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Plants are remarkable in their ability to adapt to changing environments, with
receptor-like kinases (RLKs) playing a pivotal role in perceiving and transmitting
environmental cues into cellular responses. Despite extensive research on RLKs
from the plant kingdom, the function and activity of many kinases, i.e., their
substrates or “clients”, remain uncharted. To validate a novel client prediction
workflow and learn more about an important RLK, this study focuses on P2K1
(DORNL1), which acts as a receptor for extracellular ATP (eATP), playing a crucial
role in plant stress resistance and immunity. We designed a Kinase-Client (KiC)
assay library of 225 synthetic peptides, incorporating previously identified P2K
phosphorylated peptides and novel predictions from a deep-learning
phosphorylation site prediction model (MUsite) and a trained hidden Markov
model (HMM) based tool, HMMER. Screening the library against purified P2K1
cytosolic domain (CD), we identified 46 putative substrates, including 34 novel
clients, 27 of which may be novel peptides, not previously identified
experimentally. Gene Ontology (GO) analysis among phosphopeptide
candidates revealed proteins associated with important biological processes in
metabolism, structure development, and response to stress, as well as molecular
functions of kinase activity, catalytic activity, and transferase activity. We offer
selection criteria for efficient further in vivo experiments to confirm these
discoveries. This approach not only expands our knowledge of P2K1's
substrates and functions but also highlights effective prediction algorithms for
identifying additional potential substrates. Overall, the results support use of the
KiC assay as a valuable tool in unraveling the complexities of plant
phosphorylation and provide a foundation for predicting the phosphorylation
landscape of plant species based on peptide library results.
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Introduction

Plants, as sessile organisms, exhibit a remarkable ability to adapt
to their changing environments. A key to their adaptability is the
intricate network of signaling pathways that underlie a wide range
of physiological responses. Among the numerous signaling
molecules and receptors involved, membrane-spanning receptor-
like kinases (RLKs) stand out as integral components in perceiving
and transducing environmental cues into cellular responses due to
their greatly expanded numbers in plant genomes relative to those
of animals (Shiu and Bleecker, 2001; Choi et al., 2014). Numerous
RLKSs have been found to have critical functions in innate (cellular)
immunity and coordination of the complex processes of
multicellular development (Lin et al., 2013; Tang et al, 2017).
However, the function, including receptor ligands and
downstream signaling clients, for most RLKs remains uncharted
within the realm of plant biology.

In plants and animals, extracellular ATP (eATP) is released during
tissue damage or in response to specific elicitation, including
pathogens (Burnstock and Knight, 2004), and acts as a bridge
between the extracellular environment and intracellular signaling
pathways. By binding to various ligands, including peptides,
proteins, and small molecules, RLKs can activate cascades of
downstream events that are essential for growth, development, and
adaptation to environmental changes (Choi et al., 2014). A member of
the lectin-RLK subfamily, DORN1 (Does not Respond to Nucleotides
1), also known as P2KI to align with animal purino-receptor
nomenclature, was first identified in plants (Choi et al., 2014). This
key receptor recognizes eATP and plays a variety of roles in plant
stress resistance and is recognized as the primary eATP receptor in
Arabidopsis (Choi et al., 2014). In addition, P2K1 induces an innate
immunity response against the oomycete pathogens, Phytophthora
brassicae (Bouwmeester et al., 2011), Phytophthora infestans
(Bouwmeester et al., 2014), and bacterial pathogen Pseudomonas
syringae DC3000 (Balague et al, 2017). Another RLK, P2K2 may
form a heteromeric complex with P2K1, especially under higher stress
conditions where its expression is induced, potentially enhancing the
specificity and intensity of eATP cellular responses (Pham et al., 2020).

One strategy to uncover the functions of RLKs is
phosphoproteomic analysis, which catalogs the in vivo
phosphorylation of proteins in response to specific stimuli.
However, distinguishing direct and indirect phosphorylation events
makes it difficult to pinpoint RLK-specific responses accurately. The
Kinase-Client (KiC) assay addresses the challenge of identifying
likely clients for RLKs in a more direct manner. Purified kinases
are exposed to a synthetic peptide library and resulting
phosphorylated peptides detected by liquid chromatography (LC)-
tandem MS (MS/MS) analysis (Huang and Thelen, 2012). By tracking
spectral counts of phosphorylated and unphosphorylated peptides,
this approach directly quantifies kinase activity and provides superior
signal-to-noise ratios, sensitivity, and specificity compared to other
large-scale methods for studying kinase substrates (Xue and Tao,
2013). This method assumes that the amino acid sequence
surrounding phosphorylation sites plays a crucial role in
determining the substrate specificity of protein kinases (Huang and
Thelen, 2012). Moreover, it is a valuable technique to discriminate
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phosphorylation site ambiguity on phosphopeptides, especially in
cases where multiple serine, threonine, or tyrosine (S/T/Y) residues
are present in a single peptide (Ahsan et al., 2013). Mass spectrometry
has been widely used to screen kinase inhibitors and monitor kinase
activity because of its sensitive and accurate nature (Gao and Leary,
2003; Zhang et al, 2009). Also, MS-based approaches have been
shown to be a useful tool in the study of kinase-client protein
interactions, and the usage of spectral counting has been previously
utilized to quantify phosphopeptides by establishing the in vitro
kinetic constants for kinases (Huang et al., 2010).

Over the last few years, several phosphopeptide candidates
identified by KiC assay screening with P2K1 have been
experimentally confirmed. In plant innate immunity, the protein
modification S-acylation of the P2K1 receptor by Arabidopsis PAT5
and PATY affects the temporal dynamics of its activity, influencing
the immune response by regulating receptor phosphorylation and
degradation in response to external stimuli (Chen et al, 2021).
Another P2K1 kinase client identified through KiC Assay
screening, revealed that eATP also elicits P2K1-mediated RBOHD
phosphorylation to regulate stomatal aperture with important
implications for regulating plant photosynthesis, water homeostasis,
pathogen resistance, and ultimately yield (Chen et al., 2017).

Previous KiC assay peptide libraries were designed based on
experimentally observed phosphopeptides (Ahsan et al., 2013), as
this is a rational approach for designing a library given the
significant expense of synthetic peptides. However, experimental
phosphopeptide catalogs for any plant species are likely incomplete
for both technical and biological reasons, e.g. transient clients that
do not accumulate in vivo. Advances in in silico prediction methods
can be used to predict additional kinase clients beyond the
limitations of current datasets and cost-limited peptide libraries.
Various methodologies, including support vector machines (Kim
et al., 2004), neural networks (Blom et al., 2004), and conditional
random field Models (Dang et al., 2008), coupled with bootstrap
aggregation procedures and integrating sequence cluster
information can be used to predict phosphorylation sites (Gao
et al,, 2010). In the training, the combination of protein sequences
and functional features (Song et al, 2017), high-throughput
proteomic-scale predictions (Li et al., 2018), position-weight
determination or scoring-matrix optimization (Wang et al., 2020),
and machine learning-based approaches (Ma et al., 2023) have been
employed for predicting kinase-specific substrates and associated
phosphorylation sites. MUsite is another tool that employs a
machine-learning approach and integrates diverse factors,
including local sequence similarities, protein disorder scores,
amino acid frequencies, and is trained on phosphoproteomics
data from multiple organisms (Gao et al., 2010; Yao et al., 2012).
These strategies make it possible to choose among peptide
candidates, which saves money and time during the experimental
phase. Additionally, the diversity of the library can be increased by
the addition of in silico predictions. Furthermore, prediction
methods typically provide confidence scores, ranking peptide
candidates and increasing the chances of finding new and
physiologically meaningful phosphorylation events.

Here, we present an innovative KiC assay screen that
underscores the significance of prediction tools. By leveraging
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HMMER (Potter et al.,, 2018) and MUsite (Gao et al., 2010; Yao
et al, 2012), combined with a robust foundation of previously
experimentally validated phosphopeptides, we generated a 225-
peptide library for in vitro P2K screening. Through the
implementation of an optimized screening workflow utilizing a
purified P2K1-CD enzyme, we successfully identified 46 substrates
for P2K1, including 34 novel clients, 27 of which are not present in a
large experimental database. This not only showcases the efficacy of
prediction methods but also highlights crucial steps for further
phosphopeptide candidate selection criteria.

Materials and methods

Kinase assay and synthetic peptide
library preparation

We generated a peptide library of 225 peptides as candidate
substrates for P2Ks from three sources - previous experiments,
sequence homology based on a hidden Markov model (HMM),
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and a machine learning algorithm (Figure 1A). First, the
interacting peptides with P2Ks on an initial KiC assay library were
obtained and peptides with phosphorylation sites at least five amino
acids away from either end were kept. This resulted in 405 peptides
(177 and 228 from P2K1 and P2K2, respectively). Then similar or
duplicated peptides (>0.6 sequence similarity) were removed, and 315
peptides in total remained. These peptides were reformatted into a
20-amino acid length, with phosphorylation sites located at the
center. Furthermore, we used the 315 peptides to build profiles to
train an HMM (Potter et al., 2018) and used the HMM to search the
Arabidopsis proteome. The search yielded 81 candidate peptides with
an E-value output < 0.001. (3) We also used the 315 peptides to train
a deep-learning phosphorylation site prediction model MUsite (Gao
etal, 2010; Yao et al,, 2012) and used the model to search against the
Arabidopsis proteome. These 87 possible candidate peptides were
obtained with a prediction score > 0.8. In addition, we randomly
selected 57 peptides out of the 315 peptides as positive controls to
gauge the performance of the in silico predictions against previously
identified phosphosites, providing insight into their accuracy. The
final peptide library was composed of 225 peptides (81 + 87 + 57;
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Peptide library generation pipeline for substrates of receptor-like kinases in plants and library gene ontology (GO) enrichment characteristics. (A) By
formatting and filtering peptides from the previously identified peptide substrates, only peptides with phosphorylation sites at least 5 amino acids
away from either end were kept, and similar or duplicated peptides were removed. Proteins containing these peptides were identified and peptides
were kept with a length of 20 aa by either truncating or expanding the original peptides. Together, 315 peptides were used to build sequence
profiles to train HMMER and MUsite. The trained models were searched against the whole Arabidopsis proteome to predict new candidates for the
substrates of P2Ks. In total, 225 high-confidence potential candidates were designed after all filtration criteria. (B) through (D) GO enrichment of the
proteins corresponding to the 225-peptide library. Only gene ontology classes that had higher than 1% abundance among the 225-peptide library
are shown for (B) GO Biological Process, (C) GO Molecular Function, and (D) GO Cellular Component.
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Supplementary Table 1). Peptides were custom synthesized by
GenScript using standard solid-phase peptide synthesis and
purified by high-performance liquid chromatography.

Kinase activity assays were conducted as previously described
(Cho et al,, 2022). Briefly, the cDNA of the P2K1 cytosolic domain
(CD) and the kinase-dead version of GST-P2K1-CD (D572N; p2kl1-
1-CD) were ligated into pGEX-5X-1 resulting in N-terminal GST-
tag fusion constructs (Choi et al, 2014). Kinase activity was
measured by incubating 5 pg of purified GST-P2K1-CD and
GST-p2kl-1-CD with 2 pg Myelin basic protein (MBP) as
substrate in a 30 UL reaction [final conditions: 20 mM Tris-HCl
pH 7.5, 10 mM MgCl,, 5 mM EGTA, 100 mM NaCl, and 1 mM
DTT, 2 mM ATP, and 10 uCi radioactive [y->*P] ATP, DMSO (final
25% or 10%), DMF (final 25% or 10%), acetonitrile (final 40% or
20%)] for 1.5 hours at 30°C. The kinase reactions were stopped by
boiling with 5x SDS loading buffer for 5 minutes. After
electrophoresis in 12% SDS-PAGE, the gel was exposed for 12
hours for autoradiography. The phosphorylation images were
obtained by a Typhoon FLA 9000 phosphor imager (GE
Healthcare) (Figure 2). Proteins within the gel were visualized
with Coomassie brilliant blue and GST was used as negative control.

In vitro Kinase—Client assay

Each synthetic peptide was individually resuspended in
dimethyl sulfoxide (DMSO, analytical grade 299.9%) to a 5 mM
concentration. DMSO inhibition of kinase activity had been
previously determined to be negligible (Figure 2). All samples
were kept on ice throughout the resuspension protocol. After

10.3389/fpls.2024.1372361

solubilization was complete, 10 pL aliquots of each synthetic
peptide were transferred to a new Eppendorf to create the 225-
peptide pool. The final concentration of each peptide in the
225-peptide pool was 22.2 uM and 10 L single-use aliquots were
prepared and stored at -80°C before use. The 225-peptide library
was initially analyzed in its neat form to ensure uniform detection of
expected peptides, and later, the in vitro KiC assay reaction was
performed. Testing of two different buffer types, Tris and HEPES,
with purified P2K1-CD, revealed that Tris supported higher
phosphorylation efficiency (data not shown). Subsequently,
substrate concentration and enzyme-to-substrate ratio were
further adjusted to provide optimal phosphorylation efficiency per
KiC assay reaction (Supplementary Table 2). Thus, a 40 uL KiC assay
reaction mixture (final volume) was prepared with kinase buffer (20
mM Tris HCI, pH 7.5, 10 mM MgCl,, 5 mM EGTA, 100 mM NaCl,
and 1 mM DTT) to ensure optimal enzyme activity. 2 mM ATP was
added only to “+ATP” samples. Purified P2K1-CD was quantified by
Bradford assay with bovine gamma globulin as standard. The KiC
assay reaction was performed at a 1: 1 (enzyme: substrate ratio)
concentration by adding 14.72 pg of each CD, reducing peptide usage
by 8-fold compared to previous studies (Huang and Thelen, 2012).
The 1:1 ratio was chosen as it increased the number of
phosphopeptides identified with a consistent overlap among the
previously compared ratios (1:4, 1:2, 1:1) (Supplementary Table 2).
All optimizations were based on 18 samples. Reactions were
incubated for 90 min at 30°C -with gentle shaking at 300 rpm.
Reactions were quenched by adding an equal volume (40 pL) of 1%
formic acid in 99% acetonitrile, which diluted the peptide pool
concentration to 0.18 pg uL™ (84.4 uM). Quenched reactions were
stored at —20°C. No sample clean-up step was performed before LC-

A B
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FIGURE 2

P2K1-CD shows auto- and trans-phosphorylation activities on myelin basic protein (MBP), and the phosphorylation activities are affected by solvents
commonly used to solubilize synthetic peptides. (A) Incubation of MBP with GST-P2K1- cytosolic domain (CD), GST-p2k1-1-CD (kinase dead), or
GST in an in vitro kinase assay. Autophosphorylation and trans-phosphorylation were measured by incorporation of y-[32 P]-ATP. GST was used as a
negative control. Protein content was visualized by Coomassie brilliant blue (CBB) staining. (B) Incubation of MBP protein with GST-P2K1-CD
cytosolic domain in different solvents [DMSO (final 25%, 10%), DMF (final 25%, 10%), acetonitrile (final 40%, 20%)]. Autophosphorylation and trans-

phosphorylation were measured upon addition of y-[>? P]-ATP.
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MS/MS analysis. Instead, the usage of a trap column and a longer
sample loading step to protect the analytical column were adopted.

Mass spectrometry analysis

Data acquisition parameters were optimized to maximize
peptide coverage and reproducibility among injections. Peptides
were separated on a Finnigan Surveyor liquid chromatography (LC)
system at 125 L/min on a split-flow design over a 90-min gradient.
Mobile phases consisted of 0.1% formic acid in water (phase A) and
0.1% formic acid in acetonitrile (phase B). Acetonitrile
concentration was initially at 5% for 5 min, followed by a
constant increase from 5% to 50% phase B over 75 min gradient,
gradient to 95% phase B in 5 min, and finally, 5% phase B for 5 min.
Data acquisition was performed on an LTQ Orbitrap XL ETD mass
spectrometer (Thermo Fisher, San Jose, CA) via data-dependent
acquisition (DDA), with the top 11 most abundant ions from the
precursor scan selected for subsequent fragmentation. Nanospray
ionization source parameter settings were: ion spray voltage (kV),
1.90; capillary temperature (°C), 200; capillary voltage (v), 40; and
tube lens (v), 150. Precursor masses were scanned with the analyzer
set to FTMS, mass range set to normal, 60000 resolution, positive
mode, and centroid data type with a scan range of 200-2000 m/z.
Tryptic peptides were fragmented using collision-induced
dissociation (CID) with settings as follows: collision energy 35
kV, default charge state +2, isolation width 2.0 m/z, activation
time of 30 ms, and minimal signal required of 500. Charge-state
screening mode was enabled and unassigned charge states or charge
states of +1 were not analyzed. Dynamic exclusion was enabled with
a repeat count of 1, repeat duration of 30 s, exclusion list size 100,
and exclusion duration of 30 s. 6.94 pL (1.25 pg) of each sample was
initially loaded onto a OPTI-TRAP™ cartridge (Optimize
Technologies, Oregon City, OR), 5 pL, 0.5mm x 1.3mm, and
later, separated over a self-packed Analytical column (20 cm, 75
um internal diameter, HxSil 5pm C18 matrix).

Data processing and interpretation

Individual searches of raw files were performed on Proteome
Discoverer 2.4 against the 225-peptide FASTA file. Spectra were
selected based on their MS1 precursor with minimum and
maximum precursor masses of 350 and 5000 Da, respectively.
High-confidence identifications were achieved with the Sequest
HT search algorithm with a precursor mass tolerance of 10 ppm
and a fragment mass tolerance of 0.6 Da. A maximum of four
dynamic modifications were allowed for a single peptide, as follows:
oxidation of methionine (+15.995 Da), and phosphorylation of S-,
T- and Y-residues (+79.966 Da). As a peptide-spectrum match
(PSM) validator, Percolator (Kill et al., 2007) was used with an FDR
<0.01 target for high confidence identifications and <0.05 FDR for
medium confidence identifications. Precise phosphorylation site
determination was achieved with the IMP - ptmRS tool.

Filtration criteria were established based on false-positive
identification results from negative-control samples. P2K wild type
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and dead version CDs were purified and screened against the 225-
peptide library under different enzyme: substrate ratios and the
presence or absence of ATP (Supplementary Table 3). Based upon
phosphopeptide identifications across negative control samples, the
following criteria were established for valid phosphopeptide
identification, and therefore, all phosphopeptide identifications from
the WT +ATP condition that did not meet these criteria were
excluded from all analyses, as follows: 1) PSM counts > 2; 2) Xcorr
> 2.04; and 3) Phosphorylation site successfully elucidated by the
IMP-ptmRS tool. Peptide 154 was considered an outlier and excluded
from all analyses as its phosphorylated form was identified across all
samples, which might be attributed to the peptide’s elevated number
of S-residues posing additional challenges for the search algorithm to
distinguish between the phosphorylated and non-phosphorylated
forms. Results after the final filtration of the P2K1-CD reaction
with the 225-peptide library are shown in Supplementary Table 4.

Annotated MS/MS spectra for the 46 phosphopeptide candidates
are provided in Supplementary Table 5. The mass spectrometry
proteomics data have been deposited to the ProteomeXchange
Consortium via the PRIDE (Perez-Riverol et al., 2022) partner
repository with the dataset identifier PXD047713.

Peptide analysis

Annotation enrichment analysis of GO Biological Process,
Molecular Function, and Cellular Component terms among the
proteins that contain peptides was performed in the TAIR website
(Berardini et al, 2004). Subcellular localization predictions of the
detected phosphopeptides were generated through the SUBA4
database, which contains information on both the computationally
predicted and experimentally documented subcellular localization of
many Arabidopsis proteins (Hooper et al., 2017). In this database, a
confidence score for each distinct compartment or region is generated
with experimentally determined localizations (either mass-spec or
fluorescent protein-based data) weighted five times more than in
silico predictions. The highest subcellular score for each gene was
selected as its final subcellular localization (Supplementary Table 6).

For motif analysis, a custom Python script was employed to
center-align 225 peptide datasets around their phosphorylation
sites, ensuring a uniform representation for downstream analyses.
To refine our dataset and eliminate redundancy that might obscure
motif detection, we utilized the CD-HIT tool (Fu et al., 2012) with a
90% identity threshold, which clusters sequences based on their
similarity and selects a representative peptide from each cluster.
This step ensured that the subsequent motif analysis was conducted
on a non-redundant set of sequences, enhancing the accuracy and
reliability of the motif prediction. After redundancy removal,
MEME (Bailey et al., 2009) software was employed to detect
motifs among phosphopeptide candidate sequences. The MEME
algorithm was configured with an amino acid window <5 and <0.05
p-value to identify statistically significant motif patterns. Lastly,
phosphopeptide candidates were searched against experimental
phosphoproteomic databases such as P3DB (Gao et al., 2009) and
PhosPhAt (Heazlewood et al., 2008) using a BLASTP search with an
identity threshold of 100% (Supplementary Table 7).
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Results

To experimentally test algorithms for predicting protein kinase
clients, a 225-member peptide library was designed based upon
previous experimentally identified phosphorylated peptides and in
silico predicted phosphorylated peptides using both MUsite and
HMMER tools. All peptides present in the library represent
polypeptide sequences of 20 amino acids encoded within the
Arabidopsis proteome. The 225-peptide library represents a
diversity of biological processes (BP), molecular functions, and
cellular components (CC) (Figure 1). Salient to signal transduction,
“kinase activity” and “nucleus” were the most enriched biological
process and cellular component GO-terms. Prior to screening, P2K1-
CD phosphorylation activity was confirmed (Figure 2A). Confident
identification of phosphopeptide candidates with the in vitro KiC
assay consists of steps: 1) kinase purification and peptide library
preparation; 2) in vitro screening with specific reagents and
concentrations; 3) mass spectrometry data acquisition; and 4)
database processing and post analysis to assure high-confidence
identifications (Figure 3).

After reaction condition optimization, which included enzyme-
substrate ratio optimization as well as establishing filtration criteria
based upon negative controls (Supplementary Tables 2, 3), the
results of screening of the P2K1-CD against the 225-peptide library

(1) Purified kinase and synthetic peptide
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Specific
phosphorylation
Active
kinase N

L&
2z b
—

225 peptides in
the Pilot Library

peptide library assay

- 77 -

10.3389/fpls.2024.1372361

are shown in Figure 4. The KiC assay with P2K1-CD enzyme was
highly specific, with no background peptides detected above the
threshold in negative controls, which included a non-active form of
P2K1 (p2k1-1-CD “dead” kinase version) (Choi et al., 2014) under
conditions with and without ATP, and the active form of P2K1-CD
(Wild type) under conditions without ATP (Figure 4A).

P2K1 phosphopeptide candidates included peptides from all
three sources: previous experimental result, HMM, and MUsite
(Figure 4B). Peptides from the two in silico prediction approaches
were evenly represented among new P2K1 phosphorylated peptides
(Figure 4B). The even distribution between the two methods suggests
that both performed well. High confidence phosphorylation events
can be specified by repeated detection of phosphorylated peptides
(spectral counts) and the ratio (stoichiometry) of phosphorylated to
unphosphorylated peptides detected (Figure 4C, Supplementary
Table 4). Generally, novel phosphopeptide candidates from MUsite
and HMM exhibited both higher stoichiometry and spectral counts
compared to previously identified phosphopeptides.

Gene ontology (GO) analysis of the proteins that correspond to
the peptides phosphorylated by P2K1-CD might indicate
mechanisms by which plants respond to wounding and
pathogens. In the category GO-molecular function, the most
abundant client candidates showed kinase activity (22%), catalytic
activity (19%), transferase activity (17%), and protein binding
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Schematic representation of the main steps involved in the method development for the KiC assay experiment. (1) Kinase purification, activity test,
and synthetic peptide library pooling are performed prior to screening. (2) Optimal conditions are provided for in vitro KiC assay, which allows
phosphorylation events to happen. (3) Samples injection into a liquid chromatography system coupled to a mass spectrometer and MS/MS spectra
acquisition. (4) Database search and rigorous filtration are conducted to enable high-confidence phosphorylation and site determination

identifications. Figure was created with BioRender.com.
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identifications for P2K1-CD and GST-p2k1-1-CD across different experimental conditions with quality-control filters. The filtration criteria were as
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the 225-peptide library sources, which included both in silico prediction tools and previous in vitro KiC assay results. (C) Phosphopeptide
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count)/(total peptide spectrum count) x 100). Phosphopeptides with more than one phosphorylation site are also shown in panel (C). Colors from
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based on stoichiometry, PSM counts, subcellular localization, and motif analysis are highlighted in panel (C). Repeated accession numbers indicate
that the protein is represented by multiple phosphosites in the P2K1 KiC dataset. Additional information can be found in Supplementary Table 4.

(14%) (Figure 5A). Besides a general GO-biological process term
(other cellular processes, 20%), the majority of phosphopeptide
candidates were from proteins involved in metabolic processes
(17.5%), anatomical structure development (7.7%), and response
to stress (5%) and response to chemicals (5%) (Figure 5B). These
results reinforce that although the number of synthetic peptides
present in the library was limited, it is quite diverse covering
multiple vital classes of molecular functions and biological
processes for plant immunity.

Another important aspect of phosphopeptide candidate
characterization is cellular localization. The most abundant terms
represented by the protein candidates were plasma membrane
(26%) and nucleus (24%) with nearly all localizations being
supported with experimentally documented subcellular
localization according to SUBA4 database (Figure 5C,
Supplementary Table 6). Given the plasma membrane localization
of P2K1 (Choi et al, 2014), phosphopeptide candidates that are
localized to either the cytoplasm or plasma membrane would be
given higher priority for further in vivo confirmatory
interaction studies.

We identified a consensus phosphorylation motif among
candidate peptides from this experiment (Figure 5D). Twelve
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phosphopeptide candidates were present in this motif, and a
significant number also shows 100% stoichiometry as highlighted
in Figure 4C. Detailed information on all phosphopeptide
candidates present among the consensus motif can be found in
Supplementary Table 4. The consensus motif can provide an extra
piece of information on the target phosphopeptide selection
together with high stoichiometry identification, which can help
elucidate the motif recognition pattern by P2K1 kinase.

After screening against purified P2K1-CD, we identified a total
of 46 phosphopeptide candidates. Among them, 19 unique
phosphopeptide candidates were found in either P3DB or
PhosPhAt phosphoproteome databases (7). The identification of
19 unique phosphopeptide candidates in those phosphoproteome
databases serves as additional confirmation of their status as
phosphopeptides. Two phosphopeptide candidates identified in
the phosphoproteome databases were also associated with the
consensus motif generated in the current study (Peptides 31 and
63) (Supplementary Table 7). Including peptides that are partially
or fully documented in those repositories, 13 candidates were
identified in both databases. The remaining 27 phosphopeptide
candidates may be novel, as they might not have been identified
experimentally elsewhere.
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Discussion

We optimized the KiC assay and obtained results that compared
two kinase peptide substrate prediction algorithms while identifying
novel putative clients for P2K1. To achieve this, we adopted a strategy
that leveraged both experimental data and in silico methodologies.
Firstly, the design of the peptide library drew upon prior experimental
research that had identified and confirmed a substantial number of
phosphorylation events for P2K1 (Chen et al., 2017, 2021; Kim et al,,
2023). In addition to experimentally identified peptides, powerful in
silico prediction tools, such as MUsite and HMMER were employed
to determine the efficacy of bioinformatics for phosphorylation
prediction. These computational algorithms were employed to
explore the vast landscape of potential phosphorylation sites within
plant proteomes and to encompass the most relevant and biologically
significant phosphorylation sites.

The low background among the negative controls highlights the
high specificity of this technique as a tool for discovering and
exploring novel substrates for receptor-like kinases. Moreover, an
important strategy for enhancing confidence in phosphopeptide
candidates is phosphorylation stoichiometry. This quantitative
approach considers the number of phosphorylated spectra
matches for a particular phosphopeptide in comparison with the
total number of peptide spectrum matches, which also includes the
non-phosphorylated spectra. Therefore, it can provide additional
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evidence together with a higher number of PSMs on selecting
candidates for further in vivo studies. Although experimental
validation of clients identified through the KiC assay has been
high, further experiments would be needed to determine if the lower
confidence peptides are also biologically relevant.

The high rate of phosphorylation on peptides for which no
experimental phosphorylation has been detected might indicate
that despite decades of research, the experimental plant
phosphoproteome remains shallow. The high representation of
signaling-related processes for the proteins that contain the
detected peptides is consistent with expectations as shown in
Figure 5. This observation suggests some of the newly identified
peptides are biologically relevant. Moreover, the results provide
input into development of a bioinformatic pipeline for future
prediction of additional kinase substrates based on experimental
data that will always be inherently limited. The results of the 225-
peptide library analysis with P2K1-CD allow the expansion with a
higher number of predicted synthetic peptides based on the current
bioinformatic pipelines cited in this work, which has increased the
success rate compared to previous experiments (Ahsan et al., 2013).
Based on these results, applying in silico prediction methods and
machine learning algorithms, can ultimately develop a larger library
encompassing the most relevant phosphorylation sites.

Many studied RLKs have pivotal functions in cell-cell
communication and innate immunity. Notably, previous
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incarnations of the KiC assay have already contributed valuable
insights into the functions of plant P2K RLKs (Chen et al., 2021;
Cho et al., 2022). Experimental validation of KiC assay
phosphopeptide candidates extends to other kinases. For instance,
it was confirmed that the PSY1R receptor interacts with SERK co-
receptor family members, undergoes autophosphorylation at
specific sites, and that phosphorylation of Ser951 stabilizes the
receptor’s inactive conformation (Oechlenschleeger et al,, 2017). In
another study, SERK1 and SERK2 LRR-RLKs were found to act as
coregulators for the EMSI kinase, enhancing its activity and playing
a crucial role in anther development (Li et al., 2017). Additionally,
ILK1 kinase was shown to bridge plant defense responses to
pathogen-associated molecular patterns (PAMPs) and potassium
ion homeostasis, contributing to immunity against bacterial
pathogens and being modulated by CML9, a negative regulator of
immunity (Brauer et al., 2016). Those confirmatory studies suggest
that P2K1 can indeed interact with a variety of substrates and be
involved in different biological processes within the plant as also
shown in our current data.

In the current study, the percentage of phosphopeptide
candidates from HMMER (21%) and MUsite (20%) exceeded the
percentage of identified phosphopeptides from a previous in vitro
screening with a 2k library (2%) (data not shown). One reason for
this could be that the synthetic peptides in this 225-peptide library
have all been standardized to 20-mers with the phosphosite
centered, whereas the previous 2k library was composed of tryptic
peptides. The 20-mer peptides might allow for partial secondary
structure formation and provide a more relevant binding site for
CD-peptide interactions. Another possibility is that the
computational methods were able to enrich the library with likely
P2K substrates. This result demonstrates the effectiveness of the KiC
Assay in identifying direct phosphorylation events, which can later
allow the identification of direct interaction partners at the protein
level. This comprehensive approach, blending experimental and
computational methodologies, underscores the success of
prediction algorithms in the KiC assay, paving the way for the
discovery of crucial insights into kinase-client interactions.

Beyond stoichiometry and the number of PSMs for high-
confidence phosphopeptide candidate identifications, subcellular
localization and motif analysis can also provide meaningful
insights. Subcellular localization is also an important step for
further investigation of in vivo interaction experiments. As a
member of the lectin-RLK subfamily, P2K1 carries an intracellular
kinase domain, a transmembrane domain, and an extracellular lectin
domain (Choi et al.,, 2014). Likewise, we prioritize phosphopeptide
candidates for further in vivo confirmation that show subcellular
localization at the plasma membrane, cytosol, endoplasmic reticulum,
and nucleus, respectively. Those localizations are more likely to be
associated with P2K1 due to its residence within the plasma
membrane. However, it is quickly becoming clear that organelles
are intricately interconnected and that these physical relationships at
contact locations serve multiple crucial functions (Scorrano et al,
2019), as well as exhibit dual or multiple localizations within
subcellular organelles, as previously reported (Hammani et al,
2011; Teardo et al., 2011; Blanco et al.,, 2019). Therefore, as
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predictions of subcellular localization rely on both in silico
methods and experimental data, whenever available, they should be
regarded as tentative results.

A search for phosphorylation motifs in all of the reported
phosphopeptide candidates throughout the KiC assay screening
with P2K1-CD enzyme was carried out to indirectly infer P2K1
substrate affinity. Based on the phosphopeptide candidates
identified in this study, we were able to generate one significant
motif that may inform future in silico library design and
understanding of P2K1 function. Considering the above criteria,
two phosphopeptide candidates [Peptides 63 (from AT1G18670)
and 65 (from AT1G57700)] stand out as they presented 100%
phosphorylation stoichiometry, high number of PSM counts,
plasma membrane subcellular localization, and were part of the
consensus motif analysis. Interestingly, Peptide 63 was also
identified in the database PhosPhAt. On the other hand, two
phosphopeptide candidates [Peptides 70 (from AT3G01085) and
150 (from AT5G43310)], were not part of the consensus motif
analysis but also showed 100% stoichiometry and were localized in
the nucleus and plasma membrane, respectively. Notably, the
highlighted phosphopeptide candidates were exclusively identified
through the innovative in silico prediction tools employed in this
study, underscoring the significant potential of this approach.

Conclusion

This study demonstrates the robustness of the in vitro KiC assay
approach, which integrated advanced prediction algorithms and
efficient selection criteria. Also, it underscores the effectiveness of
contemporary prediction algorithms in accurately predicting
phosphorylation sites for orphan receptor-like kinases in plants.
Utilizing this approach, we successfully identified 46 potential
substrates for P2K1, notably uncovering 34 novel phosphopeptide
candidates with a high level of confidence, 27 of which may be novel
peptides not previously identified experimentally. Our findings
provide essential insights regarding selection criteria for subsequent
in vivo experiments aimed at confirming these discoveries. In doing
so, the KiC assay emerges as a pivotal resource, furthering our
understanding of the intricate realm of plant phosphorylation and
its multifaceted implications in plant biology.
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