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Plants are remarkable in their ability to adapt to changing environments, with

receptor-like kinases (RLKs) playing a pivotal role in perceiving and transmitting

environmental cues into cellular responses. Despite extensive research on RLKs

from the plant kingdom, the function and activity of many kinases, i.e., their

substrates or “clients”, remain uncharted. To validate a novel client prediction

workflow and learn more about an important RLK, this study focuses on P2K1

(DORN1), which acts as a receptor for extracellular ATP (eATP), playing a crucial

role in plant stress resistance and immunity. We designed a Kinase-Client (KiC)

assay library of 225 synthetic peptides, incorporating previously identified P2K

phosphorylated peptides and novel predictions from a deep-learning

phosphorylation site prediction model (MUsite) and a trained hidden Markov

model (HMM) based tool, HMMER. Screening the library against purified P2K1

cytosolic domain (CD), we identified 46 putative substrates, including 34 novel

clients, 27 of which may be novel peptides, not previously identified

experimentally. Gene Ontology (GO) analysis among phosphopeptide

candidates revealed proteins associated with important biological processes in

metabolism, structure development, and response to stress, as well as molecular

functions of kinase activity, catalytic activity, and transferase activity. We offer

selection criteria for efficient further in vivo experiments to confirm these

discoveries. This approach not only expands our knowledge of P2K1’s

substrates and functions but also highlights effective prediction algorithms for

identifying additional potential substrates. Overall, the results support use of the

KiC assay as a valuable tool in unraveling the complexities of plant

phosphorylation and provide a foundation for predicting the phosphorylation

landscape of plant species based on peptide library results.
KEYWORDS

protein kinase, in vitro screening, deep learning, phosphopeptides, P2K1,
extracellular ATP
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Introduction

Plants, as sessile organisms, exhibit a remarkable ability to adapt

to their changing environments. A key to their adaptability is the

intricate network of signaling pathways that underlie a wide range

of physiological responses. Among the numerous signaling

molecules and receptors involved, membrane-spanning receptor-

like kinases (RLKs) stand out as integral components in perceiving

and transducing environmental cues into cellular responses due to

their greatly expanded numbers in plant genomes relative to those

of animals (Shiu and Bleecker, 2001; Choi et al., 2014). Numerous

RLKs have been found to have critical functions in innate (cellular)

immunity and coordination of the complex processes of

multicellular development (Lin et al., 2013; Tang et al., 2017).

However, the function, including receptor ligands and

downstream signaling clients, for most RLKs remains uncharted

within the realm of plant biology.

In plants and animals, extracellular ATP (eATP) is released during

tissue damage or in response to specific elicitation, including

pathogens (Burnstock and Knight, 2004), and acts as a bridge

between the extracellular environment and intracellular signaling

pathways. By binding to various ligands, including peptides,

proteins, and small molecules, RLKs can activate cascades of

downstream events that are essential for growth, development, and

adaptation to environmental changes (Choi et al., 2014). A member of

the lectin-RLK subfamily, DORN1 (Does not Respond to Nucleotides

1), also known as P2K1 to align with animal purino-receptor

nomenclature, was first identified in plants (Choi et al., 2014). This

key receptor recognizes eATP and plays a variety of roles in plant

stress resistance and is recognized as the primary eATP receptor in

Arabidopsis (Choi et al., 2014). In addition, P2K1 induces an innate

immunity response against the oomycete pathogens, Phytophthora

brassicae (Bouwmeester et al., 2011), Phytophthora infestans

(Bouwmeester et al., 2014), and bacterial pathogen Pseudomonas

syringae DC3000 (Balague et al., 2017). Another RLK, P2K2 may

form a heteromeric complex with P2K1, especially under higher stress

conditions where its expression is induced, potentially enhancing the

specificity and intensity of eATP cellular responses (Pham et al., 2020).

One strategy to uncover the functions of RLKs is

phosphoproteomic analysis, which catalogs the in vivo

phosphorylation of proteins in response to specific stimuli.

However, distinguishing direct and indirect phosphorylation events

makes it difficult to pinpoint RLK-specific responses accurately. The

Kinase–Client (KiC) assay addresses the challenge of identifying

likely clients for RLKs in a more direct manner. Purified kinases

are exposed to a synthetic peptide library and resulting

phosphorylated peptides detected by liquid chromatography (LC)-

tandemMS (MS/MS) analysis (Huang and Thelen, 2012). By tracking

spectral counts of phosphorylated and unphosphorylated peptides,

this approach directly quantifies kinase activity and provides superior

signal-to-noise ratios, sensitivity, and specificity compared to other

large-scale methods for studying kinase substrates (Xue and Tao,

2013). This method assumes that the amino acid sequence

surrounding phosphorylation sites plays a crucial role in

determining the substrate specificity of protein kinases (Huang and

Thelen, 2012). Moreover, it is a valuable technique to discriminate
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phosphorylation site ambiguity on phosphopeptides, especially in

cases where multiple serine, threonine, or tyrosine (S/T/Y) residues

are present in a single peptide (Ahsan et al., 2013). Mass spectrometry

has been widely used to screen kinase inhibitors and monitor kinase

activity because of its sensitive and accurate nature (Gao and Leary,

2003; Zhang et al., 2009). Also, MS-based approaches have been

shown to be a useful tool in the study of kinase-client protein

interactions, and the usage of spectral counting has been previously

utilized to quantify phosphopeptides by establishing the in vitro

kinetic constants for kinases (Huang et al., 2010).

Over the last few years, several phosphopeptide candidates

identified by KiC assay screening with P2K1 have been

experimentally confirmed. In plant innate immunity, the protein

modification S-acylation of the P2K1 receptor by Arabidopsis PAT5

and PAT9 affects the temporal dynamics of its activity, influencing

the immune response by regulating receptor phosphorylation and

degradation in response to external stimuli (Chen et al., 2021).

Another P2K1 kinase client identified through KiC Assay

screening, revealed that eATP also elicits P2K1-mediated RBOHD

phosphorylation to regulate stomatal aperture with important

implications for regulating plant photosynthesis, water homeostasis,

pathogen resistance, and ultimately yield (Chen et al., 2017).

Previous KiC assay peptide libraries were designed based on

experimentally observed phosphopeptides (Ahsan et al., 2013), as

this is a rational approach for designing a library given the

significant expense of synthetic peptides. However, experimental

phosphopeptide catalogs for any plant species are likely incomplete

for both technical and biological reasons, e.g. transient clients that

do not accumulate in vivo. Advances in in silico prediction methods

can be used to predict additional kinase clients beyond the

limitations of current datasets and cost-limited peptide libraries.

Various methodologies, including support vector machines (Kim

et al., 2004), neural networks (Blom et al., 2004), and conditional

random field Models (Dang et al., 2008), coupled with bootstrap

aggregation procedures and integrating sequence cluster

information can be used to predict phosphorylation sites (Gao

et al., 2010). In the training, the combination of protein sequences

and functional features (Song et al., 2017), high-throughput

proteomic-scale predictions (Li et al., 2018), position-weight

determination or scoring-matrix optimization (Wang et al., 2020),

and machine learning-based approaches (Ma et al., 2023) have been

employed for predicting kinase-specific substrates and associated

phosphorylation sites. MUsite is another tool that employs a

machine-learning approach and integrates diverse factors,

including local sequence similarities, protein disorder scores,

amino acid frequencies, and is trained on phosphoproteomics

data from multiple organisms (Gao et al., 2010; Yao et al., 2012).

These strategies make it possible to choose among peptide

candidates, which saves money and time during the experimental

phase. Additionally, the diversity of the library can be increased by

the addition of in silico predictions. Furthermore, prediction

methods typically provide confidence scores, ranking peptide

candidates and increasing the chances of finding new and

physiologically meaningful phosphorylation events.

Here, we present an innovative KiC assay screen that

underscores the significance of prediction tools. By leveraging
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HMMER (Potter et al., 2018) and MUsite (Gao et al., 2010; Yao

et al., 2012), combined with a robust foundation of previously

experimentally validated phosphopeptides, we generated a 225-

peptide library for in vitro P2K screening. Through the

implementation of an optimized screening workflow utilizing a

purified P2K1-CD enzyme, we successfully identified 46 substrates

for P2K1, including 34 novel clients, 27 of which are not present in a

large experimental database. This not only showcases the efficacy of

prediction methods but also highlights crucial steps for further

phosphopeptide candidate selection criteria.
Materials and methods

Kinase assay and synthetic peptide
library preparation

We generated a peptide library of 225 peptides as candidate

substrates for P2Ks from three sources – previous experiments,

sequence homology based on a hidden Markov model (HMM),
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and a machine learning algorithm (Figure 1A). First, the

interacting peptides with P2Ks on an initial KiC assay library were

obtained and peptides with phosphorylation sites at least five amino

acids away from either end were kept. This resulted in 405 peptides

(177 and 228 from P2K1 and P2K2, respectively). Then similar or

duplicated peptides (>0.6 sequence similarity) were removed, and 315

peptides in total remained. These peptides were reformatted into a

20-amino acid length, with phosphorylation sites located at the

center. Furthermore, we used the 315 peptides to build profiles to

train an HMM (Potter et al., 2018) and used the HMM to search the

Arabidopsis proteome. The search yielded 81 candidate peptides with

an E-value output < 0.001. (3) We also used the 315 peptides to train

a deep-learning phosphorylation site prediction model MUsite (Gao

et al., 2010; Yao et al., 2012) and used the model to search against the

Arabidopsis proteome. These 87 possible candidate peptides were

obtained with a prediction score > 0.8. In addition, we randomly

selected 57 peptides out of the 315 peptides as positive controls to

gauge the performance of the in silico predictions against previously

identified phosphosites, providing insight into their accuracy. The

final peptide library was composed of 225 peptides (81 + 87 + 57;
A B

DC

FIGURE 1

Peptide library generation pipeline for substrates of receptor-like kinases in plants and library gene ontology (GO) enrichment characteristics. (A) By
formatting and filtering peptides from the previously identified peptide substrates, only peptides with phosphorylation sites at least 5 amino acids
away from either end were kept, and similar or duplicated peptides were removed. Proteins containing these peptides were identified and peptides
were kept with a length of 20 aa by either truncating or expanding the original peptides. Together, 315 peptides were used to build sequence
profiles to train HMMER and MUsite. The trained models were searched against the whole Arabidopsis proteome to predict new candidates for the
substrates of P2Ks. In total, 225 high-confidence potential candidates were designed after all filtration criteria. (B) through (D) GO enrichment of the
proteins corresponding to the 225-peptide library. Only gene ontology classes that had higher than 1% abundance among the 225-peptide library
are shown for (B) GO Biological Process, (C) GO Molecular Function, and (D) GO Cellular Component.
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Supplementary Table 1). Peptides were custom synthesized by

GenScript using standard solid-phase peptide synthesis and

purified by high-performance liquid chromatography.

Kinase activity assays were conducted as previously described

(Cho et al., 2022). Briefly, the cDNA of the P2K1 cytosolic domain

(CD) and the kinase-dead version of GST-P2K1-CD (D572N; p2k1-

1-CD) were ligated into pGEX-5X-1 resulting in N-terminal GST-

tag fusion constructs (Choi et al., 2014). Kinase activity was

measured by incubating 5 mg of purified GST-P2K1-CD and

GST-p2k1-1-CD with 2 mg Myelin basic protein (MBP) as

substrate in a 30 mL reaction [final conditions: 20 mM Tris-HCl

pH 7.5, 10 mM MgCl2, 5 mM EGTA, 100 mM NaCl, and 1 mM

DTT, 2 mMATP, and 10 mCi radioactive [g-32P] ATP, DMSO (final

25% or 10%), DMF (final 25% or 10%), acetonitrile (final 40% or

20%)] for 1.5 hours at 30°C. The kinase reactions were stopped by

boiling with 5x SDS loading buffer for 5 minutes. After

electrophoresis in 12% SDS-PAGE, the gel was exposed for 12

hours for autoradiography. The phosphorylation images were

obtained by a Typhoon FLA 9000 phosphor imager (GE

Healthcare) (Figure 2). Proteins within the gel were visualized

with Coomassie brilliant blue and GST was used as negative control.
In vitro Kinase–Client assay

Each synthetic peptide was individually resuspended in

dimethyl sulfoxide (DMSO, analytical grade ≥99.9%) to a 5 mM

concentration. DMSO inhibition of kinase activity had been

previously determined to be negligible (Figure 2). All samples

were kept on ice throughout the resuspension protocol. After
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solubilization was complete, 10 µL aliquots of each synthetic

peptide were transferred to a new Eppendorf to create the 225-

peptide pool. The final concentration of each peptide in the

225-peptide pool was 22.2 µM and 10 µL single-use aliquots were

prepared and stored at -80°C before use. The 225-peptide library

was initially analyzed in its neat form to ensure uniform detection of

expected peptides, and later, the in vitro KiC assay reaction was

performed. Testing of two different buffer types, Tris and HEPES,

with purified P2K1-CD, revealed that Tris supported higher

phosphorylation efficiency (data not shown). Subsequently,

substrate concentration and enzyme-to-substrate ratio were

further adjusted to provide optimal phosphorylation efficiency per

KiC assay reaction (Supplementary Table 2). Thus, a 40 µL KiC assay

reaction mixture (final volume) was prepared with kinase buffer (20

mM Tris HCl, pH 7.5, 10 mMMgCl2, 5 mM EGTA, 100 mM NaCl,

and 1 mM DTT) to ensure optimal enzyme activity. 2 mM ATP was

added only to “+ATP” samples. Purified P2K1-CD was quantified by

Bradford assay with bovine gamma globulin as standard. The KiC

assay reaction was performed at a 1: 1 (enzyme: substrate ratio)

concentration by adding 14.72 µg of each CD, reducing peptide usage

by 8-fold compared to previous studies (Huang and Thelen, 2012).

The 1:1 ratio was chosen as it increased the number of

phosphopeptides identified with a consistent overlap among the

previously compared ratios (1:4, 1:2, 1:1) (Supplementary Table 2).

All optimizations were based on 18 samples. Reactions were

incubated for 90 min at 30°C -with gentle shaking at 300 rpm.

Reactions were quenched by adding an equal volume (40 µL) of 1%

formic acid in 99% acetonitrile, which diluted the peptide pool

concentration to 0.18 µg µL-1 (84.4 µM). Quenched reactions were

stored at −20°C. No sample clean-up step was performed before LC-
A B

FIGURE 2

P2K1-CD shows auto- and trans-phosphorylation activities on myelin basic protein (MBP), and the phosphorylation activities are affected by solvents
commonly used to solubilize synthetic peptides. (A) Incubation of MBP with GST-P2K1- cytosolic domain (CD), GST-p2k1-1-CD (kinase dead), or
GST in an in vitro kinase assay. Autophosphorylation and trans-phosphorylation were measured by incorporation of g-[32 P]-ATP. GST was used as a
negative control. Protein content was visualized by Coomassie brilliant blue (CBB) staining. (B) Incubation of MBP protein with GST-P2K1-CD
cytosolic domain in different solvents [DMSO (final 25%, 10%), DMF (final 25%, 10%), acetonitrile (final 40%, 20%)]. Autophosphorylation and trans-
phosphorylation were measured upon addition of g-[32 P]-ATP.
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MS/MS analysis. Instead, the usage of a trap column and a longer

sample loading step to protect the analytical column were adopted.
Mass spectrometry analysis

Data acquisition parameters were optimized to maximize

peptide coverage and reproducibility among injections. Peptides

were separated on a Finnigan Surveyor liquid chromatography (LC)

system at 125 mL/min on a split-flow design over a 90-min gradient.

Mobile phases consisted of 0.1% formic acid in water (phase A) and

0.1% formic acid in acetonitrile (phase B). Acetonitrile

concentration was initially at 5% for 5 min, followed by a

constant increase from 5% to 50% phase B over 75 min gradient,

gradient to 95% phase B in 5 min, and finally, 5% phase B for 5 min.

Data acquisition was performed on an LTQ Orbitrap XL ETD mass

spectrometer (Thermo Fisher, San Jose, CA) via data-dependent

acquisition (DDA), with the top 11 most abundant ions from the

precursor scan selected for subsequent fragmentation. Nanospray

ionization source parameter settings were: ion spray voltage (kV),

1.90; capillary temperature (°C), 200; capillary voltage (v), 40; and

tube lens (v), 150. Precursor masses were scanned with the analyzer

set to FTMS, mass range set to normal, 60000 resolution, positive

mode, and centroid data type with a scan range of 200–2000 m/z.

Tryptic peptides were fragmented using collision-induced

dissociation (CID) with settings as follows: collision energy 35

kV, default charge state +2, isolation width 2.0 m/z, activation

time of 30 ms, and minimal signal required of 500. Charge-state

screening mode was enabled and unassigned charge states or charge

states of +1 were not analyzed. Dynamic exclusion was enabled with

a repeat count of 1, repeat duration of 30 s, exclusion list size 100,

and exclusion duration of 30 s. 6.94 µL (1.25 µg) of each sample was

initially loaded onto a OPTI-TRAP™ cartridge (Optimize

Technologies, Oregon City, OR), 5 µL, 0.5mm x 1.3mm, and

later, separated over a self-packed Analytical column (20 cm, 75

µm internal diameter, HxSil 5µm C18 matrix).
Data processing and interpretation

Individual searches of raw files were performed on Proteome

Discoverer 2.4 against the 225-peptide FASTA file. Spectra were

selected based on their MS1 precursor with minimum and

maximum precursor masses of 350 and 5000 Da, respectively.

High-confidence identifications were achieved with the Sequest

HT search algorithm with a precursor mass tolerance of 10 ppm

and a fragment mass tolerance of 0.6 Da. A maximum of four

dynamic modifications were allowed for a single peptide, as follows:

oxidation of methionine (+15.995 Da), and phosphorylation of S-,

T- and Y-residues (+79.966 Da). As a peptide-spectrum match

(PSM) validator, Percolator (Käll et al., 2007) was used with an FDR

≤0.01 target for high confidence identifications and ≤0.05 FDR for

medium confidence identifications. Precise phosphorylation site

determination was achieved with the IMP – ptmRS tool.

Filtration criteria were established based on false-positive

identification results from negative-control samples. P2K wild type
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and dead version CDs were purified and screened against the 225-

peptide library under different enzyme: substrate ratios and the

presence or absence of ATP (Supplementary Table 3). Based upon

phosphopeptide identifications across negative control samples, the

following criteria were established for valid phosphopeptide

identification, and therefore, all phosphopeptide identifications from

the WT +ATP condition that did not meet these criteria were

excluded from all analyses, as follows: 1) PSM counts ≥ 2; 2) Xcorr

> 2.04; and 3) Phosphorylation site successfully elucidated by the

IMP-ptmRS tool. Peptide 154 was considered an outlier and excluded

from all analyses as its phosphorylated form was identified across all

samples, which might be attributed to the peptide’s elevated number

of S-residues posing additional challenges for the search algorithm to

distinguish between the phosphorylated and non-phosphorylated

forms. Results after the final filtration of the P2K1-CD reaction

with the 225-peptide library are shown in Supplementary Table 4.

Annotated MS/MS spectra for the 46 phosphopeptide candidates

are provided in Supplementary Table 5. The mass spectrometry

proteomics data have been deposited to the ProteomeXchange

Consortium via the PRIDE (Perez-Riverol et al., 2022) partner

repository with the dataset identifier PXD047713.
Peptide analysis

Annotation enrichment analysis of GO Biological Process,

Molecular Function, and Cellular Component terms among the

proteins that contain peptides was performed in the TAIR website

(Berardini et al., 2004). Subcellular localization predictions of the

detected phosphopeptides were generated through the SUBA4

database, which contains information on both the computationally

predicted and experimentally documented subcellular localization of

many Arabidopsis proteins (Hooper et al., 2017). In this database, a

confidence score for each distinct compartment or region is generated

with experimentally determined localizations (either mass-spec or

fluorescent protein-based data) weighted five times more than in

silico predictions. The highest subcellular score for each gene was

selected as its final subcellular localization (Supplementary Table 6).

For motif analysis, a custom Python script was employed to

center-align 225 peptide datasets around their phosphorylation

sites, ensuring a uniform representation for downstream analyses.

To refine our dataset and eliminate redundancy that might obscure

motif detection, we utilized the CD-HIT tool (Fu et al., 2012) with a

90% identity threshold, which clusters sequences based on their

similarity and selects a representative peptide from each cluster.

This step ensured that the subsequent motif analysis was conducted

on a non-redundant set of sequences, enhancing the accuracy and

reliability of the motif prediction. After redundancy removal,

MEME (Bailey et al., 2009) software was employed to detect

motifs among phosphopeptide candidate sequences. The MEME

algorithm was configured with an amino acid window ≤5 and <0.05

p-value to identify statistically significant motif patterns. Lastly,

phosphopeptide candidates were searched against experimental

phosphoproteomic databases such as P3DB (Gao et al., 2009) and

PhosPhAt (Heazlewood et al., 2008) using a BLASTP search with an

identity threshold of 100% (Supplementary Table 7).
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Results

To experimentally test algorithms for predicting protein kinase

clients, a 225-member peptide library was designed based upon

previous experimentally identified phosphorylated peptides and in

silico predicted phosphorylated peptides using both MUsite and

HMMER tools. All peptides present in the library represent

polypeptide sequences of 20 amino acids encoded within the

Arabidopsis proteome. The 225-peptide library represents a

diversity of biological processes (BP), molecular functions, and

cellular components (CC) (Figure 1). Salient to signal transduction,

“kinase activity” and “nucleus” were the most enriched biological

process and cellular component GO-terms. Prior to screening, P2K1-

CD phosphorylation activity was confirmed (Figure 2A). Confident

identification of phosphopeptide candidates with the in vitro KiC

assay consists of steps: 1) kinase purification and peptide library

preparation; 2) in vitro screening with specific reagents and

concentrations; 3) mass spectrometry data acquisition; and 4)

database processing and post analysis to assure high-confidence

identifications (Figure 3).

After reaction condition optimization, which included enzyme-

substrate ratio optimization as well as establishing filtration criteria

based upon negative controls (Supplementary Tables 2, 3), the

results of screening of the P2K1-CD against the 225-peptide library
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are shown in Figure 4. The KiC assay with P2K1-CD enzyme was

highly specific, with no background peptides detected above the

threshold in negative controls, which included a non-active form of

P2K1 (p2k1-1-CD “dead” kinase version) (Choi et al., 2014) under

conditions with and without ATP, and the active form of P2K1-CD

(Wild type) under conditions without ATP (Figure 4A).

P2K1 phosphopeptide candidates included peptides from all

three sources: previous experimental result, HMM, and MUsite

(Figure 4B). Peptides from the two in silico prediction approaches

were evenly represented among new P2K1 phosphorylated peptides

(Figure 4B). The even distribution between the two methods suggests

that both performed well. High confidence phosphorylation events

can be specified by repeated detection of phosphorylated peptides

(spectral counts) and the ratio (stoichiometry) of phosphorylated to

unphosphorylated peptides detected (Figure 4C, Supplementary

Table 4). Generally, novel phosphopeptide candidates from MUsite

and HMM exhibited both higher stoichiometry and spectral counts

compared to previously identified phosphopeptides.

Gene ontology (GO) analysis of the proteins that correspond to

the peptides phosphorylated by P2K1-CD might indicate

mechanisms by which plants respond to wounding and

pathogens. In the category GO-molecular function, the most

abundant client candidates showed kinase activity (22%), catalytic

activity (19%), transferase activity (17%), and protein binding
FIGURE 3

Schematic representation of the main steps involved in the method development for the KiC assay experiment. (1) Kinase purification, activity test,
and synthetic peptide library pooling are performed prior to screening. (2) Optimal conditions are provided for in vitro KiC assay, which allows
phosphorylation events to happen. (3) Samples injection into a liquid chromatography system coupled to a mass spectrometer and MS/MS spectra
acquisition. (4) Database search and rigorous filtration are conducted to enable high-confidence phosphorylation and site determination
identifications. Figure was created with BioRender.com.
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(14%) (Figure 5A). Besides a general GO-biological process term

(other cellular processes, 20%), the majority of phosphopeptide

candidates were from proteins involved in metabolic processes

(17.5%), anatomical structure development (7.7%), and response

to stress (5%) and response to chemicals (5%) (Figure 5B). These

results reinforce that although the number of synthetic peptides

present in the library was limited, it is quite diverse covering

multiple vital classes of molecular functions and biological

processes for plant immunity.

Another important aspect of phosphopeptide candidate

characterization is cellular localization. The most abundant terms

represented by the protein candidates were plasma membrane

(26%) and nucleus (24%) with nearly all localizations being

supported with experimentally documented subcellular

localization according to SUBA4 database (Figure 5C,

Supplementary Table 6). Given the plasma membrane localization

of P2K1 (Choi et al., 2014), phosphopeptide candidates that are

localized to either the cytoplasm or plasma membrane would be

given higher priority for further in vivo confirmatory

interaction studies.

We identified a consensus phosphorylation motif among

candidate peptides from this experiment (Figure 5D). Twelve
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phosphopeptide candidates were present in this motif, and a

significant number also shows 100% stoichiometry as highlighted

in Figure 4C. Detailed information on all phosphopeptide

candidates present among the consensus motif can be found in

Supplementary Table 4. The consensus motif can provide an extra

piece of information on the target phosphopeptide selection

together with high stoichiometry identification, which can help

elucidate the motif recognition pattern by P2K1 kinase.

After screening against purified P2K1-CD, we identified a total

of 46 phosphopeptide candidates. Among them, 19 unique

phosphopeptide candidates were found in either P3DB or

PhosPhAt phosphoproteome databases (7). The identification of

19 unique phosphopeptide candidates in those phosphoproteome

databases serves as additional confirmation of their status as

phosphopeptides. Two phosphopeptide candidates identified in

the phosphoproteome databases were also associated with the

consensus motif generated in the current study (Peptides 31 and

63) (Supplementary Table 7). Including peptides that are partially

or fully documented in those repositories, 13 candidates were

identified in both databases. The remaining 27 phosphopeptide

candidates may be novel, as they might not have been identified

experimentally elsewhere.
A B

C

FIGURE 4

Screening results of P2K1-CD (DORN1) enzyme against a synthetic peptide library containing 225 peptides. (A) Number of phosphopeptide
identifications for P2K1-CD and GST-p2k1-1-CD across different experimental conditions with quality-control filters. The filtration criteria were as
follows: 1) Xcorr > 2.04, 2) PSM counts ≥ 2, and 3) phosphorylation site probability well defined. -ATP and +ATP indicate experimental conditions
without and with ATP, respectively. Each bar represents results from a single screening. (B) Phosphopeptide identification distribution according to
the 225-peptide library sources, which included both in silico prediction tools and previous in vitro KiC assay results. (C) Phosphopeptide
classification of P2K1 screening results based on stoichiometry and phosphopeptide spectrum count (Stoichiometry = (phosphopeptide spectrum
count)/(total peptide spectrum count) x 100). Phosphopeptides with more than one phosphorylation site are also shown in panel (C). Colors from
(B) and (C) panels represent the same peptide origin. Accession numbers of phosphopeptide candidates with the highest confidence identification
based on stoichiometry, PSM counts, subcellular localization, and motif analysis are highlighted in panel (C). Repeated accession numbers indicate
that the protein is represented by multiple phosphosites in the P2K1 KiC dataset. Additional information can be found in Supplementary Table 4.
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Discussion

We optimized the KiC assay and obtained results that compared

two kinase peptide substrate prediction algorithms while identifying

novel putative clients for P2K1. To achieve this, we adopted a strategy

that leveraged both experimental data and in silico methodologies.

Firstly, the design of the peptide library drew upon prior experimental

research that had identified and confirmed a substantial number of

phosphorylation events for P2K1 (Chen et al., 2017, 2021; Kim et al.,

2023). In addition to experimentally identified peptides, powerful in

silico prediction tools, such as MUsite and HMMER were employed

to determine the efficacy of bioinformatics for phosphorylation

prediction. These computational algorithms were employed to

explore the vast landscape of potential phosphorylation sites within

plant proteomes and to encompass the most relevant and biologically

significant phosphorylation sites.

The low background among the negative controls highlights the

high specificity of this technique as a tool for discovering and

exploring novel substrates for receptor-like kinases. Moreover, an

important strategy for enhancing confidence in phosphopeptide

candidates is phosphorylation stoichiometry. This quantitative

approach considers the number of phosphorylated spectra

matches for a particular phosphopeptide in comparison with the

total number of peptide spectrum matches, which also includes the

non-phosphorylated spectra. Therefore, it can provide additional
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evidence together with a higher number of PSMs on selecting

candidates for further in vivo studies. Although experimental

validation of clients identified through the KiC assay has been

high, further experiments would be needed to determine if the lower

confidence peptides are also biologically relevant.

The high rate of phosphorylation on peptides for which no

experimental phosphorylation has been detected might indicate

that despite decades of research, the experimental plant

phosphoproteome remains shallow. The high representation of

signaling-related processes for the proteins that contain the

detected peptides is consistent with expectations as shown in

Figure 5. This observation suggests some of the newly identified

peptides are biologically relevant. Moreover, the results provide

input into development of a bioinformatic pipeline for future

prediction of additional kinase substrates based on experimental

data that will always be inherently limited. The results of the 225-

peptide library analysis with P2K1-CD allow the expansion with a

higher number of predicted synthetic peptides based on the current

bioinformatic pipelines cited in this work, which has increased the

success rate compared to previous experiments (Ahsan et al., 2013).

Based on these results, applying in silico prediction methods and

machine learning algorithms, can ultimately develop a larger library

encompassing the most relevant phosphorylation sites.

Many studied RLKs have pivotal functions in cell-cell

communication and innate immunity. Notably, previous
A B

D

C

FIGURE 5

Functional categorization of P2K1 (DORN1) phosphorylated candidates after KiC assay screening with a 225-synthetic peptide library.
(A, B) Functional categorization by annotation for gene ontology (GO) Molecular Function and GO Biological Process among phosphopeptide
candidates, respectively. Only GO classes with >1% abundance among phosphopeptide candidates are shown. (C) Subcellular localization of novel clients
according to the SUBA4 database. Localizations include predicted and experimental subcellular localizations and the highest-scoring subcellular
localization prediction was selected. Complete details of all subcellular localization predictions can be found in the Supplementary Table 6. (D) Motif
analysis among candidate P2K1 peptides by the MEME algorithm at the 0.05 probability level. The red arrow indicates the motif phosphorylation site.
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incarnations of the KiC assay have already contributed valuable

insights into the functions of plant P2K RLKs (Chen et al., 2021;

Cho et al., 2022). Experimental validation of KiC assay

phosphopeptide candidates extends to other kinases. For instance,

it was confirmed that the PSY1R receptor interacts with SERK co-

receptor family members, undergoes autophosphorylation at

specific sites, and that phosphorylation of Ser951 stabilizes the

receptor’s inactive conformation (Oehlenschlæger et al., 2017). In

another study, SERK1 and SERK2 LRR-RLKs were found to act as

coregulators for the EMS1 kinase, enhancing its activity and playing

a crucial role in anther development (Li et al., 2017). Additionally,

ILK1 kinase was shown to bridge plant defense responses to

pathogen-associated molecular patterns (PAMPs) and potassium

ion homeostasis, contributing to immunity against bacterial

pathogens and being modulated by CML9, a negative regulator of

immunity (Brauer et al., 2016). Those confirmatory studies suggest

that P2K1 can indeed interact with a variety of substrates and be

involved in different biological processes within the plant as also

shown in our current data.

In the current study, the percentage of phosphopeptide

candidates from HMMER (21%) and MUsite (20%) exceeded the

percentage of identified phosphopeptides from a previous in vitro

screening with a 2k library (2%) (data not shown). One reason for

this could be that the synthetic peptides in this 225-peptide library

have all been standardized to 20-mers with the phosphosite

centered, whereas the previous 2k library was composed of tryptic

peptides. The 20-mer peptides might allow for partial secondary

structure formation and provide a more relevant binding site for

CD-peptide interactions. Another possibility is that the

computational methods were able to enrich the library with likely

P2K substrates. This result demonstrates the effectiveness of the KiC

Assay in identifying direct phosphorylation events, which can later

allow the identification of direct interaction partners at the protein

level. This comprehensive approach, blending experimental and

computational methodologies, underscores the success of

prediction algorithms in the KiC assay, paving the way for the

discovery of crucial insights into kinase-client interactions.

Beyond stoichiometry and the number of PSMs for high-

confidence phosphopeptide candidate identifications, subcellular

localization and motif analysis can also provide meaningful

insights. Subcellular localization is also an important step for

further investigation of in vivo interaction experiments. As a

member of the lectin-RLK subfamily, P2K1 carries an intracellular

kinase domain, a transmembrane domain, and an extracellular lectin

domain (Choi et al., 2014). Likewise, we prioritize phosphopeptide

candidates for further in vivo confirmation that show subcellular

localization at the plasmamembrane, cytosol, endoplasmic reticulum,

and nucleus, respectively. Those localizations are more likely to be

associated with P2K1 due to its residence within the plasma

membrane. However, it is quickly becoming clear that organelles

are intricately interconnected and that these physical relationships at

contact locations serve multiple crucial functions (Scorrano et al.,

2019), as well as exhibit dual or multiple localizations within

subcellular organelles, as previously reported (Hammani et al.,

2011; Teardo et al., 2011; Blanco et al., 2019). Therefore, as
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predictions of subcellular localization rely on both in silico

methods and experimental data, whenever available, they should be

regarded as tentative results.

A search for phosphorylation motifs in all of the reported

phosphopeptide candidates throughout the KiC assay screening

with P2K1-CD enzyme was carried out to indirectly infer P2K1

substrate affinity. Based on the phosphopeptide candidates

identified in this study, we were able to generate one significant

motif that may inform future in silico library design and

understanding of P2K1 function. Considering the above criteria,

two phosphopeptide candidates [Peptides 63 (from AT1G18670)

and 65 (from AT1G57700)] stand out as they presented 100%

phosphorylation stoichiometry, high number of PSM counts,

plasma membrane subcellular localization, and were part of the

consensus motif analysis. Interestingly, Peptide 63 was also

identified in the database PhosPhAt. On the other hand, two

phosphopeptide candidates [Peptides 70 (from AT3G01085) and

150 (from AT5G43310)], were not part of the consensus motif

analysis but also showed 100% stoichiometry and were localized in

the nucleus and plasma membrane, respectively. Notably, the

highlighted phosphopeptide candidates were exclusively identified

through the innovative in silico prediction tools employed in this

study, underscoring the significant potential of this approach.
Conclusion

This study demonstrates the robustness of the in vitro KiC assay

approach, which integrated advanced prediction algorithms and

efficient selection criteria. Also, it underscores the effectiveness of

contemporary prediction algorithms in accurately predicting

phosphorylation sites for orphan receptor-like kinases in plants.

Utilizing this approach, we successfully identified 46 potential

substrates for P2K1, notably uncovering 34 novel phosphopeptide

candidates with a high level of confidence, 27 of which may be novel

peptides not previously identified experimentally. Our findings

provide essential insights regarding selection criteria for subsequent

in vivo experiments aimed at confirming these discoveries. In doing

so, the KiC assay emerges as a pivotal resource, furthering our

understanding of the intricate realm of plant phosphorylation and

its multifaceted implications in plant biology.
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