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Abstract—Today’s scientific high-performance computing
(HPC) applications are often running on large-scale environ-
ments, producing extremely large volumes of data that need to
be compressed effectively for efficient storage or data transfer.
Error-bounded lossy compression is arguably the most efficient
way to this end, because it can get very high compression
ratios while controlling the data distortion strictly based on user
requirements for compression errors. However, error-bounded
lossy compressors may have serious artifact issues in situations
with relatively large error bound or high compression ratios,
which is highly undesirable to users. In this paper, we compre-
hensively characterize the artifacts for multiple state-of-the-art
error-bounded lossy compressors (including SZ-1.4, SZ-2.1, SZ-
3.0, FPZIP, ZFP, MGARD) and provide an in-depth analysis for
the root cause of these artifacts. We summarize the artifact issue
into three types and also develop an efficient artifact detection
algorithm for each type of artifact. We finally evaluate our
artifact detection methods using four scientific datasets, which
demonstrates that the proposed methods are able to detect
artifact issues under linear time complexity.

Index Terms—High-performance computing, scientific data,
lossy compression, compression artifacts

I. INTRODUCTION

Extreme-scale scientific applications and high-resolution
instruments are producing vast amounts of data at an unprece-
dented speed. For instance, fusion simulation generates over
200 PB of data in a single run [1], which is expected to exceed
1 EB when exascale systems [2], [3] come into place. This
creates critical challenges for storing or transferring scientific
data, significantly hindering scientific discoveries.
Error-controlled lossy compression [4]–[12] has been re-

garded as one of the most effective ways to address such
big-data challenges, as it reduces the size of scientific data
while ensuring certain error control required by the scientists.
Despite these error controls, compression artifacts, i.e., visible
undesired pattern-based data distortion, may inevitably mani-
fest due to the execution of lossy compression techniques.
The artifact issue of lossy reconstructed data has been

widely noticed by scientists in their research work. For in-
stance, Poppick et al. [13], [14] observed that ZFP [9] may
have serious block-pattern artifacts when compressing the cli-
mate data at certain error bound, which is highly undesired for
the post hoc climate data analysis. Another example is seismic
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imaging analysis [7], [15], which requires the stacking images
generated by the lossy reconstructed data barely have visible
artifacts to avoid misleading/inaccurate analysis. Moreover,
according to a survey about lossy compression use-case [16],
visualization is one of the most important lossy compression
use-cases, where visible artifacts are undesired.
Characterizing and detecting lossy compression artifacts

based on scientific datasets and understanding their causality
is critical in many aspects. First, since different compressors
may produce distinct artifacts, an in-depth understanding of
compression artifacts can help users choose appropriate com-
pressors to avoid the most undesired artifacts. Second, an
effective artifact detection algorithm can be used to identify a
proper lossy compression error settings (such as error bound),
which can effectively avoid the artifact issue. Last but not least,
a comprehensive understanding and detection of the artifacts
can help the compressor developers further improve the lossy
compression quality by developing artifact-aware compressors.
In this paper, we carefully investigate the artifacts produced

by the leading scientific lossy data compressors and charac-
terize them into three categories, using the terminology from
the image compression community. In particular, we notice
that each lossy compressor is dominated by one or two types
of artifact, depending on the nature of the corresponding
compression algorithm. We further develop several artifact
detection algorithms that can effectively detect the identified
artifacts based on their characteristics.
Two serious challenges exist for the characterization and

detection of lossy compression artifacts. On the one hand,
there have been quite a few state-of-the-art error-bounded lossy
compressors developed for years, and each of them generally
was designed based on largely different principles, so that the
reconstructed data may exhibit largely different characteristics,
causing a very high diversity in artifacts. On the other hand,
accurately detecting artifacts for lossy compressors is very
challenging, especially because the reconstructed dataset under
the lossy compression always has certain data distortion. As
such, it is non-trivial to differentiate the abnormal artifact
patterns and the normal data distortion in a lossy reconstructed
dataset. We aim to address the two challenges in this paper,
and our contributions are summarized as follows.

• We study the decompressed data produced by error-
controlled lossy compressors using four scientific datasets
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from multiple domains. We then characterize the visual
artifacts into three categories and analyze their causality,
which is the first attempt regarding the error-bounded
lossy compressors to the best of our knowledge.

• We propose and implement artifact detection algorithms
to detect lossy compression artifacts. In particular, our
algorithms are designed for each type of artifact and thus
are compressor-free, leading to high flexibility in practice.

• We evaluate our detection methods using the four scien-
tific datasets. Experimental results show that the proposed
methods provide effective indicators which detect the
identified visual artifacts and indicate the severity.

The rest of the paper is organized as follows. In Section II,
we discuss the background and related works. In Section III,
we provide an overview with an introduction to the evaluated
datasets and compressors. In Section IV, we carefully charac-
terize the artifacts and analyze their causality. In Section V,
we describe our methods for artifact detection. In Section VI,
we present the evaluation results of the detection methods. In
Section VII, we conclude with a vision for future work.

II. RELATED WORKS

In this section, we review the related works on scientific
lossy compressors and artifacts for lossy compression.

A. Scientific lossy compressors

The unprecedented amount and generation speed of sci-
entific data necessitates the need for compression to achieve
efficient data storage and transmission. To address the limited
compression ratios of lossless compressors and unbounded
errors in general lossy compressors, error-controlled lossy
compressors have been proposed and developed rapidly in
recent years. They are preferred in many use cases [16] and
have been applied in multiple applications [17]–[20].
Error-controlled compressors can be divided into prediction-

based ones and transform-based ones in general. SZ [4]–[7] is
a family of prediction-based compressors. Their compression
pipelines usually consist of prediction, quantization, encoding,
and lossless compression. FPZIP [8] and ISABELA [12]
are two other prediction-based compressors with point-wise
error control. ZFP [9] is a typical transform-based compressor
featuring fast compression and decompression speed. Recently,
MGARD has been proposed to combine wavelet theory and
finite element analysis for hierarchical compression. A more
detailed introduction to the methodologies of the leading
compressors will be covered in the next section.

B. Artifacts of lossy compression

Compression artifacts have been observed and studied in
the image compression community for a long time, especially
for the widely used JPEG [21] compressor. Many meth-
ods have been proposed in the literature to identify and/or
remove artifacts in JPEG by leveraging learning-based ap-
proaches [22], the correlation of transformed coefficients [23],
the quantization matrix [24], and contrast enhancement [25]

etc. Nevertheless, most of these works are dedicated to JPEG
and thus do not generalize to other compression methods.
Despite recent advances in scientific lossy compressors,

there is no systematic study on their compression artifacts.
In this work, we fill this gap by providing a comprehensive
characterization along with effective artifact detection meth-
ods. This will lead to a better understanding of the artifacts
in scientific lossy compressors and, in turn, contribute to the
identification of proper compression setting as well as the
design and development of new compressors.

III. OVERVIEW

We aim to understand the artifacts produced by scientific
data compressors with two specific goals: (1) we want to
know the major artifacts in the leading compressors and their
corresponding causality; (2) we seek to effectively detect these
artifacts. We rely on comprehensive evaluations using state-of-
the-art compressors with real-world scientific datasets below.

A. Datasets
We evaluate four scientific datasets from various domains

with different dimensionalities. We include data from the
2D and 3D climate simulations (CESM [26] and Hurricane
ISABEL [27], respectively), and 3D cosmological and seismic
simulations (NYX [28] and RTM [29], respectively). The
detailed information on these datasets is listed in Table I.

TABLE I
BENCHMARK DATASETS

Dataset #Field Dimension Size
CESM 77 1800× 3600 1.9 GB
Hurricane 13 100× 500× 500 1.3 GB
NYX 6 512× 512× 512 3.0 GB
RTM 3 1008× 1008× 352 4.1 GB

B. Compressors
We evaluate six major error-controlled lossy compressors

with different decorrelation methods, including prediction-
based ones [5]–[8] and transform-based ones [9], [10]. They
can cover 3 different artifacts discussed in this paper. Note that
we omit certain variations that build upon those prototypes
because they will lead to similar results. For instance, we
omit the hybrid compressor in [30] as it is the combination
of SZ-2.1 and ZFP; we also omit QoZ [31] which has a
very similar design to SZ-3.0 thus exhibits similar artifacts.
Although SZ-1.4, SZ-2.1, and SZ-3.0 are different versions of
the SZ compressor, they are designed for distinct use cases
and have different kinds of visual artifacts. Therefore, they
are all used in this paper for different types of artifacts. Their
compression procedures are described below.

• SZ-1.4 [5] predicts data with Lorenzo predictor [32], and
then quantizes the floating-point difference into integers
with a linear-scaling quantizer. The integers are then
fed into a Huffman encoder and a lossless compression
algorithm for size reduction.

• FPZIP [8] also relies on the Lorenzo predictor for
decorrelation, but it enforces point-wise relative error
control by a customized encoding strategy after mapping
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residuals into integers. In addition, it uses an arithmetic
encoder to reduce the size.

• SZ-2.1 [6] follows the design of SZ-1.4, but improves its
quality using adaptive prediction algorithm. In particular,
it splits the data into uniform blocks and selects the best-
fit prediction algorithm between Lorenzo and regression
for each data block based on the input error bound.

• ZFP [9] is a transform-based compressors that split data
into 4nd (nd is the dimensionality) blocks for independent
compression. In each block, it performs a near-orthogonal
transform after exponent alignment and fixed-point con-
version followed by an embedding encoding algorithm.

• SZ-3.0 [7] further refines the prediction stage in SZ-2.1
with interpolation predictors. It leverages linear or cubic
spline interpolations to improve prediction accuracy.

• MGARD [10] uses multilinear interpolation and L2 pro-
jection to transform data into multilevel coefficients, and
then quantize the data with a linear-scaling quantizer and
compress the quantized values using lossless techniques.

IV. VISUAL ARTIFACT CHARACTERIZATION

In this section, we characterize the visual artifacts pro-
duced by the aforementioned compressors. While artifacts are
observed in many regions across almost all the fields, we
present zoomed-in visualization of one representative field
from each dataset for demonstration purposes (CLDHGH from
CESM, QVAPOR from Hurricane, Velocity x from NYX, and
Pressure2000 from RTM). We compress these data fields using
the six compressors by fixing the compression ratios to an
extent when obvious artifacts are observed. The compression
statistics, including compression ratios (CR), relative error
bounds (EB), peak signal-to-noise ratios (PSNR), and struc-
tural similarity index (SSIM), are summarized in Table II.

TABLE II
COMPRESSION STATISTICS ON SAMPLE DATA FIELDS

Dataset Compressor CR EB∗ PSNR SSIM

C
LD

H
G
H

SZ-1.4 32.73 0.005 50.79 0.80
FPZIP 39.42 0.067 36.91 0.71
SZ-2.1 68.02 0.010 48.68 0.80
ZFP 17.93 0.022 50.08 0.83

SZ-3.0 123.12 0.010 49.20 0.81
MGARD 121.20 0.030 50.19 0.85

Q
VA

PO
R

SZ-1.4 19.99 5E-4 70.73 0.71
FPZIP 23.34 0.096 38.47 0.97
SZ-2.1 76.42 0.010 50.36 0.72
ZFP 26.46 0.006 65.56 0.74

SZ-3.0 47.62 0.002 62.47 0.70
MGARD 48.50 0.008 60.48 0.89

Ve
lo
ci
ty

x

SZ-1.4 57.22 0.005 50.80 0.56
FPZIP 25.09 0.051 47.92 0.79
SZ-2.1 942.61 0.090 52.31 0.78
ZFP 70.36 0.026 58.02 0.88

SZ-3.0 1091.74 0.01 53.05 0.82
MGARD 1470.14 0.050 57.94 0.92

Pr
es
su
re
20
00

SZ-1.4 75.78 0.002 61.14 0.55
FPZIP 13.83 0.185 46.29 0.92
SZ-2.1 676.76 0.05 46.38 0.53
ZFP 184.49 0.017 61.09 0.61

SZ-3.0 449.08 0.005 58.53 0.31
MGARD 496.75 0.032 56.52 0.59

∗Maximum relative errors are used in this table for all compressors.

We mainly identified three major types of artifacts, namely
posterization, blocking, and interpolation. In the following,
we carefully define these artifacts and analyze how they
are produced by the error-controlled lossy compressors. The
visualization of the sample fields and the zoomed-in regions
are illustrated in Fig. 1. In particular, we select the [250, 310]×
[710, 830] window in CLDHGH, [70, 130]× [50, 170] window
in the 64th slice of QVAPOR, [150, 210]× [120, 240] window
in the 100th slice of Velocity x, [830, 890]× [50, 170] window
in the 581st slice of Pressure2000, as they exhibit visible
artifacts under the given compression setting. The results are
displayed in Fig. 2. For better visualization quality, these
zoomed-in regions are plotted using their local value ranges
instead of the global ones.

Fig. 1. Visualization of the sample fields and zoomed-in regions.

A. Posterization artifacts
In the image processing community, posterization artifacts,

also known as banding, occur when the color depth is not
sufficient to accurately sample a continuous gradation of color
tone. We borrow this concept and define the posterization
artifacts for scientific lossy compressors as follows.

Definition 1. Posterization artifacts are the banded structures
that occur when decompressed data have an obviously smaller
number of values than that of the original data.
Observation 1: SZ-1.4, FPZIP, and ZFP are likely to exhibit
posterization artifacts when the error bound becomes large.

As shown in Fig. 2 (b)(c)(e), we have observed posterization
artifacts in SZ-1.4, FPZIP, and ZFP. From these figures, we can
see clear banded structures in the decompressed data. They are
less obvious in ZFP compared with SZ-1.4 and FPZIP, even
when ZFP has larger compression ratios (e.g., Velocity x and
Pressure2000).
Causality: Since posterization artifacts indicate low degra-

dation of values, they are mainly caused by the close approxi-
mations of data in local regions. We demonstrate how they are
produced using SZ-1.4 with the 2D CLDHGH field as an ex-
ample. For a specific 2D data point at (i, j), SZ-1.4 leverages a
Lorenzo predictor for decorrelation, which yields the predicted
value pred(i, j) = d′(i, j− 1)+ d′(i− 1, j)− d′(i− 1, j− 1),
where d′ represents the values of decompressed data (which
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Fig. 2. Visualization of the original and decompressed data in the zoomed-in regions of Fig. 1.(Black boxes highlight the interpolation artifacts.)

are obtained during compression) at the corresponding loca-
tions and (i, j) is coordinates of a data point. Then, the linear-
scaling quantization computes the quantization index q(i, j) =
(d(i, j) − pred(i, j))/(2 ∗ eb), where d(i, j) represents the
original data at (i, j) and eb is the error bound, and produces
decompressed value d′(i, j− 1) = pred(i, j)+ 2 ∗ eb ∗ q(i, j).
Consider a specific case when d(i − 1, j − 1), d(i − 1, j),
d(i, j − 1), d(i, j) have very closed values. The former three
values may have the same decompressed values, which will
yield the same decompressed value for d(i, j) and lead to the
same values in the local region. This is validated in Fig. 3,
where the same predicted values are observed for each region.
While quantization corrects some of the predictions, it is only
effective when the prediction error pred(i, j)−d(i, j) exceeds
the error bound. This creates the borders of different local
regions as depicted in the last sub-figure. This analysis also
works for FPZIP as it utilizes the same Lorenzo predictor.
For ZFP, posterization artifacts happen because data in a local
block are approximated with the same values.

B. Blocking artifacts
Blocking artifacts are very common in JPEG [21] image

compression, where visible differences are observed in pixel
blocks and at block boundaries. We see similar artifacts in
scientific lossy data compressors and define them as follows.

Definition 2. Blocking artifacts are visible and periodic dis-
continuities in the decompressed data.
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Fig. 3. Velocity x Original data, SZ1.4 decompressed data, predicted data
and quantization index.

Observation 2: Blocking artifacts appear only in compressors with
a block-wise design such as SZ-2.1 and ZFP.

We found that blocking artifacts only appear in compressors
with a block-wise design, namely SZ-2.1 and ZFP in the
evaluated compressors, as shown in Fig. 2 (d)(e). ZFP split
data into blocks of 4nd so the blocking artifacts occur with a
period of 4. SZ-2.1 uses a block of 12× 12 for 2D data and
6×6×6 for 3D data, and we can see the blocking artifacts of
the corresponding sizes. Note that SZ-2.1 exhibits the “partial
blocking effect” as shown in the Velocity x field of Fig. 2 (b),
where blocking artifacts disappear in certain regions of the
data. This is because SZ-2.1 employs an adaptive design that
selects the better predictor between regression and Lorenzo
predictors. As such, data blocks compressed with the latter
incur no blocking artifacts.
Causality: Blocking artifacts are usually caused by block-
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independent data decorrelation and quantization. We omit
the detailed analysis as it is similar to that of JPEG. Both
the regression predictor in SZ-2.1 and transform in ZFP are
performed in individual blocks, which forms the major causes.
This is further validated by the partial blocking effect in SZ-
2.1 described above.

C. Interpolation artifact

In addition to posterization and blocking artifacts that are
very similar to the artifacts in image compression, we also
identify a new type of artifact in scientific lossy compressors.
We name them interpolation artifacts as they are most likely
caused by the application of interpolation methods during
compression, as will be analyzed in the rest of this section.
Formally, we define interpolation artifacts as:

Definition 3. Interpolation artifacts represent the radial pat-
terns in the decompressed data which form either rigid edges
or spots.

Observation 3: Compressors that leverage interpolation methods
for decorrelation (e.g., SZ-3.0 and MGARD) generate interpolation
artifacts.

Interpolation artifacts are observed mainly in SZ-3.0 and
MGARD. As highlighted in Fig. 2 (f)(g), there are multiple
distorted regions with visible edges and spots. We can further
notice that artifacts in SZ-3.0 usually span wider regions,
while those in MGARD are more concentrated in the center.
This is because SZ-3.0 usually leverages cubic interpolation
that involves more adjacent data points than the multilinear
interpolation used in MGARD.
Causality: The interpolation artifacts are mainly caused by

the error propagation in the hierarchical interpolations. We an-
alyze the causality using SZ-3.0 as an example. Interpolations
in SZ-3.0 are performed in a hierarchical fashion, where a data
point in the same level is interpolated using adjacent data with
a constant stride. The stride decreases by half when the level
decreases by 1, and they both reach 1 at the final level. Fig. 4
depicts how a single error at level 6 propagates to a visible
interpolation artifact spanning across a region at level 1. In the
beginning, we can observe a large error only in the highlighted
point at level 6. As the interpolation procedure continues, the
error gradually propagates to a larger region in level 5 and
stabilizes in level 4. In the end, it leads to a visible artifact at
the final level, which corresponds to the decompressed data.
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Fig. 4. Forming process of interpolation artifacts in SZ3 (QVAPOR). The
number at the bottom indicates the resolution of the level.

V. ARTIFACT DETECTION

In this section, we present our methods to detect the
characterized artifacts in error-controlled scientific lossy com-
pressors. This is important to multiple use cases including
performing quality checks for decompressed data and iden-
tifying proper compression configuration (e.g., error bounds).
We introduce our methods with 2D data for demonstration
purposes, but the proposed algorithms easily generalize to
cases with 3D or higher dimensional data.

A. Detection of posterization artifacts
A significant observation from the posterization artifact

characterization is that a local region can be flushed into
the same or close values during compression, resulting in the
banded structures in the global view. This feature inspires us
to take advantage of connected components [33] to evaluate
the degree of posterization, as each banded region can be
viewed as a separate connected component. While connected
components are employed to detect this artifact in the image
compression community [34], [35], most of them are relatively
costly and/or only apply to integer data. Instead, we use a sim-
ple metric here to achieve high performance while generalizing
it to scientific data usually in floating-point formats.
We present our detection method for posterization artifacts

in Algorithm 1. The key function unique_labels com-
putes the number of connected components of the input data
under the given tolerance τ . In the beginning, each data point
is initialized with a unique label (lines 1-3). Then, we iterate
all the data points one by one and union two neighboring
sets if the difference between the two root values are less
than τ (lines 5-12). After that, the number of unique labels
in the disjoint set is returned, which represents the number
of connected components. We perform this algorithm using
both decompressed data and original data, and their respective
ratio (named label ratio in the rest of the paper) is used as an
indicator for the severity of posterization artifacts (line 15).
Generally speaking, if the label ratio (LR) is close to 1, we
can conclude that there are almost no posterization artifacts; if
the label ratio is small, say 0.1, we can anticipate the presence
of posterization artifacts because the number of representative
values is reduced a lot.

Algorithm 1 POSTERIZTION ARTIFACT DETECTION
Input: decompressed data d′, input data d, posterization threshold τ
Output: indicator for posterization artifacts

1: function unique_labels(d, τ )
2: for (i, j) ∈ n1 × n2 do
3: DS[i, j] ← (i, j) /*Init the disjoint set*/
4: for (x, y) ∈ n1 × n2 do
5: if |di+1,j − dDS[i,j]| ≤ τ then
6: DS[i+1, j] = DS[i, j] /*Union with bottom point if necessary*/
7: if |di,j+1 − dDS[i,j]| ≤ τ then
8: DS[i, j + 1] = DS[i, j] /*Union with right point if necessary*/
9: return unique_labels(d′, τ ) / unique_labels(d, τ )

Fig. 5 illustrates the results of Algorithm 1 on both the
original data and the decompressed data produced by SZ-
1.4 using the CLDHGH field. According to this figure, it is
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Fig. 5. Detected connected components on the original data and decompressed
data of SZ-1.4, (CLDHGH, CR=158.11 ).

observed that the decompressed data generates a significantly
lower ratio compared to that of the original data, which
indicates the presence of visible posterization artifacts.

B. Detection of blocking artifacts
The most determining factor of blocking artifacts is the

periodic discontinuities characterized in the previous section.
Motivated by this fact, we investigate the derivatives that
best describe the continuity of functions. Generally speaking,
blocking artifacts indicate a rapid change of derivatives on
block borders but smooth derivatives inside blocks. This
corresponds to large second-order derivatives in the block
borders and small ones elsewhere. Fig. 6 depicts the second-
order derivatives on a specific row in the original data and
the decompressed data of ZFP from the CLDHGH field. It is
observed that the second-order derivatives exhibit the expected
periodic patterns with a block size 4: there is a large value at
one data point (the left border), followed by two small values
(inside the block) and another large value (the right border).
This inspires us to detect blocking artifacts using the patterns
in the second-order derivatives.

Fig. 6. Blocking artifact detection demonstration
We present our detection algorithm for row-wise blocking

artifacts in Algorithm 2, and the same procedure easily gen-
eralizes to column-wise blocking artifacts. We first introduce
the key function test_block_size which computes the
number of possible blocks with artifacts and that of effective
blocks (i.e., blocks with at least one non-negligible value) on
the second-order derivatives. In particular, we initialize the
two numbers to 0 (line 2) and increment them while iterating
all the blocks of size B (lines 3-11). We validate if a block is
effective by comparing its max absolute value with τ1 (line 5),
and if a block has artifacts by comparing the portion of border
values over the L1 norm of the block with τ2. To this end, the
number of artifact blocks and effective blocks is returned. We
then detect the most possible block size for blocking artifacts
and its indicator using this function. In particular, we sample a
certain number of rows from the decompressed data (line 13),
and iterate all the candidate rows to find the one with maximal

indicator (lines 14-22). The same procedure can be applied to
the original data. If a small indicator is returned for the original
data while a large one is returned for the decompressed, it is
highly possible that the blocking artifacts are introduced by
lossy compression.

Algorithm 2 BLOCKING ARTIFACT DETECTION ON ROWS
Input: input data d, effectiveness threshold τ1, and detection threshold τ2
Output: the possible block size and an indicator for the severity

1: function test_block_size(d′′, n, B, τ1, τ2)
2: Ceffective ← 0, Cartifact ← 0
3: for i = 1 → n/B do
4: b ← d′′[(i− 1) ∗B : i ∗B] /*Extract data block*/
5: if ‖b‖∞ > τ1 then
6: Ceffective ← Ceffective + 1 /*Block is effective*/
7: flag1 ← (|b0| > τ2 and |bB−1| > τ2) /*Rapid change on

borders*/
8: flag2 ← (|b0| + |bB−1|)/(

∑
i|bi|) > τ3 /*dominant values on

borders*/
9: if flag1 and flag2 then
10: Cartifact ← Cartifact + 1 /*Block may have artifacts*/
11: return Cartifact, Ceffective
12:
13: sample rows ← random(0, n1)
14: for B in candidate block sizes do
15: C1 ← 0, C2 ← 0
16: for r ∈ sample rows do
17: C1r, C2r ← test_block_size(2nd_order_derivative

(dr,:), n2, B, τ1, τ2) /*Evaluate each sampled row*/
18: C1 ← C1 + C1r , C2 ← C2 + C2r /*Aggregate the results*/
19: P ← C1/C2
20: if P > max P then
21: max P ← P , block size ← B
22: return block size, max P

C. Detection of interpolation artifacts

As characterized in the last section, interpolation artifacts
exhibit two properties: 1) it is centered on a data point that is
usually local maximum or minimum; 2) it has a radial pattern
that radiates from the center point to the local regions. We first
define a new terminology “relative sign”, which can be used to
describe the two properties. Specifically, the relative sign of a
data point d1 toward another data point d2 is +1 if d1 > d2 and
−1 otherwise. Then the summed relative sign of a data point
is defined as the summation of the relative signs toward all its
adjacent neighbors. Using this definition, local maximums and
minimums will always have summed relative signs of +4 and
−4, respectively, in the 2D case. For the radial patterns, they
will start at a local maximum or minimum with an absolute
summed relative sign 4 and propagate along the two axes.
Assuming the centering point is a local maximum. Any data
points located on the propagation paths will be smaller than the
data point from which it is propagated but larger than all the
data points in the other three directions, yielding a summed
relative sign of −1 + 3 = 2. Similarly, any other points in
the rectangular region will have a summed relative sign of 0.
One example is illustrated in Fig. 7, where one can see clear
patterns of summed relative signs in the decompressed data
but no patterns in the original data.
We summarize our detection method for interpolation ar-

tifacts in Algorithm 3, with a function relative_sign
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Fig. 7. Demonstration of the summed relative signs in a region with
interpolation artifacts produced by SZ-3.0 (CLDHGH).

representing the computation of the relative sign between two
data points. The function sum_of_relative_sign (line
1-3) computes the summed relative sign of a data point at
index (i, j), and the function compute_padding computes
a boolean flag indicating the presence of artifacts along with
the length of the artifact along x and y axes based on the
pattern mentioned above. For the example in Fig. 7, it will
yield flag = true, lx = 3, and ly = 4 if the value range
of the region exceeds the prescribed threshold τ . Our main
detection function starts at line 19, where we initialize an
empty set to collect detected artifacts. Then we compute the
summed relative signs for each point in the decompressed
data (lines 20-21). After that, we iterate all the decompressed
data and check if it leads to a possible artifact (lines 23-32).
Specifically, we first check if the first property (local maximum
or minimum) is satisfied (line 24), and then compute the
boolean indicator and corresponding padding for the second
property (radial pattern) (line 25). If the current decompressed
data exhibits a pattern that is similar to the artifact, we check
if such a pattern exists in the original data (line 28-29). If not,
we mark it as an artifact and append it to our result (lines
29-31). Note that we will omit a potential artifact if the value
range of the region is less than a prescribed threshold τ (lines
26-27), which indicates such an artifact is not visible under
the given threshold.

VI. EVALUATION

In this section, we present our evaluation results on artifact
detection with the compressors and datasets used in the
previous sections. We normalize all the data to the range [0, 1]
for a unified setting of the necessary thresholds. All of the
experiments are performed on a node of a high-performance
cluster MCC [36], where each node is equipped with two 2
AMD EPYC 7702 processors and 512GB DDR4 memory.
For all three kinds of artifacts, detection is performed on
all the four fields and CLDHGH is used to provide further
visualization demonstration.

A. Detection of posterization artifacts
Given the original data, we can evaluate the posterization

ratio on both the original data and the decompressed data with
the same posterization threshold. The posterization threshold
τ used for the following experiments is 1E-5. The experiment
results are shown in Fig. 8. In the results, we use the Nor-
malized Label Ratio (NLR), which is obtained from dividing
the label ratio of decompressed data by the label ratio of the
original data. If NLR is close to 1, we have a similar amount of

Algorithm 3 INTERPOLATION ARTIFACT DETECTION
Input: original data d and decompressed data d′, range threshold τ
Output: Artifact location index and its length along two axes

1: function sum_of_relative_sign(d, i, j)
2: sum ← relative_sign(di,j , di−1,j ) + relative_sign(di,j ,

di+1,j ) + relative_sign(di,j , di,j−1) + relative_sign(di,j ,
di,j+1) /*Sum the relative signs of four directions in 2D*/

3: return sum
4:
5: function compute_padding(i, j, s)
6: lx ← 1, ly ← 1
7: while |si,j+ly | == |si,j−ly | == 2 and si,j+ly ∗ si,j > 0 do
8: ly ← ly + 1 /*Increment length along y if condition holds*/
9: while |si+lx,j | == |si+lx,j | == 2 and si+lx,j ∗ si,j > 0 do
10: lx ← lx + 1 /*Increment length along x if condition holds*/
11: l′x = lx − 1, l′y = ly − 1
12: if l′x > 0 and l′y > 0 then
13: for (m,n) ∈ {(m,n)| − (lx − 1) ≤ m ≤ (lx − 1),−(ly − 1) ≤

n ≤ −(ly − 1),m )= 0, n )= 0} do
14: if si+m,j+n )= 0 then
15: l′x = min(|m|− 1, l′x) , l′y = min(|n|− 1, l′y)
16: flag = (l′x > 0) and (l′y > 0) /*Flag artifact if found*/
17: return flag, l′x, l′y
18:
19: artifacts ← {}
20: for (i, j) ∈ n1 × n2 do
21: decompressed sign[i, j] ← sum_of_relative_sign(d′, i, j)
22: for (i, j) ∈ n1 × n2 do
23: if | decompressed sign[i, j] | == 4 then
24: d flag, l′′x , l′′y ← compute_padding(i, j, decompressed sign)
25: if range(d[i−l′′x :i+l′′x ,j−l′′y :j+l′′y ]) < τ then
26: continue
27: if d flag then
28: original sign = sum_of_relative_sign(d, i, j)
29: flag = (original sign)=decompressed sign[i, j] )
30: if flag==true then
31: artifacts.append({i, j, l′′x , l′′y})
32: return artifacts

connected components; if NLR is larger than 1, we have extra
connected components, which could be caused by the rigid
edges introduced by interpolation or block-wise compression;
and if NLR is less than 1, we lose some connected components
due to the compression, thus causing posterization artifacts.
For each test case, we choose the bitrate range where the

NLR of SZ-1.4 spans from about 0.1 to the label ratio of the
original dataset. Other compressors are tuned to this bitrate
range for fair comparison. We can see that the NLR of SZ-
1.4 stably increases as we decrease the compression ratio.
The decompressed data of ZFP and SZ-2.1 first suffer from
posterization artifact when the compression ratio is large and
then may introduce extra edges because of the blocking artifact
on the decompressed data. MGARD and SZ-3.0 results show
that they introduce extra labels when the compression ratio
is large and their NLR decrease as we lower the compression
ratio, compared to the original data. This corresponds with the
observation of the interpolation artifact: isolated and abrupt
change in a region that is smooth on the original data.
Fig. 9 and 10 show the association between the evaluation

metrics and the visualization on the original data and the de-
compressed data from SZ-1.4 and FPZIP. As the visualization
deteriorates, we see a decline in the NLR,SSIM and PSNR.
SSIM is a perceptual index, but it is not as sensitive as NLR
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Fig. 8. Detection results of posterization artifacts.

in terms of posterization artifacts in the windowed region.

Fig. 9. Visualization of different label ratios (LR) in SZ-1.4 on CLDHGH

Fig. 10. Visualization of different label ratios (LR) in FPZIP on CLDHGH.

B. Detection of blocking artifacts

In this section, we use prior knowledge that ZFP works on
separated blocks of block size of 4 and set the block size of
SZ-2.1 to 6 for the experiments. To better assist the readers,
we use the compression configurations shown in Table. II so
readers can find the visualization in Fig.2.
We try the decompressed data with block sizes from 4 to 16,

and the detection results are shown in Fig. 11. When we look
at the block size of 4, ZFP has the highest block ratio (BR)
among all the compressors for 4 different fields. Similarly,
when we look at the block size of 6, we find that SZ-2.1 has

the highest BR. If we detect the ZFP decompressed data with
different block sizes, we find that a block size of 4 has the
highest BR. This is the same for SZ-2.1. We demonstrate that
our algorithm is sensitive to compressors that can cause block
artifacts, and it can be used to detect the possible block size
of the blocking artifact.
Next, we show the relation among the compression ra-

tio(CR), block ratio(BR), and visual quality, shown in Fig.
11. CLDHGH is compressed with ZFP and SZ-2.1. We show
the BR of block size of 4 for ZFP results and 6 for SZ-2.1.
In the visualization, all the figures use the value range of the
windowed value range of the original data.
From the results of ZFP instances, we can see the BR first

increases with the CR and then decreases. From the visual
quality, when we have a high BR, we are able to see blocking
artifacts in the current window. When we get a lower BR,
either the decompressed data is close to the original data or
we have severe posterization artifacts in the decompressed
data. We have the same observation on the results of SZ-
2.1. In practice, we can use block detection with posterization
detection together to make the decision on the artifact present
in the decompressed data.
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Fig. 11. Blocking detection on the four fields

Fig. 12. Visualization of different blocking ratios (BR) in ZFP on CLDHGH

C. Detection of interpolation artifacts
The results of the interpolation give the number of locations

that match the interpolation artifact pattern defined in Fig.
7. This information can be used as a reference by the users
to examine the specific locations for further evaluation. We
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Fig. 13. Visualization of blocking detection in SZ-2.1 on CLDHGH

use the number of detected artifact locations for interpolation
artifacts, denoted as “count” in Fig. 14, 15, and 16.
As Fig. 14 shows, our method can detect the interpolation

artifacts defined in Fig. 7 in the MGARD and SZ-3.0 decom-
pressed data. As bitrate decreases, we find more interpolation
artifacts from MGARD and SZ-3.0 decompressed data. We
also notice that our method gives a small amount false
positive interpolation artifacts on the decompressed data from
other compressors. This is another reason that the results of
interpolation detection should only be used for visual defect
reference rather than ground truth.
Next, we check the association among the compression

ratio, interpolation artifact count, and artifact visualization in
Fig. 15 and 16. As the compression ratio increases, we can
see more and more interpolation artifacts on the decompressed
data from the visualization, and we also see an increase in the
interpolation artifact location count on both MGARD and SZ-
3.0 instances.

Fig. 14. Interpolation detection on the four fields

D. Performance
We evaluate the performance of the proposed algorithms on

all fields of the four datasets, using the decompressed data
of SZ-3.0 as an example. The results are presented in Table
III, where the compression speed (SC) and decompression
speed (SD) of SZ-3.0 are reported for reference. All the
statistics provided in the table are the aggregated results for
each dataset. Each experiment is run 3 times to get the average
execution time.

Fig. 15. MGARD interpolation artifact detection visualization

Fig. 16. SZ-3.0 interpolation artifact detection visualization

Among the three detection methods, blocking detection is
the most efficient because it works on sampled data instead of
the entire field. Posterization detection requires the construc-
tion of the segmentation map for original data and decom-
pressed data. Interpolation detection requires the construction
of the “relative sign” map on the decompressed data. Both
posterization and interpolation detection are working on the
entire field, which makes them slower than blocking detection.

TABLE III
ATIFACT DETECTION SPEED (MB/S)

Dataset CR SC SD Blocking Posterization Interpolation
CESM 57.67 158.0 559.55 565.93 232.35 297.99
Hurricane 59.41 175.91 582.92 1641.04 131.19 165.47
NYX 173.12 92.66 50.87 255.94 113.85 160.57
RTM 140.6 171.69 465.03 1511.41 127.01 154.48

VII. CONCLUSION AND FUTURE WORK

In this paper, we characterize the artifact of different
compressors and propose methods to detect these artifacts.
Specifically, we have categorized the artifacts of state-of-
the-art error-bounded lossy compressors into three kinds and
carefully analyzed the causality. Our detection methods can
successfully identify these artifacts given the decompression
data and indicate the severity. In the future, we will study how
to design efficient compression algorithms to mitigate artifacts.
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