
Small-scale Magnetic Fields Are Critical to Shaping Solar Gamma-Ray Emission

Jung-Tsung Li (李融宗)1,2,3 , John F. Beacom1,2,3 , Spencer Griffith1,2 , and Annika H. G. Peter1,2,3,4
1 Center for Cosmology and AstroParticle Physics, The Ohio State University, Columbus, OH 43210, USA; li.12638@osu.edu

2 Department of Physics, The Ohio State University, Columbus, OH 43210, USA
3 Department of Astronomy, The Ohio State University, Columbus, OH 43210, USA
4 School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540, USA

Received 2023 July 23; revised 2023 November 27; accepted 2023 December 12; published 2024 January 24

Abstract

The Sun is a bright gamma-ray source due to hadronic cosmic-ray interactions with solar gas. While it is known
that incoming cosmic rays must generally first be reflected by solar magnetic fields to produce outgoing gamma
rays, theoretical models have yet to reproduce the observed spectra. We introduce a simplified model of the solar
magnetic fields that captures the main elements relevant to gamma-ray production. These are a flux tube,
representing the network elements, and a flux sheet, representing the intergranular sheets. Both the tube and sheet
have a horizontal size of order 100 km and serve as sites where cosmic rays are reflected and gamma rays are
produced. While our simplified double-structure model does not capture all the complexities of the solar-surface
magnetic fields, such as Alfvén turbulence from wave interactions or magnetic fluctuations from convection
motions, it improves on previous models by reasonably producing both the hard spectrum seen by Fermi Large
Area Telescope at 1–200 GeV and the considerably softer spectrum seen by the High Altitude Water Cherenkov
Observatory (HAWC) at near 103 GeV. We show that lower-energy (10 GeV) gamma rays are primarily
produced in the network elements and higher-energy (few× 10 GeV) gamma rays in the intergranular sheets.
Notably, the spectrum softening observed by HAWC results from the limited effectiveness of capturing and
reflecting ∼104 GeV cosmic rays by the finite-sized intergranular sheets. Our study is important for understanding
cosmic-ray transport in the solar atmosphere and will lead to insights into small-scale magnetic fields at the
photosphere.

Unified Astronomy Thesaurus concepts: Gamma-rays (637); Galactic cosmic rays (567); Solar photosphere (1518);
Solar magnetic fields (1503); Solar granulation (1498); Magnetohydrodynamics (1964)

1. Introduction

The Sun is a bright and time-steady source of GeV to TeV
gamma rays, with the intensity showing a modest antic-
orrelation with the solar cycle. This emission is proposed to
arise from two distinct channels, originating from different
locations. The first is emission from the solar halo, arising from
electron galactic cosmic-ray (GCR) interactions with solar
photons via the inverse Compton process near the Sun.
Theoretical predictions (Moskalenko et al. 2006; Orlando &
Strong 2007, 2021) reasonably match observations (Abdo et al.
2011). The second source of emission arises from the solar
disk, where the decay of π0 and other mesons produced through
nucleon–nucleon collisions occurs as a result of the bombard-
ment of hadronic GCRs on the solar surface. Theoretical
predictions for the solar-disk emission do not match the
observed data. Consequently, in this paper, we focus on
understanding this emission.

Observations with the Fermi Large Area Telescope (Fermi-
LAT) demonstrate that the solar disk emits gamma rays in the
0.1–200 GeV range with a spectrum, dN dEg g, following an
E 2.2~ g

- power law (Abdo et al. 2011; Ng et al. 2016; Tang et al.
2018; Linden et al. 2022). (For the earlier work with EGRET
data, see Orlando & Strong 2008.) More recently, the High
Altitude Water Cherenkov Observatory (HAWC) reported the
first detection of gamma-ray fluxes near 103 GeV, finding a

E 3.6
g
- power law (Albert et al. 2023). Both instruments reveal

an anticorrelation between gamma-ray fluxes and solar activity,
with fluxes during the solar minimum being approximately a
factor ∼2 greater than those during the solar maximum.
Interestingly, while the entire solar disk emits gamma rays,
indicating that the emission is not just a limb effect, the
emission distribution reported in Linden et al. (2018) shows
moderate nonuniformity across the solar surface.
The pioneering theoretical work on this subject is Seckel

et al. (1991) and Seckel et al. (1992), which focus on the
reflection of hadronic GCRs by canopy fields via the magnetic
mirroring effect. Their work assumes a simple pressure balance
following a P z B z 2( ) ( )µ scaling relation, where P z( ) and B z( )
are the gas pressure and the magnetic field strength of the flux
tube at the height z, respectively. They further assume that
particle trajectory is governed by the adiabatic invariance,

z B z Bcos 1 sin2 0 0( ) ( )q q= - , where z( )q is particle pitch
angle at z, θ0 is the initial pitch angle at the top of the tube, and
B0 is the magnetic field strength at the top of the tube. A recent
study conducted by Hudson et al. (2020) suggests a scaling
relation of P∝ B3.5±0.1 may be more appropriate based on data
from the Bifrost magnetohydrodynamics (MHD) simulation
code (Gudiksen et al. 2011). Several other approaches and
ideas have been suggested in the literature. The studies by
Mazziotta et al. (2020) and by Li et al. (2020) have integrated
the Potential Field Source Surface model of the solar coronal
fields into the FLUKA code and implemented numerical
simulations of the yields of secondary particles and gamma
rays from hadronic GCR showers. Gutiérrez & Masip (2020)
and Gutiérrez et al. (2022) use HAWC data on the cosmic-ray
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shadow of the Sun to deduce the averaged hadronic GCR
absorption fraction and the gamma-ray yields. Banik et al.
(2023) present a contrasting perspective, arguing that the
acoustic-like shock waves in the chromosphere can accelerate
protons in the solar gas up to 103 GeV and produce gamma rays
that match the HAWC observation. Zhou et al. (2017) argue
that the solar magnetic fields are negligible for gamma-ray
production at high enough energies, in which case the disk
emission would be solely from the thin ring of the solar limb;
the HAWC data show that this must be at gamma-ray energies
above about 103 GeV. Overall, despite extensive theoretical
efforts in this domain, no prediction can simultaneously
account for the overall gamma-ray flux, the morphology of
its emission, and its time variability.

In this paper, we aim to identify the magnetic field structures
at the solar surface that are crucial for reflecting hadronic GCRs
and to model the gamma-ray emission from these sites. We
construct a double-structure solar-surface magnetic field model
comprising one vertical flux tube, representing the magnetic
flux tubes that form the network elements, and one vertical flux
sheet, representing the magnetic flux sheets at the downflow
lanes between granules. Both the tube and sheet, which have
horizontal sizes of ∼100 km, maintain magnetohydrostatic
equilibrium with the surrounding gas. Their field geometries
are calculated following the numerical approach of Steiner
et al. (1986). We inject proton GCRs at the top of the flux tube
and sheet, numerically trace their trajectories, and calculate
their gamma-ray emission. By doing so, we can determine the
fraction of GCRs reflected in the flux tubes of the network
elements and the fraction that plunges through to the flux sheets
of the intergranular lanes. Our model helps us understand the
relative roles of these components in capturing and reflecting
GCRs across various energy ranges. Comparison to observa-
tions helps probe the solar magnetic environment, even below
the surface of the photosphere (z= 0 km, defined by where the
optical depth τ5000= 1 for light of wavelength 5000Å). In our
calculations of the gamma-ray emission, we aim for a precision
of a factor of two, which is appropriate given the large dynamic
ranges of the variables and the substantial uncertainties.

Last, it is important to note that while solar flares are known
to generate gamma rays through reconnection and nonthermal
particle acceleration, the emission is generally episodic and
does not exceed a few GeV in maximum gamma-ray energy
(Murphy et al. 1987; Schneid et al. 1996; Ackermann et al.
2014; Ajello et al. 2014; Pesce-Rollins et al. 2015; Omodei
et al. 2018; Share et al. 2018). Moreover, such events show
transient and burst-like behavior and are easily excluded from
long-duration gamma-ray observational data sets. As a result,
solar flares are not relevant to the time-steady, multi-GeV
gamma-ray emission discussed in this paper.

The remainder of this paper is organized as follows. We begin
in Section 2 with an introduction to the solar magnetic field
structure. Section 3 introduces the double-structure model of
gamma-ray emission for the quiet photosphere. In Section 3, we
also discuss the potential effect of GCR scattering by magnetic
fluctuations. Section 4 presents the magnetohydrostatic solutions
for the flux tube and flux sheet. Section 5 explains our simulation
setup for hadronic GCR transport in the double-structure model.
Section 6 presents the simulation results. We conclude in
Section 7. In Appendix A, we show the most probable injection
polar angles of GCRs for producing the observed gamma rays.
In Appendix B, we show the average gamma-ray emission angle

and depth. In Appendix C, we validate the assumption of
collinearity in gamma-ray production.

2. Simplified Framework for Solar-surface Magnetic Fields

In this section, we provide a brief overview of photospheric
convection, solar-surface magnetic fields, and open field lines.
The reason for this focus will later be explained in Section 3.
Figure 1 is a schematic diagram of the quiet-photosphere

magnetic network structures that form the open field lines. Here
we follow the canonical picture outlined in Cranmer & van
Ballegooijen (2005) and Wedemeyer-Böhm et al. (2009). We
begin our discussion with convection in the photosphere, as it is
the driving force behind the formation of magnetic flux tubes.
Convection near the photospheric surface manifests across
various scales. The smallest observable scale is granulation, with
a typical horizontal size of about 1000–1500 km (white polygons
in Figure 1(a)). Each granule cell hosts a convective flow where
hot material rises from the cell center, moves horizontally at the
top, and descends at the cell edge. Between the granule cells are
the intergranular lanes, where the flow is compressed and pushed
downward (gray bands in Figure 1(a)). At a larger scale is
supergranulation, with a typical horizontal size of about
10,000–30,000 km (largest arcs in Figure 1(b)). The convective
flow responsible for supergranulation occurs on larger scales and
at greater depths than the convective flow driving granulation.
Following the variety of scales in convection, the magnetic

fields also show a variety of scales. In the case of network fields,
the smallest-scale feature is vertical magnetic flux tubes at the
photosphere. These tubes, with diameters of approximately
150 km and field strengths of around 1500 Gauss, are situated in
the intergranular lanes at the edges of supergranule cells
(Figure 1(a)). Each flux tube maintains magnetohydrostatic
equilibrium with the surrounding gas. As the gas pressure
decreases with increasing height, the flux tubes expand
horizontally. A collection of nearby flux tubes eventually
merges at a height of around 600–1000 km, forming a network
element. At the merging height, the horizontal scale of each
network element is about 2000–6000 km. Above the merging
height, the magnetic fields transition into a thicker flux tube and
continue to expand with height (upper half of Figure 1(b)). A
second merging occurs when the fields of two adjacent network
elements, separated by a horizontal distance of about a
supergranule cell, coalesce at the merging height of a few
1000 km above the surface. The magnetic fields continue to
extend into the coronal region, becoming parts of the large-scale
coronal-hole network fields. These network fields eventually
extend into interplanetary space as open magnetic field lines
(Figure 1(c)), which have their other footprint in the outer
structure of the heliosphere.
Magnetic fields between network elements in the quiet

photosphere are internetwork fields. Observations indicate that
these regions comprise small-scale, mixed-polarity magnetic
fields that show loop-like structures a few hundred kilometers
above the solar surface (dashed arcs in Figure 1(b); Orozco
Suárez et al. 2007; Lites et al. 2008). These fields are situated
above granule cells, with their polarities connecting to the
intergranular lanes. Below the photospheric surface, strong
vertical magnetic fields are formed in the intergranular lanes as
a result of flux expulsion (Parker 1963; Weiss 1966; Galloway
& Weiss 1981) and field amplification (Parker 1978; Webb &
Roberts 1978; Spruit & Zweibel 1979) by the granule
convective flows. In the near-surface environment, they have
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sheet-like structures in the intergranular lanes between granules
and tube-like structures in the micropores located at the vertices
where multiple intergranular lanes converge. Because direct
observations below the surface are unavailable, the extent of
these structures into the upper convection zone is uncertain.
However, valuable insights have been obtained from state-of-
the-art numerical simulations of magnetoconvection in the solar
photosphere (Weiss et al. 1996; Stein & Nordlund 1998;
Steiner et al. 1998; Cattaneo 1999; Cattaneo et al. 2003;
Schaffenberger et al. 2005; Vögler et al. 2005; Gudiksen et al.
2011; Freytag et al. 2012). These simulations demonstrate that
the coherent structure of flux sheets at the intergranular lanes
extends a few hundred km below the surface before being
disrupted by turbulent flows.

The discussion thus far is restricted to the quiet region of the
Sun where magnetic structures near the solar surface are
primarily small-scale and driven by granule and supergranule
convection cells. Other regions on the solar surface include
active regions with more complex magnetic structures. Active
regions host strong, large-scale magnetic features, such as
sunspots, coronal loops, solar flares, and coronal mass ejections.
The activities within the active regions and the solar cycle are
thought to stem from the magnetic fields generated by the large-
scale solar dynamo emerging from the tachocline at the base of
the convection zone.

3. Setup of the Gamma-Ray Emission Model in the Quiet
Photosphere

In this section, we provide the setup for our model for the
time-steady solar gamma-ray emission of the quiet photo-
sphere. Given the extensive range of scales discussed in
Section 2, simulating GCR propagation and gamma-ray
emission in the solar-surface environment poses significant
challenges. In the following, we explain the approach of our
model, which optimizes the prediction of the gamma-ray
emission based on appropriate approximations. We review
solar modulation and hadronic interactions, then estimate the
relevant depths in the photosphere for GCR interactions,
outline our key assumptions, define the key magnetic field
structures that we model, and discuss the potential effect of the
magnetic fluctuations on particle trajectories.

3.1. Solar Modulation

As the GCR flux has not yet been measured near the Sun, it
must be calculated based on the flux near Earth. When hadronic
GCRs in interplanetary space propagate toward the Sun, their
fluxes decrease due to the interactions with magnetic turbulence
in the solar wind, a phenomenon known as solar modulation
(Parker 1965; Gleeson & Axford 1968). In our previous work in
Li et al. (2022), we utilized recent magnetic power spectral
density measurements from the Parker Solar Probe to calculate
the parallel diffusion coefficients. We then showed that the
proton GCR flux is reduced by 15% for proton kinetic energy,
Ep

k, in the range of E0.1 GeV 1 GeVp
k< < when transported

from a heliocentric distance of 1 to 0.1 au. For the higher-energy
range of GCRs considered here, the effects are even smaller,
 1%( ) for E 10 GeVp

k .
The GCR transport from 0.1 au to the solar surface

(≈0.005 au) remains uncertain. Accurate evaluation of this
transport requires theoretical models of magnetic turbulence,
solar wind acceleration, and coronal loops. This region was not
considered in our previous work in Li et al. (2022) and is
beyond the scope of the present work. (See, e.g., Petrosian et al.
2023 for modeling of electron GCR propagation down to the
solar surface.) However, we expect that the modulation from
0.1 au to the solar surface should be no more than a few percent
for E 10 GeVp

k based on the model extrapolation in Li et al.
(2022). Given that the focus of gamma rays in this work is
above 1 GeV, hence proton GCRs above 10 GeV (see below),
the modulation effects on our predictions should be no more
than ;10% and are hence neglected.
In this work, we use the GCR spectra measured at 1 au from the

Sun, which takes into account the significant modulation effects
experienced as GCRs propagate from the heliopause to 1 au, for
GCR injection into the solar-surface magnetic fields. We have
further assumed an isotropic GCR distribution. We use the proton
GCR measurements from AMS-02 (Aguilar et al. 2015) for

 E0.5 GeV 1.46 10 GeVp
k 3´ and from CREAM (Choi

et al. 2022) for  E2.10 10 GeV 5.33 10 GeV3
p
k 5´ ´ ,

linearly interpolating the fluxes between the data points. In
Section 5.5, we describe how we take the moderate effect of
helium in the GCRs and the Sun into account.

Figure 1. Schematic diagrams (not to scale) of the magnetic network fields and coronal-hole open field lines, with the viewing area progressively expanding from (a)
to (c). (a) Bird’s eye view of solar surface: vertical magnetic flux tubes arise from granules (white polygons) that reside in the intergranular lanes (gray lanes) along the
edges of the supergranule cells. A collection of flux tubes merges at a height of approximately 600–1000 km, forming a network element. (b) Vertical 2D slice of the
solar surface: the network fields expand laterally and merge with others. The regions between the network elements are filled with granules (small solid arcs with
arrows), with magnetic loops (dashed arcs) formed near each granule. (c) Solar corona and interplanetary magnetic fields: Lines with one footpoint are the network
fields in the coronal-hole regions, forming the open magnetic field lines that extend into interplanetary space. Lines with two footpoints are the closed loops. (a) and
(b) are redrawn illustrations based on Cranmer & van Ballegooijen (2005) and Wedemeyer-Böhm et al. (2009), respectively.
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3.2. Hadronic GCR Interactions

The interactions of hadronic GCRs in the solar atmosphere
can be understood based on well-established results on how
these interact in Earth’s atmosphere (Gaisser et al. 2016).
Because the GCR energies considered are so large, the details
of the atomic states (e.g., ionization) are wholly irrelevant, and
even the details of the nuclear states (e.g., hydrogen versus
nitrogen) are largely so.

The dominant loss process for proton GCRs is inelastic
nucleon-nucleon collisions (“pp interactions” below) that
produce pions and other mesons. In our calculations, we use
the results of Kelner et al. (2006), plus validations with the
FLUKA code (Battistoni et al. 2015; Ahdida et al. 2022).
Though multiple mesons may be produced, the basic physics is
well summarized by p+ p→ p+ p+ π0, followed by
π0→ γ+ γ. The total inelastic hadronic cross section for
proton–proton interactions is σpp; 3× 10−26 cm2, with weak
energy dependence for E 1 GeVp

k (Workman et al. 2022).
The proton mean free path, expressed as a mass column
density, is thus ;55 g cm−2 (about half a meter of water
equivalent), meaning that gamma rays are only produced when
the GCRs encounter substantial material. The differential cross
section can be roughly approximated by assuming that the most
important gamma-ray has E E0.1 p

k~g . Last, these pp interac-
tions may break nuclei, either directly or through induced
showers, and this may lead to nuclear de-excitation gamma
rays; as those are below about 10MeV, we ignore them here.

The second-most important—but ignorable—loss process is
continuous losses due to GCR collisions with electrons. For
neutral material, the loss rate due to atomic excitation and
ionization is approximately 2 MeV g cm 2( )- for all materials
except hydrogen and 4 MeV g cm 2( )- for hydrogen, the
difference is due to the greater number of electrons per unit
mass (Workman et al. 2022). The solar photosphere is largely
neutral, but we note that even the losses in fully ionized
material (so-called Coulomb losses) are only a few times larger
(Strong & Moskalenko 1998). These loss rates have only a
weak dependence on energy in our range of interest. The
continuous energy loss of a proton over one mean free path for
inelastic nucleon-nucleon interactions is thus ;0.2 GeV. Due
to our focus on gamma rays above 1 GeV, and hence protons
above about 10 GeV, this continuous energy loss is negligible.

3.3. Relevant Photospheric Depths

Using the proton mean free path, we estimate the possible
depth range for interactions, which informs which magnetic
field structures are most relevant. For simplicity, here we only
assume vertical trajectories, ignoring helical motion. Interac-

tions typically occur when n z dz 1pp H ( )ò s , where n zH ( )
represents the hydrogen number density of the gas at height z.

Using the mass density ρ of the Sun, which will later be
given in Figure 3, we estimate that incoming proton GCRs
typically penetrate no deeper than 800 km below the surface.
Because the mass density varies exponentially with depth, this
is a firm bound. As a result, proton GCR absorption and
gamma-ray emission primarily occur within the photosphere
and uppermost convection zone.

In Appendix B, we show that a full calculation with our
model reveals that emission primarily occurs within a height
ranging from −100 to 500 km. This is shallower than noted in
our estimate because our 3D numerical simulation of particle

trajectory takes into account full helical motion, hence a longer
particle trajectory at around the reflection height compared to
the case for the vertical trajectories. Moreover, to produce
outgoing gamma rays, proton GCRs must first be reflected from
incoming to outgoing.

3.4. Key Assumptions of Our Model

The Sun’s magnetic environment is complex, with distinc-
tive features ranging from the smallest scales to the size of the
solar system. However, when considering how incoming GCRs
produce outgoing gamma rays, there are basic facts that allow
for significant simplifications. First, hadronic GCRs only
produce gamma rays when the accumulated mass column
density they traverse is very large. Because the matter density
on the solar surface varies exponentially, only a narrow range
of heights is relevant, as discussed in Section 3.3. This suggests
that, as a primary effect, we should consider magnetic fields
from network elements and intergranular lanes within this
specific height range. Second, there must be magnetic fields
strong enough to reflect the very energetic GCRs from
incoming to outgoing so that the gamma rays can escape over
the whole surface of the Sun, as observed. In comparison, we
can reasonably neglect deflections from other field structures,
though they may matter in the second order through how they
change the angular distribution of incoming GCRs.
In our model, we make the following simplifications:

1. That the solar surface is spherically symmetric, and thus
the model presented in this work applies to every small
patch on the surface of the Sun.

2. That all GCRs reach the flux tube of the network
elements in the quiet photosphere by propagating along
the open field lines and network fields.

3. That higher-energy GCRs that penetrate the flux tubes of
the network element plunge onto internetwork regions,
which consist of vertical flux sheets.

The first simplification allows us to focus on the main parts of
the emission process; however, it means we will not be
considering the different latitudes of the coronal holes and open
field lines. The second simplification aids in understanding how
emission occurs in the quiet photosphere, even though we will
not explore the relationship between gamma-ray flux, active
regions, and solar activity in this paper. The third simplification
helps us separate the trajectories of low- and high-energy GCRs
and gives us a method to evaluate the fraction of high-energy
GCRs entering the internetwork regions.

3.5. Details of the Double-structure Model

Figure 2 shows the schematics of the double-structure
magnetic fields we use to model GCR propagations. It consists
of one isolated flux tube and one isolated flux sheet. The tube
represents those forming the network elements, as depicted in
Figure 1(a). The sheet represents those formed in the
intergranular lanes, as depicted in Figure 1(b). In our model,
this sheet is symmetric along the long horizontal axis and
extends indefinitely. The magnetic structures of the flux tube
and flux sheet are essential to determining the 3D trajectories of
the GCRs. In Section 4, we demonstrate the numerical
solutions for these structures under the magnetostatic equili-
brium with the surrounding gas.
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Driven by our assumption that hadronic GCRs propagate
toward the Sun along open field lines and network fields,
eventually reaching the network elements, we start the GCR
trajectories at the top of the flux tube. Hadronic GCRs with an
isotropic distribution are uniformly injected across the cross-
section surface of the tube at the merging height, set at
z= 1600 km, as shown in Section 4. Lower-energy GCRs—
those with Larmor radii, rL, much smaller than field scale
height, Bln 1( ∣ ∣) - —are tightly confined by the field lines
within the flux tube. As they spiral downward, the magnetic
field strength increases due to compression from the surround-
ing gas, causing the particle pitch angle to approach 90°.
Eventually, the radial component of the field imparts a “kick”
to the particles, initiating the upward spiral, the process known
as the magnetic bottle effect.

On the other hand, higher-energy GCRs—those with
Br lnL

1( ∣ ∣) - —do not spiral inside the tube; instead, they
plunge through the tube with a slight deflection. After they exit
the tube, we maintain their polar angles (relative to the vertical
axis) while isotropizing their azimuthal angles. These GCRs are
then injected into the flux sheet, onto a horizontal surface at
z= 600 km, as depicted in Figures 1(b) and 2. Let L be the
separation between the two adjacent granule lanes, and Wsh be
the width of the flux sheet at z= 600 km. Then the ratio Wsh/L
is the fraction of those higher-energy GCRs exiting the tube
that should be injected into the sheet. For the GCRs that enter
the sheet, we calculate their particle trajectories and gamma-ray
yields.

At the very highest energies, GCRs are not captured by
solar-surface magnetic fields. They will plunge straight through
the flux sheets and interact with the Sun but do not produce
outgoing gamma rays.

3.6. Magnetic Fluctuations in the Solar Atmosphere

The magnetic field structure described in Section 3.5 is a
magnetostatic configuration, which does not contain any
magnetic fluctuations. In this subsection, we discuss the
potential effect of magnetic fluctuations on particle trajectories.

We distinguish the impacts of magnetic fluctuations originat-
ing from three distinct regions within the solar atmosphere in the
open field scenario. The first region is the solar corona, where
Alfvénic turbulence occurs. This turbulence is thought to
contribute to the heating of the plasma in the coronal region

and the acceleration of the solar wind (Tu 1987, 1988;
Matthaeus et al. 1999; Cranmer et al. 2007; Verdini et al.
2010; van Ballegooijen et al. 2011; van Ballegooijen & Asgari-
Targhi 2016). The energy source of the turbulence comes from
the Alfvén waves launched from the photospheric surface due to
the buffeting of the footprints by solar granulation flows (van
Ballegooijen et al. 1998; Nisenson et al. 2003; Cranmer & van
Ballegooijen 2005). As these waves propagate outward from the
photospheric surface, they interact with the inward-propagating
waves arising from wave reflection in the lower coronal region
(Heinemann & Olbert 1980; Velli et al. 1989; Velli 1993;
Matthaeus et al. 1999; Dmitruk et al. 2002; Dmitruk &
Matthaeus 2003; van Ballegooijen et al. 2011; van Ballegooijen
& Asgari-Targhi 2016; Meyrand et al. 2023). The energy
cascade then happens due to the nonlinear interactions between
the counter-propagating Alfvén waves, producing microscopic
Alfvénic turbulence at smaller scales (i.e., higher wavenumbers;
Iroshnikov 1964; Kraichnan 1967). The turbulence generated
this way in the solar corona is transported away from the Sun by
the solar wind into the heliosphere. We point out that the origin
of the solar modulation discussed in Section 3.1 is due to GCR
interaction with this kind of turbulence from the solar wind. The
reduction of GCR intensity due to solar modulation within 1 au
is small (Li et al. 2022) and thus neglected in this work. Because
the gamma-ray flux produced in the corona is much smaller than
that produced near the photospheric surface, as discussed in
Section 3.3, the magnetic fluctuations in this region are not the
primary concern of this work.
The second region is the photosphere and the lower

chromosphere, where the gamma rays are most likely to be
produced, as shown in Section 3.3. In particular, we refer to the
region from z= 0 km to z= 1600 km, above which the density
is not high enough to produce significant gamma rays. The
magnetic fluctuations in this region are macroscopic MHD
transverse waves (fluctuations) driven by photospheric motions
and the waves reflected from the lower coronal region. (In
particular, the waves below the merging heights of the flux
tubes at the height of 600–1000 km are classified as kink
waves, while those above the merging height are identified as
Alfvén waves. Both types are referenced as MHD transverse
waves in our discussion.) Cranmer & van Ballegooijen (2005)
highlight that the energy cascade efficiency is low in this region
in the open field scenario, which is also supported by the
findings of Cranmer et al. (2007). This low efficiency is evident
in Figure 14 of Cranmer & van Ballegooijen (2005), which
illustrates that the Alfvén wave reflection time, tref, is shorter
than the nonlinear outer-scale eddy cascade time, teddy.
Following the hierarchy of the energy cascade by Dmitruk &
Matthaeus (2003), a weak energy cascade occurs when
tref< teddy, as Alfvén waves propagate away before the
turbulence has sufficient time to develop and heat the plasma.
In contrast, the strong energy cascade occurs when teddy< tref,
as there is sufficient time for the Alfvén turbulence to develop.
Therefore, the condition in Cranmer & van Ballegooijen (2005)
of tref< teddy in the open field regions of the photosphere and
chromosphere suggests a weak magnetic power spectrum of the
Alfvén turbulence for scales smaller than the outer scale of the
driving eddies, i.e., an inefficient process to produce smaller-
scale sideway displacements on the magnetic field lines.
This weak turbulence suggests that particle scattering with

Alfvén turbulence is likely also weak, though whether it is
negligible in the study of solar gamma-ray emission requires a

Figure 2. Schematics of the double-structure model. Left: lower-energy
hadronic GCRs (black helix) are magnetically mirrored inside the flux tube,
producing outgoing gamma rays (red wavy line). Higher-energy hadronic
GCRs (blue curve) plunge through the flux tube with a slight deflection. Right:
higher-energy hadronic GCRs (blue helix) then enter the flux sheet, with a
fraction being magnetically reflected, producing outgoing gamma rays.
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careful evaluation against pitch-angle scattering and magnetic
mirroring times. A similar analysis has been conducted by
Malyshkin & Kulsrud (2001) and Effenberger & Petrosian
(2018) on the topics of thermal conduction within stochastic
magnetic fields and their application to energetic particle
transport in solar flares. The two references indicate that if the
escape time in the magnetic mirroring region is less than the
pitch-angle scattering time, then magnetic mirroring due to the
converging fields has a stronger effect than the scattering of the
particles on the Alfvén turbulence, and the opposite is true if
the scattering time is less than the escape time. However, a
precise quantitative analysis of particle pitch-angle scattering
requires a detailed magnetic power spectrum of Alfvén
turbulence as functions of the wavenumber and height in the
photosphere and chromosphere. Such information has not been
shown in the existing literature. The derivation of this magnetic
power spectrum would entail modeling macroscopic MHD and
acoustic waves originating from photospheric motions, their
reflection at the coronal base and lower corona, nonlinear wave
interactions for direct and inverse energy cascade processes,
and a plasma heating model that aligns with observational data.
These requirements exceed the scope of the present study. As
such, our current flux tube and sheet model does not consider
microscopic Alfvén turbulence, though this aspect remains a
focus for future investigations.

The third region is the uppermost convection zone, situated
within a few hundred kilometers below the photospheric surface.
The macroscopic fluctuations of the magnetic fields and the
fluids are caused by the convective nature of the granule cells.
Even in this convective environment, a coherent structure in
tubes and sheets can emerge due to flux expulsion (Parker 1963;
Weiss 1966; Galloway & Weiss 1981) and field amplification
(Parker 1978; Webb & Roberts 1978; Spruit & Zweibel 1979),
and it is this coherent structure that we investigate in this study.
In contrast, the macroscopic fluctuating parts of the fields cannot
be easily obtained through theoretical approaches. They require
2D or 3D magnetoconvection simulations, which exceed the
current paper’s scope but will be pursued rigorously in future
research. In this study, we omit the macroscopic fluctuating
component and the microscopic Alfvén turbulence of the
magnetic fields, focusing solely on the coherent component of
the field configuration in the uppermost convection zone,
photosphere, and chromosphere. It is noteworthy that our
results, as presented herein, reasonably agree with the observa-
tional gamma-ray data, signifying that the double-structure
approach in a magnetostatic configuration setting captures key
characteristics of the hadronic GCR reflection and the resulting
solar gamma-ray emission.

4. Magnetohydrodynamic Solutions of Flux Tube and Flux
Sheet

In this section, we describe the magnetic flux tube and flux
sheet structures employed in our model. We first present the
equations governing the magnetohydrostatic equilibrium with
the surrounding gas, then develop the numerical solutions, for
which we follow the approach in Steiner et al. (1986). We
emphasize that the coordinate variable names used in this
section should not be conflated with those used in Section 5 for
particle trajectories.

4.1. Basic Equations

Flux tube. The flux tube representing the network elements is
approximated as a vertical, axisymmetric, untwisted magnetic
flux tube that is in magnetohydrostatic equilibrium with the
surrounding gas. We describe the flux tube in the cylindrical
coordinates (r, f, and z). The magnetic field B of this geometry
has azimuthal symmetry, i.e., ∂B/∂f= 0. By introducing the
stream function Ψ≡ rAf where Af is the f component of the
vector potential, the field components can be described by

B
r z

B
r r

B
1

,
1

, 0. 1r z ( )= -
¶Y
¶

=
¶Y
¶

=f

The stream function Ψ satisfies the quasi-linear (Grad–
Shafranov) equation,
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where J is the f-directional current density (with the dimension
of [current/length2]) at the surface between the flux tube and
the surrounding gas.
Flux sheet. The flux sheet representing the intergranular

sheets is approximated as a vertical, untwisted magnetic flux
sheet in a magnetohydrostatic equilibrium with the surrounding
gas. We describe the flux sheet in Cartesian coordinates (x, y,
and z). The magnetic field of this geometry has translational
symmetry, i.e., ∂B/∂x= 0. The stream function is the y
component of the vector potential, i.e., Ψ= Ay. The field
components are described by

B
z

B
y
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=
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=

where Ψ satisfies the quasi-linear equation,

y z
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+
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with J the x-directional current density at the surface between
the flux sheet and the surrounding gas.
Common features. The magnetic fields at the surfaces of the

flux tube and flux sheet are discontinuous and thus form current
sheets with surface current density Jå (with the dimension of
[current/length]). In this paper, we refer to this current sheet as
the “flux boundary.” For magnetohydrostatic equilibrium, the
total pressure, P+ B2/8π, must be continuous across the flux
boundary, i.e.,

P B P B8 8 , 5i i e e
2 2 ( )p p+ = +

where the subscripts i and e refer to the internal and external
boundary surfaces of the flux tube or flux sheet. Using
Ampere’s Law and the pressure continuity in Equation (5), Jå

can be expressed as

J
P P

B B

2
. 6e i

e i

( ) ( )=
-
+

To solve the quasi-linear equations in Equations (2) and (4),
we make several simplifications about the surrounding gas.
First, we consider an idealized case where the gas temperature
T at any given height z is in equilibrium in the horizontal
direction, i.e., T z T z T zi e( ) ( ) ( )= = . Thus, the interior and
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exterior gas pressure scale heights are equal and are given by

H z
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, 7b

2

( ) ( )
m

= 



where Re is the solar radius, kb is the Boltzmann constant, G is
Newton’s constant, μ is the mean molecular weight, and Me is
the solar mass. The interior and exterior gas pressures are then
expressed as
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where P zi b( ) and P ze b( ) are the internal and external gas
pressures immediately adjacent to the flux boundary, and zb is
the base of the computation box.

Additionally, we assume that at z= zb, the vertical magnetic
field components inside the flux tube or flux sheet have a
uniform distribution, while outside the flux tube or flux sheet,
the magnetic fields are zero. As a result, the difference between
the interior and exterior gas pressures at the base is expressed
as

P z P z B z B z 8 , 10e b i b z b b
2 2( ) ( ) [ ( ) ( ) ] ( )p- = + ^

where B zz b( ) and B zb( )^ are the vertical and perpendicular B
components just inside the flux boundary at the base. For the
case of the flux tube, B⊥= Br; for the case of the flux sheet,
B⊥= By.

4.2. Numerical Solutions

We follow the iterative procedure from Steiner et al. (1986)
to solve for Ψ from the quasi-linear equations in Equations (2)
and (4). Because of the symmetries of the flux tube and flux
sheet, we only solve half of the tube domain (the rz plane) in
Equation (2) and half of the sheet domain (the yz plane with
y� 0) in Equation (4). In both cases, the boundaries at the top
of the computational domains follow the Neumann condition
where ∂Ψ/∂z= 0 assuming Br= 0. To obtain stable solutions,
we have used the implicit underrelaxation method introduced
in Patankar (1980).

To evaluate the pressure scale height in Equation (7), we must
also specify T and μ as a function of z. For this purpose, we use
the HSRASP model from Chapman (1979). This model combines
the HSRA model from Gingerich et al. (1971), describing the gas
properties in the chromosphere and photosphere, with the upper
convection zone model from Spruit (1974).

Figure 3 shows the HSRASP model for the upper convection
zone, photosphere, and chromosphere. The photosphere layer is
located in 0 km< z< few× 100 km, with the chromosphere
located above and the convection zone below. Because the
HSRASP model does not provide ρ, P, and T above z= 1000 km
and μ above z= 0 km, we make assumptions to extrapolate these
data. First, we set T T 1000 km 6070 K( )= = for 1000 km�
z� 1600 km. This temperature aligns with the model VAL-A of
the semi-empirical 1D hydrostatic calculation from Vernazza
et al. (1981), which shows the quiet-Sun T≈ 6000 K in the same
range of z. Next, we set 1000 km 1.3( )m m= = for
0 km� z� 2000 km. For the region 1000 km� z� 1600 km,
we calculate ρ and P under the assumption z( )r =

z H1000 km exp 0( ) ( )r -D and P z P z H1000 km exp 0( ) ( ) ( )= -D
where Δz= z− 1000 km and H H 1000 km0 ( )º .
Last, we assume that the Sun’s atmosphere is comprised of

only hydrogen (H) and helium (He) atoms. Heavier elements
are ignored as they only account for 2% of the total mass. As
a result, the mass fraction of the hydrogen atom is given as

X z
z A

A A
, 11H

1
He
1

H
1

He
1

( ) ( ) ( )m
=

-
-

- -

- -

where AH= 1 and AHe= 4 are the mass numbers of hydrogen
and helium, respectively.

4.2.1. Flux Tube Solution

For the numerical solution of the flux tube, the computa-
tional domain is a 2800 km× 500 km box that is discretized on
a rectangular mesh of 65× 65 mesh points. The base of the box
is set at zb=−1200 km. We select an initial radius for the flux
tube, Rå, and vertical magnetic field strength, B zz b( ) at the base
of the computational domain, with values of 36 km and 10,
000 Gauss, respectively. This choice of initial conditions gives
the radius of the tube at z= 0 km as 80 km, the filling factor as
3.6%, and the axial field strength at r= z= 0 km as
1580 Gauss. The numerical value of the tube radius at z=
0 km is close to the photometric measurements reported in
Muller & Keil (1983), which shows that the typical flux tube
diameter at z= 0 km for the facular points forming the network
fields in the quiet photosphere is 150 km. The numerical values
of the filling factor and the axial field strength agree with the
network properties revealed by the Stokes I and V lines of Fe I
reported in Solanki & Stenflo (1984), which show that the
vertical field component of the network field ranges from 1400
to 1700 G, and the filling factor is between 3% and 4%.
Figure 4(a) shows the numerical solution for the flux tube,

which is invariant in the azimuthal direction. The radius of the
tube at the top of the simulation box (z= 1600 km) is

Figure 3. Adopted model conditions for the upper convection zone,
photosphere, and chromosphere. Solid lines are data from the HSRASP
model. Dashed lines are our extrapolation.
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Rtop= 430 km. The figure is divided into groups of subfigures
to show the variations for Bz and Br at different heights. At each
height, we find that as r increases, Br increases while Bz

decreases.
Lastly, we emphasize that the magnetic field structures

discussed here are located in the photosphere and chromo-
sphere. They are finite-sized and the building blocks of the
large-scale coronal and interplanetary magnetic fields. These
flux structures located at the photosphere have much stronger
field strength (>1000 G) than those in the coronal region,
which have a field strength of ∼few G at 1 Re from the
photospheric surface (Patzold et al. 1987). The large field
strength of the structures we consider, plus their location in
dense regions, is essential to redirecting GCRs from inward to
outward below the column density of material needed to
produce gamma rays.

4.2.2. Flux Sheet Solution

For the numerical solution of the flux sheet, the computa-
tional domain is a 1800 km× 500 km box that is discretized on
a rectangular mesh of 65× 65 mesh points. The base of the
computational box is set at zb=−1200 km, as for the tube. We
choose the initial half-width of the sheet and the vertical
magnetic field strength B zz b( ) at the base of the computation
box to be 30 km and 10, 000 Gauss, respectively. This choice
of the initial conditions gives the width of the sheet at z= 0 km
as 330 km, the filling factor as 55%, and the vertical field
strength at r= z= 0 km as 1608 Gauss. The half-width of the
sheet at the top of the simulation box, z= 600 km, is given as
ytop= 330 km. Consequently, Wsh= 2ytop= 660 km. The
numerical values of the widths at z= 0 km and at 600 km, as
well as the vertical field strength at z= 0 km, are similar to the
results obtained from the 3D magnetoconvection simulation
presented in Freytag et al. (2012).

Figure 4(b) is the numerical solution for the flux sheet, which
is invariant along the x direction. (The sheet structure is
redundant in the x direction.) The interpretation is the same as

Figure 4(a), except for the blue dashed line denoting By

variation in this model.

5. Simulation Approach for GCR Propagation and
Gamma-Ray Emission

In this section, we explain our numerical simulation of solar-
disk gamma-ray emission. Our simulation approach is
factorized into four separate stages, taking advantage of the
fact that we need to calculate only the effects on the average
GCR proton and gamma-ray distributions, as opposed to
needing to follow the details of every particle. First, we
simulate proton GCR trajectories in the flux tube and flux sheet,
recording the accumulated optical depths of these trajectories,
but ignoring interactions. Next, we calculate the energy
spectrum of gamma rays resulting from pp interactions, based
on the proton optical depths. We then integrate the gamma-ray
fluxes along the trajectories of the proton GCRs to obtain the
total emission flux from the solar disk due to pp interactions.
Finally, we incorporate helium contributions to the GCR flux
and the solar gas density by using the nuclear enhancement
factor.

5.1. Proton GCR Propagation

Proton GCR motions follow the Lorentz force equation,

v
v

v B r
d

dt

q

m c
, 12

p( )
( ) ( )=

G
´

where v is proton velocity, Γ is the Lorentz factor, q is proton
charge, mp is proton rest mass, c is the speed of light, and B r( )
is the local magnetic field at location r x y z, ,( )= . We do not
include the electric field E in the Lorentz force equation as its
magnitude is negligible compared to the v× B/c term. We
motivate this within an ideal magnetohydrodynamics frame-
work where E=−U×B/c, with U denoting the plasma flow
velocity. The typical convective flow speed in the granule cell
is |U|∼ 1 km/s, 5 orders of magnitude smaller than the
hadronic GCR speed, |v|≈ c.

5.1.1. Injection into the Flux Tube

We uniformly inject protons across the horizontal cross-
section surface of the flux tube at z= 1600 km. Due to the
azimuthal symmetry of the tube, we only inject protons along
one of the horizontal axes. We begin the injection process at an
axial distance of r0= 20 km and progressively increase r0 in
increments of 40 km until it reaches the boundary of the
flux tube.
At each r0, we inject proton GCRs based on the following

procedure, with a focus on those propagating into (downward)
the flux tube while disregarding those moving away (upward)
from it. We define θ0 and f0 as the initial polar and azimuthal
angles, respectively, relative to the vertical direction. We
consider a range for θ0 spanning from 90° to 180° (all
downward directions) with increments of Δθ0= 1°, and a
range for f0 spanning from 0° to 360° with increments of
Δf0= 45°. For every combination of values r , ,0 0 0( )q f , we
evaluate Ep

k ranging from 1 to 105 GeV, dividing this range
into eight equally spaced logarithmic Ep

k bins per decade.
We numerically simulate 3D proton trajectories in the flux

tube. For each combination of values r E, , ,0 0 0 p
k( )q f , one

Figure 4. (a) For the flux tube case: vertical cross-section plane and magnetic
field strength variations. The black line denotes the edge of the flux tube. At
each height (labeled by a horizontal gray line), the r-direction variations of Bz

and Br, normalized to the value of Bz at the axis (with their numerical values
labeled in red), are shown in the red solid and blue dashed lines, respectively.
(b) For the flux sheet case. (Note the vertical scale in this representation has
been compressed by factors of 2.8 and 2.25 in relation to the horizontal scales
depicted in (a) and (b), respectively. The actual dimensions of the flux tube and
sheet are more slender than the depicted structures here.)
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proton GCR is injected. The simulation of each proton
trajectory is terminated when the proton satisfies one of the
following conditions: (1) z<−1200 km, (2) z> 1600 km, or
(3) exiting the surface of the tube. In (1), protons are not
magnetically reflected before being absorbed by the Sun. We
select a minimum height of the simulation box at −1200 km
where the pp interaction probability exceeds 95%. This is to
ensure a sufficiently high probability of pp interactions at the
bottom of the simulation box. In (2), protons have been
reflected and exit the tube from the top cross-section surface,
above which the gas density is too low to produce significant
gamma rays. In (3), protons pass through the edge of the tube;
those with downward velocities later enter the internetwork
regions.

5.1.2. Injection into the Flux Sheet

We apply a similar injection process at the top cross section of
the flux sheet at z= 600 km (see Figure 1(b) and Figure 2). We
only inject proton GCRs along the y direction, as B is invariant
in the x direction. Starting at y0= 20 km, we increment y0 by
40 km until y0 reaches the boundary of the flux sheet.

We maintain the same parameter values for θ0, f0, and Ep
k as

in the flux tube. We use 0q̃ and 0f̃ to denote the initial polar
and azimuthal angles at the injection site of the flux sheet. For
each combination of values y E, , ,0 0 0 p

k( ˜ ˜ )q f , one proton is
injected. The simulation of each proton trajectory is terminated
when the proton satisfies one of the following conditions:
(1) z<− 1200 km, (2) z> 600 km, or (3) exiting the surface of
the sheet.

We note that the simulation procedure for the flux sheet is
independent of the injected GCR spectrum. However, the
injected GCR spectrum for the flux sheet is anticipated to be
different from the injected GCR spectrum for the flux tube.
This is because low-energy proton GCRs are confined within
the flux tube, whereas high-energy GCRs traverse the tube with
a slight angular deflection, as described in the double-structure
model explanation found in Section 3.5. Therefore, only the
high-energy GCRs can exit the flux tube and subsequently
enter the flux sheet. To address this effect, we separately
compute the distribution for GCR injection into the flux sheet
in Section 5.1.3.

5.1.3. Angular and Energy Efficiency of GCRs Injected into the Flux
Sheet

In the simulation of proton GCR injection into the flux tube
presented in Section 5.1.1, we record the ones that pass through
the flux tube surface at heights above z= 0 km. For each r0 and
Ep

k, we record the number of proton GCRs, Q, and their polar
angles q¢ (relative to the ẑ direction) upon exiting the tube
surface. We disregard the azimuthal angular dependence in Q,
assuming each proton enters the flux sheet isotropically in the
azimuthal direction at the injection site. To account for the
higher number of protons injected at larger r0, we weigh Q over
the ring area with the radius r0 and the width dr0, i.e.,

f E Q r E
r

A
dr,

2
, ,

2
, 13

R

p
k 0

0
0 p

k 0

tot
0

top

( ) ( ) ( )òq
f
p

q
p

á ¢ ñ º
D

¢

where Atot= πRtop
2 . Note that if there were no magnetic field

within the flux tube, we would have f E, 1p
k( )qá ¢ ñ  for all

values of q¢ and Ep
k.

Here, we clarify the reason for recording the proton GCRs that
pass through the flux tube surface at heights above z= 0 km
instead of above z= 600 km to obtain f E, p

k( )qá ¢ ñ. First, due to
the comparatively weaker magnetic field strength in the network
field within the lower coronal and chromosphere regions, it is
anticipated that the majority of high-energy proton GCRs will
already traverse the network fields at heights far above
z= 1600 km and enter the internetwork regions (Figure 1(b)).
In other words, we anticipate that f E, 1p

k( )qá ¢ ñ  for Ep
k above

a certain threshold that needs to be determined. However, in our
model, the injection of proton GCRs into the flux tube occurs at
z= 1600 km, which is already close to the photospheric surface.
At this height, the flux tube area is Atop= 5.89× 105 km2. Now,
if we choose z= 600 km as the criteria for recording the proton
GCRs passing the flux tube surface, the flux tube area at this
height is 1.96× 105 km2≈ 33%× Atop. This choice would not
result in f E, 1p

k( )qá ¢ ñ  because proton GCRs with initial
injection polar angle θ0 155° have not yet passed through the
flux tube surface for such a short vertical distance, as from
z= 1600 to z= 600 km. (Note that in the ideal scenario where
the injection started at heights within the chromosphere or
lower coronal region, these proton GCRs with θ0 155°
would have already passed through the network field and entered
the internetwork regions.). To circumvent this issue, we choose
z= 0 as the criterion for recording the proton GCRs passing
the tube surface. At z= 0 km, the flux tube radius is 2.01×
104 km2≈ 3.4%× Atop. For this choice, the proton GCRs
injected at θ0 close to 180° would have enough vertical distance,
from z= 1600 to z= 0 km, to escape the flux tube, resulting in
f E, 1p

k( )qá ¢ ñ  for large Ep
k.

Figure 5 shows the numerical results of f E, p
k( )qá ¢ ñ. Each

thin colored line represents the polar angle q¢ of a proton GCR
upon exiting the flux tube surface. At E 10 GeVp

k 2 , we find

f E, 0p
k( )qá ¢ ñ  because protons injected into the tube are

magnetically reflected and do not pass through the tube surface.
At E 10 GeVp

k 5 , we find f E, 1p
k( )qá ¢ ñ  for all q¢ because

protons have such large momenta that the trajectories are not
affected by the magnetic fields in the flux tube. At

 E10 GeV 10 GeV2
p
k 5 , protons are deflected by the

Figure 5. Angular and energy efficiency, f E, p
k( )qá ¢ ñ, of proton GCRs passing

through the flux tube surface. The color bar corresponds to the polar angle, q¢,
at which the proton GCR exits the flux tube surface.
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magnetic fields and exit the tube surface with smaller polar
angles. Because of the deflection, a fraction of proton GCRs
entering the tube with different r0, θ0, and f0 can exit the tube
surface with nearly the same q¢, leading to certain lines in
Figure 5 showing f E, 1p

k( )qá ¢ ñ > .
In Figure 5, the red thick line represents the average of
f E, p

k( )qá ¢ ñ over q¢ ranging from 90° to 180°. It is expressed as

/f E f E d d, , 14p
k

90

180

p
k

90

180
( ) ( ) ( )ò òq q qá ñ º



 á ¢ ñ ¢


 ¢

which follows f E 1p
k( )á ñ . We can understand f Ep

k( )á ñ as the
fraction of the total number of injected protons with Ep

k capable
of passing through the flux tube surface. It reveals that within
the range of  E10 GeV 10 GeV2

p
k 3 , which corresponds to

the rising part of the red line, a fraction of the injected protons
traverse through the flux tube, albeit with a slight angular
deflection. For E 10 GeVp

k 3 , protons injected into the flux
tube are not captured by the flux tube, but all pass through the
tube surface.

Last, we assume that proton GCRs exiting the tube surface
follow straight-line trajectories (i.e., no magnetic fields) until
they reach the top of the flux sheet. As a result, we
have f E f E, ,p

k
0 p

k( ) (˜ )q qá ¢ ñ  á ñ.

5.2. Gamma-Ray Energy Spectra from pp Collisions

In this subsection, we follow the methodology of Kelner
et al. (2006) for calculating the gamma-ray energy spectra from
pp collisions. They provide an analytical form for the high-
energy regime (Eγ� 100 GeV) and a δ-function approximation
approach for the low-energy regime (1 GeV Eγ� 100 GeV),
where they note that this approximation is more accurate in this
energy range.

5.2.1. Higher-energy Regime

For Eγ� 100 GeV, we utilize the analytical expression of Fγ,
the gamma-ray energy spectrum resulting from pp interactions,
as provided by Kelner et al. (2006) in their Equation (58). First,
we consider the interaction of a proton GCR with a proton in
the solar gas, where the proton GCR has total energy
E E m cp p

k
p

2= + . The number of gamma-ray photons per pp
interaction within the energy interval [Eγ, Eγ+ dEγ] is given by

dn F
E

E
E

dE

E
, . 15

p
p

p
⎜ ⎟
⎛

⎝

⎞

⎠
( )ºg g

g g

The analytical expression of Fγ provided in Kelner et al.
(2006) is a parameterization of the gamma-ray energy spectrum
obtained from the numerical simulation performed with the
SIBYLL code (Fletcher et al. 1994), which takes into account
inelastic pp interactions and the subsequent decays of the
secondary π0 and other mesons into gamma rays. They have
shown that their result maintains an accuracy within a few
percent under conditions where Eγ/Ep� 10−3 and
Ep> 100 GeV. Because of the second condition, we will use
Fγ in their Equation (58) to calculate the solar-disk gamma-ray
emission spectrum, dN dEg g, from the solar disk for
Eγ� 100 GeV.

5.2.2. Lower-energy Regime

For 1 GeV� Eγ� 100 GeV, we utilize the δ-function
approximation provided in Kelner et al. (2006) in their
Equations (77) and (78). We show their methodology of the
δ-function approximation in the same form as in Equation (15),

dn G E
dE

E
, 16p

k

p
k

( ) ( )ºg g
g

where Gγ, denoting the gamma-ray energy spectrum produced
in pp interactions under the assumption of the δ-function
approximation, is presented as

G E
n E

K E m

2
. 17p

k f p
k

p
k 2 2
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g

p p

Here, the parameter nf is selected as a free parameter to match
dN dEg g from the δ-function approximation for 1 GeV� Eγ�
100 GeV and dN dEg g from the analytical expression for
Eγ� 100 GeV at Eγ= 100 GeV. The parameter Kπ represents
the mean fraction of Ep

k transferred to the secondary π0 and other
mesons. The value of Kπ= 0.17 provides a satisfactory
agreement with Monte Carlo simulations based on laboratory
data, as discussed in Kelner et al. (2006) and Aharonian &
Atoyan (2000). The δ-function approximation is valid when σpp
is nearly constant, which occurs for Ep 3Eth= 3.66 GeV where
E m m m m c2 1.22 GeVth p

2
p

2( )= + + =p p is the thresh-
old energy of π0 production with mπ being the rest mass of π0

(Kelner et al. 2006). In this work, while we present our numerical
results for dN dEg g down to Eγ= 1 GeV, we consider the
validity of the results to be limited to Eγ 3.66 GeV.
Last, Fγ from the analytical expression and Gγ from the δ-

function approximation method given in Kelner et al. (2006) do
not cover the angular profile of secondary gamma rays from pp
interactions. As a result, Fγ and Gγ should be used under the
assumption that secondary gamma rays are collinear with the
primary proton. This assumption is applied for calculating
solar-disk gamma-ray emission in Section 5.3. In Appendix C,
we demonstrate that considering a nonzero emission angle
would only enhance the total solar-disk gamma-ray spectrum
by ≈3% at Eγ∼ 1 GeV. Therefore, the assumption of
collinearity is adequate for this work.

5.3. Gamma-Ray Emission for Higher-energy Regime

In this subsection, we calculate solar-disk gamma-ray spectra
from the flux tube and the flux sheet for the higher-energy
regime (Eγ� 100 GeV).
Flux tube. For proton GCRs injected into the tube (“tb”) at

an axial distance r0 and the injection height z= 1600 km, the
resulting gamma-ray flux in the gamma-ray energy interval [Eγ,
Eγ+ dEγ] is given by



dN r

dE
F

E

E
E E

r E
dE

E
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,

cos , , , , 18

R
E
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p
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( )
∣ ( )

( ) ( )

ò ò

q q f

= F

´ W

g

g
g
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where the subscript Re denotes this flux is evaluated at the
solar surface. The function Ep p

k( )F represents the differential
proton GCR flux per steradian per proton kinetic energy
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interval Ep
k[ , E dEp

k
p
k]+ at the injection site of the flux tube.

We use the GCR flux at 1 au measured by the AMS-02 and
CREAM (see Section 3.1). The factor cos 0q accounts for the
effective flux of proton GCRs entering the horizontal tube
cross-section surface at the injection height (z= 1600 km), and
d d dsin0 0 0 0q q fW = is the differential solid angle for injection
into the flux tube. The factor dEp/Ep is a product of 1/Ep from
Equation (15) and the differential integration variable dEp is
used to integrate Φp. For the upper limit on Ep, we use 100 Eγ.
The contribution from Ep> 100 Eγ to the gamma-ray flux is
less than 1% and can be neglected.

The function p represents the integrated absorption
probability along the particle trajectory for a proton GCR
injected into the tube with initial conditions r E, , ,0 0 0 p

k( )q f ,
and is furthermore weighted by the gamma-ray transmission
factor, r( )z , for a gamma-ray produced at location r, thereby
taking into account the fraction of gamma rays transmitted
outward from the Sun. We express p as

 rr E
dP E

d
d, , ,

,
. 19p 0 0 0 p

k

0

abs p p
k

p
p

p
max

( ) ( )
( )

( )òq f z
c

c
c=

c

Here, rp p ( )c c= is the integrated column density of a proton
GCR along its trajectory from the injection site rinj to the
location r in hydrogen gas,

r r
X z z

m
d , 20

r

r

p
H

Hinj

( ) ( ) ( ) ∣ ∣ ( )òc
r

=
¢ ¢

¢

where mH is the mass of a hydrogen atom. The upper bound of
the integral, p

maxc , in Equation (19) denotes the total integrated
column density throughout the particle trajectory, from the
injection site rinj to the exit point rexit, i.e., rp

max
p exit( )c c= . The

function P E,abs p p
k( )c in Equation (19) is the absorption

probability of a proton GCR with the accumulated column
density χp,

P E E, 1 exp , 21abs p p
k

p inel p( ) [ ( )] ( )c c s= - -

where E E m cinel p inel p
k

p
2( ) ( )s s= + is the cross section of the

inelastic pp interaction between the proton GCR and a
hydrogen atom in the solar atmosphere. We use the numerical
fit of Einel p( )s presented in Kelner et al. (2006) in their
Equation (73),

E D D

E

E

34.3 1.88 0.25

1 mb, 22

inel p
2

th

p

4 2

⎜ ⎟
⎡

⎣
⎢

⎛

⎝

⎞

⎠

⎤

⎦
⎥

( ) ( )

( )

s = + +

´ -

where D Eln 10 GeVp
3( )= and 1 mb= 10−27 cm2.

The gamma-ray transmission factor r( )z introduced in
Equation (19) denotes the probability for a gamma-ray photon
produced at r from the pp interaction being transmitted through
the solar gas. It is expressed as

r
rt

exp , 23⎜ ⎟
⎛
⎝

⎞
⎠

( )
( )

( )z
l

= - g

g

where λγ is the photon mass attenuation length. For
Eγ 1 GeV, λγ is approximately 80 g cm−2 for both hydrogen
and helium gases (Workman et al. 2022). Here, rt ( )g is the

mass column density of the gamma-ray photon produced at r,
which propagates to a far distance, rinfty, from the Sun, i.e.,

r r rt d . 24
r

rinfty
( ) ( )∣ ∣ ( )ò r= ¢ ¢g

In our numerical calculations of tγ, we have incorporated the
curvature of the Sun and the z-dependence of ρ. We assume that
the gamma-ray momentum is collinear with the primary proton
GCR momentum during each pp interaction. Consequently, the
gamma-ray trajectory used in rt ( )g in Equation (24) is a straight
line beginning at location r and is collinear with the velocity
vector of the primary proton GCR at location r. In Appendix C,
we discuss the validity of the collinearity assumption.
The gamma-ray flux in Equation (18) only represents the

case where proton GCRs are injected at r0. To factor in the
cross-section surface area at the injection height, Equation (18)
is weighted over the ring area 2πr0dr0/Atot. It is expressed as

dN

dE

dN r

dE

r

A
dr

2
, 25R
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R
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,tb 0 0
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0
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∣
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∣ ( )ò
p

=g

g

g

g
 

where Atot= πRtop
2 .

Flux sheet. For proton GCRs injected into the sheet (“sh”) at
distance y0 at the injection height z= 600 km, the resulting
gamma-ray flux in the energy interval [Eγ, Eγ+ dEγ] is given
by


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where much is as above in Equation (18). The component
f E,0 p

k(˜ )qá ñ is the angular and energy efficiency of protons
injected into the flux sheet, as shown in Figure 5. It accounts
for the effect that those high-energy protons not confined by the
flux tube magnetic fields can traverse through the flux tube and
subsequently enter the flux sheet. The component Wsh/L takes
into account the ratio of the flux sheet cross-section area at
z= 600 km to the area between the two adjacent granule lanes,
as discussed in the model schematic diagram in Section 3.5.
We take the separation of the granule lanes to be the mean size
of a granule, L= 1200 km.
To factor in the cross-section surface of the flux sheet at the

injection height, Equation (26) is weighted over dy0/ytop. It is
expressed as

dN

dE

dN y

dE

dy

y
. 27R

y

R
,sh

0

,sh 0 0

top

top∣
( )

∣ ( )ò=g

g

g

g
 

Finally, the averaged gamma-ray flux evaluated at the solar
surface is the sum of gamma-ray fluxes from the flux tube in
Equation (25) and from the flux sheet in Equation (27). By
“averaged,” we mean that all patches on the surface are
considered equivalent due to our assumption of the spherical
symmetry of the solar surface. As a result, the averaged
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gamma-ray flux evaluated at 1 au from the Sun is given as

dN
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5.4. Gamma-Ray Emission for the Lower-energy Regime

In this subsection, we present the formulae for solar-disk
gamma-ray spectra from the flux tube and the flux sheet in the
low-energy regime (1 GeV Eγ� 100 GeV).

Flux tube. For proton GCRs injected into the flux tube, the
gamma-ray flux is given by


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where E E m c E4min
2 4= +g p g (Kelner et al. 2006). The free

parameter nf in Gr in Equation (29) for the low-energy regime
needs to be adjusted to 2.71 to match dN r dE R,tb 0( ) ∣g g  in
Equation (18) for the high-energy regime.

Flux sheet. For proton GCRs injected into the flux sheet, the
gamma-ray flux is given by
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The free parameter nf in Gr in Equation (30) for the low-energy
regime needs to be adjusted to 1.23 to match dN y dE R,sh 0( ) ∣g g 

in Equation (26) for the high-energy regime.
The methodology for calculating the averaged gamma-ray

flux at 1 au from the Sun for the low-energy regime follows the
same approach as outlined in Section 5.3 for the high-energy
regime. As a result, we do not repeat the formulae here.

5.5. Nuclear Enhancement Factor

Gamma-ray production is not solely dependent on protons;
helium nuclei, or alpha particles, also play a relevant role. In
fact, they make up ;10% of the number abundance in both
GCRs and photospheric gas. To factor in the effect of helium
nuclei, we utilize the result of nuclear enhancement factor εM
from Kachelriess et al. (2014), which gives results for a variety
of cases. Following Zhou et al. (2017), which makes choices
based on recent cosmic-ray data, we take εM= 1.8. This means
that the total gamma-ray spectrum should be much larger than
the one calculated using only the proton densities in the Sun
and the GCRs.

6. Predicted Gamma-Ray Spectrum

Figure 6 shows our numerical results of gamma-ray energy
spectra, E dN dE2

g g g, over an energy range of 1–2× 103 GeV.
The green line is our model prediction of the gamma-ray
energy spectrum from the flux tube, and the magenta is from
the flux sheet. Both spectra result from proton GCR
interactions with hydrogen gas. For Eγ 10 GeV, the gamma
rays from the flux tube dominate, while the gamma rays from
the flux sheet dominate at Eγ few× 10 GeV. This shift arises
because lower-energy proton GCRs ( E 10 GeVp

k 2 ) are
magnetically confined within the flux tube. In contrast, the
higher-energy proton GCRs ( E few 10 GeVp

k 2´ ) are

Figure 6. Gamma-ray spectrum of the solar disk. Green and magenta lines are our calculated gamma-ray spectra for the flux tube and sheet due to proton GCR
interactions, with the gray line denoting the combined flux. The black line is an 80% increase over the gray line, factoring in helium GCR interactions. The vertical
dashed line at 3.66 GeV is the lowest Eγ for this work to be valid. Also presented are Fermi-LAT data from the solar minimum (2008–2010; Abdo et al. 2011) and
over the full cycle (2008–2020; Linden et al. 2022), in addition to HAWC data from the solar maximum (“max,” 2014–2017) and minimum (“min,” 2018–2021;
Albert et al. 2023). The blue line and the shaded band are the best-fit and statistical uncertainties of HAWC’s 6.1 yr (2014–2021) data. The band represents a single
energy bin of 0.5–2.6 TeV; the blue data points indicate how its height varies over the solar cycle.
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capable of traversing through the flux tube and entering the flux
sheet, as indicated by the angular and energy efficiency in
Figure 5. Furthermore, due to the higher magnetic field strength
at the injection height of the flux sheet compared to the flux
tube, particle reflection is more effective, consequently leading
to increased gamma-ray yields in the flux sheet.

In Figure 6, the gray line is the combined gamma-ray energy
spectrum summing the proton interactions in the flux tube and flux
sheet. To account for the helium GCR interactions discussed in
Section 5.5, we multiply the gray line by the nuclear enhancement
factor, εM= 1.8, resulting in the black line. Consequently, the
black line represents the total gamma-ray energy spectrum from
the solar disk. The black line shows a modest spectral slope,
dN dE E 2.4~g g g

- , for 1 GeVEγ 102GeV, aligning close to
the spectral shape from Fermi-LAT observations over the entire
solar cycle. This moderate spectral slope is a product of two
combined emission sources: the gamma-ray emission from the flux
tube for Eγ 10GeV and the emission from the flux sheet for
10GeVEγ 102 GeV. At much higher Eγ, the spectrum
steepens to dN dE E 3.6~g g g

- , agreeing with the spectral shape
from the HAWC observation. This steep slope is due to the limited
effectiveness of GCR capture and reflection within the finite-sized
flux sheet—an inherent characteristic of the intermittent field
distributions generated by granule convective flows. Additionally,
the normalization of the black line is reasonably consistent with the
observational data, remaining within a factor of about 2, ranging
from 1 to 103 GeV. This agreement strongly suggests that the
observed gamma-ray spectra are influenced and shaped by the flux
tubes in the network elements and the flux sheets in the
intergranular lanes.

Based on the discussion above, important conclusions and
insights can be drawn from Figure 6.

1. In a realistic solar environment, the observed gamma-ray
spectra in the ∼1–100 GeV range are likely shaped by the
combination of multiple finite-sized magnetic flux
structures at the photosphere. We note that a simple P-
to-B scaling relation would not reproduce the observed
spectra over a wide range of Eγ.

2. Taking the finite-sized magnetic flux structures into
account is key to the considerably softer gamma-ray
spectra near 103 GeV from HAWC. This is due to the
large fraction of high-energy proton GCRs that plunge
through both the flux tube and flux sheet.

3. While the data can be reasonably interpreted through
these two basic structures, incorporating additional flux
structures and field features could potentially enhance the
accuracy of the model. This could include variability in
size and average magnetic field strength of flux tubes and
flux sheets, nonvertical flux structures, and the magnetic
turbulence caused by the convective flow of the granules.
Taking these into account could lead to a larger predicted
flux in the 103 GeV range.

Building on prior theoretical work on the solar-disk gamma-
ray emission (Seckel et al. 1991, 1992; Zhou et al. 2017;
Gutiérrez & Masip 2020; Hudson et al. 2020; Li et al. 2020;
Mazziotta et al. 2020; Gutiérrez et al. 2022), our model goes
much further by considering magnetic fields motivated by solar
physics data and magnetoconvection simulations. Our
approach introduces the concept of finite-sized flux structures
into the problem, differentiating between higher- and lower-
energy proton GCR behaviors by considering two separate flux

structures, calculating 3D particle trajectories, and comparing
theoretical predictions to data across 3 orders of magnitude in
gamma-ray energy.
How do our results compare to those of previous work?

First, the pioneering work of Seckel et al. (1991), which
focused on magnetic mirroring in the magnetic canopy fields,
produced predictions that disagreed with measurements by a
factor of about 5–10. Moreover, their spectrum was predicted
only for gamma-ray energies up to 5 GeV. Several alternative
approaches have been proposed in recent years. For instance,
Mazziotta et al. (2020) and Li et al. (2020) focus on the effects
of coronal fields, which extend toward the photosphere.
However, their results are about 3 times smaller than the
observational data at around 10 GeV and 10 times smaller at
100 GeV. Most importantly, these models do not align with the
new HAWC data in terms of normalization and spectral shape
at about 103 GeV. Nevertheless, their findings point to the
potential significance of solar coronal fields.
For future work, in Figure 6, while we show our theory

predictions down to Eγ= 1 GeV, we note that they are
considered valid only for Eγ 3.66 GeV. This is because the
δ-function approximation provided in Kelner et al. (2006) is
only valid for Ep 3Eth= 3.66 GeV where σpp is nearly
constant. Although the method for Eγ< 3.66 GeV is currently
absent in the literature, this task could potentially be performed
using publicly available Monte Carlo codes, for instance,
FLUKA (Battistoni et al. 2015; Ahdida et al. 2022) and
GEANT4 (Agostinelli et al. 2003). Further investigation in this
aspect is an interesting direction for future work.
Last, in Appendix A, we present the most probable injection

polar angles for GCRs that produce the escaping gamma rays
from the solar disk as ≈171° ± 5° for the flux tube and
≈135° ± 15° for the flux sheet. In Appendix B, we perform the
averaged emission angle and height of the gamma-ray flux. We
find that the emission primarily occurs within a height ranging
from −100 to 500 km, encompassing the photosphere and
extending ∼100 km into the uppermost convection zone.
Moreover, we find an emission angle of ≈65° ± 15° relative
to the normal direction of the solar surface, indicating that the
gamma rays predicted by our model predominantly originate
from the outer regions of the solar disk. This range of predicted
angles is a result of our exclusive focus on vertical flux
structures and the omission of magnetic turbulence in our
model. In a more realistic solar-surface environment, the
presence of nonvertical flux structures with magnetic turbu-
lence would have an impact on particle trajectories, causing
deviations from the magnetic bottle effect. This can potentially
lead to smaller emission angles and a more uniform distribution
of gamma-ray emission across the solar disk. We will explore
this in future work.

7. Discussion and Conclusions

In this paper, we present a simple model of solar-surface
magnetic fields, aiming to understand the broad outline of how
hadronic GCRs shape gamma-ray emission. We have investi-
gated GCR propagation and gamma-ray emission within a
simplified solar-surface magnetic field model comprising a flux
tube and a flux sheet. In the ∼1–100 GeV range, where
emission is due to both the tube and the sheet, our model
produces a hard spectrum (dN dE E 2.4~g g g

- ). In the
∼100–1000 GeV range, where the tail of the sheet emission
dominates, our model produces a considerably softer spectrum
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(dN dE E 3.6~g g g
- ) due to the limited effectiveness of GCR

capture and reflection by the finite-sized flux sheet. Despite the
fact that the model presented in this work does not capture all
the complexities of the solar-surface magnetic fields, the
reasonable agreement between our model predictions and data
(within a factor of 2 over about 3 orders of magnitude in
gamma-ray energy) is encouraging and highlights the critical
roles of finite-sized field structures of flux tubes and flux sheets
in shaping solar-disk gamma-ray emission.

We emphasize that the model, as presented in this study,
remains a work in progress and does not yet offer a conclusive
solution to the long-standing issue of solar-disk gamma-ray
emission. Given the multiscale nature of the solar magnetic field,
which spans from large-scale heliospheric magnetic fields to
small-scale Alfvén wave turbulence and dissipation, incorporat-
ing a realistic solar magnetic field model into the current problem
is a challenging task and necessitates a stepwise approach. The
reasonable agreement with data suggests that the double-structure
model with finite-sized magnetic flux structure captures key
characteristics of the hadronic GCR reflection at the solar surface
and the resulting solar gamma-ray emission. This simplified
approach sets the stage for further refined modeling and advanced
computational efforts, details of which are elaborated as follows.

In future work, it will be important to go beyond the
assumptions here of a simple double-structure model in the quiet
photosphere with an assumption of spherical symmetry. Aspects
to investigate include the influences of active regions and
coronal-hole open field distributions in GCR transport and
gamma-ray emission. Ultimately, we need to evaluate the impact
of active regions on GCR transport toward the solar surface. We
also need to quantify the relationship between the latitudinal
dependence of coronal-hole distribution and the resulting
gamma-ray emission. Both directions hold great potential in
unraveling the observed anticorrelation between solar activity and
the gamma-ray flux (Ng et al. 2016; Linden et al. 2018; Tang
et al. 2018; Linden et al. 2022; Albert et al. 2023).
Future studies should also explore GCR propagation and

solar gamma-ray emission within the framework of magneto-
convection in the photosphere and uppermost convection zone.
In this work, we focused on the vertical magnetic flux tube and
flux sheet in magnetohydrostatic equilibrium with the
surrounding gas. The perpendicular field components leading
to particle reflection are caused by the compression exerted by
the surrounding gas pressure. Eventually, we need to under-
stand whether and how magnetic turbulence resulting from the
convection of the granule cells can cause a similar effect and
affect GCR propagation. Investigating the impact of turbulence
may further elucidate additional magnetic field structures at the
photosphere that contribute to the observed gamma-ray spectra.

Solar gamma-ray observations have presented an intriguing
new opportunity to investigate the characteristics of magnetic
fields in the photosphere. The origin of these magnetic fields,
whether arising from the decay of active regions (Spruit et al.
1987) or local fast dynamo actions in the uppermost convection
zone (Cattaneo 1999; Cattaneo et al. 2003; Vögler &
Schüssler 2007), remains uncertain. By refining theoretical
models of solar magnetic fields and the transport of GCRs, we
have the potential to gain valuable insights into this unresolved
matter. In this regard, future research should focus on exploring
these issues through magnetoconvection simulations and
utilizing high-resolution measurements of small-scale magnetic

structures at the solar surface, such as those provided by the
Daniel K. Inouye Solar Telescope (Rimmele et al. 2020).
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Appendix A
Most Probable GCR Polar Injection Angles

In this appendix, we show the most probable injection polar
angles for GCRs that produce the gamma rays that escape from
the solar disk.
For proton GCR injection into the flux tube, we average p

in Equation (19) over the injection area, 2πr0dr0, and the
azimuthal injection angle, f0,
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The term p tbá ñ is interpreted as the averaged absorption
probability for a primary proton GCR along the section of its
trajectory where the produced gamma rays from pp interactions
successfully escape without being absorbed by the Sun.
For proton GCR injection into the flux sheet, p is averaged

over the injection width dy0 and the azimuthal injection angle
df0. It is expressed as
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where f E,0 p
k(˜ )qá ñ accounts for the angular and energy

efficiency of the injected particles into the flux sheet. Note that
Equation (A2) accounts for monoenergetic protons with a
kinetic energy of Ep

k, without incorporating any weighting
based on the proton GCR spectrum.
Figure 7(a) shows our calculations of p tbá ñ in Equation (A1)

for proton GCR injection into the flux tube. The three lowest
Ep

k lines indicate that the most probable polar injection angle is
θ0≈ 171° ± 5°. For θ0 160°, the injected protons are
reflected too high from the solar surface to accumulate
significant column density. For θ0 175°, the injected protons
are not yet reflected by the magnetic fields by the time they
reach the bottom of the simulation box; thus, they do not
contribute outward-directed gamma rays.
In Figure 7(a), the three lowest Ep

k have approximately
equivalent p tbá ñ . In contrast, for the highest Ep

k, then p tbá ñ has
substantially smaller values across all most probable 0q̃ . This
difference arises because protons with E 100 GeVp

k are
nearly all reflected within the flux tube via the magnetic bottle
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effect. In contrast, protons with E 10 GeVp
k 3 do not spiral

within the flux tube but pass through the tube surface with only
a small angular deflection. This result echos the findings from
the angular and energy efficiency of GCRs injected into the
flux sheet, f E,0 p

k(˜ )qá ñ, as presented in Figure 5.
Figure 7(b) shows our calculations of p shá ñ in Equation (A2)

for proton GCR injection into the flux sheet. Note that the lines
with E 1.54 GeVp

k = and 1.54× 101 GeV shown earlier in
Figure 7(a) are not shown in Figure 7(b) because the majority
of proton GCRs at such low energy do not penetrate through
the flux tube. In Figure 7(b), all four energies indicate that the
most probable injection angle is  120 1500q̃ . The two
intermediate Ep

k show high p shá ñ , indicating that those protons
are effectively reflected and produce outward-directed gamma
rays. Notably, these two intermediate energies lie within the
rising part of f Ep

k( )á ñ in Figure 5. In contrast, the lowest Ep
k has

lower p shá ñ . This is because the majority of the proton GCRs
are magnetically reflected by the flux tube, while only a small
fraction of protons successfully penetrate through the flux tube
and enter the flux sheet. The highest Ep

k also has lower p shá ñ .
This is because the efficiency of capturing and reflecting proton
GCRs by flux sheet magnetic fields starts diminishing for

E few 10 GeVp
k 3´ . Finally, for E 10 GeVp

k 4 ,  0p shá ñ »
across all 0q̃ , and are not shown in Figure 7.

In Figure 7(b), all four energies show  0p shá ñ » for
 1600q̃ . This result implies that protons injected into the

flux sheet with  1600q̃  do not experience magnetic
reflection before being absorbed by the Sun. Therefore, any
gamma rays generated from these protons do not contribute to
the outward-directed gamma rays. Note that the range of these
polar injection angles is significantly broader compared to the
flux tube scenario depicted in Figure 7(a).

Appendix B
Average Emission Angle and Height

In this appendix, we present the average emission angle and
height of the solar-disk gamma rays. We only present the
methodology for the higher-energy regime (Eγ� 102 GeV).
The methodology for the lower-energy regime (1 GeV
Eγ� 102 GeV), which has been discussed in Section 5.4, is
not repeated here.

B.1. Average Emission Angle

Flux tube. First, we calculate the average gamma-ray
emission angle in the case of a flux tube. We define rp ( )q as
the angle of the proton’s velocity vector at location r relative to
the normal direction of the surface. Thus, for proton GCRs
injecting into the flux tube at axial distance r0 at the injection
height z= 1600 km, the rp ( )q -weighted gamma-ray flux is
given as


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Here,  p
pq is defined as p in Equation (19) weighted by rp ( )q ,

i.e.,
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The θp-weighted gamma-ray flux in Equation (B1) is further
weighted over the area along the cross-section surface of the
flux tube at the injection height,
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As a result, the average emission angle 〈θp〉 for the gamma-ray
flux at Eγ is given as

/E
dN

dE

dN

dE
, B4R Rp p

,tb ,tb
p

( ) ∣ ∣ ( )q qá ñ = á ñ ºg
g
q

g

g

g
 

where dN dE R,tb ∣g g  is provided in the calculation of solar-disk
gamma-ray flux in Equation (25).
Next, we calculate the rms emission angle, rp p( )q q- á ñ, for

the gamma-ray flux at Eγ. This time, the gamma-ray flux is
weighted by the mean squared polar angle, rp p

2( ( ) )q q- á ñ , of

Figure 7. Most probable GCR polar injection angles. The higher the values of
pá ñ, the greater the production of outward-directed gamma rays. (a) p tbá ñ for
the flux tube shown in Equation (A1). (b) p shá ñ for the flux sheet shown in
Equation (A2).
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each proton’s moving direction at location r. It is given as


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p
2qD
is defined as p in Equation (19) weighted by

rp p
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Equation (B5) is further weighted over the area along the cross-
section surface of the flux tube at the injection height,
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As a result, the rms emission angle 〈Δθp〉 for the gamma-ray
flux at Eγ is given as

E
dN

dE

dN

dE
. B8R Rp p

,tb ,tb
p
2

( ) ∣ ∣ ( )q qáD ñ = áD ñ ºg
g
q

g

g

g

D

 

Flux sheet. The methodology for the average and rms
emission angles in the case of the flux sheet is the same as in
the flux tube. The only difference is the integrants in
Equations (B1) and (B5) should be further multiplied by the
angular and energy efficiency f E,0 p

k(˜ )qá ñ shown in Figure 5.
Consequently, we do not repeat the formulae here.

Figure 8 shows the average (blue solid lines) and rms (blue
shaded bands) emission angles in the cases for the flux tube

(top) and flux sheet (bottom) for gamma rays successfully
transmitted from the Sun. Our result indicates that for each
small patch at the surface of the Sun, the average emission
angle is ≈65°, relative to the normal direction, with a
corresponding rms emission angle of approximately 15°.
Finally, gamma rays are fully absorbed by the Sun whenever

r 93p p,crit( )q q » , which are highlighted in red shaded
bands in Figure 8.

B.2. Average Emission Height

The methodology employed to calculate the average and rms
emission heights (denoted as 〈zp〉 and 〈Δzp〉, respectively) is
consistent with the approach described in Appendix B.1 for
computing emission angles. Therefore, we do not reiterate the
formulae here.
Figure 9 shows 〈zp〉 and 〈Δzp〉 for the gamma rays produced

in the flux tube (top) and flux sheet (bottom). Our findings
indicate that emission typically occurs at the height of z≈ 0 km
with an rms of ≈300 km for the flux tube and with an rms of
≈150 km for the flux sheet. Consequently, this suggests that
the layers responsible for producing the gamma rays success-
fully transmitted from the Sun occur in the photosphere and a
thin layer extending ∼100 km into the upper convection zone.

Appendix C
Impact of Noncollinear Emission on Gamma-Ray Flux

In this appendix, we estimate the errors incurred by
assuming that gamma rays are collinear with their parent
protons.
In this simplified model, we consider a gamma-ray emission

cone with a half-angle denoted as ΔΘγ. Accordingly, the solid
angle,Ωγ, of the emission cone is expressed as 2 1 cos( )p - DQg .
We assume that the number of gamma-ray photons is distributed
uniformly in the angular direction in Ωγ. Under this assumption,
we conduct a numerical calculation of p in Equation (19) to
evaluate the impact of a nonzero emission cone angle on the solar

Figure 8. Average (blue lines) and rms (blue bands) emission angles for
gamma rays successfully transmitted from the Sun.

Figure 9. Average (black lines) and rms (blue bands) emission heights for
gamma rays successfully transmitted from the Sun.
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gamma-ray flux. (To remind the reader, p in Equation (19) is the
total proton GCR absorption probability along a particle’s
trajectory and is further weighted by the gamma-ray transmission
probability, as discussed in Section 5.3.).

We consider a proton GCR injecting into the flux tube at
θ0= 171° because this is where p tbá ñ peaks (see Figure 7(a)).
As for injecting Ep

k, we choose 15.4 GeV because proton GCR
at this kinetic energy should produce most of the gamma-ray
flux at Eγ∼ 1 GeV. (Note: gamma rays of energy Eγ are
roughly produced by proton GCRs of kinetic energy
E E10p

k ~ ´ g.) In addition, Figure 7(a) has also shown that

E 1.54 GeVp
k = and E 15.4 GeVp

k = have nearly the same

p tbá ñ . Thus, the choice of E 15.4 GeVp
k = is sufficient for our

purpose. Last, when Ep
k is as low as 15.4 GeV, the selections of

f0 and r0 have minimal influence on p tbá ñ as they yield similar
particle trajectories. Thus, we opt for f0= 180°, and
r0= 20 km. Our chosen set of parameters r E, , ,0 0 0 p

k( )q f for
proton GCR injection into flux tube should aptly represent the
peak p. Therefore, the changes of p observed for this
particular set of injection parameters can be regarded as an
upper limit on the true impact on the solar gamma-ray
emission.

Figure 10 presents our results for p with different angular
sizes of emission cones. The x-axis is the polar angle of the
primary proton GCR along its trajectory. The y-axis is p as a
function of the bins of θp and is further normalized by
p,collinearS , which is the summation of p over all bins of θp

in the case of collinearity. The black line represents
 p p,collinearS in the case of collinearity. Therefore, the area
under the black line equates to 100%, as displayed in the top-
right corner of the diagram. The black line shows that the gamma
rays successfully transmitted from the Sun are produced at
θp< 90°, echoing the findings in the average angular emission
plot in Figure 8.

In Figure 10, color lines show emission cones with ΔΘγ of
10°, 20°, and 30°. All three color lines indicate an increase in

p when θp> θp,crit≈ 93°. This increase is due to a fraction of
gamma rays leaving the Sun before θp reaches θp,crit. In
contrast, when θp< θp,crit, we see a drop in p compared to the
black line. This decrease is due to a fraction of gamma rays
remaining fully absorbed by the solar gas at this stage.
In Figure 10, the three colored percentages (100.8%,

102.9%, and 106.3%) correspond to the sum of p across all
θp bins, normalized by p,collinearS , for ΔΘγ values of 10°, 20°,
and 30° respectively. These percentages are over 100%, which
implies that considering a finite-sized emission cone leads to a
slightly higher total gamma-ray flux from the solar disk than
the collinearity scenario. However, this p increase is about a
few percent and should only increase the solar-disk gamma-ray
flux by about the same order of magnitude.
Last, to estimate the range of gamma-ray emission angles

resulting from pp interactions, we utilize the particle shower
Monte Carlo simulation code FLUKA (version 4-2.2; Battistoni
et al. 2015; Ahdida et al. 2022) and its graphical user interface
Flair (version 3.2-4.5; Vlachoudis 2009). We inject a proton
into a slab consisting of equal numbers of protons and
electrons. We calculate the required ΔΘγ that contains either
90% (solid line) or 68% (dashed line) of the total number of
gamma rays with Eγ� 1 GeV.
Figure 11 shows the result of our FLUKA simulation. The

result suggests that 90% of the gamma rays are contained
within ΔΘγ= 20° for E 10 GeVp

k = , roughly equivalent to
peak gamma-ray production for Eγ∼ 1 GeV. Based on these
findings and the p result ofΔΘγ= 20° presented in Figure 10,
we conclude that the collinearity assumption should not cause
the actual flux to deviate by more than ≈3%.
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