∗
b� given by (1.10a) and (1.11) are dissipative:

For ∈v v h, , b1 2 � �[ ] ( ), and ∈∗ ∗ ∗ ∗v v h, , b1 2 � �[ ] ( ), we have

⎛

⎝
⎜

⎡

⎣
⎢

⎤

⎦
⎥
⎡

⎣
⎢

⎤

⎦
⎥
⎞

⎠
⎟ = − ∇ − ∇ ≤

v
v

h

v
v

h
v hRe , 0,b

H

1

2

1

2 2 Ω
2

Ω
2

b

s f
� ‖ ‖ ‖ ‖ (1.12)

⎛

⎝

⎜
⎜

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎞

⎠

⎟
⎟ = − ∇ − ∇ ≤∗

∗

∗

∗

∗

∗

∗

∗ ∗
v

v

h

v

v

h

v hRe , 0,b

H

1

2

1

2 2 Ω
2

Ω
2

b

s f
� ‖ ‖ ‖ ‖ (1.13)

in the ⋅L2( ) norms of Ωs and Ωf .

(ii) Thus, b� and ∗
b� are maximal dissipative on Hb. Then [35] gives that b� generates a s.c. C0( )-contraction

semigroup e tb� on Hb, which gives the unique solution of problems (1.1a)–(1.1f):
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⎡

⎣
⎢

⎤

⎦
⎥ ∈ ⟹

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
≡

⎡

⎣
⎢

⎤

⎦
⎥ ∈

w
w
u

w t

w t

u t

e

w
w
u

C TH H0, ; .b t
t

b

0

1

0

0

1

0

b�

( )

( )

( )

([ ] ) (1.14)

The same generation results hold also for ∗
b� on Hb, with

∗
e tb� solving system (1.10c)–(1.10g).

Again, [1, Section 2] gives the proof only for =b 0. For =b 1, in [1, equation (2.2a)], one adds the terms

v v,2 1( ) for the full H 1-norm and the term − =b v v b, , 11 2( ) , leading now to a new version of such equation (2.2a)

in [1] given by − ∇ − ∇ + ∇ ∇ +v h v v v v2Im , 2Im ,2
2 2

2 1 2 1‖ ‖ ‖ ‖ ( ) ( ). Thus, taking the real part of the aforementioned

expression, one obtains (1.12) for =b 0 and =b 1.

Theorem 1.3.With reference to the operator b� in (1.7)–(1.9) and its adjoint ∗
b� in (1.10a) and (1.11), both defined

on =bH , 0, 1b , we have

(i)

∈ ∈ ⋅ =∗ρ ρ ρ resolvent set0 , 0 ,b b� �( ) ( ) ( ) (1.15)

with explicit expression of −
b

1� given in [1, Lemma 2.2].

(ii) [1, Theorem 1.4] The contraction semigroups e tb� and
∗

e tb� generated by Theorem 1.2 are analytic and

uniformly stable on =bH , 0, 1b ; there exist constants ≥ >M δ1, 0, such that

+ ≤ ≥ =−∗
e e Me t b, 0, 0, 1.t t δt

H H
b

b
b

b
�

�
�

�∥ ∥ ∥ ∥( ) ( ) (1.16)

Remark 1.2.

(1) Section 1.3 (a subset of [1]) shows that the natural functional setting for problems (1.1a)–(1.1f) is: the energy

space =Hb 0 in (1.2a) for =b 0; and the energy space =Hb 1 in (1.2b) for =b 1. In each such case, =b 0 and

=b 1, the free dynamic operator is maximal dissipative, it defines a corresponding expression for the

adjoint ∗
b� and the resulting contraction semigroups e tb� and

∗
e tb� are analytic and uniformly stable.

Analyticity in Theorem 1.3(ii) above is consistent with abstract results [36–38], in view of the Kelvin-Voigt

damping.

(2) If, however, one insists in considering problems (1.1a)–(1.1f) with =b 0 in the energy space =Hb 1 with full

H 1-norm for the position variable, then stability is lost: more precisely, one can readily prove or verify

that:

⎧
⎨
⎩

= =
= ∈ ⊂

=

= =

λ b

e H

0 is a simple eigenvalue of the free dynamics operator with 0

with corresponding eigenvector 1, 0, 0 .

b

b b

0

0 1

�

� �

( )

[ ] ( )
(1.17)

In fact, setting equal to zero equation (1.8) with =b 0 implies ≡v 02 ; hence, ≡h 0 from = =h hΔ 0, Γf∣

= =h v0, 0Γ 2 Γs s
∣ ∣ . This yields =vΔ 01 in Ωs, = =∂

∂
∂
∂ 0

v

ν

h

νΓ Γs s

1
by (1.9b), whose normalized solution is =v 11

in H Ωs
1( ) (while it would be =v 01 in H Ω \s

1
�( ) ).

(3) In this case, we may view the problem with =b 1 on =Hb 1 as having “stabilized” (and regularized) the same

problem with =b 0 on =Hb 1: = += =b b1 0� � � , with stabilizing operator
⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢−

⎤

⎦
⎥

v
v

h

v
0

0

1

2 1� .

2 CASE 1. Heat-structure interaction with Kelvin-Voigt damping:

Neumann control g at the interface Γs

The present article begins with this section. In the present CASE 1, we consider problem (1.1a)–(1.1f) subject this

time to control g acting in the Neumann interface condition (1.1e); that is,

Luenberger compensentor theory for HSI with feedback controls  9



⎧
⎨
⎩

− = × ( )
− − + = × ( )

u u T

w w w bw TPDE
Δ 0 in 0, Ω ; 2.1a

Δ Δ 0 in 0, Ω ; 2.1b

t f

tt t s
( )

( ]

( ]

⎧

⎨
⎪

⎩
⎪

= × ( )

= × ( )
∂ +

∂
=

∂
∂

+ × ( )

u T

u w T

w w

ν

u

ν
g T

BC

0 on 0, Γ ; 2.1c

on 0, Γ ; 2.1d

on 0, Γ ; 2.1e

f

t s

t
s

Γf

( )

∣ ( ]

( ]

( )
( ]

( ) ⋅ ⋅ ⋅ = ∈w w u w w u HIC 0, , 0, , 0, , , ,t b0 1 0[ ( ) ( ) ( )] [ ] (2.1f)

with Neumann boundary control g acting at the interface Γs. The constant b in (1.1b) will take up either the

value =b 0, or else the value =b 1, as explained earlier. Accordingly, the space of well-posedness is taken to be

the finite energy space defined in (1.2a), or (1.2b).

2.1 Abstract model on ==bH , 0, 1,b of the nonhomogeneous PDEmodel (2.1a)–(2.1f)

with Neumann control g acting at the interface Γs

This topic was duly treated in [39], at least for =b 0. This will be reviewed below and complemented by the

case =b 1. In either case, the abstract version of the nonhomogeneous PDE model (2.1a)–(2.1f) is given by

⎡

⎣⎢
⎤

⎦⎥
=

⎡

⎣⎢
⎤

⎦⎥
+

t

w
w
u

w
w
u

g
d

d
,t b t N

b
� �

( ) (2.2)

with the full dynamic operator b� given by (1.8) and (1.9). The definition of the Neumann control N
b

�
( )

depends

on the two cases =b 0 and =b 1, on the respective space Hb. We shall provide a unified treatment covering

the two cases =b 0 and =b 1, which will recover the case =b 0 in [39].

We first define the positive self-adjoint operator AN s
b
,

( )
by

− = − =
⎧
⎨
⎩

∈ =
∈ =

∂
∂

=
⎫
⎬
⎭

A φ bI φ A
φ b

φ b

φ

ν

H

H
Δ ,

Ω \ for 0

Ω for 1
: 0 ,N s

b
N s
b s

s
, ,

2

2
Γs

�
�( ) ( )

( )

( )
( ) ( ) (2.3)

so that AN s
b
,

( )
is defined on the first component space of the state space Hb, =b 0, or =b 1. Next, following an

established procedure [40], [4, Chapter 3], we define the following Neumann map Ns
b( ) on the structure domain

Ωs by

⎪

⎪

= ⟺
⎧
⎨
⎩

− =
∂
∂

=ψ N μ

bI ψ

ψ

ν
μ

Δ 0 in Ω ,

,s
b

s

Γs

( )
( ) (2.4)

with regularity [40–43]

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

→
⎧
⎨
⎩

=

=

→
⎧

⎨
⎪

⎩⎪

⊂ = ⎡⎣ ⎤⎦ =

⊂ = ⎡⎣ ⎤⎦ =

∈ = = [ ]

+

+

− −

− −

−

N
b

b
r

N
A b

A b

A N b b

H
H

H

L

H H

H H

L L

: Γ
Ω \ for 0,

Ω for 1,
real,

: Γ
Ω \ Ω \ for 0,

Ω Ω for 1,
continuously

or Γ ; Ω , 0 or 1. 30, p. 195

s
b r

s

r
s

r
s

s
b

s

s
ε

s N s
b ε

s
ε

s N s
b ε

N s
b ε

s
b

s s

2

2
,

2
,

,
2 2

3
2

3
2

3
2

3
2

3
4

3
2

3
2

3
4

3
4

�

� � �

�

�

( )
( )

( )

( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( ( ) ( ))

( )

( )

( )

( )

( ) ( )

(2.5)

Next we return to (2.1b) and rewrite it via (2.4) and (2.1e) [40], [4, Chapter 3]
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⎜ ⎟= + − = −
⎡

⎣⎢
+ −

⎛
⎝
∂
∂

+
⎞
⎠

⎤

⎦⎥
+ + −w w w bw bI w w N

u

ν
g b w w bwΔ Δ .tt t t s

b
t

Γ
Γ

s

s
( ) ( ) ( ) ∣ ( )( ) (2.6)

By (2.1), (2.1e), the term
⎡
⎣⎢

+ − ⎛
⎝ + ⎞

⎠
⎤
⎦⎥

∂
∂w w N gt s

b u

ν Γ
Γ

s
s

( ) ∣( ) satisfies the zero Neumann B.C. of AN s
b
,

( )
in (2.3), so we can

rewrite (2.6) as follows:

⎜ ⎟= −
⎡

⎣⎢
+ −

⎛
⎝
∂
∂

+
⎞
⎠

⎤

⎦⎥
+ + − ∈w A w w N

u

ν
g b w w bw L Ω ,tt N s

b
t s

b
t s,

Γ

2

s

( ) ( ) ( )( ) ( ) (2.7)

⎜ ⎟= − + +
⎛
⎝
∂
∂

⎞
⎠
+ + − + ∈ ′w A w w A N

u

ν
b w w bw A N g A˜ ˜ ˜ ,tt N s

b
t N s

b
s
b

t N s
b

s
b

N s
b

, ,
Γ

, ,
s

�( ) ( ) [ ( )]
( ) ( ) ( ) ( ) ( ) ( ) (2.8)

where now ÃN s
b
,

( )
is the isomorphic extension → ′ =A AL Ω dual ofs N s

b
N s
b2

, ,� �( ) [ ( )] ( )( ) ( )
with respect to L Ωs

2( ),

of the original operator AN s
b
,

( )
in (2.3). Next, we pass to the “fluid” domain Ωf . We let −AD f, be the negative, self-

adjoint operator on L Ωf
2( ) by

− = ≡ ∩A φ φ A H HΔ , Ω Ω ,D f D f f f, ,
2

0
1�( ) ( ) ( ) (2.9)

while Df s, is the Dirichlet map from Γs to Ωf defined by

= ⟺
⎧
⎨
⎩

= ( )
= = ( )φ D χ

φ

φ φ χ

Δ 0 in Ω ; 2.10a

0, . 2.10bf s

f

,
Γ Γf s
∣ ∣

The following regularity holds true for Df s, : for any r ,

∂ → [ ]+D H H: Ω Ω , 33f s
r

f
r

f,
1
2( ) ( ) (2.11a)

∂ → ⊂ ≡ [ ] [ ]− −
D AL H H: Ω Ω Ω ; 31, p. 181 , 48f s f f

ε
f D f

ε

,
2 2

,

1
41

2
1
2 �( ) ( ) ( ) ( ) (2.11b)

continuously. Then, as usual [1], we rewrite the u-problem in (2.1a) via (2.10) as follows:

⎧

⎨
⎪

⎩⎪

= − × ( )
− = × ( )
− = × ( )

u u D w T

u D w T

u D w T

Δ in 0, Ω ; 2.12a

0 in 0, Γ ; 2.12b

0 in 0, Γ ; 2.12c

t f s t f

f s t s

f s t f

, Γ

, Γ Γ

, Γ Γ

s

s s

s f

( ( ∣ )) ( ]

[ ( ∣ )] ( ]

[ ( ∣ )] ( ]

= − − ∈ = − + ∈ ′u A u D w u A u A D w AL Ω ; ˜ ˜ ,t D f f s t f t D f D f f s t D f, , Γ
2

, , , Γ ,s s
�( ( ∣ )) ( ) ( ( ∣ )) [ ( )] (2.13)

where ÃD f, is its isomorphic extension → ′AL Ωf D f
2

,�( ) [ ( )] = dual of AD f,�( ) with respect to L Ωf
2( ) as a pivot

space. Henceforth, as in [4, Chapter 3] we drop the ˜ for the extensions ÃN s
b
,

( )
and ÃD f, for notational easiness,

as no misunderstanding is likely to arise.

By combining (2.8) and (2.13), we obtain

⎡

⎣⎢
⎤

⎦⎥
=

⎡

⎣

⎢
⎢
⎢

− − + ⎛
⎝
∂
∂

⋅⎞⎠
⋅ −

⎤

⎦

⎥
⎥
⎥

⎡

⎣⎢
⎤

⎦⎥
+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥t

w
w
u

I

A A bI A N
ν

A D A

w
w
u

A N g
d

d

0 0

0

0

0

.t N s
b

N s
b

N s
b

s
b

D f f s D f

t N s
b

s
b

, , ,

, , Γ ,

,

s
( ∣ )

( ) ( ) ( ) ( ) ( ) ( ) (2.14)

The operator in (2.14) acting on ≡w w u g, , 0t[ ]( ) is the same operator b� in (1.8)–(1.9), except that in (2.14)

the relevant BCs (1.9) are included in the operator entries.

Thus, in conclusion, the abstract model for the nonhomogeneous PDE model (2.1a)–(2.1f) is given again

by (2.2), where now

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

g A N g

0

0

,N
b

N s
b

s
b

,�
( ) ( ) ( ) (2.15)
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→

⎡

⎣

⎢
⎢

⊗
⎡
⎣

⎡
⎣

⎤
⎦
⎤
⎦
′

⊗

⎤

⎦

⎥
⎥

+AL: continuous Γ ,N
b

s N s
b ε2
,

1
4� �( ) ( )( ) ( ) (2.16)

recalling (2.5). The adjoint operator
∗

N
b

�
( )

(which, in fact, does not depend on b) is given by

⎡

⎣
⎢

⎤

⎦
⎥ = − ∈

⎡

⎣

⎢
⎢
⎢

⊗
⎡
⎣⎢( )

⎤
⎦⎥

⊗

⎤

⎦

⎥
⎥
⎥

→
∗ + ∗ +
x
x
x

x x AH L, Ω ; : continuous Γ ,N
b ε

s N
b

N s
b ε

s

1

2

3

2 Γ 2
2

,

1
4 2

s

1
2� � �∣ ( ) ( )( ) ( ) ( ) (2.17)

with ∈ [ ] =+ +x A H ΩN s
b ε ε

s2 ,
2

1
4

1
2� ( ) ( )( ) , in the following sense. For ∈g L Γs2( ) and ∈ ⎡⎣⊗ [( ] ⊗⎤⎦

+x x x A, , , ,N s
b ε

1 2 3 ,

1
4�{ } )( ) ,

we compute as a duality pairing via (1.2a)–(1.2b) and (2.15):

⎛

⎝
⎜

⎡

⎣
⎢

⎤

⎦
⎥
⎞

⎠
⎟ =

⎛

⎝

⎜
⎜

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎞

⎠

⎟
⎟ = =

∗
g

x
x
x

A N g

x
x
x

A N g x g N A x,

0

0

, , ,N
b

N s
b

s
b

N s
b

s
b

s
b

N s
b

H
H

L L

1

2

3

,

1

2

3

, 2 Ω , 2 Γ

b
b

s s
2 2� ( ) ( )( ) ( ) ( ) ( ) ( )
( )

( ) ( )
( ) (2.18)

= − =
⎛

⎝
⎜

⎡

⎣
⎢

⎤

⎦
⎥
⎞

⎠
⎟

∗
g x g

x
x
x

, , ,N
b

L

L

2 Γ Γ

1

2

3 Γ

s s

s

2

2

�( ∣ ) ( )
( )

( )

(2.19)

where we shall establish that

= − ∈
∗ +N A x x x Hfor Ωs

b
N s
b ε

s, 2 2 Γ 2
2

s

1
2∣ ( )( ) ( ) (2.20)

for the operator AN s
b
,

( )
as in (2.3) and Ns

b( ) as in (2.4).

Proof of (2.20). [see also [4, pp. 195–196].] Take initially ∈f AN s
b
,�( )( )

in (2.3), so that =∂
∂ 0
f

ν Γs
, and ∈g L Γs2( ).

We compute by means of the second Green’s theorem, where we recall that on Γs, the normal ν is inward.

We obtain by (2.3) and (2.4):

In the aforementioned computation we have used (2.4) and =∂
∂ 0
f

ν Γs
, thus accounting for the two vanishing

terms. For the last equality, we have invoked the BC in (2.4). In conclusion from (2.23)

= − ∈
∗

N A f g f g g L, , , for any Γs
b

N s
b

sL L, Γ Γ Γ
2

s s s
2 2( ) ( ∣ ) ( )( ) ( )
( ) ( ) (2.24)

initially for ∈f AN s
b
,�( )( )
. Thus, (2.20) follows for ∈x AN s

b
2 ,�( )( )

. Moreover, (2.24) can be extended to all

∈ +f H Ωε
s

21
2 ( ) [40], [4, Chapter 3]. □

In conclusion:

Theorem 2.1. Let =b 0 or 1. Then the abstract model of the nonhomogeneous PDE problem (2.1a)–(2.1f) on

the respective energy space Hb in (1.2a)–(1.2b) is given by

12  Roberto Triggiani and Xiang Wan



⎡

⎣⎢
⎤

⎦⎥
=

⎡

⎣⎢
⎤

⎦⎥
+ =

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥t

w
w
u

w
w
u

g A N
d

d
,

0

0

t b t N
b

N
b

N s
b

s
b

,� � �
( ) ( ) ( ) ( ) (2.25)

with b� is given by (1.8), (1.9), or alternatively by (2.14), N
b

�
( )

is given by (2.15), and for ∈ =+x H Ωε
s2

21
2 ( )

⎡⎣( ⎤⎦
+AN s

b ε
,

1
4� )( )

⎡

⎣
⎢

⎤

⎦
⎥ = − = −

∗ ∗
x
x
x

x N A x x; ,N
b

s
b

N s
b

1

2

3

2 Γ , 2 2 Γs s
� ∣ ∣( ) ( ) ( ) (2.26)

in both case, =b 0 and =b 1, see (2.17), (2.20).

Henceforth, in light of Theorem 2.1, we shall omit the qualifying parameter “b” for CASE 1, as the model

(2.25) and (2.26) applies to both cases =b 0 and =b 1.

3 The Luenberger’s compensator model for the heat-structure

interaction model (1.1a)–(1.1f) with Neumann boundary control g

at the interface Γs, ==b 0, and ==b 1

3.1 Special selection of the data

With reference to the representation (1.4) in Step 1 of the Orientation in Section 1.1, we take in our present case

⎧
⎨
⎩

≤ > ≥ ( )
= − = = ( )

−

∗ ∗
A e ce δ t

F B C B K B

“exponentially stable”: , 0, 0, 3.1a

; , . 3.1b

At δt‖ ‖

Thus, the special setting becomes, in this case,

= = = = −∗ ∗y Cy B y g Fz B zpartial observation of the state , control ,[ ] (3.2)

leading to the Luenberger’s dynamics

⎧
⎨
⎩

= − ( )
= − + ( )

∗

∗ ∗
y Ay BB z

z A BB z B B y

˙ , 3.3a

˙ 2 , 3.3b( ) ( )

and hence,

− = − − − = −∗ − ∗

t
y z A BB y z y t z t e y z

d

d
; .A BB t

0 0[ ] ( )[ ] [ ( ) ( )] [ ]( ) (3.4)

As noted in Section 1, Step 2, it is the PDE argument to be carried out in Section 3.1.3 in the present case of

Neumann control on the interface Γs that will determine that the infinite dimensional version of − ∗
e A BB t( ) is

exponentially stable, as desired, as well as analytic.

Insight. How did we decide that = − ∗F B in (3.1b); that is, that the preassigned control =g Fz is given by

= − ∗g B z or = − ∗F B ? We first notice that, regardless of the choice of F , the Luenberger scheme in (1.4)–(1.6),

yields that −A KC( ) is the resulting sought-after operator in characterizing the quantity −y z[ ] of interest.

As A is, in our case, dissipative and we surely seek to retain dissipativity, then we choose = ∗KC BB ,

or = = ∗K B C B, . Then, the (dissipative) operator − ∗A BB( ) is the key operator to analyze for the purpose

of concluding that the semigroup − ∗
e A BB t( ) is (analytic as well as) uniformly stable. Thus, at this stage, with

F yet not committed and = = ∗K B C B, committed, the z-equation becomes = − − +∗ ∗z A BF BB z B B y˙ [ ] ( ).

It is natural to test either = ∗F B or else = − ∗F B , whichever choice may yield the desired properties for the

Luenberger compensentor theory for HSI with feedback controls  13



feedback operator = − ∗A A BBF . What is the right sign? Thus, passing from the historical scheme (1.4a)–(1.4b)

to our present PDE problem (2.1a)–(2.1f), the corresponding operator ∗
N� is critical in imposing the

boundary conditions for the feedback operator = − ∗
F N
b

b N N,� � � �
( )

in our CASE 1. In our present CASE 1,

if we choose → − ∗F N� and so = −
⎡

⎣
⎢

⎤

⎦
⎥ =∗g

z
z
z

zN

1

2

3

2 Γs� ∣ by (2.26), this then implies the boundary condition

= +∂ +
∂

∂
∂ v

v v

ν

h

νΓ Γ
2 Γ

s s
s

1 2 ∣
( )

for v v h, ,1 2{ } in AF N,�( ) as in (3.17b) below, via (1.9b). With this B.C., the argument

in (3.34) and (3.35) leads to the trace term −iω h Γ
2

s
∥ ∣ ∥ in (3.37a), and hence to the critical term

∇ + ∇ +iω v h h2
2 2

Γ
2

s
[‖ ‖ ‖ ‖ ∥ ∣ ∥ ] in (3.38), with the correct “minus” sign “−” for the argument of Theorem 3.4,

in particular estimate (3.32), to succeed. Therefore, in view of the interface condition = +∂ +
∂

∂
∂ g

w w

ν

u

νΓ Γ

t

s s

( )

in (2.1e), the B.C. = +∂ +
∂

∂
∂ v

v v

ν

h

νΓ Γ
2 Γ

s s
s

1 2 ∣
( )

confirms that =g v2 Γs∣ , or =
⎡

⎣⎢
⎤

⎦⎥
= −

⎡

⎣⎢
⎤

⎦⎥
=∗g F

w
w
u

w
w
u

wt N t t Γs� ∣ . Hence,

the choice → − ∗F N� , as in (2.1b) is the correct one in our present CASE 1.

3.1.1 The counterpart of == ∗∗y Ay BB z˙ – in (2.3a) for the heat structure interaction (2.1a)–(2.1f),

with →→ ∗∗F N�

Accordingly, for =z z z z, ,1 2 3[ ], the Luenberger’s compensator variable, in line with (3.2), we select the Neu-

mann control g in (2.1e) in the form

⎜ ⎟= − = ∈
⎛
⎝

⎞
⎠
≡∗ + +g z z z A H, Ω ,N N s

ε
ε

s2 Γ 2 ,

1
4 2

s

1
2� �∣ ( ) (3.5)

where we have critically invoked the trace result (2.26) of Theorem 2.1 in both cases =b 0 and =b 1 (we are

omitting the superscript “b”). With =y w w u, ,t[ ], the PDE version of (3.3a) corresponding to the abstract

feedback problem ( = =b b0, 1):

= −
⎡

⎣⎢
⎤

⎦⎥
=

⎡

⎣
⎢ + −

⎤

⎦
⎥ +∗y y z

t

w
w
u

w

w w bw

u

z˙ , or
d

d
Δ

Δ
b N N t

t

t N 2 Γs� � � �( ) ( ∣ ) (3.6)

from problem (2.25), b� as in (1.8), (1.9), alternatively in (2.14), with g as in (3.5), is

⎧

⎨

⎪
⎪

⎩

⎪
⎪

− = × ( )
− − + = × ( )
= × = × ( )

∂ +
∂

=
∂
∂

+ × ( )

u u T

w w w bw T

u T u w T

w w

ν

u

ν
z T

Δ 0 in 0, Ω ; 3.7a

Δ Δ 0 in 0, Ω ; 3.7b

0 on 0, Γ ; on 0, Γ ; 3.7c

on 0, Γ . 3.7d

t f

tt t s

f t s

t
s

Γ

2

f

( ]

( ]

∣ ( ] ( ]

( )
( ]

3.1.2 The counterpart of the dynamic compensator equation == (( )) ++ (( ))∗∗ ∗∗z A BB z B B y˙ ‒ 2 in (2.3b)

for the heat-structure interaction (2.1a)–(2.1f)

With partial observation as in (3.2) according to (2.26)

=
⎡

⎣⎢
⎤

⎦⎥
= − = =

⎡

⎣⎢
⎤

⎦⎥
∗ ∗
y

w
w
u

w y
w
w
u

partial observation of state ,N
b

N
b

t t tΓs� � ∣( ) ( ) (3.8)

the compensator equation (3.3b) in =z z z z, ,1 2 3[ ] becomes
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=
⎡

⎣
⎢

⎤

⎦
⎥ = − + −

∗
z

t

z
z
z

z w˙
d

d
2b N

b
N
b

N
b

t

1

2

3

Γs� � � �( ) ( ∣ )( ) ( ) ( ) (3.9)

or, via (1.8) for b� , (2.15) = (2.25) for N
b

�
( )
, (2.26) for

∗
N
b

�
( )

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢
⎢

+ −
⎤

⎦
⎥
⎥
−

⎡

⎣
⎢
⎢

−
⎤

⎦
⎥
⎥
+

⎡

⎣
⎢
⎢

−
⎤

⎦
⎥
⎥

z
z
z

z

z z bz

z
A N z A N wΔ

Δ
2

0

0

0

0

,
t

t

t

N s
b

s
b

N s
b

s
b

t

1

2

3

2

1 2 1

3

, 2 Γ , Γs s
( ) ( ∣ ) ( ∣ )( ) ( ) ( ) ( ) (3.10)

whereby = =z z z z,t tt t1 2 1 2 , and thus (3.10) is re-written as follows:

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢
⎢

+ −
⎤

⎦
⎥
⎥
+

⎡

⎣
⎢
⎢

−
⎤

⎦
⎥
⎥t

z
z
z

z

z z bz

z
A N z w

d

d
Δ

Δ

0

2

0

.t

t

t N s
b

s
b

t

1

1

3

1

1 1 1

3

, 2 Γ Γs s
( ) [ ∣ ∣ ]( ) ( ) (3.11)

The PDE version of the abstract z-model (3.11) with partial observation −wt Γs∣ in the Neumann condition at

the interface Γs (see (3.8)) is

⎧

⎨

⎪
⎪

⎩

⎪
⎪

− = × ( )
− − + = × ( )
= × = × ( )

∂ +
∂

=
∂
∂

+ − × ( )

z z T

z z z bz T

z T z z T

z z

ν

z

ν
z w T

Δ 0 in 0, Ω ; 3.12a

Δ Δ 0 in 0, Ω ; 3.12b

0on 0, Γ ; on 0, Γ ; 3.12c

2 on 0, Γ . 3.12d

t f

tt t s

f t s

t
t t s

3 3

1 1 1 1

3 Γ 3 1

1 1 3
1

f

( ]

( ]

∣ ( ] ( ]

( )
[ ] ( ]

3.1.3 The dynamics == (( ))(( )) (( ))∗∗d d˙ ‒b N
b

N
b

� � � , (( )) == (( )) (( ))d t y t z t‒ , corresponding to (3.4): analyticity,

==b 0 and ==b 1

We are omitting the superscript “b” on N� , ∗
N� . The main result of the present section is as follows:

Theorem 3.1. Let =b 0, 1. The (feedback) operator

= − ⊃ = ∈ − ∈∗ − ∗x I xH H, :F N
b

b N N b F N
b

b b N N b, ,
1� � � � � � � � � � �( ) { ( ) ( )}( ) ( ) (3.13)

is the infinitesimal generator of a s.c. contraction semigroup e tF N
b
,�

( )

on Hb, which moreover is analytic and

exponentially stable on Hb: there exist constants ≥ >C ρ1, 0, possibly depending on “b,” such that

= ≤ ≥− −∗
e e Ce t, 0.t t ρt

H H
F N
b

b
b N N

b
,�

�
� � �

�∥ ∥ ∥ ∥( )
( )

( )
( )

(3.14)

A more detailed description of F N
b
,� �( )( )

is given in (3.17a)–(3.17b).

The proof of Theorem 3.1 is by PDE methods, which consist of analyzing the corresponding PDE system

(3.16). We proceed through a series of steps.

Step 1. Identification of the −y z[ ]-abstract equation.

Lemma 3.2. Let =b 0, 1. With = ∈d d d d H, , b1 2 3[ ] ( =d difference = −y z), the abstract equation

= = − =
⎡

⎣
⎢
⎢

−
⎤

⎦
⎥
⎥

∗ ∗d d d d A N d˙ ,

0

0

F N
b

b N N N N N s
b

s
b

, , 2 Γs� � � � � �( ) ( ) ( ∣ )
( ) ( ) ( ) (3.15a)

recalling (1.8) for b� , (2.25) and (2.26) for N� and ∗
N�

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

⎡

⎣
⎢
⎢

+ −
⎤

⎦
⎥
⎥
−

⎡

⎣
⎢
⎢

−
⎤

⎦
⎥
⎥

d

d

d

d

d d bd

d

A N dΔ

Δ

0

0

t

t

t

N s
b

s
b

1

2

3

2

1 2 1

3

, 2 Γs
( ) ( ∣ )( ) ( ) (3.15b)
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so that = =d d d d,t t tt2 1 2 1 corresponds to the following PDE system, where we relabel the variable

= =d d d d, ,t1 2 1 3[ ] w w u, ,t  [ ] for convenience

⎧

⎨

⎪
⎪

⎩

⎪
⎪

− = × ( )
− − + = × ( )
= × = × ( )

∂ +
∂

=
∂
∂

+ × ( )

u u in T

w w w bw in T

u T u w on T

w w

ν

u

ν
w on T

Δ 0 0, Ω ; 3.16a

Δ Δ 0 0, Ω ; 3.16b

0on 0, Γ ; 0, Γ ; 3.16c

0, Γ . 3.16d

t f

tt t s

f t s

t
t s

Γf

 

 


   


 


( ]

( ]

∣ ( ] ( ]

( )
( ]

Remark 3.1.We note that the term
∂
∂
w

ν


andwt have the same sign across the equality sign in (3.16d). This is due

to the normal vector ν being inward with respect to Ωs as shown in Figure 1 and as noted in (2.20). This is

consistent with the fluid-structure interaction model in [12], [39, equation 2.16.1e, p. 128], also with ν being

inward with respect to Ωs. This model without the Kelvin-Voigt term is known in these references to be

uniformly stable by PDE-techniques.

Description of F N
b
,� �( )( )

. We have ∈ = − ∗v v h, , F N
b

b N N1 2 ,� � � � � �{ } ( ) ( )( )
if any only if

(i)

∈ = ∈ =

= ∈
+ ∈

v v b v v b

v h

v v

H H

H

L

, Ω \ for 0; , Ω for 1;

so that Γ in both cases ;

Δ Ω ;

s s

s

s

1 2
1

1 2
1

2 Γ Γ

1 2
2

s s

1
2

�( ) ( )

∣ ∣ ( )

( ) ( )

(3.17a)

(ii)

∈ ∈ ≡ = ∈

∂
∂

=
∂ +

∂
− ∈ −

h h h h v

h

ν

v v

ν
v

H L H

H

Ω , Δ Ω , 0, Γ ;

Γ .

f f s

s

1 2
Γ Γ 2 Γ

Γ

1 2

Γ
2 Γ

f s s

s s

s

1
2

1
2

( ) ( ) ∣ ∣ ∣ ( )

( )
∣ ( )

(3.17b)

The adjoint operator = −∗ ∗ ∗
F N
b

b N N,� � � �
( )

. For ∈ ∗
v v h, , F N

b
1 2 ,� �[ ] ( )( )

(to be characterized below), we have

recalled ∗
b� in (1.10a) and

⎡

⎣
⎢

⎤

⎦
⎥ = −∗

v
v

h
vN

1

2 2 Γs� ∣ in (2.26):

⎡

⎣
⎢

⎤

⎦
⎥ = −

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

−
− +

⎤

⎦
⎥ − −∗ ∗ ∗

v
v

h

v
v

h

v

v v bv

h

vΔ

Δ
F N
b

b N N N,

1

2

1

2

2

2 1 1 2 Γs� � � � �( ) ( ) ( ∣ )( ) (3.18)

=
⎡

⎣
⎢

−
− +

⎤

⎦
⎥ −

⎡

⎣
⎢
⎢

−
⎤

⎦
⎥
⎥

v

v v bv

h

A N vΔ

Δ

0

0

N s
b

s
b

2

2 1 1 , 2 Γs
( ) ( ∣ )( ) ( ) (3.19)

recalling also N� in (2.25) = (2.15).

Description of
∗

F N
b
,� �( )( )

. We have ∈ = −∗ ∗ ∗v v h, , F N
b

b N N1 2 ,� � � � � �{ } ( ) ( )( )
if and only if the same conditions

for F N
b
,� �( )( )

in (3.17a)–(3.17b) apply, except that new (3.17a) is replaced by − ∈v v LΔ Ωs2 1
2( ) ( ) and (3.17b) is

replaced by

∂
∂

=
∂ −

∂
+ ∈ −h

ν

v v

ν
v H Γ .s

Γ

2 1

Γ
2 Γ

s s

s

1
2

( )
∣ ( ) (3.20)

The PDE corresponding to
∗

F N
b
,�

( )
is given by

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥

∗
w
w
u

w
w
u

t F N
bd

d

1

2 ,

1

2�
( )

or
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⎧

⎨

⎪
⎪

⎩

⎪
⎪

− = × ( )
− − − = × ( )
= × ( )

= −
∂ +

∂
= −

∂
∂

+ × ( )

h h T

w w w bw T

h T

h w
w w

ν

h

ν
w T

Δ 0 in 0, Ω ; 3.21a

Δ Δ 0 in 0, Ω ; 3.21b

0 on 0, Γ ; 3.21c

; on 0, Γ , 3.21d

t f

tt t s

f

t
t

t s

1 1 1 1

Γ

Γ 1 Γ
1 1

Γ Γ
1 Γ

f

s s

s s

s

( ]

( ]

∣ ( ]

∣ ∣
( )

∣ ( ]

(where = −w wt1 2 by (3.18), top line) on Hb, with ∈w w h H, , b10 11 0{ } , recalling (1.10b)–(1.10g) for ∗
b� .

Step 2. (Analysis of the PDE problem (3.16): the operator = − ∗
F N
b

b N N,� � � �
( )

in (3.13))

Proposition 3.3. Let =b 0, 1. The operator = − ∗
F N
b

b N N,� � � �
( )

in (3.13) and itsHb-adjoint = −∗ ∗ ∗
F N
b

b N N,� � � �
( )

are dissipative

⎛

⎝
⎜ −

⎡

⎣
⎢

⎤

⎦
⎥
⎡

⎣
⎢

⎤

⎦
⎥
⎞

⎠
⎟ = − ∇ − ∇ − ∈∗

v
v

h

v
v

h
v h v v v hRe , , , , ,b N N F N

b

H

1

2

1

2 2 Ω
2

Ω
2

2 Γ Γ
2

1 2 ,

b

s f s s
� � � � �( ) ‖ ‖ ‖ ‖ ∥ ∣ ∥ { } ( )( )

(3.22)

⎛

⎝

⎜
⎜ −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎞

⎠

⎟
⎟ = − ∇ − ∇ − ∈∗ ∗

∗

∗

∗

∗

∗

∗

∗ ∗ ∗ ∗ ∗ ∗ ∗
v

v

h

v

v

h

v h v v v hRe , , , ,b N N F N
b

H

1

2

1

2 2 Ω
2

Ω
2

2 Γ Γ
2

1 2 ,

b

s f s s
� � � � �( ) ‖ ‖ ‖ ‖ ∥ ∣ ∥ { } ( )( )

(3.23)

in the ⋅L2( )-norms of Ωs and Ωf , and the L Γs2( )-norm on Γs. Hence, both F N
b
,�

( )
and

∗
F N
b
,�

( )
are maximal dissipative

and thus generate s.c. contraction semigroups e tF N
b
,�

( )

and
∗

e tF N
b
,�

( )

on Hb [35]. Explicitly in terms of the corre-

sponding PDE systems, we have:

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
=

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
=

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

− ∗
w t

w t

u t

e

w

w

u

e

w

w

u

t
t t

0

1

0

0

1

0

F N
b

b N N,

  








� � � �

( )

( )

( )

( )( )
(3.24)

for the w w u, ,t  { }-fluid-structure interaction model given by (3.16a)–(3.16d) on Hb: with I.C. ∈w w u H, , b0 1 0 { } .

Similarly,

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥−∗ ∗ ∗

w t

w t

h t

e

w
w

h
e

w
w

h
t

t t

1

1

10

11

0

10

11

0

F N
b

b N N,� � � �

( )

( )

( )

( )( )
(3.25)

for the = −w w w u, ,t1 1 2{ }-fluid-structure interaction model given by (3.21a)–(3.21d).

Proof of (3.22). For ∈v v h, , F N
b

1 2 ,� �{ } ( )( )
, we compute via (3.15a)–(3.15b)

⎪

⎪

⎪

⎪

⎛

⎝
⎜ −

⎡

⎣
⎢

⎤

⎦
⎥
⎡

⎣
⎢

⎤

⎦
⎥
⎞

⎠
⎟ =

⎧
⎨
⎩

⎛

⎝
⎜⎜
⎡

⎣
⎢ + −

⎤

⎦
⎥
⎡

⎣
⎢

⎤

⎦
⎥
⎞

⎠
⎟⎟ +

⎫
⎬
⎭

∗
v
v

h

v
v

h

v

v v bv

h

v
v

h
Re , Re Δ

Δ

, ,b N N

H H

1

2

1

2

2

1 2 1

1

2

b b

� � �( ) ( ) ♠ (3.26)

where

= −
⎛

⎝

⎜
⎜

⎡

⎣
⎢
⎢

−
⎤

⎦
⎥
⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎞

⎠

⎟
⎟A N v

v
v

h

0

0

,N s
b

s
b

H

, 2 Γ

1

2
s

b

♠ ( ∣ )( ) ( ) (3.27)

= = −
∗

v N A v v, s
b

N s
b

2 Γ , 2 Γ 2 Γ
2

s s s
( ∣ ) ∥ ∣ ∥( ) ( ) (3.28)

recalling (2.26). On the other hand, the first term on the right-hand side (RHS) of (3.26) is equal to

− ∇ − ∇v h2
2 2[ ‖ ‖ ‖ ‖ ] by (1.12), which added to (3.28) yields (3.22). Similarly for (3.23), starting from (3.19). □

Step 3. This step provides the key PDE-energy estimate, =b 0 and =b 1, of the entire present section. The case

=b 1 is more challenging.
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Remark 3.2. Given ∈∗ ∗ ∗v v h H, , b1 2{ } , and ∈ω \ 0� { }, we seek to solve the equation

−
⎡

⎣
⎢

⎤

⎦
⎥ =

⎧
⎨
⎩

−
⎡

⎣
⎢ −

⎤

⎦
⎥
⎫
⎬
⎭

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∗

∗

∗

iωI

v
v

h
iωI

I

bI

v
v

h

v

v

h

0 0
Δ Δ 0

0 0 Δ
F N
b
,

1

2

1

2

1

2�( )( )

in terms of ∈v v h, , F N
b

1 2 ,� �{ } ( )( )
uniquely. We have

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=
⎡

⎣
⎢ −

⎤

⎦
⎥
⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢ + −

⎤

⎦
⎥

∗

∗

∗

∗

∗

∗

v
v

h
R iω

v

v

h

R iω

v

v

h

I

bI

v
v

h

v

v v bv

h

, ,

,
0 0

Δ Δ 0
0 0 Δ

Δ

Δ

.

F N
b

F N
b

F N
b

1

2 ,

1

2

, ,

1

2

1

2

2

1 2 1

�

� �

( )

( ) ( )

( )

( ) ( )

Theorem 3.4. Let =b 0, 1. Let ∈ω � and

−
⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
∈

∗

∗

∗

iωI

v
v

h

v

v

h

HF N
b

b,

1

2

1

2�( )( ) (3.29)

for ∈v v h, , F N
b

1 2 ,� �{ } ( )( )
identified in (3.17a)–(3.17b). Then:

(i) the following estimate holds true: given >ε 0 sufficiently small, there exists a constant >C 0ε such that:

+ − + + ∇ + + + ∇

≤ ∇ + + + ∀ ≥ >∗ ∗ ∗ ∗

v v bv h v b v h h

C v b v v h ω ε

Δ Δ

, 0.ε

1 2 1
2 2

2
2

2
2

Γ
2 2

1
2

1
2

2
2 2

s
‖ ( ) ‖ ‖ ‖ ‖ ‖ ‖ ‖ ∥ ∣ ∥ ∥ ∥

{‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ } ∣ ∣
(3.30)

(ii) (Analyticity) In view of Remark 3.2, Estimate (3.30) without the term + ∇h hΓ
2 2

s
[∥ ∣ ∥ ∥ ∥ ] is equivalent to

≤ ∀ ≥ >R iω C ω ε, , 0,F N
b

F N
b

εH, , b
� � �∥ ( )∥ ∣ ∣( ) ( )

( ) (3.31)

= − −R iω iωI, F N
b

F N
b

, ,
1� �( ) ( )( ) ( )
, which in turn is equivalent to

≤ ∀ ≥ >R iω
c

ω
ω ε, , 0.F N

b ε
H, b

� �∥ ( )∥
∣ ∣

∣ ∣( )
( ) (3.32)

Thus, the s.c. contraction semigroup e tF N
b
,�

( )

asserted by Proposition 3.3 is analytic on Hb by [4, Theorem 3E.3

p. 334] and similarly for
∗

e tF N
b
,�

( )

on Hb. Their explicit PDE version is given by (3.24) for system w t w t u t, ,t  { ( ) ( ) ( )}

in (3.16a)–(3.16d) and, respectively, by (3.25) for system w t w t h t, ,t1 1{ ( ) ( ) ( )} in (3.21a)–(3.21d).

Proof. (i) The proof of estimate (3.30) follows closely the technical proof of [1, Section 3] for the operator �

except that now the argument uses the B.C. of F N,� rather than of� , =b 0 and =b 1. We indicate the relevant

changes.

Step 1. Return to (3.29) re-written for ∈v v h, , F N
b

1 2 ,� �{ } ( )( )
and ∈∗ ∗ ∗v v h H, , b1 2{ } .

⎪

⎪

⎧
⎨
⎩

− = ( )
− + − = ( )
− = ( )

∗

∗

∗

iωv v v

iωv v v bv v

iωh h h

, 3.33a

Δ , 3.33b

Δ , 3.33c

1 2 1

2 1 2 1 2[ ( ) ]

Step 2. Take the L Ωf
2( )-inner product of equation (3.33c) against hΔ , use Green’s First theorem, recall the B.C.

=h 0Γf∣ in (3.17b) for F N,� �( ) and obtain the counterpart of [1, equation (3.10)]

∫ ∂
∂

− ∇ − = ∗iω h
h

ν
iω h h h hdΓ Δ , Δ .s

Γ

2 2

s

‖ ‖ ‖ ‖ ( ) (3.34)

Similarly, we take the L Ωs
2( )-inner product of (3.33b) against + −v v bvΔ 1 2 1[ ( ) ], use Green’s first theorem to

evaluate ∫ +v v vΔ dΩsΩ 2 1 2
s

( ) , recalling that the normal vector ν is inward with respect to Ωs, and obtain (see [1,
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equation (3.11)])

∫−
∂ +

∂
− ∇ ∇ + − − + −

= + −∗

iω v
v v

ν
iω v v v iω v bv v v bv

v v v bv

dΓ , , Δ

, Δ .

s

Γ

2
1 2

2 1 2 2 1 1 2 1
2

2 1 2 1

s

( )
( ( )) ( ) ‖ ( ) ‖

( [ ( ) ])

(3.35)

We now invoke the B.C. =h vΓ 2 Γs s
∣ ∣ and = +∂ +

∂
∂
∂ v

v v

ν

h

νΓ Γ
2 Γ

s s
s

1 2 ∣
( )

for v v h, ,1 2{ } in F N
b
,� �( )( )

(see (3.17)), and we

rewrite (3.35) as follows:

∫− ⎡
⎣⎢
∂
∂

+ ⎤
⎦⎥

− ∇ − ∇ ∇ − − + −

= + −∗

iω h
h

ν
h iω v iω v v iω v bv v v bv

v v v bv

dΓ , , Δ

, Δ .

s

Γ

2
2

2 1 2 1 1 2 1
2

2 1 2 1

s

‖ ‖ ( ) ( ) ‖ ( ) ‖

( [ ( ) ])

(3.36)

Summing up (3.34) and (3.36) yields after a cancellation of the boundary term ∫ ∂
∂iω h dΓ
h

ν sΓs
:

− − ∇ + ∇ = + − + + + ∇ ∇

+ + − +∗ ∗

iω h iω v h v v bv h iω v bv iω v v

v v v bv h h

Δ Δ , ,

, Δ , Δ .

Γ
2

2
2 2

1 2 1
2 2

2 1 2 1

2 1 2 1

s
∥ ∣ ∥ [‖ ‖ ‖ ‖ ] ‖ ( ) ‖ ‖ ‖ ( ) ( )

( [ ( ) ]) ( )
(3.37a)

Using, via (3.33a), the identities

− ∇ ∇ = ∇ ∇ = ∇ + ∇ ∇ ∗iω v v v iωv v v v, , , ,2 1 2 1 2
2

2 1( ) ( ( )) ‖ ‖ ( ) (3.37b)

− = = + ∗iω v v v iωv v v v, , , ,2 1 2 1 2
2

2 1( ) ( ) ‖ ‖ ( ) (3.37c)

we obtain from (3.37a) the final identity

+ − + + ∇ + ∇ +
= ∇ + + ∇ ∇ + − + − −∗ ∗ ∗ ∗

v v bv h iω v h h

v b v v v b v v v v v bv h h

Δ Δ

, , , Δ , Δ .

1 2 1
2 2

2
2 2

Γ
2

2
2

2
2

2 1 2 1 2 1 2 1

s
‖ ( ) ‖ ‖ ‖ [‖ ‖ ‖ ‖ ∥ ∣ ∥ ]

‖ ‖ ‖ ‖ ( ) ( ) ( [ ( ) ]) ( )
(3.38)

Step 3. We take the real part of identity (3.38), thus obtaining the new identity:

+ − + = ∇ + + ∇ ∇ +

− + − −

∗ ∗

∗ ∗

v v bv h v b v v v b v v

v v v bv h h

Δ Δ Re , Re ,

Re , Δ Re , Δ

1 2 1
2 2

2
2

2
2

2 1 2 1

2 1 2 1

‖ ( ) ‖ ‖ ‖ ‖ ‖ ‖ ‖ ( ) ( )

( [ ( ) ]) ( )
(3.39)

or

− + − +

≤ + ∇ + + ∇ + + +∗ ∗ ∗ ∗

ε v v bv h

ε v b v C v b v v h

1 Δ Δ

1 .ε

1 2 1
2 2

2
2

2
2

1
2

1
2

2
2 2

( )[‖ ( ) ‖ ‖ ‖ ]

( )[‖ ‖ ‖ ‖ ] [‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ]
(3.40)

Step 4. We now take the imaginary part of identity (3.38), thus obtaining the new identity

∇ + ∇ + = ∇ ∇ + − + − +∗ ∗ ∗ ∗ω v h h v v b v v v v v bv h hIm , Im , Im , Δ , Δ ,2
2 2

Γ
2

2 1 2 1 2 1 2 1s
{‖ ‖ ‖ ‖ ∥ ∣ ∥ } ( ) ( ) {( [ ( ) ]) ( )} (3.41)

∇ + ∇ + ≤ ∇ + + + − +

+ ∇ + + +∗ ∗ ∗ ∗

ω v h h
ε

v b
ε

v ε v v bv h

C v b v C v h

2 3
Δ Δ

ε ε

2
2 2

Γ
2

2

2
2

3

2
2 3

1 2 1
2 2

1
2

1
2

2
2 2

s

2 3

∣ ∣{‖ ‖ ‖ ‖ ∥ ∣ ∥ } ‖ ‖ ‖ ‖ [‖ ( ) ‖ ‖ ‖ ]

[‖ ‖ ‖ ‖ ] [‖ ‖ ‖ ‖ ]

(3.42)

or

⎡
⎣⎢

− ⎤
⎦⎥
∇ + ∇ + ≤ + + − +

+ ∇ + + +∗ ∗ ∗ ∗

ω
ε

v ω h h b
ε

v ε v v bv h

C v b v v h

2 2
Δ Δ

.ε

2

2
2 2

Γ
2

3

2
2 3

1 2 1
2 2

1
2

1
2

2
2 2

s
∣ ∣ ‖ ‖ ∣ ∣[‖ ‖ ∥ ∣ ∥ ] ‖ ‖ [‖ ( ) ‖ ‖ ‖ ]

[‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ]

(3.43)

Take now

≤ − ⟺ ≤
ε

ω
ε

ε ω
2 2

,
2 2

2∣ ∣ ∣ ∣ (3.44)

so that (3.43) yields for ω∣ ∣ as in (3.44):
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∇ + ∇ + ≤ + + − +

+ ∇ + + +∗ ∗ ∗ ∗

ε
v ε h h b

ε
v ε v v bv h

C v b v v h

2 2
Δ Δ

;ε

2

2
2 2 2

Γ
2

3

2
2 3

1 2 1
2 2

1
2

1
2

2
2 2

s
‖ ‖ [‖ ‖ ∥ ∣ ∥ ] ‖ ‖ [‖ ( ) ‖ ‖ ‖ ]

[‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ]

(3.45)

hence, for ω∣ ∣ as in (3.44)

∇ + ∇ + ≤ + + − +

+ ∇ + + +∗ ∗ ∗ ∗

v h h bε v ε v v bv h

C v b v v h

2 Δ Δ

.ε

2
2 2

Γ
2

2
2

1 2 1
2 2

1
2

1
2

2
2 2

s
‖ ‖ ‖ ‖ ∥ ∣ ∥ ‖ ‖ [‖ ( ) ‖ ‖ ‖ ]

[‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ]
(3.46)

Remark 3.3. In the case =b 0, the proof on the space =Hb 0, hence with the first component in H Ω \s
1

�( )

topologized by the gradient norm, proceeds as follows. Estimate (3.46) is “too good for our purposes”:

we drop the terms ∇ +h h2
Γ

2
s

‖ ‖ ∥ ∣ ∥ and substitute the new estimate on ∇v2
2‖ ‖ on the RHS of (3.40) with =b 0.

We obtain

− + + ≤ + + + + + ∇ + +∗ ∗ ∗ε v v h ε ε v v h ε C v v h1 Δ Δ 1 2 Δ Δ 1 ε1 2
2 2

1 2
2 2

1
2

2
2 2( )[‖ ( )‖ ‖ ‖ ] ( ) [‖ ( )‖ ‖ ‖ ] ( ) [‖ ‖ ‖ ‖ ‖ ‖ ] (3.47)

or

− − + + + ≤ ∇ + +∗ ∗ ∗ε ε ε v v h C v v h1 1 2 Δ Δ ε1 2
2 2

1
2

2
2 2[( ) ( ) ][‖ ( )‖ ‖ ‖ ] [‖ ‖ ‖ ‖ ‖ ‖ ]͠ (3.48)

or

+ + ≤ ∇ + +∗ ∗ ∗v v h C v v hΔ Δ .ε1 2
2 2

1
2

2
2 2‖ ( )‖ ‖ ‖ [‖ ‖ ‖ ‖ ‖ ‖ ] (3.49)

Estimate (3.48) coincides with estimate [1, equation (3.26)], case =b 0.

Next, substitute estimate (3.49) into the RHS of estimate (3.46) with =b 0, to obtain for ω∣ ∣ as in (3.44):

∇ + ∇ + ≤ ∇ + +∗ ∗ ∗v h h C v v h .ε2
2 2

Γ
2

1
2

2
2 2

s
‖ ‖ ‖ ‖ ∥ ∣ ∥ [‖ ‖ ‖ ‖ ‖ ‖ ]͠ (3.50)

Summing up estimate (3.49) with estimate (3.50) finally yields for ω∣ ∣ as in (3.44):

+ + + ∇ + ∇ + ≤ ∇ + +∗ ∗ ∗v v h v h h C v v hΔ Δ ε1 2
2 2

2
2 2

Γ
2

1
2

2
2 2

s
‖ ( )‖ ‖ ‖ ‖ ‖ ‖ ‖ ∥ ∣ ∥ [‖ ‖ ‖ ‖ ‖ ‖ ] (3.51)

for all points iω, with ≥ω
ε

2

2

∣ ∣ as in (3.44). Then estimate (3.51) coincides with (3.30) with =b 0 as desired.

In view of Remark 3.2, such estimate is equivalent to

≤ ∀ ≥ >R iω C ω ε, , 0.F N F N εH,
0

,
0

0
� � �∥ ( )∥ ∣ ∣( ) ( )

( ) (3.52)

The analyticity of the s.c. contraction semigroup = − ∗
e et tF N N N,

0
0� � � �( )( )

on =Hb 0 is established and similarly

for
∗

e tF N,
0

�
( )

.

Step 5. We proceed now with the proof of analyticity in the case =b 1 on =Hb 1. This case is more challenging

and requires the following additional result (in substitution of the Poincare inequality, which does not hold

true for v2 on Ωs).

Lemma 3.5. [44, p. 260] On a sufficiently smooth bounded domain Ω in n� , let ∈Ψ H Ω1( ). Then:

(a) ∫ ∫ ∫≤
⎡

⎣⎢
∇ +

⎤

⎦⎥∼
Ψ c Ψ ΨdΩ dΩ dΓ

Ω

2
1

Ω

2

Γ

2∣ ∣ ∣ ∣ ∣ ∣ ,

(b) ∫ ∫≤ + ∇Ψ c Ψ ΨdΓ dΩ
Γ

2
2

Ω

2 2∣ ∣ [∣ ∣ ∣ ∣ ] ,

(c) hence for positive constant < < < ∞k k0 1 2 ,

∫ ∫ ∫ ∫+ ∇ ≤ ∇ + ≤ + ∇
∼

k Ψ Ψ Ψ Ψ k Ψ ΨdΩ dΩ dΓ dΩ,1

Ω

2 2

Ω

2

Γ

2
2

Ω

2 2[∣ ∣ ∣ ∣ ] ∣ ∣ ∣ ∣ [∣ ∣ ∣ ∣ ]

where
∼Γ is any fixed portion of the boundary = ∂Γ Ω of Ω of positive measure.
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We now return to inequality (3.46) with =b 1, where we use =h vΓ 2 Γs s
∣ ∣ from (3.17a) on its left-hand side

(LHS) and then invoke Lemma 3.5(a) for =Φ v2 to obtain

+ ∇ ≤ ∇ + ∇ + ≤ +
c

v h v h v bε v
1

OK ,ε
1

2
2 2

2
2 2

2 Γ
2

2
2

s
‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ∥ ∣ ∥ ‖ ‖ (3.53a)

= + − + + ∇ + + +∗ ∗ ∗ ∗ε v v bv h C v b v v hOK 2 Δ Δ ,ε ε1 2 1
2 2

1
2

1
2

2
2 2[‖ ( ) ‖ ‖ ‖ ] [‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ] (3.53b)

hence,

⎜ ⎟∇ + ∇ ≤ ⎛
⎝

− ⎞
⎠

+ ∇ ≤
c

v h
c

bε v h
1

2

1
OK .ε

1
2

2 2

1
2

2 2‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ (3.54)

by taking
⎛
⎝ − ⎞

⎠ ≥bε
c c

1 1

21 1
(where =b 1), which yields ≤b v c2 OK ε2

2
1‖ ‖ , which along with the RHS inequality

in (3.53a) gives the desired estimate for =b 1:

∇ + + ∇ + ≤ + +

= + + ≤ + +

≤ + + + − + + ∇

+ + +

∗

∗ ∗ ∗

v b v h v bε v b v

ε b v ε c

ε ε c v v bv h C v

b v v h

OK

1 OK 1 2 1 OK

2 1 2 1 Δ Δ

.

ε

ε ε

ε

2
2

2
2 2

2 Γ
2

2
2

2
2

2
2

1

1 1 2 1
2 2

1
2

1
2

2
2 2

s
‖ ‖ ‖ ‖ ‖ ‖ ∥ ∣ ∥ ‖ ‖ ‖ ‖

( ) ‖ ‖ [( ) ]

[( ) ]{[‖ ( ) ‖ ‖ ‖ ] [‖ ‖

‖ ‖ ‖ ‖ ‖ ‖ ]}

(3.55)

The LHS in (3.55) estimates the two terms ∇ +v b v2
2

2
2[‖ ‖ ‖ ‖ ] on the RHS in (3.40). We may now proceed as in

going from (3.47) to (3.51) in Remark 3.3 for =b 0.

Step 6. We substitute the new estimate (3.55) on the RHS of (3.40). We obtain

− + − +

≤ + + + + − +

+ ∇ + + +∗ ∗ ∗ ∗

ε v v bv h

ε ε ε c v v bv h

C v b v v h

1 Δ Δ

1 2 1 2 1 Δ Δ

ε

1 2 1
2 2

1 1 2 1
2 2

1
2

1
2

2
2 2

( )[‖ ( ) ‖ ‖ ‖ ]

( ) [( ) ][‖ ( ) ‖ ‖ ‖ ]

[‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ]

(3.56)

or

− − + + + + − +

≤ ∇ + + +∗ ∗ ∗ ∗

ε ε ε ε c v v bv h

C v b v v h

1 1 2 1 2 1 Δ Δ

ε

1 1 2 1
2 2

1
2

1
2

2
2 2

{( ) ( ) [( ) ]}[‖ ( ) ‖ ‖ ‖ ]

[‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ]͠
(3.57)

or

+ − + ≤ ∇ + + +∗ ∗ ∗ ∗v v bv h C v b v v hΔ Δ .ε1 2 1
2 2

1
2

1
2

2
2 2‖ ( ) ‖ ‖ ‖ [‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ] (3.58)

Estimate (3.58) for =b 1 is the counterpart of estimate (3.49) for =b 0.

Step 7. Summing up estimates (3.58) with estimate (3.55) finally yields for ω∣ ∣ as in (3.44):

+ − + + ∇ + + ∇ +

≤ ∇ + + +∗ ∗ ∗ ∗

v v bv h v b v h v

C v b v v h

Δ Δ

ε

1 2 1
2 2

2
2

2
2 2

2 Γ
2

1
2

1
2

2
2 2

s
‖ ( ) ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ∥ ∣ ∥

[‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ]
(3.59)

for all points ω, with ≥ω
ε

2

2

∣ ∣ as in (3.44). Then estimate (3.58) coincides with estimate (3.30) as desired.

The analyticity of the s.c. contraction semigroup = − ∗
e et tF N N N,

1
1� � � �( )( )

on =Hb 1 is established. Similarly for
∗

e tF N,
1

�
( )

, =b 1. □

3.1.4 Exponential stability of
(( ))

e tF N
b
,� and

(( ))∗∗
e tF N

b
,� on Hb, ==b 0, 1

In Proposition 3.6, we shall prove, in both cases =b 0 and =b 1, that we have

∈ ∈ ∈ ∈∗ − ∗ −ρ ρ H H0 , 0 , , ,F N
b

F N
b

F N
b

b F N
b

b, , ,
1

,
1� � � � � �( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) (3.60)

⋅ρ( ) denoting the resolvent set, so that there exists a disk r0
� centered at the origin and of suitable radius >r 00

such that ⊂ ρr F N
b
,0

� �( )( )
. Then, the resolvent bound (3.32) combined with ∈− HF N

b
b,

1� �( ) ( )( )
in (3.60) allows one

to conclude that the resolvent operator is uniformly bounded on the imaginary axis i� :
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≤ ∈R iω ω, const , .F N
b

H, b
�� �‖ ( )‖( )

( ) (3.61)

Hence, [45] the s.c. analytic semigroup e tF N
b
,�

( )

is, moreover. (uniformly) exponentially bounded: There exist

constants ≥M 1, >δ 0, possibly depending on b, such that

≤ ≥ = =−e Me t b b, 0, 0, 1.t δt
H

F N
b

b
,�

�‖ ‖ ( )
( )

(3.62)

Similarly for the adjoint
∗

F N
b
,�

( )
.

Proposition 3.6. Statement (3.60) holds true. Hence, the exponential stability for e tF N
b
,�

( )

in (3.62) holds true. More

precisely, with reference to F N
b
,�

( )
, we have: given ∈∗ ∗ ∗v v h H, , b1 2{ } , the unique solution ∈v v h, , F N

b
1 2 ,� �{ } ( )( )

of

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢ + −

⎤

⎦
⎥ =

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∗

∗

∗

v
v

h

v

v v bv

h

v

v

h

Δ

Δ
F N
b
,

1

2

2

1 2 1

1

2� ( )( ) (3.63)

is given explicitly by

= − − + +
⎧
⎨
⎩

∂
∂

− + −
∂
∂

+
⎫
⎬
⎭

∈
⎧
⎨
⎩

=
=

− ∗ ∗ − ∗ ∗
∗

∗v A v v N
ν

A h D v
v

ν
v

for b

for b

H

H

Δ

Ω \ 0;

Ω 1.

N s
b

s
b

D f f s

s

s

1 ,
1

1 2 ,
1

, 1 Γ
1

Γ
1 Γ

1

1

s

s

s

�

( ) [ ] [ ( ∣ )] ∣

( )

( )

( ) ( )

(3.64)

= ∈
⎧
⎨
⎩

=
=

= − + ∈∗ − ∗ ∗v v
for b

for b
h A h D v

H

H
H

Ω \ 0,

Ω 1,
Ω .

s

s
D f f s f2 1

1

1 ,
1

, 1 Γ
1

s

�( )

( )
( ∣ ) ( ) (3.65)

where the positive self-adjoint operator AD f, and the Dirichlet map Df s, from Γs into Ωf were defined in (2.9) and

(2.10), and are repeated as follows:

− = ∈ = ∩A φ φ in φ A H HΔ Ω ; Ω Ω ;D f f D f f f, ,
2

0
1�( ) ( ) ( ) (3.66)

∂ → ∈ = ⟺
⎧
⎨
⎩

= ( )
= = ( )

+D H H s D μ ψ
ψ in

ψ ψ μ
: Ω Ω , :

Δ 0 Ω ; 3.67a

0, . 3.67bf s
s

f
s

f f s

f

, ,
Γ Γf s

1
2 �( ) ( )

∣ ∣

While AN s
b
,

( )
and Ns

b( ), =b 0, 1, are defined in (2.3) and (2.4), respectively. In the operator form, we have

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

⎡

⎣

⎢
⎢
⎢
⎢

− − + +
⎧
⎨
⎩

∂
∂

− + −
∂
∂

+
⎫
⎬
⎭

− +

⎤

⎦

⎥
⎥
⎥
⎥

−

∗

∗

∗

− ∗ ∗ − ∗ ∗
∗

∗

∗

− ∗ ∗

v
v

h

v

v

h

A v v N
ν

A h D v
v

ν
v

v

A h D v

Δ

F N
b

N s
b

s
b

D f f s

D f f s

1

2 ,
1

1

2

,
1

1 2 ,
1

, 1 Γ
1

Γ
1 Γ

1

,
1

, 1 Γ

s

s

s

s

�( )

( ) [ ] [ ( ∣ )] ∣

( ∣ )

( )

( ) ( )

(3.68)

=

⎡

⎣

⎢
⎢
⎢

+
∂
∂

⋅ + ⋅ −
∂⋅
∂

− −
∂
∂

⋅ −

⎤

⎦

⎥
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

− − −

−

∗

∗

∗

A N
ν
D

ν
A N

ν
A

I

D A

v

v

h

Δ

0 0

0

,

N s
b

s
b

f s N s
b

s
b

D f

f s D f

,
1

, Γ Γ
Γ

,
1

,
1

, Γ ,
1

1

2

s s

s

s

( ) ( ∣ ) ( ∣ ) ( )

( ∣ )

( ) ( ) ( ) ( )

(3.69)

≤ ∗ ∗ ∗v v h c v v h, , , , .H H1 2 1 2b b
‖[ ]‖ ‖[ ]‖ (3.70)

Proof. Identity (3.63) yields by (3.17b)

=
⎧
⎨
⎩

= ∈ ( )

= = = ∈ ( )
∗

∗

∗v v
h h

h h v v

L

H

Δ Ω ; 3.71a

0, Γ , 3.71b

f

s
2 1

Γ Γ 2 Γ 1 Γf s s s

1
2

( )

∣ ∣ ∣ ∣ ( )
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and the h-problem in (3.71) yields the solution h in (3.65).

Moreover, (3.63), = ∗v v2 1 in (3.65) and (3.17b) yield

⎧

⎨
⎪

⎩⎪

+ − = − = − + ( )
∂ +

∂
=

∂
∂

+
∂
∂

= ⎡
⎣⎢
−
∂
∂

+
∂
∂

+ ⎤
⎦⎥

( )

∗ ∗ ∗ ∗

∗
∗

∗
∗

v v bv v v bv v v

v v

ν

h

ν
v

v

ν

v

ν

h

ν
v

Δ , or Δ Δ ; 3.72a

, or 3.72b

1 1 1 2 1 1 1 2

1 1

Γ Γ
1 Γ

1

Γ

1
1

Γs s

s

s s

( )

( )
∣

from which the expression for v1 in (3.64) followed by invoking the operator AN s
b
,

( )
and Ns

b( ) in (2.3) and (2.4).

The proof is complete. □

4 CASE 2. Heat-structure interaction with Kelvin-Voigt damping:

Dirichlet control g at the interface Γs: abstract model

We return to the homogeneous heat-structure interaction model (1.1a)–(1.1f) with Kelvin-Voigt damping. In this

CASE 2, we insert a control g in the Dirichlet interface condition (1.1d). Thus, with the same geometry (Figure 1)

and notation w w u, ,t{ } as in Section 1.3 for the uncontrolled problem, in the present CASE 2, we consider the

following controlled problem:

⎧
⎨
⎩

− = × ( )
− − + = × ( )

u u T

w w w bw T
PDE

Δ 0 in 0, Ω ; 4.1a

Δ Δ 0 in 0, Ω ; 4.1b

t f

tt t s

( )
( ]

( ]

⎧

⎨
⎪

⎩
⎪

= × ( )

= + × ( )
∂ +

∂
=

∂
∂

× ( )

u T

u w g T

w w

ν

u

ν
T

BC

0 on 0, Γ ; 4.1c

on 0, Γ ; 4.1d

on 0, Γ ; 4.1e

f

t s

t
s

Γf

( )

∣ ( ]

( ]

( )
( ]

( ) ⋅ ⋅ ⋅ = ∈w w u w w u HIC 0, , 0, , 0, , , ,t b0 1 0[ ( ) ( ) ( )] [ ] (4.1f)

this time with Dirichlet control g acting at the interface Γs. Compare against model (2.1a)–(2.1f) of CASE 1

with Neumann control g at the interface Γs, as in (2.1e). We shall likewise consider two cases: =b 0 and =b 1.

Hb is the same finite energy space as in (1.2a)–(1.2b).

4.1 Abstract model onHb, ==b 0, 1 of the nonhomogeneous PDE model (4.1a)–(4.1f)

with Dirichlet control g acting at the interface Γs

This topic was duly treated in [39, Section 6]. Here, it was shown that the abstract version of the nonhomo-

geneous PDE model (4.1a)–(4.1f) is given by

⎡

⎣⎢
⎤

⎦⎥
=

⎡

⎣⎢
⎤

⎦⎥
+

t

w
w
u

w
w
u

g
d

d
,t b t D� � (4.2)

where the operator ⊃ →H H:b b b b� � �( ) is of course the same as given by (1.8) and (1.9). Instead, the

(boundary) control operator D� is given by

⎜ ⎟

=
⎡

⎣
⎢

⎤

⎦
⎥ →

⎡

⎣

⎢
⎢
⎢

⊗
⊗

⎡
⎣⎢

⎛
⎝

⎞
⎠
⎤
⎦⎥
′

⎤

⎦

⎥
⎥
⎥

+g
A D g A

L

0
0 , : continuous Γ .D

D f f s

D s

D f

ε
, ,

2

,

3
4

� �

�

( ) (4.3)

Here, −AD f, is the negative, self-adjoint operator on L Ωf
2( ) defined by (2.9) = (3.66), i.e., by
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− = ≡ ∩A φ φ A H HΔ , Ω Ω ,D f D f f f, ,
2

0
1�( ) ( ) ( ) (4.4)

while Df s, is the Dirichlet map from Γs to Ωf defined by (2.10) = (3.66), i.e., by

= ⟺
⎧
⎨
⎩

= ( )
= = ( )φ D χ

φ

φ φ χ

Δ 0 in Ω ; 4.5a

0, . 4.5bf s

f

,
Γ Γf s
∣ ∣

The following regularity holds true for Df s, [40,41], [4, Chapter 3]:

⎧

⎨
⎪

⎩⎪

→ ≡ ( )

∈ ( )

− −

−

D A

A D

L H

L L

: Γ Ω , 4.6a

or Γ ; Ω . 4.6b

f s s D f

ε
ε

f

D f

ε

f s s f

,
2

,

1
4 2

,

1
4

,
2 2

1
2�

�

( ) ( ) ( )

( ( ) ( ))

Thus, with ∈ ⎛
⎝

⎞
⎠ ⊂

+ +x A H ΩD f
ε ε

f3 ,
2

3
4

3
2� ( ), we have:

⎜ ⎟

⎡

⎣
⎢

⎤

⎦
⎥ = −

∂
∂

⎡

⎣

⎢
⎢
⎢

⊗
⊗

⎛
⎝

⎞
⎠

⎤

⎦

⎥
⎥
⎥

→∗ ∗
+

x
x
x

x

ν A
L; : continuous ΓD D

D f

ε s

1

2

3

3

Γ
,

3
4

2

s

� �

�

( ) (4.7)

in the following sense. For ∈g L Γs2( ) and ∈ ⎡
⎣⊗ ⊗ ⎛

⎝
⎞
⎠
⎤
⎦

+
x x x A, , , , D f

ε
1 2 3 ,

3
4�{ } , we compute as a duality pairing via

(1.2a)–(1.2b) and (4.3):

⎛

⎝
⎜

⎡

⎣
⎢

⎤

⎦
⎥
⎞

⎠
⎟ =

⎛

⎝
⎜⎜

⎡

⎣
⎢

⎤

⎦
⎥
⎡

⎣
⎢

⎤

⎦
⎥
⎞

⎠
⎟⎟g

x
x
x A D g

x
x
x

,

0
0 ,D

D f f s
H H

1

2

3 , ,

1

2

3
b b

� (4.8)

= = ∗A D g x g D A x, ,D f f s f s D fL L, , 3 Ω , , 3 Γf s
2 2( ) ( )( ) ( ) (4.9)

= ⎛
⎝ −

∂
∂

⎞
⎠ =

⎛

⎝
⎜

⎡

⎣
⎢

⎤

⎦
⎥
⎞

⎠
⎟∗g

x

ν
g

x
x
x

, , ,D
L

L

3
Γ

Γ

1

2

3 Γ

s

s
s

2
2

�∣
( )

( )

(4.10)

where we have recalled (the normal ν is outward with respect to Ωf )

= −
∂
∂

∗D A x
x

νf s D f, , 3
3

Γs

(4.11)

from [1, p. 181], [4, Chapter 3]. Thus (4.7) is established. The proof initially takes ∈x AD f3 ,�( ), and thus,

=∂x 03 Ωf
∣ , and proceeds analogously to the path (2.21)–(2.23) via Green’s second theorem to obtain (4.11) in

this case. Next, we extends (4.11) to ∈ ≡+ +
x AH Ωε

f D f
ε

3
2

,

3
2

1
4�( ) ( ).

As noted in Theorem 0.3 from [1], the operator b� in (1.8) and (1.9) is boundedly invertible on Hb:

∈− Hb b
1� �( ) is explicitly given by [1], from which it then follows that ∈− H HΓ ;b D s b

1 1
2� � �( ( ) ).

4.2 The Luenberger’s compensator model for the heat-structure interaction model

(4.1a)–(4.1f) with Dirichlet control g at the interface Γs, ==b 0, 1

4.2.1 Special selection of the data

For the present heat-structure interaction problem with Dirichlet control at the interface Γs, we shall modify

the special selection made in CASE 1 of Neumann control at the interface Γs, on the basis of the representation

(1.4) in Step 1 of the orientation in Section 1.1. In fact, in the present case, we now take, in the notation of

(1.4)–(1.6):
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⎧
⎨
⎩

≤ > ≥ ( )
= = = ( )

−

∗ ∗
A e ce δ t

F B C B K B

“exponentially stable”: , 0, 0, 4.12a

; , . 4.12b

At δt‖ ‖

Thus, the special setting becomes, in this case,

= = = =∗ ∗y Cy B y g Fz B zpartial observation of the state , control ,[ ] (4.13)

leading to the Luenberger’s dynamics

⎧
⎨
⎩

= + ( )
= + ( )

∗

∗
y Ay BB z

z Az B B y

˙ , 4.14a

˙ 4.14b( )

(as − =BF KC 0 in the present case) and hence to

− = − − − = −∗ − ∗

t
y z A BB y z y t z t e y z

d

d
; .A BB t

0 0[ ] ( )[ ] [ ( ) ( )] [ ]( ) (4.15)

This is the setting that will be selected in the study of the Luenberger’s theory below, as applied to heat

(fluid)-structure interaction models with Dirichlet control g at the interface Γs, as in (4.1d).

Insight. How did we decide that = ∗F B in (4.12b); that is, that the preassigned control =g Fz is given by

= ∗g B z or = ∗F B ? We first notice that, regardless of the choice of F , the Luenberger scheme in (1.4)–(1.6),

yields that −A KC( ) is the resulting sought-after operator in characterizing the quantity −y z[ ] of interest.

As A is, in our case, dissipative and we surely seek to retain dissipativity, then we choose = ∗KC BB , or

= = ∗K B C B, . Then, the (dissipative) operator − ∗A BB( ) is the key operator to analyze for the purpose of

concluding that the semigroup − ∗
e A BB t( ) is (analytic as well as) uniformly stable. Thus, at this stage, with F not

yet committed and = = ∗K B C B, committed, the z-equation becomes = − − +∗ ∗z A BF BB z B B y˙ [ ] ( ). It is nat-

ural to test either = ∗F B or else = − ∗F B , whichever choice may yield the desired properties for the feedback

operator = − ∗A A BBF . What is the right sign? Thus, passing from the historical scheme (1.4a)–(1.4b) to our

present PDE problem (4.1a)–(4.1f), the corresponding operator ∗BD is critical in imposing the boundary condi-

tions for the feedback operator = − ∗
F D
b

b D D,� � � �
( )

in our CASE 2. But in our present CASE 2, if we choose

→ ∗F D� and so =
⎡

⎣
⎢

⎤

⎦
⎥ = −∗ ∂

∂g

z
z
z

D
z

ν

1

2

3
Γs

3
� by (4.7) . This then implies the boundary condition = − ∂

∂h v
h

νΓ 2 Γ
Γ

s s
s

∣ ∣

for v v h, ,1 2{ } in AF D
b
,�( )( )

as in (4.28b). With this B.C., the argument in (4.46), (4.47) leads to the trace term

− ∂
∂iω
h

ν Γ

2

s

in (4.48), and hence to the critical term
⎡
⎣⎢
∇ + ∇ +

⎤
⎦⎥

∂
∂iω v h
h

ν2
2 2

Γ

2

s

‖ ‖ ‖ ‖ in (4.50) with the correct

“minus” sign “-” for the argument of Theorem 4.4, in particular estimate (4.52), to succeed. Therefore,

in view of the interface condition = +u w gt in (4.1d), the B.C. = − ∂
∂u wt
u

ν Γs
confirms that = − ∂

∂g
u

ν Γs
,

or =
⎡

⎣⎢
⎤

⎦⎥
=

⎡

⎣⎢
⎤

⎦⎥
= −∗ ∂

∂g F
w
w
u

w
w
u

t D t
u

ν Γs
� . Hence, the choice → ∗F D� as in (4.12b) is the correct one in our CASE 2.

4.2.2 The counterpart of == ++ ∗∗y Ay BB z˙ in (4.14a) for the HSI model (4.1a)–(4.1f) with →→ ∗∗F D�

Accordingly, for =z z z z, ,1 2 3[ ], the Luenberger’s compensator variable, we select the Dirichlet control g in

(4.1d) in the form

⎜ ⎟= = −
∂
∂

∈
⎛
⎝

⎞
⎠
⊂∗ + +g z

z

ν
z A H, Ω ,D D f

ε
ε

f
3

Γ
3 ,

3
4 2

s

3
2� � ( ) (4.16)

i.e., with → ∗F D� , where we have critically invoked the trace result (4.7). With =y w w u, ,t[ ], the PDE version

of (3.3a) corresponding to the abstract feedback problem
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⎜ ⎟= +
⎡

⎣⎢
⎤

⎦⎥
=

⎡

⎣
⎢ + −

⎤

⎦
⎥ +

⎛
⎝
−
∂
∂

⎞
⎠

∗y y z
t

w
w
u

w

w w bw

u

z

ν
˙ , or

d

d
Δ

Δ
b D D t

t

t D
3

Γs

� � � �( ) (4.17)

from problem (4.2) with operator b� as in (1.8) and with g as in (4.16), is

⎧

⎨

⎪
⎪

⎩

⎪
⎪

− = × ( )
− − + = × ( )

= × = −
∂
∂

× ( )

∂ +
∂

=
∂
∂

× ( )

u u T

w w w bw T

u T u w
z

ν
T

w w

ν

u

ν
T

Δ 0 in 0, Ω ; 4.18a

Δ Δ 0 in 0, Ω ; 4.18b

0 on 0, Γ ; on 0, Γ ; 4.18c

on 0, Γ . 4.18d

t f

tt t s

f t s

t
s

Γ
3

f

( ]

( ]

∣ ( ] ( ]

( )
( ]

4.2.3 The counterpart of the dynamic compensator equation == ++ (( ))∗∗z Az B B y˙ in the special setting

(4.14b) for the HSI model (4.1a)–(4.1f)

With partial observation as in (4.13), → ∗C D� , according to (4.7)

→ =
⎡

⎣⎢
⎤

⎦⎥
= −

∂
∂

= =
⎡

⎣⎢
⎤

⎦⎥
∗ ∗Cy y

w
w
u

u

ν
y

w
w
u

partial observation of state ,D D t t

Γs

� � (4.19)

the compensator equation (4.14b) in =z z z z, ,1 2 3[ ] becomes in our present HSI case

⎜ ⎟=
⎡

⎣
⎢

⎤

⎦
⎥ = +

⎛
⎝
−
∂
∂

⎞
⎠

z
t

z
z
z

z
u

ν
˙

d

d
b D

1

2

3 Γs

� � (4.20)

or via (1.8) on b� , (4.3), (4.7) on ∗,D D� �

⎜ ⎟

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢
⎢

+ −
⎤

⎦
⎥
⎥
+

⎡

⎣

⎢
⎢
⎢

⎛
⎝
−
∂
∂

⎞
⎠

⎤

⎦

⎥
⎥
⎥

z
z
z

z

z z bz

z A D
u

ν

Δ

Δ

0
0

,
t

t

t D f f s

1

2

3

2

1 2 1

3 , ,
Γs

( ) (4.21)

whereby = =z z z z,t tt t1 2 1 2 . The PDE version of the abstract z-model (4.21) with partial observation − ∂
∂
u

ν Γs
in

the Dirichlet condition at the interface Γs as in (4.19) is given as follows:

⎧

⎨

⎪
⎪

⎩

⎪
⎪

− = × ( )
− − + = × ( )

= × = −
∂
∂

× ( )

∂ +
∂

=
∂
∂

× ( )

z z T

z z z bz T

z T z z
u

ν
T

z z

ν

z

ν
T

Δ 0 in 0, Ω ; 4.22a

Δ Δ 0 in 0, Ω ; 4.22b

0 on 0, Γ ; on 0, Γ ; 4.22c

on 0, Γ . 4.22d

t f

tt t s

f t s

t
s

3 3

1 1 1 1

3 Γ 3 1 Γ
Γ

1 1 3

f s

s

( ]

( ]

∣ ( ] ∣ ( ]

( )
( ]

4.2.4 The dynamics == (( )) (( )) == (( )) (( ))∗∗d d d t y t z t˙ – , –b D D� � � corresponding to (4.15): analyticity and

exponential decay, ==b 0, 1

The main result of the present section is as follows:
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Theorem 4.1. Let =b 0, 1. The (feedback) operator

= − ⊃ = ∈ − ∈∗ − ∗x I xH H, :F D
b

b D D b F D b b D D b, ,
1� � � � � � � � � � �( ) { ( ) ( )}( ) (4.23)

in the infinitesimal generator of a s.c. contraction semigroup e tF D
b
,�

( )

on Hb, which moreover is analytic and

exponential stable on Hb: there exist constants ≥ >C ρ1, 0 possibly depending on “b” such that

= ≤ ≥− −∗
e e Ce t, 0.t t ρt

H H
F D
b

b
b D D

b
,�

�
� � �

�∥ ∥ ∥ ∥( )
( )

( )
( )

(4.24)

A more detailed description of F D
b
,� �( )( )

is given in (4.28a)–(4.28b). The proof of Theorem 4.1 is by PDEmethods,

which consists of analyzing the corresponding PDE system (4.27).

Step 1.

Lemma 4.2. Let =b 0, 1. With = ∈d d d d H, , b1 2 3[ ] , the abstract equation

= = − ∗d d d˙
F D
b

b D D,� � � �( )( ) (4.25)

or via (1.8) on b� , (4.3) and (4.7) on ∗,D D� �

⎟⎜

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

⎡

⎣
⎢
⎢

+ −
⎤

⎦
⎥
⎥
−

⎡

⎣

⎢
⎢
⎢

⎛

⎝
−
∂
∂

⎞

⎠

⎤

⎦

⎥
⎥
⎥

d

d

d

d

d d bd

d A D
d

ν

Δ

Δ

0
0t

t

t D f f s

1

2

3

2

1 2 1

3 , ,
3

Γs

( ) (4.26)

so that = =d d d d,t t tt2 1 2 1 , corresponds to the following PDE system, where we relabel the variable

= =d d d d w w u, , , ,t t1 2 1 3  [ ] [ ] for convenience

⎧

⎨

⎪
⎪

⎩

⎪
⎪

− = × ( )
− − + = × ( )

= × = −
∂
∂

× ( )

∂ +
∂

=
∂
∂

× ( )

u u in T

w w w bw in T

u on T u w
u

ν
on T

w w

ν

u

ν
on T

Δ 0 0, Ω ; 4.27a

Δ Δ 0 0, Ω ; 4.27b

0 0, Γ ; 0, Γ ; 4.27c

0, Γ . 4.27d

t f

tt t s

f t s

t
s

Γf

 

 




   



 

( ]

( ]

∣ ( ] ( ]

( )
( ]

Description of F D
b
,� �( )( )

. We have ∈ = − ∗v v h, , F D
b

b D D1 2 ,� � � � � �{ } ( ) ( )( )
if any only if

(i)

∈
⎧
⎨
⎩

=
=

= ∈

+ ∈

v v
b

b
v h

v v

H

H
H

L

,
Ω \ for 0,

Ω for 1,
so that Γ in both cases ;

Δ Ω ;

s

s
s

s

1 2

1

1 2 Γ Γ

1 2
2

s s

1
2

�( )

( )
∣ ∣ ( )

( ) ( )

(4.28a)

(ii)

∈ ∈ ≡ = −
∂
∂

∈

∂
∂

=
∂ +

∂
∈ −

h h h h v
h

ν

h

ν

v v

ν

H L H

H

Ω , Δ Ω , 0, Γ ;

Γ .

f f s

s

1 2
Γ Γ 2 Γ

Γ

Γ

1 2

Γ

f s s

s

s s

1
2

1
2

( ) ( ) ∣ ∣ ∣ ( )

( )
( )

(4.28b)

The adjoint operator = −∗ ∗ ∗
F D
b

b D D,� � � �
( )

. For ∈ ∗
v v h, , F D

b
1 2 ,� �{ } ( )( )

(to be characterized later), we have after

recalling ∗
b� in (1.10a) and

⎡

⎣
⎢

⎤

⎦
⎥ = −∗ ∂

∂

v
v

h
D

h

ν

1

2
Γs

� from (4.7)

⎟⎜

⎡

⎣
⎢

⎤

⎦
⎥ = −

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

−
− +

⎤

⎦
⎥ −

⎛

⎝
−
∂
∂

⎞

⎠
∗ ∗ ∗
v
v

h

v
v

h

v

v v bv

h

h

ν
Δ

Δ
F D
b

b D D D,

1

2

1

2

2

2 1 1
Γs

� � � � �( ) ( )( ) (4.29)
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⎟⎜

=
⎡

⎣
⎢

−
− +

⎤

⎦
⎥ −

⎡

⎣

⎢
⎢
⎢

⎛

⎝
−
∂
∂

⎞

⎠

⎤

⎦

⎥
⎥
⎥

v

v v bv

h A D
h

ν

Δ

Δ

0
0

D f f s

2

2 1 1

, ,
Γs

( ) (4.30)

recalling D� in (4.3).

Description of
∗

F D
b
,� �( )( )

. We have ∈ = −∗ ∗ ∗v v h, , F D
b

b D D1 2 ,� � � � � �{ } ( ) ( )( )
if and only if the same conditions

for F D
b
,� �( )( )

in (4.28a)–(4.28b) apply, except that now (4.28a) is replaced by − ∈v v LΔ Ωs2 1
2( ) ( ) and (4.28b) is

replaced by

∂ −
∂

=
∂
∂

∈ −v v

ν

h

ν
H Γ .s

2 1

Γ Γs s

1
2( ) (4.31)

The PDE version corresponding to the adjoint operator
∗

F D
b
,�

( )
is given by

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥

∗
w
w
u

w
w
u

t F D
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d

1

2 ,

1

2�
( )

or (counterpart of

(3.21a)–(3.21d))

⎧

⎨

⎪
⎪

⎩

⎪
⎪

− = × ( )
− − + = × ( )
= × ( )
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∂
∂

∂ +
∂

= −
∂
∂

× ( )

h h T

w w w bw T

h T

h w
h

ν

w w

ν

h

ν
T

Δ 0 in 0, Ω ; 4.32a

Δ Δ 0 in 0, Ω ; 4.32b

0 on 0, Γ ; 4.32c

; on 0, Γ , 4.32d

t f

tt t s

f

t
t

s

1 1 1 1

Γ

Γ 1 Γ
Γ

1 1

Γ Γ

f

s s

s s s

( ]

( ]

∣ ( ]
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( )

( ]

(where = −w wt1 2 by (4.29), top line) with I.C. in Hb.

Step 2. (Analysis of the PDE problem (4.27): the operator = − ∗
F D
b

b D D,� � � �
( )

in (4.23))

Proposition 4.3. The operator = − ∗
F D
b

b D D,� � � �
( )

in (4.23) and its Hb-adjoint = −∗ ∗ ∗
F D
b

b D D,� � � �
( )

are

dissipative

⎧
⎨
⎩

−
⎡

⎣
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⎦
⎥
⎡

⎣
⎢
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⎫
⎬
⎭

= − ∇ − ∇ −
∂
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v
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h

v
v

h
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h

ν
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b
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2 2 Ω
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Ω
2

Γ Γ
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1 2 ,

b
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s
s

� � � � �( ) ‖ ‖ ‖ ‖ { } ( )( )
(4.33)
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⎪

⎪

⎪

⎧
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−
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⎫
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∂
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∗

∗

∗

∗

∗

∗

∗ ∗
∗
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v

v

h

v

v

h

v h
h

ν
v v hRe , , , ,b D D F D

b

H

1

2

1

2 2 Ω
2

Ω
2

Γ Γ

2

1 2 ,

b

s f

s
s

� � � � �( ) ‖ ‖ ‖ ‖ { } ( )( )
(4.34)

in the ⋅L2( ) norms of Ωs and Ωf , and the L Γs2( ) norm on Γs. Hence, both F D
b
,�

( )
and

∗
F D
b
,�

( )
are maximal dissipative

and thus generate s.c. contraction semigroups e tF D
b
,�

( )

and
∗

e tF D
b
,�

( )

, respectively, on Hb. Explicitly in terms of the
corresponding PDE systems (4.27) we have:
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⎤
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⎥
⎥
=

⎡

⎣

⎢
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⎤
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⎥
⎥
=
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⎤

⎦
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w t

w t
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e
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e
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u
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t t

0

1

0

0
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0

F D
b

b D D,

  








� � � �

( )

( )

( )

( )( )
(4.35)

for the w w u, ,t  { }-fluid-structure interaction model given by (4.27a)–(4.27d) on Hb: with I.C. ∈w w u H, , b0 1 0 { } ,

similarly, for the adjoint
∗

F D
b
,�

( )
, corresponding to model (4.32a)–(4.32d).

Proof of (4.33). For ∈v v h, , F D1 2 ,� �{ } ( ) in (4.28a) and (4.28b), we compute via (1.8), (4.26):

⎪

⎪

⎪

⎪

⎧
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−
⎡

⎣
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⎦
⎥
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⎥
⎫
⎬
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=
⎧
⎨
⎩

⎛

⎝
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⎡

⎣
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⎤

⎦
⎥
⎡

⎣
⎢

⎤

⎦
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⎞
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⎫
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v
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v v bv

h

v
v

h
Re , Re Δ

Δ
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H H
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where recalling (4.3) for D� and (4.7) for ∗
D�

⎟

⎟
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⎜=

⎛

⎝

⎜
⎜
⎜

⎡
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(4.37)

=
∂
∂
h

ν
,

LΓ Γ

2

s
s

2( )

(4.38)

recalling = −∗ ∂
∂D A hf s D f
h

ν, ,
Γs
from (4.11). On the other hand, recalling (1.12)
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Thus, (4.38) and (4.39), used in (4.36), yield (4.33), as desired. Similarly for (4.34) starting from (1.10a) for ∗
b� .

□

4.2.5 Analyticity of
(( ))

e tF D
b
,� and

(( ))∗∗
e tF D

b
,� on Hb, ==b 0, 1

Remark 4.1. Given ∈∗ ∗ ∗v v h H, , b1 2{ } , and ∈ω \ 0� { }, we seek to solve the equation
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in terms of ∈v v h, , F D
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uniquely. We have (counterpart of Remark 3.2)
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Theorem 4.4. Let =b 0, 1. Let ∈ω � and
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for ∈v v h, , F D
b

1 2 ,� �{ } ( )( )
identified in (4.28a)–(4.28b). Then:

(i) the following estimate holds true: there exists a constant >C 0ε such that:

+ ∇ + + − + + ∇ +
∂
∂

≤ + ∇ + + ∀ ≥ >∗ ∗ ∗ ∗

b v v v v bv h h
h

ν
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2
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2
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1
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1
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2
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s
s
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(4.41)

(ii) In view of Remark 4.1, estimate (4.41) is equivalent to

≤ ∀ ≥ >R iω C ω ε, , 0,F D
b

F D
b

εH, , b
� � �∥ ( )∥ ∣ ∣( ) ( )

( ) (4.42)
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= − −R iω iωI, F D
b

F D
b

, ,
1� �( ) ( )( ) ( )
, in turn equivalent to estimate

≤ ∀ ≥ >R iω
c

ω
ω ε, , 0.F D

b ε
H, b

� �∥ ( )∥
∣ ∣

∣ ∣( )
( ) (4.43)

Thus, the s.c. contraction semigroup e tF D
b
,�

( )

asserted by Proposition 4.3 is analytic onHb by [4, Theorem 3E.3

p. 334], similarly for
∗

e tF D
b
,�

( )

on Hb. The explicit PDE version of (4.35) is system w t w t u t, ,t  { ( ) ( ) ( )} in

(4.27a)–(4.27d).

Proof. (i) The proof of estimate (4.41) follows closely the technical proof of estimate (3.30) for the operator F N
b
,�

( )

except that now the argument uses the B.C. of F D
b
,�

( )
rather than of F N

b
,�

( )
. This, in particular, requires a different

argument to handle the more challenging case =b 1, with full H Ω1( )-norm on the first component space.

We indicate the relevant changes.

Step 1. Return to (4.40), re-written for ∈v v h, , F D
b

1 2 ,� �{ } ( )( )
and ∈∗ ∗ ∗v v h H, , b1 2{ } :

⎪

⎪

⎧
⎨
⎩

− = ( )
− + − = ( )
− = ( )

∗

∗

∗

iωv v v

iωv v v bv v

iωh h h

, 4.44a

Δ , 4.44b

Δ . 4.44c

1 2 1

2 1 2 1 2[ ( ) ]

Step 2. Take the L Ωf
2( )-inner product of equation (4.44c) against hΔ , use Green’s First theorem, recall the B.C.

=h 0Γf∣ in (4.28b) for F D
b
,� �( )( )

and obtain the counterpart of [1, equation (3.10)] or (3.34)

∫ ∂
∂

− ∇ − = ∗iω h
h

ν
iω h h h hdΓ Δ , Δ .s

Γ

2 2

s

‖ ‖ ‖ ‖ ( ) (4.45)

Similarly, we take the L Ωs
2( )-inner product of (4.44b) against + −v v bvΔ 1 2 1[ ( ) ], use Green’s First Theorem to

evaluate ∫ +v v v dΔ ΩsΩ 2 1 2
s

( ) , recalling that the normal vector ν is inward with respect toΩs, and obtain as in (3.35)

∫−
∂ +

∂
− ∇ ∇ + − − + −

= + −∗

iω v
v v

ν
iω v v v iω v bv v v bv

v v v bv

dΓ , , Δ

, Δ .

s

Γ

2
1 2

2 1 2 2 1 1 2 1
2

2 1 2 1

s

( )
( ( )) ( ) ‖ ( ) ‖

( [ ( ) ])

(4.46)

We now invoke the B.C. = − ∂
∂h v
h

νΓ 2 Γ
Γ

s s
s

∣ ∣ and =∂ +
∂

∂
∂

v v

ν

h

νΓ Γs s

1 2( )
for v v h, ,1 2{ } in F D

b
,� �( )( )

(see (4.28b)),

we rewrite (4.46) as follows:

∫− ⎡
⎣ +

∂
∂

⎤
⎦
∂
∂

− ∇ − ∇ ∇ − − + −

= + −∗

iω h
h

ν

h

ν
iω v iω v v iω v bv v v bv

v v v bv

dΓ , , Δ

, Δ .

s

Γ

2
2

2 1 2 1 1 2 1
2

2 1 2 1

s

‖ ‖ ( ) ( ) ‖ ( ) ‖

( [ ( ) ])

(4.47)

Summing up (4.45) and (4.47) yields after a cancellation of the boundary terms ∫ ∂
∂iω h dΓ
h

ν sΓs
:

−
∂
∂

− ∇ + ∇ = + − + + + ∇ ∇

+ + − +∗ ∗

iω
h

ν
iω v h v v bv h iω v bv iω v v

v v v bv h h

Δ Δ , ,

, Δ , Δ .

Γ

2

2
2 2

1 2 1
2 2

2 1 2 1

2 1 2 1

s

[‖ ‖ ‖ ‖ ] ‖ ( ) ‖ ‖ ‖ ( ) ( )

( [ ( ) ]) ( )

(4.48)

By using via (4.44a), the identities

− ∇ ∇ = ∇ ∇ = ∇ + ∇ ∇ ∗iω v v v iωv v v v, , , ,2 1 2 1 2
2

2 1( ) ( ( )) ‖ ‖ ( ) (4.49a)

− = = + ∗iω v v v iωv v v v, , , ,2 1 2 1 2
2

2 1( ) ( ) ‖ ‖ ( ) (4.49b)

and we obtain the final identity

+ − + +
⎡

⎣
⎢ ∇ + ∇ +

∂
∂

⎤

⎦
⎥

= ∇ + + ∇ ∇ + − + − −∗ ∗ ∗ ∗

v v bv h iω v h
h

ν

v b v v v b v v v v v bv h h

Δ Δ

, , , Δ , Δ .

1 2 1
2 2

2
2 2

Γ

2

2
2

2
2

2 1 2 1 2 1 2 1

s

‖ ( ) ‖ ‖ ‖ ‖ ‖ ‖ ‖

‖ ‖ ‖ ‖ ( ) ( ) ( [ ( ) ]) ( )

(4.50)
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Step 3. We take the real part of identity (4.50), thus obtaining the new identity:

+ − + = ∇ + + ∇ ∇ +

− + − −

∗ ∗

∗ ∗

v v bv h v b v v v b v v

v v v bv h h

Δ Δ Re , Re ,

Re , Δ Re , Δ

1 2 1
2 2

2
2

2
2

2 1 2 1

2 1 2 1

‖ ( ) ‖ ‖ ‖ ‖ ‖ ‖ ‖ ( ) ( )

( [ ( ) ]) ( )
(4.51)

or

− + − + ≤ + ∇ +

+ ∇ + + +∗ ∗ ∗ ∗

ε v v bv h ε v b v

C v b v v h

1 Δ Δ 1

.ε

1 2 1
2 2

2
2

2
2

1
2

1
2

2
2 2

( )[‖ ( ) ‖ ‖ ‖ ] ( )[‖ ‖ ‖ ‖ ]

[‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ]
(4.52)

Step 4. We now take the imaginary part of identity (4.50), thus obtaining the new identity

⎧
⎨
⎩
∇ + ∇ +

∂
∂

⎫
⎬
⎭
= ∇ ∇ + − + −

+

∗ ∗ ∗

∗

ω v h
h

ν
v v b v v v v v bv

h h

Im , Im , Im , Δ

, Δ ,

2
2 2

Γ

2

2 1 2 1 2 1 2 1
s

‖ ‖ ‖ ‖ {( )} {( )} {( ( ) )

( )}

(4.53)

⎧
⎨
⎩
∇ + ∇ +

∂
∂

⎫
⎬
⎭
≤ ∇ + + + − +

+ ∇ + + +∗ ∗ ∗ ∗

ω v h
h

ν

ε
v b

ε
v ε v v bv h

C v b v C v h

2 2
Δ Δ

ε ε

2
2 2

Γ

2
2

2
2

3

2
2 3

1 2 1
2 2

1
2

1
2

2
2 2

s

2 3

∣ ∣ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ [‖ ( ) ‖ ‖ ‖ ]

[‖ ‖ ‖ ‖ ] [‖ ‖ ‖ ‖ ]

(4.54)

or

⎡
⎣⎢

− ⎤
⎦⎥
∇ +

⎡

⎣
⎢ ∇ +

∂
∂

⎤

⎦
⎥ ≤ + + − +

+ ∇ + + +∗ ∗ ∗ ∗

ω
ε

v ω h
h

ν
b
ε

v ε v v bv h

C v b v v h

2 2
Δ Δ

.ε

2

2
2 2

Γ

2
3

2
2 3

1 2 1
2 2

1
2

1
2

2
2 2

s

∣ ∣ ‖ ‖ ∣ ∣ ‖ ‖ ‖ ‖ [‖ ( ) ‖ ‖ ‖ ]

[‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ]

(4.55)

Take now

≤ − ⟺ ≤
ε

ω
ε

ε ω
2 2

2 2
2∣ ∣ ∣ ∣ (4.56)

so that (4.55) yields for ω∣ ∣ as in (4.56):

∇ +
⎡

⎣
⎢ ∇ +

∂
∂

⎤

⎦
⎥ ≤ + + − +

+ ∇ + + +∗ ∗ ∗ ∗

ε
v ε h

h

ν
b
ε

v ε v v bv h

C v b v v h

2 2
Δ Δ

;ε

2

2
2 2 2

Γ

2
3

2
2 3

1 2 1
2 2

1
2

1
2

2
2 2

s

‖ ‖ ‖ ‖ ‖ ‖ [‖ ( ) ‖ ‖ ‖ ]

[‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ]

(4.57)

hence for ω∣ ∣ as in (4.56)

∇ + ∇ +
∂
∂

≤ + + − +

+ ∇ + + +∗ ∗ ∗ ∗

v h
h

ν
bε v ε v v bv h

C v b v v h

2 Δ Δ

.ε

2
2 2

Γ

2

2
2

1 2 1
2 2

1
2

1
2

2
2 2

s

‖ ‖ ‖ ‖ ‖ ‖ [‖ ( ) ‖ ‖ ‖ ]

[‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ]

(4.58)

Remark 4.2. In the case =b 0, the proof on the space =Hb 0, hence via (1.2a) with the first component in

H Ω \s
1 �( ) topologized by the gradient norm, proceeds as follows. Estimate (4.58) is “too good for our purposes

at this stage”: on its LHS, we drop the terms
⎡
⎣⎢
∇ +

⎤
⎦⎥

∂
∂h
h

ν
2

Γ

2

s

‖ ‖ and substitute the new estimate on the

remaining ∇v2
2‖ ‖ on the RHS of (4.52) with =b 0. We obtain

− + + ≤ + + +

+ + ∇ + +∗ ∗ ∗

ε v v h ε ε v v h

ε C v v h

1 Δ Δ 1 2 Δ Δ

1 4.59ε

1 2
2 2

1 2
2 2

1
2

2
2 2

0

( )[‖ ( )‖ ‖ ‖ ] ( ) [‖ ( )‖ ‖ ‖ ]

( ) [‖ ‖ ‖ ‖ ‖ ‖ ] ( )
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or

− − + + + ≤ ∇ + +∗ ∗ ∗ε ε ε v v h C v v h1 1 2 Δ Δ 4.60ε1 2
2 2

1
2

2
2 2

0[( ) ( ) ][‖ ( )‖ ‖ ‖ ] [‖ ‖ ‖ ‖ ‖ ‖ ] ( )͠

or

+ + ≤ ∇ + +∗ ∗ ∗v v h C v v hΔ Δ . 4.61ε1 2
2 2

1
2

2
2 2

0
‖ ( )‖ ‖ ‖ [‖ ‖ ‖ ‖ ‖ ‖ ] ( )

Estimate (4.610) coincides with estimate [1, equation (3.26)], case =b 0.

Substitute estimate (4.610) into the RHS of estimate (4.58) with =b 0 to obtain for ω∣ ∣ as in (4.56):

∇ + ∇ +
∂
∂

≤ ∇ + +∗ ∗ ∗v h
h

ν
C v v h . 4.62ε2

2 2

Γ

2

1
2

2
2 2

0
s

‖ ‖ ‖ ‖ [‖ ‖ ‖ ‖ ‖ ‖ ] ( )͠

Summing up estimate (4.610) with estimate (4.620) finally yields for ω∣ ∣ as in (4.56):

+ + + ∇ + ∇ +
∂
∂

≤ ∇ + +∗ ∗ ∗v v h v h
h

ν
C v v hΔ Δ 4.63ε1 2

2 2
2

2 2

Γ

2

1
2

2
2 2

0
s

‖ ( )‖ ‖ ‖ ‖ ‖ ‖ ‖ [‖ ‖ ‖ ‖ ‖ ‖ ] ( )

for all points iω, with ≥ω
ε

2

2

∣ ∣ as in (4.56). Then estimate (4.630) coincides with estimate (4.41) with =b 0 as

desired.

Step 5. We proceed now with the proof of the case =b 1 on the space =Hb 1 via (1.2b) with H Ωs
1( ) first

component. As in the Neumann control on Γs of CASE 1, this case is more challenging and requires the

same Lemma 3.5 of CASE 1. However, its use will be tuned to the present case of Dirichlet control on Γs,

with trace
∂
∂
h

ν Γs
characterized by (4.28b) in F D,� �( ):

∂
∂

= −
h

ν
v h .

Γ
2 Γ Γ

s

s s
∣ ∣ (4.64)

Thus, with =b 1, we return to estimate (4.58) where on its LHS we use (4.64):

∇ + ∇ + − ≤ +v h v h bε v OK , 4.59ε2
2 2

2 Γ Γ
2

2
2

1s s
‖ ‖ ‖ ‖ ∥ ∣ ∣ ∥ ‖ ‖ ( )

where

= + − + + ∇ + + +∗ ∗ ∗ ∗ε v v bv h C v b v v hOK 2 Δ Δ . 4.60ε ε1 2 1
2 2

1
2

1
2

2
2 2

1[‖ ( ) ‖ ‖ ‖ ] [‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ] ( )

For ≤ ≤ε0 11 to be chosen below, we return to (4.591) and readily obtain, also after adding ε h1 Γ
2

s
∥ ∣ ∥ to both

sides:

∇ + ∇ + − + ≤ + +v h ε v h ε h bε v ε h OK . 4.61ε2
2 2

1 2 Γ Γ
2

1 Γ
2

2
2

1 Γ
2

1s s s s
‖ ‖ ‖ ‖ ∥ ∣ ∣ ∥ ∥ ∣ ∥ ‖ ‖ ∥ ∣ ∥ ( )

Next from

= − + ≤ − + ≤ − +v v h h v h h v h h2 2 , 4.622 Γ
2

2 Γ Γ Γ
2

2 Γ Γ Γ
2

2 Γ Γ
2

Γ
2

1s s s s s s s s s s
∥ ∣ ∥ ∥( ∣ ∣ ) ∣ ∥ [∥ ∣ ∣ ∥ ∥ ∣ ∥] ∥ ∣ ∣ ∥ ∥ ∣ ∥ ( )

and hence,

≤ − +
ε

v ε v h ε h
2

. 4.63
1

2 Γ
2

1 2 Γ Γ
2

1 Γ
2

1s s s s
∥ ∣ ∥ ∥ ∣ ∣ ∥ ∥ ∣ ∥ ( )

Using (4.631) on the LHS of (4.611) yields ( ≤ε 11 )

+ ∇ + ∇ ≤ + +
ε

v v h bε v ε h
2

OK . 4.64 .ε
1

2 Γ
2

2
2 2

2
2

1 Γ
2

1s s
[∥ ∣ ∥ ∥ ∥ ] ∥ ∥ ∥ ∥ ∥ ∣ ∥ ( )

Next we invoke Lemma 3.5(a) on the term [ ] on the LHS of (3.641), to obtain
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⎜ ⎟
⎛
⎝

− ⎞
⎠

+ ∇ ≤ +
ε

c
bε v h ε h

2
OK 4.65ε

1

1
2

2 2
1 Γ

2
1s

∥ ∥ ∥ ∥ ∥ ∣ ∥ ( )

≤ ∇ +ε C h OK , 4.66p ε1
2

1∥ ∥ ( )

where going from (4.651) to (4.651) we have invoked the Poincare inequality

≤ ∇h C h , 4.67pΓ
2 2

1s
∥ ∣ ∥ ∥ ∥ ( )

which is legal since =h 0Γf∣ by (4.28) on F D
b
,� �( )( )

. Then (4.661) is rewritten as follows:

⎜ ⎟
⎛
⎝

− ⎞
⎠

+ − ∇ ≤
ε

c
bε v ε C h

2
1 OK . 4.68p ε

1

1
2

2
1

2
1∥ ∥ ( )∥ ∥ ( )

Now we select ≥ > =ε b1 0 11 ( ) so that

< − + < ≤ε
ε

c
bε c ε ε ε

2
or 2 1, 4.69

1

1
1 1 1( ) ( )

and

< − < ≤ε C ε
C

1

2
1 or

1

2
1 4.70p

p
1 1 1( )

(we can always take ≥Cp
1

2
). Using (4.691) and (4.701) in (4.681) yields

+ ∇ ≤ + − + + ∇ + + +∗ ∗ ∗ ∗ε v h ε v v bv h C v b v v h
1

2
2 Δ Δ 4.71ε2

2 2
1 2 1

2 2
1

2
1

2
2

2 2
1∥ ∥ ∥ ∥ [‖ ( ) ‖ ‖ ‖ ] [‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ] ( )

recalling OK ε in (4.601), for ≥ω ε2∣ ∣ as in (4.56).

We finally obtain the desired estimate also for =b 1 to include also v2
2‖ ‖ :

+ ∇ ≤ + − + + ∇ + + +∗ ∗ ∗ ∗v h ε v v bv h C v b v v h4 Δ Δ 4.72ε2
2 2

1 2 1
2 2

1
2

1
2

2
2 2

1∥ ∥ ∥ ∥ [‖ ( ) ‖ ‖ ‖ ] [‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ] ( )

for ≥ω ε2∣ ∣ as in (4.56). Substituting the estimate for v2
2‖ ‖ from (4.2.5) into the RHS of (4.58) with ≤bε b yields

∇ + ∇ +
∂
∂

≤ + − +

+ ∇ + + +∗ ∗ ∗ ∗

v h
h

ν
bε ε v v bv h

C v b v v h

4 Δ Δ

. 4.73ε

2
2 2

Γ

2

1 2 1
2 2

1
2

1
2

2
2 2

1

s

∥ ∥ ∥ ∥ [‖ ( ) ‖ ‖ ‖ ]

[‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ] ( )

Now, add the estimate for v2
2‖ ‖ in (4.721) to (4.731) and obtain

+ ∇ + ∇ +
∂
∂

≤ + + − +

+ ∇ + + +∗ ∗ ∗ ∗ ∗

b v v h
h

ν
ε bε v v bv h

C v b v v h

4 1 Δ Δ

. 4.73ε

2
2

2
2 2

Γ

2

1 2 1
2 2

1
2

1
2

2
2 2

1

s

∥ ∥ ∥ ∥ ∥ ∥ ( )[‖ ( ) ‖ ‖ ‖ ]

[‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ] ( )

Estimate (4.731) is the counterpart of estimate (4.58) for =b 0.

Step 6. The rest of the proof for =b 1 now proceeds as in the case =b 0. In ( ∗4.731) we drop the terms

⎡
⎣⎢
∇ +

⎤
⎦⎥

∂
∂h
h

ν
2

Γ

2

s

∥ ∥ and substitute the resulting estimate for + ∇b v v2
2

2
2[ ∥ ∥ ∥ ∥ ] into the RHS of (4.52) and obtain

− + − + ≤ + + + − +

+ + ∇ + + +∗ ∗ ∗ ∗

ε v v bv h ε ε bε v v bv h

ε C v b v v h

1 Δ Δ 1 4 1 Δ Δ

1 4.74ε

1 2 1
2 2

1 2 1
2 2

1
2

1
2

2
2 2

1

( )[‖ ( ) ‖ ‖ ‖ ] ( ) ( )[‖ ( ) ‖ ‖ ‖ ]

( ) [‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ] ( )

or, since − − + + ≥ >ε ε ε bε k1 1 4 1 0[( ) ( ) ( )] ,

+ − + ≤ ∇ + + +∗ ∗ ∗ ∗v v bv h C v b v v hΔ Δ , 4.75ε1 2 1
2 2

1
2

1
2

2
2 2

1
‖ ( ) ‖ ‖ ‖ [‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ] ( )

which is a counterpart of (4.630) for =b 0. By substituting (4.751) into the RHS of ( ∗4.731), we finally obtain

Luenberger compensentor theory for HSI with feedback controls  33



+ ∇ + ∇ +
∂
∂

≤ ∇ + + +∗ ∗ ∗ ∗b v v h
h

ν
C v b v v h . 4.76ε2

2
2

2 2

Γ

2

1
2

1
2

2
2 2

1
s

∥ ∥ ∥ ∥ ∥ ∥ [‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ] ( )

Finally, summing up (4.751) and (4.761) yields

+ ∇ + + − + + ∇ +
∂
∂

≤ ∇ + + +∗ ∗ ∗ ∗

b v v v v bv h h
h

ν

C v b v v h

Δ Δ

, 4.77ε

2
2

2
2

1 2 1
2 2 2

Γ

2

1
2

1
2

2
2 2

1

s

∥ ∥ ∥ ∥ ‖ ( ) ‖ ‖ ‖ ∥ ∥

[‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ] ( )

for all >ω ε2∣ ∣ , as in (4.56).

Estimate 4.771( ) is the sought-after estimate (4.41) for = =b b0, 1. □

4.2.6 Exponential stability of
(( ))

e tF D
b
,� and

(( ))∗∗
e tF D

b
,� on Hb, ==b 0, 1

In Proposition 4.5, we shall prove that, in both cases =b 0 and =b 1, we have

∈ ∈ ∈ ∈∗ − ∗−
ρ ρ H H0 , 0 , , ,F D

b
F D
b

F D
b

b F D
b

b, , ,
1

,
1

� � � � � �( ) ( ) ( ) ( )( ) ( ) ( ) ( ) (4.78)

so that there exists a disk r0
� centered at the origin and of suitable radius >r 00 such that ⊂ ρr F D

b
,0

� �( )( )
. Then,

the resolvent bound (4.43) combined with ∈
−

HF D
b

b,
1

� �( )( )
in (4.78) allows one to conclude that the resolvent is

uniformly bounded on the imaginary axis i� :

≤ ∈R iω ω, const , .F D
b

H, b
�� �‖ ( )‖( )

( ) (4.79)

Hence, [45] the s.c. analytic semigroup e tF D
b
,�

( )

is, moreover, (uniformly) exponentially stable: There exist

constants ≥M 1, >δ 0, possibly depending on “b” such that

≤ ≥−e Me t, 0.t δt
H

F D
b

b
,�

�‖ ‖ ( )
( )

(4.80)

It was similar for the adjoint
∗

F D
b
,�

( )
.

Proposition 4.5. Statement (4.78) holds true. Hence, the exponential stability for e tF D
b
,�

( )

in (4.80) holds true. More

precisely, with reference to F D
b
,�

( )
, we have: given ∈∗ ∗ ∗v v h H, , b1 2{ } , the unique solution ∈v v h, , F D

b
1 2 ,� �{ } ( )( )

of

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢ + −

⎤

⎦
⎥ =

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∗

∗

∗

v
v

h

v

v v bv

h

v

v

h
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is given explicitly by

= − +
⎧
⎨
⎩
∂
∂

− + −
⎫
⎬
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∈− ∗ ∗ − ∗ ∗ ∗v A v v N

ν
A h R v v HΔ Ω \ ,N s
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s
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2 1 ,
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, 1 Γ 1 Γ
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s s
�( ) [ ] [ ( ∣ ) ∣ ] ( )( ) ( ) (4.82)

= ∈
⎧
⎨
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=
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In the operator form, we have
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(4.84a)
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∂
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∂
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I
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(4.84b)

≤ ∗ ∗ ∗v v h c v v h, , , , ,H H1 2 1 2b b
‖[ ]‖ ‖[ ]‖ (4.84c)

where the operators A N,N s
b

s
b

,
( ) ( ) are defined in (2.3), (2.4). Moreover, −AR f, is the Robin Laplacian on Ωf :

− = ∈ =
⎧
⎨
⎩

∈ = ⎡
⎣
∂
∂
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⎭
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ϕ

ν
ϕHΔ Ω ; Ω : 0, 0 ,R f f R f f, ,

2
Γ

Γ
f

s

�( ) ( ) ∣ (4.85)

and Rf s, is the Robin map from Γs to Ωf :

⎪

⎪
∂ → ∈ = ⟺
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⎨
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= ( )

= ⎡
⎣
∂
∂
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+R H H s R μ ψ

ψ

ψ
ψ

ν
ψ μ

: Ω Ω , :
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s
f

s
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f
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Γ

Γ
f

s

3
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∣

Proof. Identity (4.81) and the characterization of F D
b
,� �( )( )

in (4.28a)–(4.28b) yield
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⎨
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=
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∂
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0, , 4.87b
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2 1

1

1

2

Γ
Γ

Γ 1 Γf
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s s
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( )

( )

∣ ∣ ∣

and the h-problem in (4.87) yields the solution h in (4.83). Moreover, (4.81), = ∗v v2 1 in (4.87a) and (4.87b) yield

⎧

⎨
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Then, the solution of problem (4.88) is given by (4.82) via (4.83), where the operators AN s
b
,

( )
and Ns

b( ) were defined

in (2.3), (2.4), and recalled as follows:

− = − =
⎧
⎨
⎩

∈
⎧
⎨
⎩

=
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∂
∂
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⎭

A φ bI φ A φ
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H
Δ ,
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Ω for 1,
: 0 ,N s

b
N s
b s

s
, ,

2

2
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�
�( ) ( )

( )

( )
( ) ( ) (4.89)

where Ns
b( ) is the Neumann map

⎪

⎪

= ⟺
⎧
⎨
⎩

− =
∂
∂

=ψ N μ

bI ψ

ψ

ν
μ

Δ 0 in Ω ;

.s
b

s

Γs

( )
( ) (4.90)

Proposition 4.5 regarding (4.79) and (4.80) is proved. □

5 CASE 3: Heat-structure interaction with Kelvin-Voigt damping:

Dirichlet control g at the external boundary Γf

We return to the homogeneous heat-structure interaction model (1.1a)–(1.1f) with Kelvin-Voigt damping. In the

present CASE 3, we apply a Dirichlet control g on the external boundary Γf . Thus, with the same geometry

(Figure 1) and notation w w u, ,t{ } as in Section 1.3 (see (1.1a)–(1.1f)), in the present CASE 3, we consider the

problem
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⎧
⎨
⎩

− = × ( )
− − + = × ( )

u u T

w w w bw T
PDE

Δ 0 in 0, Ω ; 5.1a

Δ Δ 0 in 0, Ω ; 5.1b

t f

tt t s

( )
( ]

( ]

⎧

⎨
⎪

⎩
⎪

= × ( )

= × ( )
∂ +

∂
=

∂
∂

× ( )

u g T

u w T

w w

ν

u

ν
T

BC

on 0, Γ ; 5.1c

on 0, Γ ; 5.1d

on 0, Γ ; 5.1e

f

t s

t
s

Γf

( )

∣ ( ]

( ]

( )
( ]

( ) ⋅ ⋅ ⋅ = ∈w w u w w u HIC 0, , 0, , 0, , , ,t 0 1 0[ ( ) ( ) ( )] [ ] (5.1f)

with Dirichlet boundary control g acting at the external boundary Γf . Compare against model (2.1a)–(2.1f) of

CASE 1 with Neumann control g at the interface Γs, as in (2.1e), and against model (4.1a)–(4.1f) of CASE 2

with Dirichlet control g at the interface Γs, as in (4.1d). We shall likewise consider two cases: =b 0 and =b 1.

Hb is the same finite energy space defined throughout in (1.2a)–(1.2b).

5.1 Abstract model on ==bH , 0, 1,b of the nonhomogeneous PDEmodel (5.1a)–(5.1f)

with Dirichlet control g acting at the external boundary Γf

This is the counterpart of the treatment in [39], where an interior Neumann or Dirichlet control acts at the

interface Γs. To this end, we define two boundary→ interior maps, with interiorΩf : the map Df s, (introduced in

(2.10) = (3.67) = (4.5)) acting from Γs, and the map Df f, acting from Γf :

= ⟺
⎧
⎨
⎩

=
= = = ⟺
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⎨
⎩
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= =φ D χ

φ

φ φ χ
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Γ Γf s f s

∣ ∣ ∣ ∣
(5.2a)

∂ → ∈+D D rH H, : Ω Ω , for any ,f s f f
r

f
r

f, ,
1
2 �( ) ( ) (5.2b)

⎜ ⎟∂ → ⊂ ≡
⎛
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⎞
⎠

− −
D D AL H H, : Ω Ω Ω ,f s f f f f

ε
f D f
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2 2
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1
41

2
1
2 �( ) ( ) ( ) (5.2c)

[40,41], [4, p. 181], [39], where −AD f, is the negative, self-adjoint operator on L Ωf
2( ) defined in (2.9) = (3.66) = (4.4)

and repeated here

− = ≡ ∩A φ φ A H HΔ , Ω Ω .D f D f f f, ,
2

0
1�( ) ( ) ( ) (5.3)

Similarly, we recall from (2.4) the Neumann map Ns
b( ) on Ωs:

⎪

⎪
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with regularity given by (2.5), as well as the Neumann-Laplacian in Ωs; −AN s
b
,

( )
, the negative self-adjoint operator

on L Ωs
2( ), introduced in (2.3) and repeated here
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( ) ( ) (5.5)

To obtain the abstract model of problem (5.1), we proceed as usual [4,39]. We re-write the u-problem in (5.1) as

follows:

⎧

⎨
⎪

⎩⎪

= − − × ( )

− − = =
⎧
⎨
⎩

− −
− −
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t f f f s t f

f f f s t
f

t t s
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, , Γ
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( ( ∣ )) ( ]

[ ] ( ]
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⎧
⎨
⎩

= − − − ∈ ( )

= − + + ∈ ′ ( )

u A u D g D w

u A u A D g A D w A

L Ω ; 5.7a

˜ ˜ ˜ , 5.7b

t D f f f f s t f

t D f D f f f D f f s t D f
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( ∣ ) ( )

( ∣ ) [ ( )]

where ÃD f, is the isomorphic extension of the operator AD f, in (5.3): → ′ =AL Ωf D f
2

,�( ) [ ( )] dual of AD f,�( ) with

respect to L Ωf
2( ) as a pivot space. Similarly, we re-write the w-problem in (5.1b) via the RHS of (5.1e) as

(compare with (2.6) of CASE 1):
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where ÃN s
b
,

( )
is the isomorphic extension of the operator AN s

b
,

( )
in (5.5): → ′ =A AL Ω dual ofs N s

b
N s
b2

, ,� �( ) [ ( )] ( )( ) ( )

with respect to L Ωs
2( ). Henceforth, as in CASE 1, we write simply AN s

b
,

( )
to denote also the extension ÃN s

b
,

( )
, and

likewise AD f, to denote the extension ÃD f
b
,
( )
. The action of −AN s

b
,

( )
on the terms +w wt( ) in (5.9a) is +bI w wΔ t( ) and

(5.9a) has an extra term +b w wt( ) and their combination produces a cancellation of the term +b w wt( ) for

=b 1. Thus, (5.9b) yields via (5.5)
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ultimately via (5.5) with =b 0
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Combining (5.10) for the w-problem with (5.7) for the u-problem, we obtain the corresponding first order

system

⎜ ⎟
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( ) ( ) ( ) ( )
(5.12)

The operator in (5.12) on ≡w w u g, , 0t[ ]( ) is of course the same operator b� in (1.8)–(1.9), except that in (5.12)

the relevant BCs in (1.9a)–(1.9b) are included in the operator entries. Equation (5.12) can be rewritten as

follows:

⎡

⎣⎢
⎤

⎦⎥
=

⎡

⎣⎢
⎤

⎦⎥
+

t

w
w
u

w
w
u

g
d

d
,t b t D�� (5.13)

where the operator ⊃ →H H:b b b b� � �( ) is of course the same as given by (1.8) and (1.9), while the

(boundary) control operator D� is given by
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The adjoint operator ∗
D� of D� in (5.14) is given by
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in the following sense. For ∈g L Γs2( ) and ∈ ⎡
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where we have recalled from [4, Chapter 3] (same technique as in obtaining (2.24), CASE 1 or (4.11), CASE 2)

= −
∂
∂

∗D A x
x

ν
.f f D f, , 3

3

Γf

(5.19)

Thus, (5.15) is established. As shown in (4.11), the proof initially takes ∈x AD f3 ,�( ), i.e. =∂x 03 Ωf
∣ , and uses

Green’s second theorem to establish (5.19) in this case. Then (5.19) is extended to ⊂+ +A H ΩD f
ε ε

f,
2

3
4

3
2�( ) ( ).

5.2 The Luenberger’s compensator for the heat-structure interaction model

(5.1a)–(5.1f) with Dirichlet control g at the external boundary Γf , ==b 0, 1

5.2.1 Special selection of the data

For the present heat-structure interaction problem with Dirichlet control at the external boundary Γf in

the notation of (1.4)–(1.6), we take

⎧
⎨
⎩

≤ > ≥ ( )
= = = ( )

−

∗ ∗
A e ce δ t

F B C B K B

“exponentially stable”: , 0, 0, 5.20a

; , , 5.20b

At δt‖ ‖

as in CASE 2, and unlike CASE 1. Thus, the special setting becomes, in this case,

= = = =∗ ∗y Cy B y g Fz B zpartial observation of the state , control[ ] (5.21)

leading to the Luenberger’s dynamics
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= + ( )
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∗
y Ay BB z

z Az B B y

˙ , 5.22a

˙ 5.22b( )

(as − =BF KC 0 as in CASE 2, unlike CASE 1) and hence to
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d
; .A BB t

0 0[ ] ( )[ ] [ ( ) ( )] [ ]( ) (5.23)
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Insight. How did we decide that = ∗F B in (5.20b); that is, that the preassigned control =g Fz is given by

= ∗g B z or = ∗F B ? We first notice that, regardless of the choice of F , the Luenberger scheme in (1.4)–(1.6),

yields that −A KC( ) is the resulting sought-after operator in characterizing the quantity −y z[ ] of interest.

As A is, in our case, dissipative and we surely seek to retain dissipativity, then we choose = ∗KC BB , or

= = ∗K B C B, . Then, the (dissipative) operator − ∗A BB( ) is the key operator to analyze for the purpose of

concluding that the semigroup − ∗
e A BB t( ) is (analytic as well as) uniformly stable. Thus, at this stage, with F not

yet committed and = = ∗K B C B, committed, the z-equation becomes = − − +∗ ∗z A BF BB z B B y˙ [ ] ( ). It is nat-

ural to test either = ∗F B or else = − ∗F B , whichever choice may yield the desired properties for the feedback

operator = − ∗A A BBF . What is the right sign? Thus, passing from the historical scheme (1.4a)–(1.4f) to our

present PDE problem (5.1a)–(5.1f), the corresponding operator ∗BD is critical in imposing the boundary condi-

tions for the feedback operator = − ∗
F D
b

b D D,� � ��
( )

in our CASE 3. But in our present CASE 3, if we choose

→ ∗F D� and so =
⎡

⎣
⎢

⎤

⎦
⎥ = −∗ ∂

∂g

z
z
z

D
z

ν

1

2

3
Γf

3
� by (5.15) , this then implies the boundary condition = − ∂

∂h
h

νΓ
Γ

f
f

∣ for

v v h, ,1 2{ } in F D
b
,��( )( )

as in (5.34) below. With this B.C., the argument in (5.51)–(5.53) below leads to the trace

term −iω h Γ
2

f
∥ ∣ ∥ in (5.54), and hence to the critical term ∇ + ∇ +iω v h h2

2 2
Γ

2
f

[‖ ‖ ‖ ‖ ∥ ∣ ∥ ] in (5.57), with the correct

“minus” sign “−” for the argument of Theorem 5.4, in particular estimate (5.47), to succeed. Therefore, in view of the

interface condition =u gΓf∣ in (5.1c) at the external boundary Γf , the B.C. = − ∂
∂h
h

νΓ
Γ

f
f

∣ confirms that = − ∂
∂g
h

ν Γf
,

or that =
⎡

⎣⎢
⎤

⎦⎥
=

⎡

⎣⎢
⎤

⎦⎥
= −∗ ∂

∂g F
w
w
u

w
w
u

t D t
h

ν Γf
� . Hence, the choice → ∗F D� as in (5.20b) is the correct one in our CASE 3.

5.2.2 The counterpart of == ++ ∗∗y Ay BB z˙ in (5.22b) for the HSI model (5.1a)–(5.1f) with →→ ∗∗F D�

Accordingly, for =z z z z, ,1 2 3[ ], the Luenberger’s compensator variable, in line with (5.21) we select the Dirichlet

control g in the form

⎜ ⎟= = −
∂
∂

∈
⎛
⎝

⎞
⎠
⊂∗ + +g z

z

ν
z A H, ΩD D f

ε
ε

f
3

Γ
3 ,

3
4 2

f

3
2� � ( ) (5.24)

by (5.15). With =y w w u, ,t[ ], the PDE version of the abstract feedback problem corresponding to (5.22a)

= +
⎡

⎣⎢
⎤

⎦⎥
=

⎡

⎣
⎢ + −

⎤

⎦
⎥ +

⎛

⎝
⎜−

∂
∂

⎞

⎠
⎟∗y y z

t

w
w
u

w

w w bw

u

z

ν
˙ , or

d

d
Δ

Δ
b D D t

t

t D
3

Γf

� � �� ( ) (5.25)

recalling b� from (1.8) and ∗
D� from (5.15), with g as in (5.24), is

⎧

⎨

⎪
⎪

⎩

⎪
⎪

− = × ( )
− − + = × ( )

= −
∂
∂

× = × ( )

∂ +
∂

=
∂
∂

× ( )

u u T

w w w bw T

u
z

ν
T u w T

w w

ν

u

ν
T

Δ 0 in 0, Ω ; 5.26a

Δ Δ 0 in 0, Ω ; 5.26b

on 0, Γ ; on 0, Γ ; 5.26c

on 0, Γ . 5.26d

t f

tt t s

f t s

t
s

Γ
3

Γ
f

f

( ]

( ]

∣ ( ] ( ]

( )
( ]

5.2.3 The counterpart of the dynamic compensator equation == ++ (( ))∗∗z Az B B y˙ in (5.22b) for the HSI model

(5.1a)–(5.1f)

With partial observation as in (5.21) according to (5.24) or (5.15)
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= =
⎡

⎣⎢
⎤

⎦⎥
= −

∂
∂

= =
⎡

⎣⎢
⎤

⎦⎥
∗ ∗g y

w
w
u

u

ν
y

w
w
u

partial observation of state ,D D t t

Γf

� � (5.27)

the compensator equation (5.22b) in =z z z z, ,1 2 3[ ] becomes in our present HSI case

=
⎡

⎣
⎢

⎤

⎦
⎥ = +

⎛

⎝
⎜−

∂
∂

⎞

⎠
⎟z

t

z
z
z

z
u

ν
˙

d

d
b D

1

2

3 Γf

�� (5.28)

or via (1.8) for b� and (5.14) and (5.15) for D� , ∗
D� , respectively,

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢
⎢

+ −
⎤

⎦
⎥
⎥
+

⎡

⎣

⎢
⎢
⎢

⎛

⎝
⎜−

∂
∂

⎞

⎠
⎟

⎤

⎦

⎥
⎥
⎥

z
z
z

z

z z bz

z A D
u

ν

Δ

Δ

0
0

,
t

t

t D f f f

1

2

3

2

1 2 1

3 , ,
Γf

( ) (5.29)

whereby = =z z z z,t tt t1 2 1 2 . The PDE version of the abstract z-model (5.29) with partial observation − ∂
∂
u

ν Γf
in

the Dirichlet condition at the external boundary Γf as in (5.27), is via (5.24)

⎧

⎨

⎪
⎪

⎩

⎪
⎪

− = × ( )
− − + = × ( )

= −
∂
∂

× = × ( )

∂ +
∂

=
∂
∂

× ( )

z z T

z z z bz T

z
u

ν
T z z T

z z

ν

z

ν
T

Δ 0 in 0, Ω ; 5.30a

Δ Δ 0 in 0, Ω ; 5.30b

on 0, Γ ; on 0, Γ ; 5.30c

on 0, Γ . 5.30d

t f

tt t s

f t s

t
s

3 3

1 1 1 1

3 Γ
Γ

3 1

1 1 3

f

f

( ]

( ]

∣ ( ] ( ]

( )
( ]

5.2.4 The dynamics == (( )) (( )) == (( )) (( ))∗∗d d d t y t z t˙ ‒ , ‒b D D� �� , corresponding to (5.23): analyticity and

exponential decay, ==b 0, 1

The main result of the present section is as follows:

Theorem 5.1. Let =b 0, 1. The (feedback) operator

= − ⊃ = { ∈ + ∈ }∗ − ∗x I xH H, :F D
b

b D D b F D
b

b b D D b, ,
1

� � � � � �� � � � �( ) ( ) ( )( ) ( ) (5.31)

is the infinitesimal generator of a s.c. contraction semigroup e tF D
b
,�

( )

on Hb, which moreover is analytic and

exponentially stable on Hb: there exist constants ≥ >C ρ1, 0 possibly depending on “b” such that

= ≤ ≥− −∗
e e Ce t, 0.t t ρt

H H
F D
b

b
b D D

b
,� � �

�
�

�∥ ∥ ∥ ∥( )
( )

( )
( )

(5.32)

A more detailed description of F D
b
,��( )( )

is given in (5.35a) and (5.35b).

The proof of Theorem 5.1 is by PDE methods, which consist of analyzing the corresponding PDE system

(5.30). We proceed through a series of steps.

Step 1.

Lemma 5.2. Let =b 0, 1. With = ∈d d d d H, , b1 2 3[ ] , the abstract equation

= = − ∗d d d˙
F D
b

b D D,� � ��( )( ) (5.33a)

or via (1.8) on b� , (5.14) and (5.15) on D� and ∗
D� , respectively
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⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

⎡

⎣
⎢
⎢

+ −
⎤

⎦
⎥
⎥
−

⎡

⎣

⎢
⎢
⎢

⎛

⎝
⎜−

∂
∂

⎞

⎠
⎟

⎤

⎦

⎥
⎥
⎥

d

d

d

d

d d bd

d A D
d

ν

Δ

Δ

0
0

,

t

t

t D f f f

1

2

3

2

1 2 1

3 , ,
3

Γf

( ) (5.33b)

so that = =d d d d,t t tt2 1 2 1 corresponds to the following PDE system, where we relabel the variable

= =d d d d w w u, , , ,t t1 2 1 3  [ ] [ ] for convenience

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

− = × ( )
− − + = × ( )

= −
∂
∂

× = × ( )

∂ +
∂

=
∂
∂

× ( )

u u in T

w w w bw in T

u
u

ν
T u w on T

w w

ν

u

ν
on T

Δ 0 0, Ω ; 5.34a

Δ Δ 0 0, Ω ; 5.34b

on 0, Γ ; 0, Γ ; 5.34c

0, Γ . 5.34d

t f

tt t s

f t s

t
s

Γ
Γ

f

f

 








   



 

( ]

( ]

∣ ( ] ( ]

( )
( ]

Description of F D
b
,��( )( )

. We have ∈ = − ∗v v h, , F D
b

b D D1 2 ,� � �� � �{ } ( ) ( )( )
if any only if

(i)

∈
⎧
⎨
⎩

=
=

= ∈

+ ∈

v v
b

b
v h

v v

H

H
H

L

,
Ω \ for 0,

Ω for 1,
so that Γ in both cases ;

Δ Ω ;

s

s
s

s

1 2

1

1 2 Γ Γ

1 2
2

s s

1
2

�( )

( )
∣ ∣ ( )

( ) ( )

(5.35a)

(ii)

∈ ∈ = −
∂
∂

∈

≡
∂
∂

=
∂ +

∂
∈ −

h h h
h

ν

h v
h

ν

v v

ν

H L H

H

Ω , Δ Ω , Γ ;

, Γ .

f f f

s

1 2
Γ

Γ

Γ 2 Γ
Γ

1 2
Γ

f

f

s s

s

s

1
2

1
2

( ) ( ) ∣ ( )

∣ ∣
( )

∣ ( )

(5.35b)

The adjoint operator = −∗ ∗ ∗
F D
b

b D D,� � ��
( )

. For ∈ ∗
v v h, , F D

b
1 2 ,��{ } ( )( )

(to be characterized below), we have after

recalling ∗
b� in (1.10a) and

⎡

⎣
⎢

⎤

⎦
⎥ = −∗ ∂

∂

v
v

h
D

h

ν

1

2
Γf

� from (5.15)

⎡

⎣
⎢

⎤

⎦
⎥ = −

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

−
− +

⎤

⎦
⎥ −

⎛

⎝
⎜−

∂
∂

⎞

⎠
⎟∗ ∗ ∗

v
v

h

v
v

h

v

v v bv

h

h

ν
Δ

Δ
F D
b

b D D D,

1

2

1

2

2

2 1 1
Γf

� � � ��( ) ( )( ) (5.36)

=
⎡

⎣
⎢

−
− +

⎤

⎦
⎥ −

⎡

⎣

⎢
⎢
⎢

⎛

⎝
⎜−

∂
∂

⎞

⎠
⎟

⎤

⎦

⎥
⎥
⎥

v

v v bv

h A D
h

ν

Δ

Δ

0
0

D f f f

2

2 1 1

, ,
Γf

( ) (5.37)

recalling D� in (5.14).

Description of
∗

F D
b
,��( )( )

. We have ∈ = −∗ ∗ ∗v v h, , F D
b

b D D1 2 ,� � �� � �{ } ( ) ( )( )
if and only if the same conditions

for F D
b
,��( )( )

in (5.35a) and (5.35b) apply, except that now (5.35a) is replaced by − ∈v v LΔ Ωs2 1
2( ) ( ) and (5.35b) is

replaced by

∂ −
∂

=
∂
∂

∈ −v v

ν

h

ν
H Γ .s

2 1

Γ Γs s

1
2( ) (5.38)

The PDE version corresponding to the adjoint operator
∗

F D
b
,�

( )
is given by

Luenberger compensentor theory for HSI with feedback controls  41



⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥

⎧

⎨

⎪
⎪⎪
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⎪
⎪
⎪
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∂
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w
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u

w
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u

h h T
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h
h

ν
T

h w
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ν

h

ν
T

d

d
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Δ 0 in 0, Ω ; 5.39a

Δ Δ 0 in 0, Ω ; 5.39b

on 0, Γ ; 5.39c

; on 0, Γ , 5.39d

F D
b

t f

tt t s

f

t
t

s

1

2 ,

1

2

1 1 1 1

Γ
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Γ 1 Γ
1 1

Γ Γ
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s s

s s

�

( ]

( ]

∣ ( ]
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( )

( ]

( )

(where = −w wt1 2 in (5.36), top line) with I.C. in Hb (counterpart of (3.21a)–(3.21d) in CASE 1, and (4.32a)–(4.32d)

in CASE 2).

Step 2. (Analysis of the PDE problem (5.34): the operator = − ∗
F D
b

b D D,� � ��
( )

in (5.33a))

Proposition 5.3. The operator = − ∗
F D
b

b D D,� � ��
( )

in (5.33) and itsHb-adjoint = −∗ ∗ ∗
F D
b

b D D,� � ��
( )

are dissipative

⎧
⎨
⎩

−
⎡

⎣
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⎥
⎡
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⎢

⎤
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⎫
⎬
⎭
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∂
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(5.40)
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⎪
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∗

∗

∗

∗

∗

∗ ∗
∗

∗ ∗ ∗ ∗
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v h
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ν
v v hRe , , , , ,b D D F D
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H
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1

2 2 Ω
2

Ω
2

Γ
Γ

2

1 2 ,s f

f
f

� � �� �( ) ‖ ‖ ‖ ‖ { } ( )( ) (5.41)

in the ⋅L2( )-norms ofΩs and Ωf , and the L Γs2( )-norm on Γs. Hence, both F D
b
,�

( )
and

∗
F D
b
,�

( )
are maximal dissipative and

thus generate s.c. contraction semigroups e tF D
b
,�

( )

and
∗

e tF D
b
,�

( )

on Hb. Explicitly in terms of the corresponding PDE

systems we have:

⎡
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⎥
⎥
=

⎡
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⎥
⎥
=

⎡
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e

w

w

u

e
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u

t
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0

1

0

0

1

0

F D
b

b D D,

  








� � ��

( )

( )

( )

( )( )
(5.42)

for the w w u, ,t  { }-fluid-structure interaction model given by (5.34a)–(5.34d) on Hb: with I.C. ∈w w u H, , b0 1 0 { } .

Similarly, for the adjoint
∗

F D
b
,�

( )
, corresponding to the model (5.39a)–(5.39d).

Proof of (5.3). For ∈v v h, , F D
b

1 2 ,��{ } ( )( )
in (5.35a) and (5.35b), we compute:

⎧
⎨
⎩

−
⎡

⎣
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⎤

⎦
⎥
⎡

⎣
⎢

⎤

⎦
⎥
⎫
⎬
⎭

=
⎛

⎝
⎜

⎡

⎣
⎢

⎤

⎦
⎥
⎡

⎣
⎢

⎤

⎦
⎥
⎞

⎠
⎟ −

⎡

⎣
⎢

⎤

⎦
⎥∗ ∗

v
v

h

v
v

h

v
v

h

v
v

h

v
v

h
Re , Re ,b D D b D

H H

1

2

1

2

1

2

1

2

1

2

2

b b

� � �� �( ) (5.43)

= − ∇ − ∇ −
∂
∂

v h
h

ν
,

L

2
2 2

Γ
Γ

2

f
f

2

‖ ‖ ‖ ‖

( )

(5.44)

recalling (1.12) and (5.24). Thus, (5.40) is established. Similarly for (5.41) recalling (1.13) for ∗
b� . □

5.2.5 Analyticity of
(( ))

e tF D
b
,� and

(( ))∗∗
e tF D

b
,� on Hb, ==b 0, 1

Remark 5.1. A remark such as Remark 3.2 (CASE 1) or Remark 4.1 (CASE 2) applies in the present case, to justify

(5.47) from (5.46).
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Theorem 5.4. Let =b 0, 1. Let ∈ω � and

−
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⎥
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∗

iωI
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HF D
b

b,

1

2

1

2�( )( ) (5.45)

for ∈v v h, , F D
b

1 2 ,��{ } ( )( )
identified in (5.35a) and (5.35b). Then:

(i) the following estimate holds true: there exists a constant >C 0ε such that:

+ − + + + ∇ + ∇ +
∂
∂

≤ ∇ + + + ∀ ≥ >∗ ∗ ∗ ∗

v v bv h b v v h
h

ν

C v b v v h ω ε
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1 2 1
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2
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2
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Γ
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2

1
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1
2

2
2 2

f
f

‖ ( ) ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖
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(5.46)

(ii) In view of Remark 5.1, estimate (5.46) without the term
⎡

⎣⎢
∇ +

⎤

⎦⎥
∂
∂h
h

ν
2

Γ

2

f

‖ ‖ is equivalent to

≤ ∀ ≥ >R iω C ω ε, , 0,F D
b

F D
b

εH, , b
� � �∥ ( )∥ ∣ ∣( ) ( )

( ) (5.47)

= − −R iω iωI, F D
b

F D
b

, ,
1� �( ) ( )( ) ( )
, which in turn is equivalent to

≤ ∀ ≥ >R iω
c

ω
ω ε, , 0.F D

b ε
H, b

� �∥ ( )∥
∣ ∣

∣ ∣( )
( ) (5.48)

Thus, the s.c. contraction semigroup e tF D
b
,�

( )

asserted by Proposition 5.3is analytic on Hb by [4, Theorem 3E.3

p. 334]. Similarly for
∗

e tF D
b
,�

( )

on Hb. The explicit PDE version of (5.33) for system w t w t u t, ,t  { ( ) ( ) ( )} is given by

(5.34a)–(5.34d).

Proof. (i) The proof of estimate (5.46) follows closely the technical proof of estimate (3.30) for the operator F N
b
,�

( )

in CASE 1, or (4.41) for the operator F D
b
,�

( )
in CASE 2 except that now the argument uses the B.C. of F D

b
,�

( )
rather

than the B.C. of F N
b
,�

( )
or the B.C. of F D

b
,�

( )
. This, in particular, requires an argument different from CASE 1 and

CASE 2 to handle the more challenging case =b 1, with full H Ω1( )-norm on the first component space.

We indicate the relevant changes:

Step 1. Return to (5.45), re-written for ∈v v h, , F D
b

1 2 ,��{ } ( )( )
and ∈∗ ∗ ∗v v h H, , b1 2{ } :

⎪

⎪

⎧
⎨
⎩

− = ( )
− + − = ( )
− = ( )

∗

∗

∗

iωv v v

iωv v v bv v

iωh h h

, 5.49a

Δ , 5.49b

Δ . 5.49c

1 2 1

2 1 2 1 2[ ( ) ]

Step 2. Take the L Ωf
2( )-inner product of equation (5.49c) against hΔ , use Green’s First theorem (counterpart

(4.45))

∫ ∫∂
∂

+
∂
∂

− ∇ − = ∗iω h
h

ν
iω h

h

ν
iω h h h hdΓ dΓ Δ , Δ .f s

Γ Γ

2 2

f s

‖ ‖ ‖ ‖ ( ) (5.50)

Similarly, we take the L Ωs
2( )-inner product of (5.49b) against + −v v bvΔ 1 2 1[ ( ) ], use Green’s First Theorem to

evaluate ∫ +v v v dΔ ΩsΩ 2 1 2
s

( ) , recalling that the normal vector ν is inward with respect to Ωs, and obtain (4.45),

repeated here

∫−
∂ +

∂
− ∇ ∇ + − − + − = + −∗iω v

v v

ν
iω v v v iω v bv v v bv v v v bvdΓ , , Δ , Δ .s

Γ

2
1 2

2 1 2 2 1 1 2 1
2

2 1 2 1

s

( )
( ( )) ( ) ‖ ( ) ‖ ( [ ( ) ]) (5.51)

Now we invoke the B.C. in (5.35a) and (5.35b) for F D
b
,��( )( )

:

= −
∂
∂

=
∂ +

∂
=

∂
∂

h
h

ν
h v

v v

ν

h

ν
; ; in F D

b
Γ

Γ
Γ 2 Γ

1 2

Γ Γ
,f

f

s s

s s

��∣ ∣ ∣
( )

( )( )
(5.52)
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and re-write (5.50) and (5.51) as follows, respectively

∫ ∫− +
∂
∂

− ∇ − = ∗iω h iω h
h

ν
iω h h h hdΓ dΓ Δ , Δ ,s s

Γ

2

Γ

2 2

f s

‖ ‖ ‖ ‖ ( ) (5.53)

∫−
∂
∂

− ∇ + ∇ ∇ − − + −

= + −∗

iω h
h

ν
iω v v iωv iω v bv v v bv

v v v bv

dΓ , , Δ

, Δ .

s

Γ

2
2

2 1 2 1 1 2 1
2

2 1 2 1

s

‖ ‖ ( ( )) ( ) ‖ ( ) ‖

( [ ( ) ])

(5.54)

Summing up (5.53) and (5.54) yields after a cancellation of the boundary terms ∫ ∂
∂iω h dΓ
h

ν sΓs
:

− − ∇ + ∇ = + − + + + ∇ ∇

+ + − +∗ ∗

iω h iω v h v v bv h iω v bv iω v v

v v v bv h h

Δ Δ , ,

, Δ , Δ .

Γ
2

2
2 2

1 2 1
2 2

2 1 2 1

2 1 2 1

f
∥ ∣ ∥ [‖ ‖ ‖ ‖ ] ‖ ( ) ‖ ‖ ‖ ( ) ( )

( [ ( ) ]) ( )
(5.55)

We now use the identities from (5.49a)

− ∇ ∇ = ∇ ∇ = ∇ + ∇ ∇ ∗iω v v v iωv v v v, , , ,2 1 2 1 2
2

2 1( ) ( ( )) ‖ ‖ ( ) (5.56a)

− = = + ∗iω v v v iωv v v v, , ,2 1 2 1 2
2

2 1( ) ( ) ‖ ‖ ( ) (5.56b)

to obtain the final identity from (5.55)

+ − + + ∇ + ∇ +

= ∇ + + ∇ ∇ + − + − −∗ ∗ ∗ ∗

v v bv h iω v h h

v b v v v b v v v v v bv h h

Δ Δ

, , , Δ , Δ .

1 2 1
2 2

2
2 2

Γ
2

2
2

2
2

2 1 2 1 2 1 2 1

f
‖ ( ) ‖ ‖ ‖ [‖ ‖ ‖ ‖ ∥ ∣ ∥ ]

‖ ‖ ‖ ‖ ( ) ( ) ( [ ( ) ]) ( )
(5.57)

Identity (5.57) is the counterpart of identity (4.50) for Dirichlet control g on the interface Γs, after replacing

∂
∂
h

ν Γ

2

s

in (4.50) with =∂
∂ h
h

ν Γ

2

Γ
2

f
f

∥ ∣ ∥ in (5.57). Identity (5.57) is also the counterpart of identity (3.38) for

Neumann control g at the Interface Γs, after replacing h Γ
2

s
∥ ∣ ∥ in (3.38) with =∂

∂ h
h

ν Γ

2

Γ
2

f
f

∥ ∣ ∥ in (5.57). □

Step 3. We proceed as in Step 3 of CASE 1 or of CASE 2. We take the real part of identity (5.57) and next obtain

− + − + ≤ + ∇ + + ∇ + + +∗ ∗ ∗ ∗ε v v bv h ε v b v C v b v v h1 Δ Δ 1 ,ε1 2 1
2 2

2
2

2
2

1
2

1
2

2
2 2( )[‖ ( ) ‖ ‖ ‖ ] ( )[‖ ‖ ‖ ‖ ] [‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ] (5.58)

the counterpart of estimate (4.52) CASE 2, or estimate (3.40), CASE 1.

Step 4. We now take the imaginary part of identity (5.57), and proceeding as in Step 4 of CASE 1 or CASE 2,

we arrive at the following estimate

∇ + ∇ + ≤ +v h h εb v OK ,ε2
2 2

Γ
2

2
2

f
‖ ‖ ‖ ‖ ∥ ∣ ∥ ‖ ‖ (5.59a)

= + − + + ∇ + + +∗ ∗ ∗ ∗ε v v bv h C v b v v hOK 2 Δ Δ .ε ε1 2 1
2 2

1
2

1
2

2
2 2[‖ ( ) ‖ ‖ ‖ ] [‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ] (5.59b)

Equation (5.59a) and (5.59b) are the counterpart of (3.46) (CASE 1) or (4.591) and (4.601) via (4.64) (CASE 2), the

difference being that the boundary term h Γ
2

s
∥ ∣ ∥ on the LHS of (3.46) (CASE 1), respectively, and the boundary

term
∂
∂
h

ν Γ

2

s

on the LHS of (4.591) (CASE 2, where = −∂
∂ v h
h

ν Γ
2 Γ Γ

s
s s
∣ ∣ holds as in (4.64)), is now replaced by

the boundary term h Γ
2

f
∥ ∣ ∥ on the LHS of (5.59a).

Case =b 0. In the case =b 0, the rest of the proof is the same as in Remark 3.1 (CASE 1, with Neumann

control on Γs) or as in Remark 4.2 (CASE 2 with Dirichlet control on Γs) by replacing the term h Γ
2

s
∥ ∣ ∥ in (3.46),

respectively, by replacing the term
∂
∂
h

ν Γ

2

s

in (4.58) with the term = ∂
∂h
h

νΓ
2

Γ

2

f
f

∥ ∣ ∥ in (5.59a). Thus, in the

case =b 0, the sought-after estimate (5.45), and hence, (5.47) are established in the space =Hb 0.
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Step 5. Case =b 1. In the present case, as in CASE 2 of Dirichlet control on Γs, there are additional challenges in

establishing the sought-after estimate (5.46) with =b 1, i.e., in the space =Hb 1. The required argument is pro-

vided in the present step, which is the counterpart of Step 5 in Section 3 (CASE 1) or of Step 5 in Section 4

(CASE 2). In line with these two cases, it will rely on Lemma 3.5.

We return to (5.59a) and add the term ε v1 2 Γ
2

s
∥ ∣ ∥ to both sides, ≥ >ε1 01 to be chosen below, where on

the RHS, we use =v h2 Γ Γs s
∣ ∣ by (5.52).

We obtain

∇ + + ∇ + ≤ + +v ε v h h εb v ε h OK , 5.60ε2
2

1 2 Γ
2 2

Γ
2

2
2

1 Γ
2

1s f s
‖ ‖ ∥ ∣ ∥ ‖ ‖ ∥ ∣ ∥ ‖ ‖ ∥ ∣ ∥ ( )

for ≥ >ω ε 02∣ ∣ , hence

∇ + + ∇ + ⎡
⎣ ∇ + ⎤

⎦ ≤ + ∇ + +ε v v h h h εb v ε h h
1

2

1

2
OK . 5.61ε1 2

2
2 Γ

2 2 2
Γ

2
2

2
1

2 2
1s f

[‖ ‖ ∥ ∣ ∥ ] ‖ ‖ ‖ ‖ ∥ ∣ ∥ ‖ ‖ [‖ ‖ ‖ ‖ ] ( )

In going from (5.601) to (5.611), we have used: on the LHS, that < ≤ε0 11 ; on the RHS, that the L Γs2( )-norm of

h Γs[ ∣ ] is dominated by the H Ωf
1( )-norm of h. Next, on the LHS of (5.611), we invoke Lemma 3.5(a) for both v2 in

Ωs and h in Ωf . We obtain

≤ ∇ +
ε

c
v ε v v , 5.62

1

1
2

2
1 2

2
2 Γ

2
1s

∥ ∥ [‖ ‖ ∥ ∣ ∥ ] ( )

≤ ∇ +
c

h h h
1

2

1

2
. 5.63

1

2 2
Γ

2
1f

∥ ∥ [‖ ‖ ∥ ∣ ∥ ] ( )

Invoking (5.621), (5.631), we re-write (5.611) as follows:

⎜ ⎟ ⎜ ⎟
⎛
⎝

− ⎞
⎠

+ ⎛
⎝ − ⎞

⎠ ∇ + ⎛
⎝

− ⎞
⎠

≤ ≥ >
ε

c
εb v ε h

c
ε h ω ε

1

2

1

2
OK , 0. 5.64ε

1

1
2

2
1

2

1
1

2 2
1∥ ∥ ‖ ‖ ‖ ‖ ∣ ∣ ( )

We now select ≥ > =ε b1 0 1( ) as follows:

< − < − < − + < ≤ ⎧⎨⎩
⎫⎬⎭

ε
ε

c
ε ε

c c
ε ε ε ε

c
;

1

4

1

2
;

1

4

1

2
; min

1

4
,

1

4
, 5.65

1

1
1

1 1
1 1

1
1( ) ( )

(we can always assume >c 11 , see Lemma 3.5(a)). Using (5.651) on the LHS of (5.641) yields

+ ∇ + ≤ + − +

+ ∇ + + +∗ ∗ ∗ ∗

ε v h
c

h ε v v bv h

C v b v v h

1

4

1

4
2 Δ Δ

, 5.66ε

2
2 2

1

2
1 2 1

2 2

1
2

1
2

2
2 2

1

∥ ∥ ∥ ∥ ∥ ∥ [‖ ( ) ‖ ‖ ‖ ]

[‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ] ( )

for ≥ω ε2∣ ∣ , after invoking (5.59b) for OK ε . Finally, ( =b 1 and < <ε ε,
c

1

4

1

4 1
), we obtain

+ ∇ + ≤ + − +

+ ∇ + + +∗ ∗ ∗ ∗

b v h h ε v v bv h

C v b v v h

2 Δ Δ

5.67ε

2
2 2 2

1 2 1
2 2

1
2

1
2

2
2 2

1

∥ ∥ ∥ ∥ ∥ ∥ [‖ ( ) ‖ ‖ ‖ ]

[‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ] ( )͠

for ≥ω ε2∣ ∣ as in (4.56) (CASE 2). Estimate (5.671) is a counterpart of estimate (3.55) (CASE 1) or estimate (4.2.5)

(CASE 2). Estimate (5.671) corresponds to (5.59) for =b 0.

Substituting the estimate for b v2
2‖ ‖ from (5.671) into the RHS of (5.59a) yields

∇ + ∇ + ≤ + − +

+ ∇ + + + +∗ ∗ ∗ ∗ ∗

v h h ε ε v v bv h

C v b v v h

2 Δ Δ

OK . 5.67ε ε

2
2 2

Γ
2

1 2 1
2 2

1
2

1
2

2
2 2

1

f
∥ ∥ ∥ ∥ ∥ ∣ ∥ { [‖ ( ) ‖ ‖ ‖ ]

[‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ]} ( )͠

Next add to ( ∗5.671) the estimate for b v2
2‖ ‖ in (5.671) to obtain

+ ∇ + ∇ + ≤ + + + − +

+ ∇ + + +∗ ∗ ∗ ∗

b v v h h ε ε ε v v bv h

C v b v v h

2 1 2 Δ Δ

, 5.68ε

2
2

2
2 2

Γ
2

1 2 1
2 2

1
2

1
2

2
2 2

1

f
∥ ∥ ∥ ∥ ∥ ∥ ∥ ∣ ∥ [ ( ) ][‖ ( ) ‖ ‖ ‖ ]

[‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ] ( )

recalling OK ε from (5.59b). Estimate (5.681) is the counterpart of estimate (5.59) for =b 0.
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Step 6. The rest of the proof for =b 1 now proceeds as in the case =b 0. In (5.681), we drop the terms

∇ +h h2
Γ

2
f

[‖ ‖ ∥ ∣ ∥ ] and substitute the resulting estimate for + ∇b v v2
2

2
2[ ‖ ‖ ∥ ∥ ] into the RHS of (5.58) and obtain

− + − + ≤ + + + + − +
+ + ∇ + + +∗ ∗ ∗ ∗

ε v v bv h ε ε ε ε v v bv h

ε C v b v v h

1 Δ Δ 1 2 1 2 Δ Δ

1 , 5.69ε

1 2 1
2 2

1 2 1
2 2

1
2

1
2

2
2 2

1

( )[‖ ( ) ‖ ‖ ‖ ] ( )[ ( ) ][‖ ( ) ‖ ‖ ‖ ]

( ) [‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ] ( )

or, since − − + + + ≥ >ε ε ε ε ε k1 1 2 1 2 0{( ) ( )[ ( ) ]} , we obtain

+ − + ≤ ∇ + + +∗ ∗ ∗ ∗v v bv h C v b v v hΔ Δ , 5.70ε1 2 1
2 2

1
2

1
2

2
2 2

1
‖ ( ) ‖ ‖ ‖ [‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ] ( )

which is the counterpart of (3.58) in CASE 1, and (4.751) in CASE 2. By substituting (5.701) into the RHS of (5.681),

we finally obtain

+ ∇ + ∇ + ≤ ∇ + + +∗ ∗ ∗ ∗b v v h h C v b v v h . 5.71ε2
2

2
2 2

Γ
2

1
2

1
2

2
2 2

1f
∥ ∥ ∥ ∥ ∥ ∥ ∥ ∣ ∥ [‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ] ( )͠

Summing up (5.701) and (5.711) yields

+ ∇ + + − + + ∇ +

≤ ∇ + + +∗ ∗ ∗ ∗

b v v v v bv h h h

C v b v v h

Δ Δ

, 5.72ε

2
2

2
2

1 2 1
2 2 2

Γ
2

1
2

1
2

2
2 2

1

f
∥ ∥ ∥ ∥ ‖ ( ) ‖ ‖ ‖ ∥ ∥ ∥ ∣ ∥

[‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ] ( )

which is the sought-after estimate (5.15), = =b b0, 1, = ∂
∂h
h

νΓ
2

Γ

2

f
f

∥ ∣ ∥ .

5.2.6 Exponential stability of
(( ))

e tF D
b
,� and

(( ))∗∗
e tF D

b
,� on Hb, ==b 0, 1

In Proposition 5.5, we shall prove that, in both cases =b 0 and =b 1, we have

∈ ∈ ∈ ∈∗ − ∗−
ρ ρ H H0 , 0 , , ,F D

b
F D
b

F D
b

b F D
b

b, , ,
1

,
1

� � � �� �( ) ( ) ( ) ( )( ) ( ) ( ) ( ) (5.73)

so that there exists a disk r0
� centered at the origin and of suitable radius >r 00 such that ⊂ ρr F D

b
,0

�� ( )( )
. Then,

the resolvent bound (5.48) combined with ∈
−

HF D
b

b,
1

� �( )( )
in (5.73) allows one to conclude that the resolvent is

uniformly bounded on the imaginary axis i� :

≤R iω, const .F D
b

H, b
� �‖ ( )‖( )

( ) (5.74)

Hence, [45] the s.c. analytic semigroup e tF D
b
,�

( )

is, moreover, (uniformly) exponentially bounded: There exist

constants ≥M 1, >δ 0, possibly depending on “b” such that

≤ ≥−e Me t, 0.t δt
H

F D
b

b
,�

�‖ ‖ ( )
( )

(5.75)

It is similar for the adjoint
∗

F D
b
,�

( )
.

Proposition 5.5. Statement (5.73) holds true. Hence, the exponential stability for e tF D
b
,�

( )

in (5.75) holds true. More

precisely, with reference to F D
b
,�

( )
, we have: given ∈∗ ∗ ∗v v h H, , b1 2{ } , the unique solution ∈v v h, , F D

b
1 2 ,��{ } ( )( )

of

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢ + −

⎤

⎦
⎥ =

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∗

∗

∗

v
v

h

v

v v bv

h

v

v

h

Δ

Δ
F D
b
,

1

2

2

1 2 1

1

2� ( )( ) (5.76)

is given explicitly by

= − − + +
⎧
⎨
⎩

∂
∂

− + −
∂
∂

⎫
⎬
⎭
∈− ∗ ∗ − ∗ ∗

∗

v A v v N
ν

A h D v
v

ν
HΔ Ω ,N s

b
s
b

R f f s s1 ,
1

1 2 ,
1

, 1 Γ
1

Γ

1
s

s

( ) ( ) [ ( ∣ )] ( )͠( ) ( ) (5.77a)

= ∈
⎧
⎨
⎩

=
=

= − + ∈∗ − ∗ ∗v v
for b

for b
h A h D v

H

H
H

Ω \ 0,

Ω 1,
Ω .

s

s
R f f s f2 1

1

1 ,
1

, 1 Γs

3
2

�( )

( )
( ∣ ) ( )͠ (5.77b)

Here, AN s
b
,

( )
and Ns

b( ) are defined in (5.5) and (5.4).Moreover, the operator −AR f, is defined in (4.85). A new operator

is the Dirichlet map Df s,
͠ defined by
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= ⟺

⎧

⎨
⎪

⎩⎪

= ( )

= ⎡
⎣
∂
∂

+ ⎤
⎦ = ( )D μ ψ

ψ in

ψ μ
ψ

ν
ψ

Δ 0 Ω ; 5.78a

, 0. 5.78bf s

f

,
Γ

Γ
s

f

∣
͠

In operator form, we have

( )⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

⎡

⎣

⎢
⎢
⎢
⎢

− − + +
⎧
⎨
⎩

∂
∂

− + −
∂
∂

⎫
⎬
⎭

− +

⎤

⎦

⎥
⎥
⎥
⎥

−

∗

∗

∗

− ∗ ∗ − ∗ ∗
∗

∗

− ∗ ∗

v
v

h

v

v

h

A v v N
ν

A h D v
v

ν

v

A h D v

Δ

F D
b

N s
b

s
b

R f f s

R f f s

1

2 ,
1

1

2

,
1

1 2 ,
1

, 1 Γ
1

Γ

1

,
1

, 1 Γ

s

s

s

�

( ) ( ) [ ∣ ]

( ∣ )

͠

͠

( )

( ) ( )

(5.79a)

=

⎡

⎣

⎢
⎢
⎢

− − ⋅ +
∂
∂

⋅ − −
∂
∂

−

⋅ −

⎤

⎦

⎥
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

− − −

−

∗

∗

∗

A N
ν

A N
ν

A

I

D A

v

v

h

Δ

0 0

0

,

N s
b

s
b

N s
b

s
b

R f

f s R f

,
1

Γ
,

1
,
1

, Γ ,
1

1

2
s

s

( ) ( ) ( ) [ ]

( ∣ )͠

( ) ( ) ( ) ( )

(5.79b)

≤ ∗ ∗ ∗v v h c v v h, , , , ,H H1 2 1 2‖[ ]‖ ‖[ ]‖ (5.79c)

where the operators AN s
b
,

( )
, AR f, , Df f, , and Ns

b( ), are defined in the following proof.

Proof. Identity (5.76) and the characterization of F D
b
,��( )( )

in (5.35a) and (5.35b) yield

=

⎧

⎨
⎪

⎩⎪

= ∈ ( )

⎡
⎣
∂
∂

+ ⎤
⎦ = = = ( )

∗

∗

∗v v

h h L

h

ν
h h v v

Δ Ω ; 5.80a

0, , 5.80b

f

2 1

2

Γ
Γ 2 Γ 1 Γ

f

s s s

( )

∣ ∣ ∣

and the h-problem in (5.80) yields the solution h in (5.77b), invoking AR f, from (4.85) and Df s,
͠ from (5.78).

Moreover, (5.76), = ∗v v2 1 in (5.80) and (5.35b) yield

⎧

⎨
⎪

⎩⎪

+ − = − = − + ( )

∂ +
∂

=
∂
∂

∂
∂

= −
∂
∂

+
∂
∂

( )

∗ ∗ ∗

∗

v v bv v v bv v v

v v

ν

h

ν

v

ν

v

ν

h

ν

Δ , or Δ Δ ; 5.81a

, or . 5.81b

1 2 1 2 1 1 1 2

1 2

Γ Γ

1

Γ

1

Γ Γs s s s s

( )

( )

Then, the solution of problem (5.81) is given by (5.77a) via (5.77b). □

Remark 5.2. A recent contribution of a heat-plate interaction with the plate subject to a (formal) “square root”

damping in [46].
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Appendix A

The genuine fluid-structure interaction model with Kelvin-Voigt

(viscoelastic) damping [2,12,14]

In this article, we have deliberately chosen to consider the simpler heat-viscoelastic structure model, as a first

step of an entirely new investigation regarding the corresponding Luenberger theory. To be sure, replacing the

heat equation with a fluid equation introduces conceptual and technical difficulties. These however have

already been dealt with and ultimately resolved in prior work by one co-author, for a structure model

originally without viscoelastic damping [12], and next with viscoelastic damping [2]. A first serious obstacle

is faced at the very outset: because of the coupled nonhomogeneous boundary conditions involving the

linearized Navier-Stokes equations, it is not possible to use the classical, by now standard idea of N-S problems

with no-slip boundary conditions to eliminate the pressure by applying the Leray projector on the equation

from L Ω2( ) onto the classical space ∈ = ⋅ = ∂f L f f νΩ : div 0 in Ω ; 0 on Ωd
f f

2{ ( ( )) } [47, p. 7]. Accordingly, [12]

introduces an entirely new idea that is inspired by boundary control theory. This is explained below in the

context of the problem under present consideration.

We thus consider the following fluid-plate PDE model in solution variables

= ( )u u t x u t x u t x, , , , …, , the velocity fieldd1 2[ ( ) ( ) ( )]

and

= ( )w w t x w t x w t x, , , , …, , the structural displacement field ,d1 2[ ( ) ( ) ( )]

while the scalar-valued p denotes the pressure:

⎧

⎨
⎪

⎩
⎪

− + ∇ = × ≡ ( )

= ( )

− − + = × ≡ ( )

u u p T Q

u Q

w w w bw T Q

PDE

Δ 0 in 0, Ω ; A.1a

div 0 in ; A.1b

Δ Δ 0 in 0, Ω ; A.1c

t f f

f

tt t s s

( )

( ]

( ]

⎧

⎨
⎪

⎩
⎪

= × ≡ ( )

= × ≡ ( )
∂
∂

−
∂ +

∂
= ( )

u T Σ

u w T Σ

u

ν

w w

ν
pν Σ

BC

0 on 0, Γ ; A.1d

on 0, Γ ; A.1e

on ; A.1f

f f

t s s

t
s

Γf

( )

∣ ( ]

( ]

( )

( ) ⋅ ⋅ ⋅ =u w w u w wIC 0, , 0, , 0, , , on Ω.t 0 0 1[ ( ) ( ) ( )] [ ] (A.1g)

The constant b in (A1.c) will take up either the value =b 0 or else the value =b 1, as in the article. Accordingly,

the space of well-posedness is taken to be the finite energy space:

⎧
⎨
⎩

∕ × × = ( )

× × = ( )

H L H b

H L H b

Ω Ω ˜ , 0; A.2a

Ω Ω ˜ , 1, A.2b
b

s
d

s
d

f

s
d

s
d

f

1 2

1 2

�

�
( ( ) ) ( ( ))

( ( )) ( ( ))

for the variable u w w, , t[ ], where

= ∈ ≡ ⋅ ≡H f L f f ν˜ Ω : div 0 in Ω ; 0 on Γ .f f
d

f f2{ ( ( )) } (A.3)

The norm-including inner product on b� is given in (1.2a)–(1.2b).

Abstract model for the free dynamics (A.1a)–(A.1g)

The previous article [12] (as well as paper [48], where the d-dimensional wave equation (A1.c) is replaced by

the system of dynamic elasticity) eliminated the pressure by a completely different strategy. Following the idea

of [49–52] (see also [4]), [12,48] identify a suitable elliptic problem for the pressure p, to be solved for p in terms

of u w, and wt .
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Elimination of p, by expressing p in terms of u, w, and wt. A key idea of [11,12,48] is that the pressure p t x,( )

solves the following elliptic problem on Ωf in x , for each t:

⎧

⎨
⎪⎪

⎩
⎪
⎪

≡ × ≡ ( )

=
∂
∂

⋅ −
∂ +

∂
⋅ × ≡ ( )

∂
∂

= ⋅ × ≡ ( )

p T Q

p
u

ν
ν

w w

ν
ν T Σ

p

ν
u ν T Σ

Δ 0 in 0, Ω ; A.4a

on 0, Γ ; A.4b

Δ on 0, Γ . A.4c

f f

t
s s

f f

( ]

( )
( ]

( ]

In fact, (A.4a) is obtained by taking the divergence div across equation (A.1a), and using div ≡u 0t inQf by

(A.1b), as well as div = ≡u uΔ Δdiv 0 inQf . Next, the B.C. (A.4b) on Γs is obtained by taking the inner product of

equation (A.1e) with ν. Finally, the B.C. (A.4c) on Γf is obtained by taking the inner product of equation (A.1a)

restricted on Γf , with ν, using ≡u 0Γf∣ by (A.1d), so that on ∇ ⋅ = ∂
∂p νΓ :f
p

ν Γf∣ . This then results in (A.4c).

Explicit solution of problem (A) for p. We set

= +p p p Qin ,f1 2 (A.5)

where p1 and p2 solve the following problems:

⎧

⎨

⎪
⎪

⎩

⎪
⎪

≡

≡
∂
∂

⋅ −
∂ +

∂
⋅

∂
∂

≡

⎧

⎨
⎪⎪

⎩
⎪⎪

≡ ( )

≡ ( )
∂
∂

≡ ⋅ ( )

p Q

p
u

ν
ν

w w

ν
ν Σ

p

ν
Σ

p Q

p Σ

p

ν
u ν Σ

Δ 0 in ;

on ;

0 on ;

Δ 0 in ; A.6a

0 on ; A.6b

Δ on . A.6c

f

t
s

Σ
f

f

s

Σ
f

1

1

1

2

2

2

f
f

( )

Accordingly, define the following “Dirichlet" and “Neumann" maps Ds and Nf :

≡ ⟺

⎧

⎨
⎪

⎩
⎪

≡

=
∂
∂

≡
≡ ⟺

⎧

⎨
⎪

⎩
⎪

≡ ( )
≡ ( )

∂
∂

≡ ( )
h D g

h Q

h g

h

ν

ψ N μ

ψ

ψ

ψ

ν
μ

Δ 0 in ;

on Γ ;

0 on Γ ;

Δ 0 in Γ ; A.7a

0 on Γ ; A.7b

on Γ . A.7c

s

f

s

f

f

s

s

f

Elliptic theory gives that Ds and Nf are well defined and possess the following regularity [43]:

→ ∈+D H H r: continuous Γ Ω , ,s
r

s
r

f
1
2 �( ) ( ) (A.8a)

→ ∈+N H H r: continuous Γ Ω , .f
r

f
r

f
3
2 �( ) ( ) (A.8b)

Accordingly, in view of problems (A.7), we write the solutions p1 and p2 in (A.6), finally p in (A.5), as follows:

=
⎡

⎣⎢
⎛
⎝
∂
∂

⋅ −
∂ +

∂
⋅ ⎞

⎠
⎤

⎦⎥
= ⋅p D

u

ν
ν

w w

ν
ν p N u ν Q; Δ in ,s

t

Σ
f Σ f1 2

s

f

( )
[( ) ] (A.9)

= + = + +p p p w w uΠ Πt1 2 1 2( ) ( ) (A.10a)

=
⎡

⎣⎢
⎛
⎝
∂
∂

⋅ −
∂ +

∂
⋅ ⎞

⎠
⎤

⎦⎥
+ ⋅D

u

ν
ν

w w

ν
ν N u ν QΔ in ,s

t

Σ
f Σ f

s

f

( )
[( ) ] (A.10b)

where

+ = −
⎡

⎣⎢
⎛
⎝
∂ +

∂
⋅ ⎞

⎠
⎤

⎦⎥
w w D

w w

ν
νΠ ,t s

t

Σ
1

s

( )
( )

(A.11a)

=
⎡
⎣⎢
⎛
⎝
∂
∂

⋅ ⎞
⎠

⎤
⎦⎥
+ ⋅u D

u

ν
ν N u ν QΠ Δ in ,s

Σ
f Σ f2

s

f
( ) [( ) ] (A.11b)
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hence via (A.10a) and (A.10b):

∇ = − + − = ∇ + + ∇p G w w G u w w uΠ Πt t1 2 1 2( ) ( ) ( ) ( ) (A.12a)

= ∇
⎧
⎨
⎩

⎡

⎣⎢
⎛
⎝
∂
∂

⋅ −
∂ +

∂
⋅ ⎞

⎠
⎤

⎦⎥
⎫
⎬
⎭
+ ∇ ⋅D

u

ν
ν

w w

ν
ν N u ν QΔ in ;s

t

Σ
f Σ f

s

f

( )
( [( ) ]) (A.12b)

where

+ = −∇ + = ∇
⎧
⎨
⎩

⎡

⎣⎢
⎛
⎝
∂ +

∂
⋅ ⎞

⎠
⎤

⎦⎥
⎫
⎬
⎭

G w w w w D
w w

ν
ν QΠ in ,t t s

t

Σ
f1 1

s

( ) ( )
( )

(A.13)

= −∇ = ∇
⎧
⎨
⎩

⎡
⎣⎢
⎛
⎝
∂
∂

⋅ ⎞
⎠

⎤
⎦⎥
+ ⋅

⎫
⎬
⎭

G w u D
u

ν
ν N u ν QΠ Δ in ,s

Σ
f Σ f2 2

s

f
( ) [( ) ] (A.14)

The linear maps G1 and G2 in (A.12)–(A.14) are introduced mostly for notational convenience. Equations

(A.10a), (A.10b), and (A.12) have managed to eliminate the pressure p, and, more pertinently, its gradient ∇p, by
expressing them in terms of the three key variables: the fluid velocity field u and the wave solution w w, t{ }. By

using (A.12a), we accordingly rewrite the original model (A.1a)–(A.1g) as follows:

⎧

⎨
⎪

⎩⎪

= + + + ( )

= ( )

= + − ( )

u u G w w G u Q

u Q

w w w bw Q

PDE

Δ in ; A.15a

div 0 in ; A.15b

Δ Δ in ; A.15c

t t f

f

tt t s

1 2

( )

( )

⎧
⎨
⎩

= ( )
= ( )

u Σ

u w Σ
BC

0 on ; A.15d

on ; A.15e

f

t s

Γf
( )

∣

( ) ⋅ ⋅ ⋅ =u w w u w wIC 0, , 0, , 0, , , on Ω,t 0 0 1[ ( ) ( ) ( )] [ ] (A.15f)

only in terms of u w, , and wt , where the pressure p has been eliminated, as desired.

Abstract model of system (A.15). The abstract model of system (A.15) is given by

⎡

⎣⎢
⎤

⎦⎥
=

⎡

⎣
⎢ −

+

⎤

⎦
⎥
⎡

⎣⎢
⎤

⎦⎥
=

⎡

⎣⎢
⎤

⎦⎥t

w
w
u

I

bI
G G G

w
w
u

w
w
u

d

d

0 0
Δ Δ 0

Δ
t t b t

1 2 2

� (A.16a)

=
⎡

⎣
⎢
⎢

+ −
+ + +

⎤

⎦
⎥
⎥

w

w w bw

u G w w G u

Δ

Δ
,

t

t

t1 2

( )

( )

(A.16b)

= ∈w w u w w u0 , 0 , 0 , , ,t b0 1 0 �[ ( ) ( ) ( )] [ ] (A.16c)

where the matrix form for � on the L.H.S of (A.16a) is formal and means the action described in (A.16b).

The operator b� . Recalling (A.13) and (A.14) prompts the introduction of the operator

≡
⎡

⎣
⎢
⎢
− −

+

⎤

⎦
⎥
⎥

I

ρ

G G G

0 0

Δ Δ 0

Δ

2 2

1 2 3

� (A.17a)

=
⎡

⎣
⎢
⎢∇ ⋅ ⋅

⎤

⎦
⎥
⎥

I

ρ

D ν a a

0 0

Δ Δ 0

Δ

,

s Σ

2 2

23 33s
{ [(( ) ) ]}

(A.17b)

= − ∇
⎧
⎨
⎩

⎡
⎣⎢
⎛
⎝
∂⋅
∂

⋅ ⎞
⎠
⎤
⎦⎥
+ ⋅ ⋅

⎫
⎬
⎭

a D
ν

ν N νΔ Δ ,s f33
Γ

Γ
s

f
[(( ) ) ] (A.17c)

⊃ → .b b b� � � �( ) (A.17d)
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The finite energy space b� of well-posedness for problems (A.1a)–(A.1g), or its abstract version

(A.16)–(A.17) is defined in (A). The domain b� �( ) of b� will be identified below. To this end, we find it

convenient to introduce a function π , whose indicated regularity was ascertained in [12].

The scalar harmonic function π . Henceforth, with reference to (A.17b), for ∈v v f, ,1 2 � �[ ] ( ), we introduce

the harmonic function =π π v v f, ,1 2( ):

≡
⎡

⎣⎢
⎛
⎝
∂
∂

⋅ ⎞
⎠
⎤

⎦⎥
+ ⋅ −

⎡

⎣⎢
⎛
⎝
∂ +

∂
⋅ ⎞

⎠
⎤

⎦⎥
∈π D

f

ν
ν N f ν D

v v

ν
ν LΔ Ωs f s f

Γ
Γ

1 2

Γ
2

s

f

s

[( ) ]
( )

( ) (A.18)

(compare with (A.10b) for the dynamic problem). According to the definition of the Dirichlet map Ds and

Neumann map Nf given in (A.7a)–(A.7c), =π π v v f, ,1 2( ) in (A.18) can be equivalently given as the solution of

the following elliptic problem (compare with (A.4a)–(A.4c) for the dynamic problem):

⎧

⎨
⎪⎪

⎩
⎪
⎪

≡ ( )

=
∂
∂

⋅ −
∂ +

∂
⋅ ∈ ( )

∂
∂

= ⋅ ∈ ( )

−

−

π

π
f

ν
ν

v v

ν
ν H

π

ν
f ν H

Δ 0 in Ω ; A.19a

Γ on Γ ; A.19b
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It then follows from b� in (A.17b) and (A.18) via the function π defined in (A.18) that
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