

How behavioural ageing affects infectious disease

Gregory F Albery^{*1,2,3}, Amy R Sweeny⁴, Quinn Webber⁵

1. Department of Biology, Georgetown University, Washington, DC, USA

2. Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, Scotland

3. Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany

4. School of Biosciences, University of Sheffield, Sheffield, England

5. Department of Integrative Biology, University of Guelph, Guelph, ON, Canada

[*gfalbery@gmail.com](mailto:gfalbery@gmail.com)

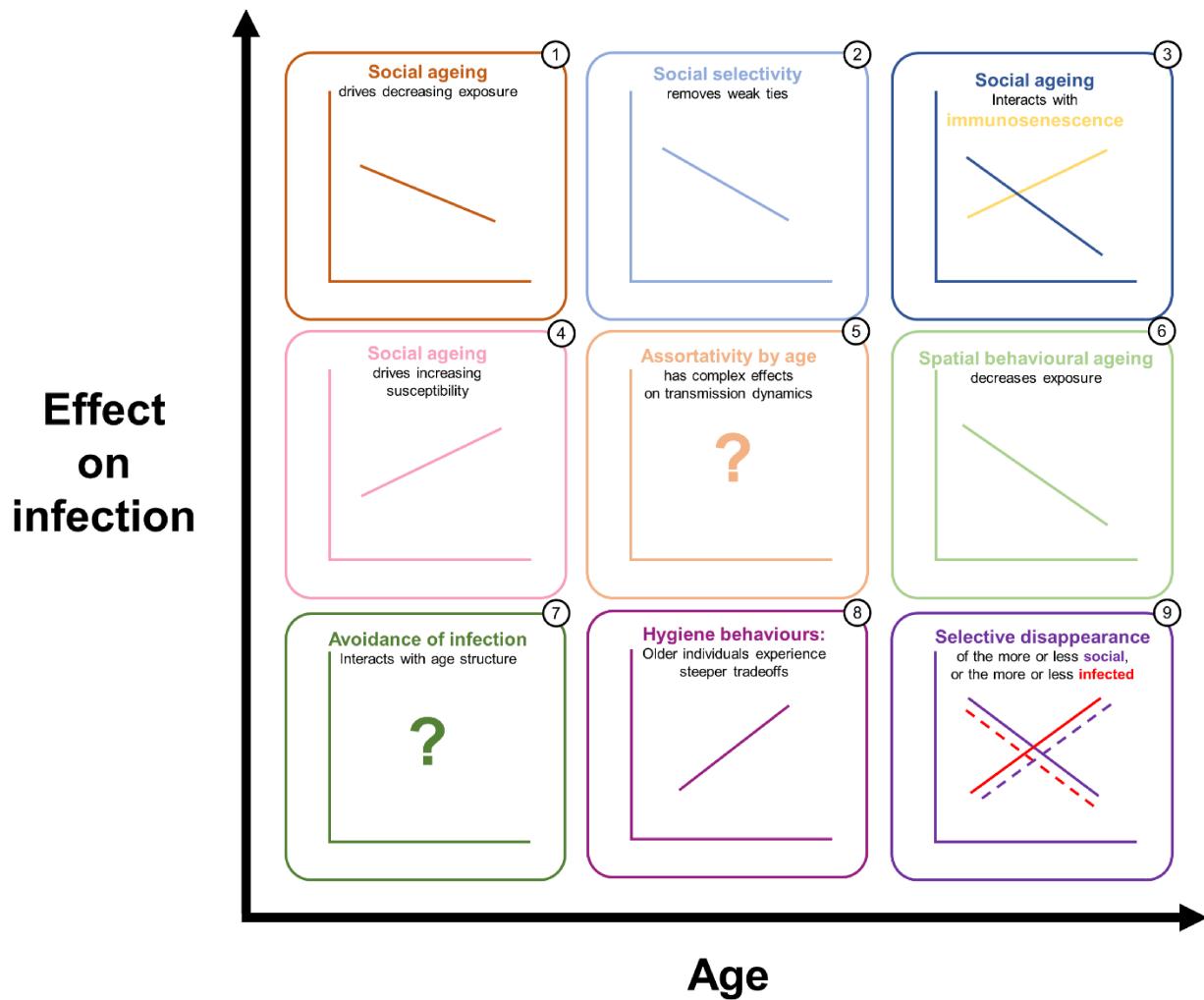
Abstract

Ageing is associated with profound changes in behaviour that could influence exposure and susceptibility to infectious disease. As well as determining emergent patterns of infection across individuals of different ages, behavioural ageing could interact with, confound, or counteract age-related changes in other traits. Here, we examine how behavioural ageing can manifest and influence patterns of infection in wild animals. We discuss a range of age-related changes that involve interactions between behaviour and components of exposure and susceptibility to infection, including social ageing and immunosenescence, acquisition of novel parasites with age, changes in spatial behaviours, and age-related hygiene and sickness behaviours. Overall, most behavioural changes are expected to result in a reduced exposure rate, but there is relatively little evidence for this phenomenon, emerging largely from a rarity of explicit tests of exposure changes over the lifespan. This review offers a framework for understanding how ageing, behaviour, immunity, and infection interact, providing a series of hypotheses and testable predictions to improve our understanding of health in ageing societies.

Keywords: Ageing, Senescence, Disease Ecology, Social behaviour, Infectious Disease, Immunity, Ecoimmunology, Behavioural Ecology

Highlights

- Age provokes a series of behavioural changes.
- These processes can lead to complex changes in infection status throughout the lifespan, acting through a variety of changes in exposure and susceptibility to infection.
- We outline age-related behavioural changes and their impacts on infection, and their eco-evolutionary interactions with other age-related changes.
- Ultimately, we work towards understanding how age structuring emerges within and between individuals, and the consequences for disease dynamics.


34 **Introduction**

35 Ageing is a near-universal phenomenon in the animal kingdom. As animals age, they generally
36 experience increased mortality rates, reduced fertility, and reduced function in terms of a suite of
37 physiological characteristics (Ricklefs, 2008). This process is known as “senescence”. Although
38 initially thought to be uncommon in the wild, in the last few decades it has been demonstrated
39 that many wild animals experience substantial age-related declines in a variety of traits before
40 they die (Elliott et al., 2015; Froy et al., 2015; Nussey et al., 2009, 2006). These include a wide
41 range of physiological traits (Elliott et al., 2015), and with underlying declines in molecular and
42 cellular functioning (i.e., “cellular senescence”), particularly concerning aspects of immunity (i.e.,
43 “immunosenescence” (Nikolich-Žugich, 2018; Pawelec, 2018; Peters et al., 2019). Because one
44 of the immune system’s main roles is to defend against infection, such age-related changes in
45 immunity may have important ramifications for infection status. However, despite these well-
46 appreciated impacts of age on susceptibility to infection, we have a much shallower appreciation
47 of age-related changes in behaviour, their effects on exposure to pathogens, and their joint
48 implications for infection.

49 Alongside immunity, an individual’s behaviour is a central determinant of its infection status
50 (Albery et al., 2021a; Bansal et al., 2007; Ezenwa et al., 2022; Sweeny and Albery, 2022;
51 VanderWaal and Ezenwa, 2016). Because individuals that make more contacts are generally
52 more often exposed to parasites, greater sociality is often expected to correspond to higher
53 parasite count or increased infection probability (Altizer et al., 2003; Cote and Poulin, 1995).
54 Increasingly, there has been a developing interest in age-related changes in behaviour, and in
55 particular in the altered social environments of senescent individuals (Gregory F Albery et al.,
56 2022a; Rosati et al., 2020; Siracusa et al., 2022a). This “social ageing” is likely to have
57 implications for older individuals’ parasite counts by altering exposure patterns (Siracusa et al.,
58 2022a). Reciprocally, many animals have evolved behavioural mechanisms to minimise infection
59 risk (Ezenwa et al., 2016a; Kappeler et al., 2015; Loehle, 1995) – for example, by avoiding
60 infection (Curtis, 2014; Stockmaier et al., 2021), by grooming or caring for infected individuals
61 (Akinyi et al., 2013; Stewart and Macdonald, 2003), or by acquiring resources at greater rates,
62 allowing a more effective immune response (Almberg et al., 2015a). Changes in such behaviours
63 with age could have knock-on effects on infection status over the lifespan. Further, because
64 exposure and susceptibility often interact and counteract one another, both on ecological and
65 evolutionary timescales (Hawley et al., 2021, 2011; Poulin and Filion, 2021; Sweeny and Albery,
66 2022), age-related changes that alter either exposure or susceptibility can be expected to have
67 downstream or compensatory changes that affect the other. For example, if age-related changes
68 in immunity reduce resistance and therefore increase parasite count, behaviour may change to
69 reduce exposure as a result to compensate (Hawley et al., 2021). Links between behaviour and
70 susceptibility across an animal’s lifespan could therefore be vital in determining disease dynamics
71 in many systems. Understanding these processes is important for many reasons, not least
72 because the age structuring of infection has important implications for emergent disease
73 dynamics (Clark et al., 2017).

74 Here, we discuss how behaviour changes with age (“behavioural ageing”), and how these
75 changes could alter infection status, with a focus on wild animals and with varying levels of
76 mechanistic complexity. Given that this is a relatively nascent field with an early evidence base to
77 draw from, for each concept we make sure to outline how empirical evidence could be attained
78 through observation, experiments, and simulations. Ultimately, we weave together what is known

79 or hypothesised about age-related changes in behaviour in wild animals with other known aspects
80 of ageing, providing a synthetic framework for understanding the age structuring of infection
81 (Figure 1).

82
83 Figure 1: Schematic presenting our framework for understanding how age-related changes in
84 behaviour influence infection. In all panels, age is on the x axis and the proposed mechanism's
85 generalisable effect on infection prevalence or intensity is on the y axis.

86

87 Age-related changes in behaviour and their effects on infection

88 Social ageing drives changes in exposure

89 Recent years have seen a rapidly growing interest in the ageing of social behaviour specifically
90 ("social ageing"; (Siracusa et al., 2022a)). Generally, individuals alter their social behaviour for
91 several reasons: through direct effects of senescence, changes to compensate for the direct
92 effects of senescence, social benefits of ageing, or demographic changes (Siracusa et al., 2022a).

93 Because social behaviour is an important driver of exposure risk, these changes are expected to
94 influence infection status (Gregory F Albery et al., 2022a, 2022b; Siracusa et al., 2022a).

95 Older individuals most often exhibit reduced sociality – for example, in Barbary macaques
96 (*Macaca sylvanus*) (Rathke and Fischer, 2021), red deer (Gregory F Albery et al., 2022a), and
97 ibex (*Capra ibex*) (Brambilla et al., 2022). This process could convey reduced exposure risk as
98 individuals age, resulting in a lower burden of infection in older individuals. In contrast, some
99 species become *more* social as they age: for example, bonobos (*Pan paniscus*) exhibit increased
100 grooming rates (Franz, 1999; Tokuyama and Furuichi, 2017), which could drive exposure to
101 endoparasites (Poirotte et al., 2017). In scenarios where individuals increase interaction rates in
102 this way as they age, they may greater exposure and infection rates. There is also some evidence
103 of mid-life peaks in sociality, as in Alpine ibex (Brambilla et al., 2022); these are likewise expected
104 to produce complex, non-linear changes in exposure rates with age. Only one system we know
105 of has yet demonstrated age-dependent changes in behaviour that could influence emergent
106 infection status: in female red deer, age-dependent decreases in social connectedness (Gregory
107 F Albery et al., 2022a) occur in opposition to age-related increases in strongyle helminth infection
108 (Gregory F Albery et al., 2022b). Nevertheless, the two phenomena have not yet been
109 mechanistically linked, and there are no other examples in which social ageing and their emergent
110 effects on infection have been investigated. As such, this remains a priority area to provide more
111 case studies and examples of social ageing effects in disease ecology.

112 Given the possibility of multidimensional changes in different behaviours, an underexplored
113 aspect of behavioural ageing concerns divergent changes in different contact types: for example,
114 if older individuals experience fewer aggressive interactions (Rosati et al., 2020) but greater
115 grooming rates (González et al., 2021), it could drive a change in parasite community from those
116 spread through fights (e.g. tuberculosis (Drewe, 2010)) to gastrointestinally transmitted ones (e.g.
117 some protozoa (Poirotte et al., 2017)). Given a relative scarcity of multi-pathogen studies spread
118 over the length of the lifespan, there is as yet unsurprisingly little evidence for these shifting
119 communities, even before considering the involvement of behaviour.

120 Social selectivity and the removal of weak ties

121 In many cases, social ageing does not manifest as a simple increase or decrease in sociality,
122 even when considering only one contact type. Often, older individuals have fewer, but stronger,
123 social connections, and with a preference for positive rather than negative interactions – i.e., they
124 exhibit increased “social selectivity” (Rosati et al., 2020; Siracusa et al., 2022c, 2022a). This trend
125 is relatively common in humans, and in some primate societies (González et al., 2021; Machanda
126 and Rosati, 2020; Rosati et al., 2020; Siracusa et al., 2022b). Depending on the specific patterns
127 of behavioural change, social selectivity may decrease older individuals’ overall risk due to lower
128 connectedness, but the removal of weak social connections could have further complex effects
129 on infection dynamics (Sah et al., 2017; Vanderwaal et al., 2016). For example, in giraffes (*Giraffa*
130 *camelopardalis*), weak ties – represented by an individual’s tendency to connect disparate cliques
131 of other individuals – are stronger determinants of that individual’s infection with helminths than
132 overall connectedness (Vanderwaal et al., 2016). Losing these ties with age could therefore have
133 a disproportionately strong effect on reducing exposure risk (and therefore infection), allowing
134 selective older individuals to optimise the ratio of exposure to social benefits that they experience.

135 Social selectivity should specifically result in a lower rate of *novel* exposure events. Because
136 meeting new individuals (especially those from new social groups (Sah et al., 2017)) is more likely

137 to result in exposure to new parasites than meeting well-known individuals, increasing social
138 selectivity with age could function to minimise novel pathogen exposure. In social systems where
139 the risk of novel pathogen exposure is high when connecting remote groups (as in giraffes
140 (Vanderwaal et al., 2016)), it is likely that social selectivity will be more strongly favoured with age.
141 Nevertheless, although these patterns of overall social selectivity have been identified broadly, it
142 has yet to be shown how the rate of entirely novel encounters changes over age. To address both
143 questions might require researchers looking at long-term ageing systems to identify how
144 individuals' acquisition of novel partners – or reacquisition of very old ones – corresponds to
145 acquisition of novel parasites. Alternatively, simulations could be used to identify how the costs
146 of repeated exposure to well-known pathogens compares to occasional high-risk exposure to
147 unknown pathogens when selecting for social selectivity behaviour.

148 Focusing on few strong relationships as one ages could have further benefits beyond reducing
149 exposure rates. Notably, an important component of an individual's behaviour is the ability to
150 recognise and respond to infection in others (Gibson and Amoroso, 2022; Lopes, 2022; Weinstein
151 et al., 2018). Having relatively few (but stronger) relationships may allow older individuals to more
152 effectively anticipate infection risk or recognise infections in the individuals they know well,
153 allowing them to behave appropriately – e.g. by avoiding them. Social selectivity could therefore
154 be an adaptive response to the declining perceptive ability of senescent individuals (Siracusa et
155 al., 2022a), given that some sensory acuity is required to accurately identify infection risks. More
156 widely assessing how older individuals differ in the strength of their hygiene behaviours (see
157 below) and using specific age-related metrics of sensory ability like macular degeneration
158 (Fernandes et al., 2023), particularly in the context of multiple social environments, will help to
159 test this possible role of social selectivity.

160 **Interactions between social ageing and immunosenescence**

161 Rather than manifesting in isolation, behavioural ageing could interact with immunosenescence:
162 by reducing exposure to parasites, reducing one's contact rates over the lifespan could
163 compensate for weaker resistance and thereby allow older individuals to circumvent a greater
164 parasite load (Gregory F Albery et al., 2022a; Siracusa et al., 2022a). Behavioural compensation
165 for a weak immune response such as this is relatively common (Hawley et al., 2021, 2011): for
166 example, guppies (*Poecilia reticulata*) show stronger conspecific avoidance when they are more
167 susceptible to infection (Stephenson, 2019). Nevertheless, empirical evidence directly linking
168 immunosenescence and social ageing remains scarce, and there is a need for more empirical
169 tests in longitudinal study populations. Specifically, these studies would have to examine
170 covariance between social behaviour and immunity across individuals' lifespans, and potentially
171 then link them to infection, to show that metrics taken to represent susceptibility and exposure are
172 negatively associated (Albery et al., 2021a; Sweeny and Albery, 2022). There is substantial
173 evidence for immunosenescence in wild animals: for example, ageing Soay sheep experience
174 declines in immune function that predict decreased survival probability independently of changes
175 in parasite burden (Froy et al., 2019), and a recent meta-analysis uncovered a number of studies
176 showing similar trends (Peters et al., 2019). However, such studies are rarely carried out
177 longitudinally and in a fashion that would allow extrication of a role of behaviour. Given that many
178 long-term studies are well-placed to identify changes in both ageing and behaviour (Clutton-Brock
179 and Sheldon, 2010; Sheldon et al., 2022), the time is ripe that concurrent changes in these
180 processes be linked with their changes in immunity and infection, allowing us to investigate this
181 possibility. In a cross-system context, if these processes are indeed linked, we expect that

182 systems in which the immune system senesces more strongly will also exhibit stronger patterns
183 of social ageing, allowing older individuals to ameliorate this cost of senescence.

184 In practice, these processes may be difficult to extricate (or at least confirm) observationally: if
185 immunosenescence and social ageing are linked, they could obfuscate ageing patterns in the wild
186 by weakening the relationship between age and infection status within individuals, even where
187 immunosenescence is in fact occurring. That is, where age modifies both exposure and
188 susceptibility in opposite patterns, the emergent trend might be no change in infection prevalence
189 or intensity over the lifespan. As such, a possible route to uncovering this process could involve
190 eco-evolutionary simulations that model individual age trajectories in behaviour and immunity,
191 and then to examine the emergent outcomes for age structuring of infection patterns. These
192 models could identify – and attempt to overcome – the possible problem of a weakening strength
193 of selection with age when evolving adaptive traits in this context (see below).

194 **Social ageing may drive changes in susceptibility**

195 On the other hand, reduced sociality could *cause* age-related increases in parasite count via
196 effects on immunity and health. An individual's social environment can influence physiological
197 parameters like stress levels (Hermes et al., 2009; Razzoli et al., 2018; Sapolsky, 2004) and
198 nutritional state (Almberg et al., 2015b), while correlating directly with immune functions like
199 wound healing (Archie et al., 2012) and markers of ageing like telomere length (Lewin et al.,
200 2015). Consequently, sociality has implications for immune function and susceptibility to infection
201 (Albery et al., 2021a; Hawley et al., 2021; Snyder-Mackler et al., 2020; Sweeny and Albery, 2022).
202 Conversely, animals could lose social benefits such as cooperative defence or hunting as they
203 age (Silk, 2007a; Siracusa et al., 2022a). If age-related changes in sociality influence
204 physiological traits downstream, individuals' infection status may change as a result. For example,
205 because older individuals are often less competitive, they may receive more aggressive
206 interactions from their younger, stronger counterparts (Siracusa et al., 2022a). Receiving
207 aggression often causes stress, which may reduce immune resistance and therefore drive greater
208 parasite count in older individuals (Hing et al., 2016; Martin, 2009; Romero, 2004). In some
209 circumstances, infected individuals may receive greater levels of aggression (McFarland et al.,
210 2021), so these processes could form a positive feedback cycle. This example accentuates that
211 the interrelationships between ageing, behaviour, immunity, and infection can be complex, and
212 teasing apart possible driving mechanisms may be difficult – particularly in fully observational
213 systems (i.e., those that do not allow experimental manipulations).

214 Providing evidence for social ageing-driven increases in susceptibility will require teasing apart
215 the process from endogenous immune changes (i.e. immunosenescence) to demonstrate that
216 age-specific social interactions themselves are causing the reduction in resistance (or similar).
217 Practically, this could involve experiments that manipulate individuals' social environments in an
218 age-dependent manner, allowing researchers to control for other within-individual immune
219 changes. In strictly observational systems, time-structured models coupled with behavioural and
220 immunoparasitological sampling may help researchers to infer mechanistic pathways that link
221 ageing with sociality, and then with changes in immunity and infection. Alternatively, physiological
222 measures of ageing such as telomere lengths could be combined with calendar age to control for
223 "biological age" when analysing the data (e.g. (Watowich et al., 2022)).

224 **Age assortativity and modularity in socio-spatial networks**

225 In some circumstances, age-specific behaviours may drive assortative age patterns – that is,
226 where older individuals tend to associate with older individuals (and younger with younger). For
227 example, great tits (*Parus major*) tend to more often socialise with individuals of a similar age than
228 expected by chance (Farine et al., 2015). Such structuring could come about through a variety of
229 mechanisms: through social behaviours such as age preference or the competitive exclusion of
230 older individuals, spatial processes like habitat selection or landscape structure, or demographic
231 processes like selective disappearance of individuals in certain areas.

232 Age assortativity could have a variety of effects on disease dynamics by clustering together older
233 individuals in the contact network. When accompanied by age-dependent declines in immune
234 resistance, these clusters could provide fertile ground for disease outbreaks because an invading
235 pathogen will be highly likely to find susceptible hosts in contact with its focal host. Reciprocally,
236 if older individuals are generally resistant to a given pathogen by the time they reach old age –
237 e.g. as with many childhood pathogens such as measles in humans – these areas of the contact
238 network will be difficult to invade. Similar differences could emerge with age-dependent mortality:
239 for example, when a pathogen reproduces well in young individuals but only causes high mortality
240 in older individuals, highly mixed age structures could lead to a disproportionate death toll in
241 ageing individuals. Reciprocally, when older individuals are able to transmit well but younger
242 individuals are not, social structures that involve high levels of age assortativity could produce
243 higher mortality. These two variables (age skew in transmission and age skew in mortality)
244 therefore produce an interesting landscape of possible source-sink-like outcomes in disease
245 dynamics.

246 These source-sink dynamics may prove particularly important in the case of novel pathogens.
247 Most saliently, age-dependent social structuring was a crucial mediator of the impact of the SARS-
248 CoV-2 pandemic on older people: due to the virus's strong age skew in pathogenicity, older
249 individuals were hit particularly hard, with high morbidity and mortality both in tight-knit age-
250 structured communities like assisted living facilities (Davidson and Szanton, 2020; Hashan et al.,
251 2021; Thompson et al., 2020) and in communities in which elder individuals often live with younger
252 family members in single households (D'Onofrio et al., 2021; Esteve et al., 2020; Giorgi and
253 Boertien, 2021), effectively representing opposite ends of a spectrum in terms of age structuring
254 and assortativity. Understanding how different age structures conspire to determine the burden
255 of infection in the elderly is an important future research direction, both in humans and in animals.

256 These sorts of dynamics could also come about where risky behaviours for pathogen transmission
257 are themselves assortatively arranged by age: for example, older humans often have low rates of
258 condom usage, which predisposes clusters of older individuals to outbreaks of sexually
259 transmitted infections (Macdonald et al., 2016); this trend has an analogy in wild animals, where
260 older individuals are often less picky in terms of their reproductive behaviour (Han and
261 Dingemanse, 2023). Although age-dependent mortality and age-structured outbreaks are
262 common, the behavioural mechanisms underlying these age structuring processes are relatively
263 opaque in wild animals.

264 More generally, correlations can emerge between age and infection through a variety of non-
265 random structuring processes, without necessitating behavioural changes through individuals'
266 lifespans. For example, landscape features may result in spatial clustering of individuals of a
267 similar age or life stage (Devan-song et al., 2022), which will introduce spatial autocorrelation

268 between contact network structuring and age. Given that epidemics generally begin at one point
269 and expand in space, even given no age-dependent structuring of susceptibility and mortality, the
270 course of an outbreak can likewise be age-structured (e.g. shifting from mainly infecting young to
271 mainly older individuals) when it occurs in an age-structured population.

272 **Age-related changes in spatial behaviour**

273 Older individuals often behave differently in space compared to their younger counterparts; for
274 example, albatross, deer, and sheep all alter their foraging behaviour as they age (Gregory F
275 Albery et al., 2022a; Froy et al., 2018, 2015). These changes can emerge for a range of reasons,
276 linked to e.g. the exploitation of different food sources, escaping competition from younger
277 conspecifics, or reduced movement or navigation capacities. Specifically, older individuals could
278 alter their habitat use, preferred local density, or population structure (Gregory F Albery et al.,
279 2022a), all of which may have to be accounted for when investigating the drivers of infection.
280 Because contact networks are often spatially structured, these effects could have complex
281 implications for exposure (Albery et al., 2021a): for example, movements to areas of lower
282 population density over the lifespan could reduce contact rates (Albery et al., 2021b; Gregory F
283 Albery et al., 2022a), with resultant reductions in exposure and parasite prevalence. Older
284 individuals are generally thought to be physiologically weaker, which leads them to have reduced
285 ranging capacities (Froy et al., 2018); because spatial activity and social connection numbers
286 generally correlate positively (Webber et al., 2023), we therefore predict that age-related changes
287 in spatial behaviour will generally function to reduce exposure rates. As weak ties generally
288 connect relatively distant spatial groups (Centola and Macy, 2007) this is particularly likely to be
289 true of the changes in social selectivity outlined above.

290 Because infection risk is often spatially heterogeneous, even on small scales (Gregory F. Albery
291 et al., 2022), behavioural ageing may be important because it determines *where* the animal lives
292 as well as *how much* it moves. As they age, individuals could move to or from areas of high
293 infection risk – e.g. those with microclimatic conditions that favour transmission, or areas with host
294 other host species that maintain generalist pathogens. As with changes in social behaviour,
295 multidimensional changes in spatial behaviour could have divergent effects on different parasites:
296 for example, where older individuals reduce their forage intake they may ingest fewer infective
297 stages of gastrointestinal parasites, or where they move to less-preferred areas they could
298 experience exacerbated exposure to biting insects and (therefore) vector-borne parasites.
299 Alternatively, where a given area is particularly favourable to transmission of a parasite with heavy
300 geriatric mortality, the spatial age structuring of the population may be skewed to younger
301 individuals in this area due to local mortality of older individuals. More commonly mapping the
302 spatial distributions of infections and of environmental parasite stages, alongside spatial age
303 structure of hosts through time, may help to identify the role these phenomena play in determining
304 the age distribution of infection.

305 Finally, spatial behaviour could likewise influence elements of susceptibility via resource use:
306 older individuals could be less competitive, and thereby forced to inhabit areas with poorer-quality
307 nutrition, which could reduce their immune resistance (Becker et al., 2018; Calder and Jackson,
308 2000). As with social ageing, the balance of these two components (exposure and susceptibility)
309 will determine the observed age patterns of infection across the population.

310 **Age structuring and the avoidance of infection in space**

311 Populations often arrange themselves in space according to the distribution of parasite exposure
312 risk in the same way they arrange themselves according to predator threat, forming “landscapes
313 of disgust” (Buck et al., 2018; Hutchings et al., 2006; Weinstein et al., 2018). All else being equal,
314 individuals will avoid areas that they can identify as being high-risk for pathogen exposure. This
315 “push” factor is weighed against other “pull” factors like graze availability in determining each
316 individual’s space use, which magnifies at the population level to produce a population distribution
317 that is negatively correlated with the spatial distribution of infection risk (Albery et al., 2020;
318 Hutchings et al., 2006). In systems where older individuals are less competitive, they may suffer
319 from a reduced set of options regarding where and when to forage or spend their time, thereby
320 reducing their ability to avoid areas of high infection. Broadly, this will intensify tradeoffs between
321 avoiding infection risk and other priorities such as resource acquisition or predator avoidance
322 (Hutchings et al., 2006). This latter tradeoff could be especially potent because older individuals
323 are also often more vulnerable to predators; in fact, predators often specifically target old, weak
324 or sickly individuals, which creates substantial positive correlation among these components.
325 Alternatively, in systems where older individuals are generally dominant (as in some primate
326 systems (Machanda and Rosati, 2020)), older individuals may have access to preferred, disease-
327 free areas, such that the landscape of disease provides a balancing force selecting against
328 younger individuals and facilitating the survival of older individuals. As yet, despite substantial
329 evidence for parasite avoidance in experimental contexts (Gibson and Amoroso, 2022; Poirotte
330 et al., 2017; Stroeymeyt et al., 2018) there remain relatively few putative examples of landscapes
331 of disgust in wild populations (though see (Albery et al., 2020) for a putative example). Further
332 investigating age effects on the intensity of parasite avoidance behaviours (see below), and
333 magnifying it to the landscape level, will prove helpful in examining this possibility – particularly if
334 these processes can be examined and compared in systems with opposing patterns of dominance
335 across the lifespan.

336 **Age-related hygiene and sickness behaviours**

337 Animals exhibit a range of behavioural responses to disease, which generally involve some
338 combination of avoiding parasites, increasing resistance to infection, or ameliorating the cost of
339 infection (Gibson and Amoroso, 2022; Stockmaier et al., 2023). These responses can occur either
340 in the infected individual (e.g. fungus-infected ants tend to inhabit areas further from the colony
341 and make fewer contacts (Stroeymeyt et al., 2018)), or in their uninfected conspecifics (e.g.
342 mandrills (*Mandrillus sphinx*) avoid grooming infected conspecifics (Poirotte et al., 2017)).
343 “Sickness behaviours” are characterised by increased lethargy and reduced sociality, and may
344 function to reduce onward transmission of parasites and/or to conserve energy for the immune
345 system (Lopes et al., 2021; Shakhar and Shakhar, 2015). It is highly likely that the expression of
346 hygiene and sickness behaviours depends on age – particularly because of their strong link to
347 physiology (Lopes et al., 2021). For example, because older individuals are often physically
348 weaker as well as being less resistant, they may exhibit stronger sickness responses to conserve
349 energy more effectively when sick. Similarly, given weaker immune resistance, older individuals
350 may be motivated to exhibit stronger hygiene behaviours where they can. However, hygienic
351 behaviours like parasite avoidance can often result in important tradeoffs with other priorities,
352 such as resource acquisition or predator avoidance (Hutchings et al., 2006). As such, anti-disease
353 behaviours may clash with the other resource intake needs of older individuals. Importantly, age-
354 related changes in hygiene behaviours is a “second-order” relationship with infection. That is, it

355 represents an interaction effect where age alters the relationship between infection and
356 behaviour, rather than age influencing infection through altering behaviour.

357 As outlined above, there is some evidence for changes in connectedness over the lifespan
358 (Siracusa et al., 2022a); however, this is distinct from evidence for age-dependent expression of
359 hygiene behaviours themselves. The latter requires demonstrating that there is age-dependent
360 variation in the slope of a temporary behavioural response to perceived or actual infection, rather
361 than a gradual decline in the behaviour over the lifespan. In practical terms, this would represent
362 an interaction effect between age and infection in a statistical model examining behaviour as the
363 response. Although protozoan infection reduces grooming received in mandrills, alongside an
364 effect of age itself (Poirotte et al., 2017), the same study did not show an interaction between age
365 and infection status. Additionally, age was found to have no effect on hygienic personalities in
366 mouse lemurs (Poirotte and Kappeler, 2019). The evidence for age-dependent modification of
367 hygienic or sickness behaviours is therefore scarce, and it remains unclear whether these
368 behaviours should most often be intensified (due to increased susceptibility and greater need to
369 avoid infection) or lessened (due to intensified tradeoffs with other resource demands) with age.

370 Selective disappearance of the more or less social, or the more or less infected

371 Where a given trait drives greater mortality, individuals expressing this trait will be more likely to
372 die at each unit of time, removing the individual from the population. Over time, this “selective
373 disappearance” can drive an observed age-related change in the trait at the population level rather
374 than within individuals; as this trend often removes the weakest individuals, it often masks age-
375 related declines, making senescence harder to detect (Nussey et al., 2008; van de Pol and
376 Verhulst, 2006). In longitudinal systems, selective disappearance and within-individual declines
377 can be extricated and estimated by fitting a combination of individual identity and longevity (known
378 age at death) alongside continuous age (van de Pol and Verhulst, 2006). That is, being able to
379 account for each individual’s identity and age at the time of sampling, and mathematically
380 weighting it against the age that they will eventually attain, can statistically differentiate within-
381 and between-individual declines. Recognising and deciphering these processes – and how to
382 unpack them – was an important stage in identifying patterns of ageing and senescence in wild
383 animals, and identifying within-individual declines specifically is a crucial part of many senescence
384 studies (Gregory F Albery et al., 2022a; Froy et al., 2019, 2018; Siracusa et al., 2022b).

385 Selective disappearance is particularly important where it comes to sociality and infection
386 because both can reasonably be expected to produce both positive and negative selective
387 disappearance trends. With regards to infection, a number of patterns could be produced by
388 selective disappearance. Many parasites exact a substantial mortality toll (Tompkins and Begon,
389 1999), particularly on young individuals (Ashby and Bruns, 2018). In these cases, all else being
390 equal, individuals with higher parasite counts will die sooner, producing an apparent age-related
391 decrease in infection. In contrast, particularly if parasites are relatively mild, resisting them may
392 be costly, such that the fittest individuals are those that tolerate infection and maintain relatively
393 high parasite counts (Graham et al., 2011; Råberg et al., 2009; Viney et al., 2005). In this case,
394 individuals that resist infection and have lower counts may be more likely to die, which will produce
395 an apparent *increase* in parasite count across the population. As yet, such contrasting age-related
396 trends have not been demonstrated.

397 Further complicating matters, in some cases, the fitness costs of resistance, tolerance, and
398 infection can vary between life stages. For example, in red deer, strongyle nematodes exact

399 substantial fitness costs for both calves (Acerini et al., 2022) and adults (Albery et al., 2021c);
400 however, the costs of infection are far higher for calves, with much steeper relationships between
401 parasite count and survival probability compared to adults (Acerini et al., 2022). Similarly, in black
402 grouse (*Lyrurus tetrix*), stronger immune responses are favoured in younger individuals, while the
403 reverse is true in adults (Soulsbury et al., 2017). In such cases complex, nonlinear age-infection
404 relationships could emerge. For example, if individuals gain fitness benefits from resisting
405 infection when young but by tolerating it when old, it is unlikely that the emergent age-infection
406 trend will be linear. Nevertheless, no study has yet investigated an interaction between continuous
407 measures of age and mortality in the context of infection and immunity; using models capable of
408 identifying non-linear relationships (e.g. (Jones et al., 2008)) may be highly informative here. The
409 central role that selective disappearance likely plays in determining age patterns is therefore
410 important to investigate in the near future, especially given the current lack of longitudinal studies
411 of immunosenescence in animals (Peters et al., 2019).

412 For sociality, there are obvious benefits at the individual level including improved hunting,
413 defence, and mating opportunities (Ezenwa et al., 2016b; Silk, 2007b; Snyder-Mackler et al.,
414 2020), all of which could produce selective disappearance of less-social individuals. However,
415 there are also disadvantages to sociality: for example, greater sociality can correspond to greater
416 competition, which could result in selective mortality of more-social individuals. Moreover,
417 crucially, one of the most-often-cited costs of increased sociality is an increased risk of exposure
418 to infectious disease (Altizer et al., 2003; Cote and Poulin, 1995; Ezenwa et al., 2016b); as such,
419 these two phenomena form two simultaneous and intertwined selective processes that could
420 interact across the lifespan. Further, social structure itself is heavily dependent on the
421 demography of the population (Shizuka and Johnson, 2019), and therefore any skew in mortality
422 patterns could inherently determine emergent properties of the network that influence observed
423 age-behaviour-infection patterns. The ability to track both sociality and infection and detect
424 positive and negative survival effects from both causes, while detecting within-individual trends in
425 both, will be one of the foremost challenges in identifying the behavioural components of age-
426 infection trajectories.

427 Concluding remarks

428 We therefore recognise a wide range of possible outcomes concerning behavioural ageing's
429 effects on infection. Nevertheless, the resounding impression is that most straightforward "first-
430 order" age-related changes in behaviour (reduced ranging and sociality) should function to reduce
431 exposure, while more complex interactions with physiology (greater stress, intensified behavioural
432 tradeoffs, and reduced competitive ability) could work to produce greater burdens of disease in
433 older individuals. The balance of these two processes is still unclear. Building on the rising interest
434 in social ageing (Machanda and Rosati, 2020; Siracusa et al., 2022a), this area of research stands
435 ready to be elucidated further – particularly by more widely explicitly investigating age-infection
436 slopes in behavioural study systems of individuals with known age and infection status. The
437 number of case studies of behavioural ageing has grown substantially in recent years, and
438 incorporating infection into these same systems is a logical next step that could be highly
439 revealing.

440 Ultimately, we hope that deepening our understanding of the myriad ways behavioural ageing
441 could influence infection may help to identify and counteract the ecological and evolutionary
442 drivers of disease in ageing humans. However, there are precious few between-species

443 comparative studies in this area, hampering our ability to generalise and draw conclusions
444 concerning these processes across non-human and human animals. A notable exception is a
445 meta-analysis of immunosenescence studies (Peters et al., 2019), which was highly informative
446 concerning age-related changes in immunity but did not incorporate changes in infection.
447 Furthermore, despite a growing literature on age-related changes in (social) behaviour (Siracusa
448 et al., 2022a), these studies have likewise not been meta-analysed or connected with infection.
449 As such, there remains a gap in our understanding of the role of age-related changes in exposure,
450 interactions with immunosenescence, and their emergent effects on infection status. Future
451 studies in this vein could examine how ageing covaries with the evolution of social structure (Korb
452 and Heinze, 2021) and how social structure coevolves with infection (Altizer et al., 2003; Hawley
453 et al., 2021; Poulin and Filion, 2021), although they may have to deal with a range of between-
454 species and between-system confounders (e.g. where age and body size covary; (Watkins and
455 Blouin-Demers, 2019)). Such studies could be parameterised using novel data sources, including
456 databases of age structuring in humans (Mistry et al., 2021) and open repositories of animal social
457 networks, some of which have associated individual metadata including age (Sah et al., 2019;
458 Strauss et al., 2022). Cross-system approaches such as these could help to close the gap
459 between animal and human systems of infection and ageing, as well as facilitating a richer view
460 of the many roles of age-related changes in disease ecology and epidemiology.

461 Importantly, behavioural ageing can come about through a number of mechanisms, often either
462 related to the direct effects of senescence or changes to compensate for these effects (Siracusa
463 et al., 2022a), benefitting from behaviour's ability to respond plastically to a wide range of internal
464 and external conditions. These behavioural changes could serve an adaptive function, allowing
465 an individual to survive for longer than it otherwise would in the process of senescence; indeed,
466 a wide range such advantages have been outlined (Siracusa et al., 2022a; Thompson González
467 et al., 2023). These explanations come into play specifically in the area of infection: for example,
468 because older individuals often have weaker immune systems, social ageing could have evolved
469 specifically to counteract this waning immunity and reduce the burden of infection in late life (as
470 outlined above). However, fundamental evolutionary theory states that – for a variety of reasons
471 – the strength of selection is expected to weaken with age (Hamilton, 1966; Williams, 1957), such
472 that senescent traits are rarely evolved for the purpose observed during senescence. Rather, they
473 often represent mechanistic links that are difficult to lose in late life, or an ageing individual's ability
474 to deal with physiological deterioration. This fact could limit the extent of behavioural ageing's
475 influence on ecology and evolution, and *vice versa*. As such, without considering the waning of
476 selection, adaptationist explanations of social ageing could be overstated. On the other hand,
477 advantageous effects of behavioural ageing on infection could nevertheless come about despite
478 the weakening of selection: for example, reductions in social connectedness with age could
479 emerge because contact reduction when immunocompromised is selected for in early life
480 (Stephenson, 2019; Zylberberg et al., 2013) and remains mechanistically linked (e.g. through
481 pleiotropy) into later life. Alternatively, older individuals could be selected to reduce their contacts
482 because of indirect benefits to kin (Albery, 2022; Frank, 1998). In the future, evolutionary
483 simulations and adaptive dynamics approaches could be used to examine how severe this
484 weakening of selection should be, and how strong the mechanistic links across the lifespan, in
485 order for behavioural ageing to evolve in response to infection.

486 **Acknowledgements**

487 GFA and QW were partially supported by grants from the NIH Animal Models for the Social
488 Dimensions of Health and Aging Research Network (NIH/NIH R24 AG065172). GFA was funded
489 by Leverhulme grant RPG-2022-220, and by National Science Foundation grant DEB-2211287;
490 QMRW was supported by a Natural Sciences and Engineering Research Council (NSERC)
491 Canada Banting Postdoctoral Fellowship; ARS was supported by a large NERC grant (Grant
492 Number: NE/R016801/1).

493 **References**

494 Acerini, C.I., Morris, S., Morris, A., Kenyon, F., Mcbean, D., Pemberton, J.M., Albery, G.F., 2022.
495 Helminth parasites decrease survival probability in young red deer. *bioRxiv*.
496 <https://doi.org/10.1101/2022.03.03.482858>

497 Akinyi, M.Y., Tung, J., Jeneby, M., Patel, N.B., Altmann, J., Alberts, S.C., 2013. Role of grooming
498 in reducing tick load in wild baboons (*Papio cynocephalus*). *Anim Behav* 85, 559–568.
499 <https://doi.org/10.1016/j.anbehav.2012.12.012>

500 Albery, G.F., 2022. One hand washes the other: cooperation and conflict in hygiene and immunity.
501 *EcoEvoRxiv* Preprints. <https://doi.org/10.32942/OSF.IO/3PVGA>

502 Albery, Gregory F, Clutton-brock, T.H., Morris, A., Morris, S., Pemberton, J.M., Nussey, D.H.,
503 Firth, J.A., 2022a. Ageing red deer alter their spatial behaviour and become less social. *Nat
504 Ecol Evol* 6, 1231–1238. <https://doi.org/10.1038/s41559-022-01817-9>

505 Albery, G.F., Kirkpatrick, L., Firth, J.A., Bansal, S., 2021a. Unifying spatial and social network
506 analysis in disease ecology. *Journal of Animal Ecology* 90, 1–17.
507 <https://doi.org/10.1111/1365-2656.13356>

508 Albery, G.F., Morris, A., Morris, S., Pemberton, J.M., Clutton-Brock, T.H., Nussey, D.H., Firth,
509 J.A., Clutton-, T.H., Nussey, D.H., Firth, J.A., Clutton-Brock, T.H., Nussey, D.H., Firth, J.A.,
510 Clutton-Brock, T.H., Nussey, D.H., Firth, J.A., 2021b. Multiple spatial behaviours govern
511 social network positions in a wild ungulate. *Ecol Lett* 24, 676–686.
512 <https://doi.org/10.1101/2020.06.04.135467>

513 Albery, Gregory F, Morris, S., Morris, A., Kenyon, F., McBean, D., Pemberton, J.M., Nussey, D.H.,
514 Firth, J.A., 2022b. Different helminth parasites show contrasting relationships with age in a
515 wild ungulate. *bioRxiv* 2022.10.31.514008. <https://doi.org/10.1101/2022.10.31.514008>

516 Albery, G.F., Newman, C., Bright Ross, J., Macdonald, D.W., Bansal, S., Buesching, C.D., 2020.
517 Negative density-dependent parasitism in a group-living carnivore. *Proceedings of the Royal
518 Society B: Biological Sciences* 287, 20202655. <https://doi.org/10.1101/2020.06.15.153726>

519 Albery, G.F., Nussey, D.H., Pemberton, J.M., Morris, A., Morris, S., Kenyon, F., Nussey, D.H.,
520 Pemberton, J.M., 2021c. Fitness Costs of Parasites Explain Multiple Life-History Trade-Offs
521 in a Wild Mammal. *Am Nat* 197, 000–000. <https://doi.org/10.1086/712633>

522 Albery, Gregory F., Sweeny, A.R., Becker, D.J., Bansal, S., 2022. Fine-scale spatial patterns of
523 wildlife disease are common and understudied. *Funct Ecol* 26, 214–225.
524 <https://doi.org/10.1101/2020.09.01.277442>

525 Almberg, E.S., Cross, P.C., Dobson, A.P., Smith, D.W., Metz, M.C., Stahler, D.R., Hudson, P.J.,
526 2015a. Social living mitigates the costs of a chronic illness in a cooperative carnivore. *Ecol*
527 *Lett* 18, 660–667. <https://doi.org/10.1111/ele.12444>

528 Almberg, E.S., Cross, P.C., Dobson, A.P., Smith, D.W., Metz, M.C., Stahler, D.R., Hudson, P.J.,
529 2015b. Social living mitigates the costs of a chronic illness in a cooperative carnivore. *Ecol*
530 *Lett* 18, 660–667. <https://doi.org/10.1111/ele.12444>

531 Altizer, S., Nunn, C.L., Thrall, P.H., Gittleman, J.L., Antonovics, J., Cunningham, A.A., Dobson,
532 A.P., Ezenwa, V., Jones, K.E., Pedersen, A.B., Poss, M., Pulliam, J.R.C., 2003. Social
533 Organization and Parasite Risk in Mammals: Integrating Theory and Empirical Studies. *Annu*
534 *Rev Ecol Evol Syst* 34, 517–547.
535 <https://doi.org/10.1146/annurev.ecolsys.34.030102.151725>

536 Archie, E.A., Altmann, J., Alberts, S.C., 2012. Social status predicts wound healing in wild
537 baboons. *Proc Natl Acad Sci U S A* 109, 9017–9022.
538 https://doi.org/10.1073/PNAS.1206391109/SUPPL_FILE/PNAS.201206391SI.PDF

539 Ashby, B., Bruns, E., 2018. The evolution of juvenile susceptibility to infectious disease.
540 Proceedings of the Royal Society B: Biological Sciences 285, 20180844.
541 <https://doi.org/10.1098/rspb.2018.0844>

542 Bansal, S., Grenfell, B.T., Meyers, L.A., 2007. When individual behaviour matters: homogeneous
543 and network models in epidemiology. *J R Soc Interface* 4, 879–891.
544 <https://doi.org/10.1098/RSIF.2007.1100>

545 Becker, D.J., Hall, R.J., Forbes, K.M., Plowright, R.K., Altizer, S., 2018. Anthropogenic resource
546 subsidies and host –parasite dynamics in wildlife. *Philosophical Transactions of the Royal*
547 *Society B: Biological Sciences* 373, 20170086. <https://doi.org/10.1098/rstb.2017.0086>

548 Brambilla, A., von Hardenberg, A., Canedoli, C., Brivio, F., Sueur, C., Stanley, C.R., 2022. Long
549 term analysis of social structure: evidence of age-based consistent associations in male
550 Alpine ibex. *Oikos* 2022. <https://doi.org/10.1111/oik.09511>

551 Buck, J.C., Weinstein, S.B., Young, H.S., 2018. Ecological and Evolutionary Consequences of
552 Parasite Avoidance. *Trends Ecol Evol* 33, 619–632.
553 <https://doi.org/10.1016/j.tree.2018.05.001>

554 Calder, P.C., Jackson, A.A., 2000. Undernutrition, infection and immune function. *Nutr Res Rev*
555 13, 3–29. <https://doi.org/10.1079/095442200108728981>

556 Centola, D., Macy, M., 2007. Complex Contagions and the Weakness of Long Ties. *American*
557 *Journal of Sociology* 113, 702–736.

558 Clark, J., Garbutt, J.S., McNally, L., Little, T.J., 2017. Disease spread in age structured
559 populations with maternal age effects. *Ecol Lett* 20, 445–451.
560 <https://doi.org/10.1111/ele.12745>

561 Clutton-Brock, T., Sheldon, B.C., 2010. Individuals and populations: The role of long-term,
562 individual-based studies of animals in ecology and evolutionary biology. *Trends Ecol Evol*
563 25, 562–573. <https://doi.org/10.1016/j.tree.2010.08.002>

564 Cote, I.M., Poulin, R., 1995. Parasitism and group size in social animals: a meta-analysis.
565 Behavioral Ecology 6, 159–165. <https://doi.org/10.1093/beheco/6.2.159>

566 Curtis, V.A., 2014. Infection-avoidance behaviour in humans and other animals. Trends Immunol
567 35, 457–464. <https://doi.org/10.1016/j.it.2014.08.006>

568 Davidson, P.M., Szanton, S.L., 2020. Nursing homes and COVID-19: We can and should do
569 better. J Clin Nurs. <https://doi.org/10.1111/jocn.15297>

570 Devan-song, A., Walden, M.A., Watson, J.R., Jolles, A.E., Fox, J.M., Karraker, N.E., 2022.
571 Assortative mixing in eastern spadefoot (*Scaphiopus holbrookii*) spatial networks is driven
572 by landscape features. Ecosphere 1–15. <https://doi.org/10.1002/ecs2.4191>

573 D'Onofrio, L.E., Buono, F.D., Cooper, M.A.R., 2021. Cohabitation COVID-19 transmission rates
574 in a United States suburban community: A retrospective study of familial infections. Public
575 Health 192, 30–32. <https://doi.org/10.1016/j.puhe.2021.01.003>

576 Drewe, J.A., 2010. Who infects whom? Social networks and tuberculosis transmission in wild
577 meerkats. Proceedings. Biological sciences / The Royal Society 277, 633–42.
578 <https://doi.org/10.1098/rspb.2009.1775>

579 Elliott, K.H., Hare, J.F., Le Vaillant, M., Gaston, A.J., Ropert-Coudert, Y., Anderson, W.G., 2015.
580 Ageing gracefully: Physiology but not behaviour declines with age in a diving seabird. Funct
581 Ecol 29, 219–228. <https://doi.org/10.1111/1365-2435.12316>

582 Esteve, A., Permanyer, I., Boertien, D., Vaupel, J.W., 2020. National age and coresidence
583 patterns shape COVID-19 vulnerability. Proceedings of the National Academy of Sciences.
584 <https://doi.org/10.1101/2020.05.13.20100289v1>

585 Ezenwa, V., Altizer, S.M., Hall, R., 2022. Animal Behavior and Parasitism. Oxford University
586 Press, Oxford, UK.

587 Ezenwa, V.O., Ghai, R.R., McKay, A.F., Williams, A.E., 2016a. Group living and pathogen
588 infection revisited. Curr Opin Behav Sci 12, 66–72.
589 <https://doi.org/10.1016/j.cobeha.2016.09.006>

590 Ezenwa, V.O., Ghai, R.R., McKay, A.F., Williams, A.E., 2016b. Group living and pathogen
591 infection revisited. Curr Opin Behav Sci 12, 66–72.
592 <https://doi.org/10.1016/j.cobeha.2016.09.006>

593 Farine, D.R., Firth, J.A., Aplin, L.M., Crates, R.A., Culina, A., Garraway, C.J., Hinde, C.A., Kidd,
594 L.R., Milligan, N.D., Psorakis, I., Radersma, R., Verhelst, B., Voelkl, B., Sheldon, B.C., 2015.
595 The role of social and ecological processes in structuring animal populations: a case study
596 from automated tracking of wild birds. R Soc Open Sci 2, 150057–150057.
597 <https://doi.org/10.1098/rsos.150057>

598 Fernandes, A.G., Alexopoulos, P., Burgos-Rodriguez, A., Martinez, M.I., Ghassibi, M., Leskov, I.,
599 Brent, L.J.N., Snyder-Mackler, N., Danias, J., Wollstein, G., Higham, J.P., Melin, A.D., 2023.
600 Age-Related Differences in Ocular Features of a Naturalistic Free-Ranging Population of
601 Rhesus Macaques. Invest Ophthalmol Vis Sci 64, 3. <https://doi.org/10.1167/iovs.64.7.3>

602 Frank, S.A., 1998. Inducible defence and the social evolution of herd immunity. Proceedings of the
603 Royal Society B: Biological Sciences 265, 1911–1913.
604 <https://doi.org/10.1098/rspb.1998.0519>

605 Franz, C., 1999. Allogrooming behavior and grooming site preferences in captive bonobos (*Pan*
606 *paniscus*): Association with female dominance. Int J Primatol 20.
607 <https://doi.org/10.1023/A:1020338706800>

608 Froy, H., Börger, L., Regan, C.E., Morris, A., Morris, S., Pilkington, J.G., Crawley, M.J., Clutton-
609 Brock, T.H., Pemberton, J.M., Nussey, D.H., 2018. Declining home range area predicts
610 reduced late-life survival in two wild ungulate populations. Ecol Lett 21, 1001–1009.
611 <https://doi.org/10.1111/ele.12965>

612 Froy, H., Lewis, S., Catry, P., Bishop, C.M., Forster, I.P., Fukuda, A., Higuchi, H., Phalan, B.,
613 Xavier, J.C., Nussey, D.H., Phillips, R.A., 2015. Age-related variation in foraging behaviour
614 in the wandering albatross at South Georgia: No evidence for senescence. PLoS One 10,
615 1–19. <https://doi.org/10.1371/journal.pone.0116415>

616 Froy, H., Sparks, A.M., Watt, K., Sinclair, R., Bach, F., Pilkington, J.G., Pemberton, J.M., Mcneilly,
617 T.N., Nussey, D.H., 2019. Senescence in immunity against helminth parasites predicts adult
618 mortality in a wild mammal. Science (1979) 365, 1296–1298.

619 Gibson, A.K., Amoroso, C.R., 2022. Evolution and Ecology of Parasite Avoidance 1–21.

620 Giorgi, J., Boertien, D., 2021. The potential impact of co-residence structures on socio-
621 demographic inequalities in COVID-19 mortality. Genus 77. <https://doi.org/10.1186/s41118-021-00124-8>

623 González, N.T., Machanda, Z., Otali, E., Muller, M.N., Enigk, D.K., Wrangham, R., Thompson,
624 M.E., Thompson González, N., Machanda, Z., Otali, E., Muller, M.N., Enigk, D.K.,
625 Wrangham, R., Emery Thompson, M., 2021. Age-related change in adult chimpanzee social
626 network integration. Evol Med Public Health 9, 448–459.
627 <https://doi.org/10.1093/emph/eoab040>

628 Graham, A.L., Shuker, D.M., Pollitt, L.C., Auld, S.K.J.R., Wilson, A.J., Little, T.J., 2011. Fitness
629 consequences of immune responses: Strengthening the empirical framework for
630 ecoimmunology. Funct Ecol 25, 5–17. <https://doi.org/10.1111/j.1365-2435.2010.01777.x>

631 Hamilton, W.D., 1966. The moulding of senescence by natural selection. J Theor Biol 12, 12–45.
632 [https://doi.org/10.1016/0022-5193\(66\)90184-6](https://doi.org/10.1016/0022-5193(66)90184-6)

633 Han, C.S., Dingemanse, N.J., 2023. Age-related reductions in within-individual variation increase
634 the repeatability of mating behaviour. Behav Ecol Sociobiol 77.
635 <https://doi.org/10.1007/s00265-023-03368-w>

636 Hashan, M.R., Smoll, N., King, C., Ockenden-Muldoon, H., Walker, J., Wattiaux, A., Graham, J.,
637 Booy, R., Khandaker, G., 2021. Epidemiology and clinical features of COVID-19 outbreaks
638 in aged care facilities: A systematic review and meta-analysis. EClinicalMedicine 33,
639 100771. <https://doi.org/10.1016/j.eclinm.2021.100771>

640 Hawley, D.M., Etienne, R.S., Ezenwa, V.O., Jolles, A.E., 2011. Does animal behavior underlie
641 covariation between hosts' exposure to infectious agents and susceptibility to infection?

642 Implications for disease dynamics. *Integr Comp Biol* 51, 528–539.
643 <https://doi.org/10.1093/icb/icr062>

644 Hawley, D.M., Gibson, A.K., Townsend, A.K., Craft, M.E., Jessica, F., 2021. Bidirectional
645 interactions between host social behaviour and parasites arise through ecological and
646 evolutionary processes. *Parasitology* 148, 274–288.
647 <https://doi.org/10.1017/S0031182020002048>

648 Hermes, G.L., Delgado, B., Tretiakova, M., Cavigelli, S.A., Krausz, T., Conzen, S.D., McClintock,
649 M.K., 2009. Social isolation dysregulates endocrine and behavioral stress while increasing
650 malignant burden of spontaneous mammary tumors. *Proc Natl Acad Sci U S A* 106, 22393–
651 22398. https://doi.org/10.1073/PNAS.0910753106/SUPPL_FILE/0910753106SI.PDF

652 Hing, S., Narayan, E.J., Thompson, R.C.A., Godfrey, S.S., 2016. The relationship between
653 physiological stress and wildlife disease: Consequences for health and conservation. *Wildlife
654 Research* 43, 51–60. <https://doi.org/10.1071/WR15183>

655 Hutchings, M.R., Judge, J., Gordon, I.J., Athanasiadou, S., Kyriazakis, I., 2006. Use of trade-off
656 theory to advance understanding of herbivore-parasite interactions. *Mamm Rev* 36, 1–16.
657 <https://doi.org/10.1111/j.1365-2907.2006.00080.x>

658 Jones, O.R., Gaillard, J.M., Tuljapurkar, S., Alho, J.S., Armitage, K.B., Becker, P.H., Bize, P.,
659 Brommer, J., Charmantier, A., Charpentier, M., Clutton-Brock, T., Dobson, F.S., Festa-
660 Bianchet, M., Gustafsson, L., Jensen, H., Jones, C.G., Lillandt, B.G., McCleery, R., Merilä,
661 J., Neuhaus, P., Nicoll, M.A.C., Norris, K., Oli, M.K., Pemberton, J., Pietiäinen, H., Ringsby,
662 T.H., Roulin, A., Saether, B.E., Setchell, J.M., Sheldon, B.C., Thompson, P.M.,
663 Weimerskirch, H., Jean Wickings, E., Coulson, T., 2008. Senescence rates are determined
664 by ranking on the fast-slow life-history continuum. *Ecol Lett* 11, 664–673.
665 <https://doi.org/10.1111/j.1461-0248.2008.01187.x>

666 Kappeler, P.M., Cremer, S., Nunn, C.L., 2015. Sociality and health: impacts of sociality on disease
667 susceptibility and transmission in animal and human societies. *Philosophical Transactions of the Royal Society B: Biological Sciences* 370, 20140116–20140116.
669 <https://doi.org/10.1098/rstb.2014.0116>

670 Korb, J., Heinze, J., 2021. Ageing and sociality: why, when and how does sociality change ageing
671 patterns ? *Philosophical Transactions of the Royal Society B* 376, 20190727.

672 Lewin, N., Treidel, L.A., Holekamp, K.E., Place, N.J., Haussmann, M.F., 2015. Socioecological
673 variables predict telomere length in wild spotted hyenas. *Biol. Lett* 11, 20140991.
674 <https://doi.org/10.1098/rsbl.2014.0991>

675 Loehle, C., 1995. Social barriers to pathogen transmission in wild animal populations. *Ecology*
676 76, 326–335. <https://doi.org/10.2307/1941192>

677 Lopes, P.C., 2022. Anticipating infection : How parasitism risk changes animal physiology 1–10.
678 <https://doi.org/10.1111/1365-2435.14155>

679 Lopes, P.C., French, S.S., Woodhams, D.C., Binning, S.A., 2021. Sickness behaviors across
680 vertebrate taxa: proximate and ultimate mechanisms. *Journal of Experimental Biology* in
681 press. <https://doi.org/10.1242/jeb.225847>

682 Macdonald, J., Lorimer, K., Knussen, C., Flowers, P., 2016. Interventions to increase condom use
683 among middle-aged and older adults: A systematic review of theoretical bases, behaviour
684 change techniques, modes of delivery and treatment fidelity. *J Health Psychol* 21, 2477–
685 2492. <https://doi.org/10.1177/1359105315580462>

686 Machanda, Z.P., Rosati, A.G., 2020. Shifting sociality during primate ageing. *Philosophical
687 Transactions of the Royal Society B: Biological Sciences* 375.
688 <https://doi.org/10.1098/rstb.2019.0620>

689 Martin, L.B., 2009. Stress and immunity in wild vertebrates: Timing is everything. *Gen Comp
690 Endocrinol* 163, 70–76. <https://doi.org/10.1016/J.YGCEN.2009.03.008>

691 McFarland, R., Henzi, S.P., Barrett, L., Bonnell, T., Fuller, A., Young, C., Hetem, R.S., 2021.
692 Fevers and the social costs of acute infection in wild vervet monkeys. *Proceedings of the
693 National Academy of Sciences* 118, e2107881118.
694 <https://doi.org/10.1073/PNAS.2107881118>

695 Mistry, D., Litvinova, M., Pastore y Piontti, A., Chinazzi, M., Fumanelli, L., Gomes, M.F.C., Haque,
696 S.A., Liu, Q.H., Mu, K., Xiong, X., Halloran, M.E., Longini, I.M., Merler, S., Ajelli, M.,
697 Vespignani, A., 2021. Inferring high-resolution human mixing patterns for disease modeling.
698 *Nature Communications* 2021 12:1 12, 1–12. <https://doi.org/10.1038/s41467-020-20544-y>

699 Nikolich-Žugich, J., 2018. The twilight of immunity: emerging concepts in aging of the immune
700 system. *Nat Immunol* 19, 10–19. <https://doi.org/10.1038/S41590-017-0006-X>

701 Nussey, D.H., Coulson, T., Festa-Bianchet, M., Gaillard, J.M., 2008. Measuring senescence in
702 wild animal populations: Towards a longitudinal approach. *Funct Ecol* 22, 393–406.
703 <https://doi.org/10.1111/j.1365-2435.2008.01408.x>

704 Nussey, D.H., Kruuk, L.E.B., Donald, A., Fowlie, M., Clutton-Brock, T.H., 2006. The rate of
705 senescence in maternal performance increases with early-life fecundity in red deer. *Ecol Lett*
706 9, 1342–1350. <https://doi.org/10.1111/j.1461-0248.2006.00989.x>

707 Nussey, D.H., Pemberton, J.M., Pilkington, J.G., Blount, J.D., 2009. Life history correlates of
708 oxidative damage in a free-living mammal population 809–817.
709 <https://doi.org/10.1111/j.1365-2435.2009.01555.x>

710 Pawelec, G., 2018. Age and immunity: What is “immunosenescence”? *Exp Gerontol* 105, 4–9.
711 <https://doi.org/10.1016/J.EXGER.2017.10.024>

712 Peters, A., Delhey, K., Nakagawa, S., Aulsebrook, A., Verhulst, S., 2019. Immunosenescence in
713 wild animals: meta-analysis and outlook. *Ecol Lett* 22, 1709–1722.
714 <https://doi.org/10.1111/ELE.13343>

715 Poirotte, C., Kappeler, P.M., 2019. Hygienic personalities in wild grey mouse lemurs vary
716 adaptively with sex. *Proceedings of the Royal Society B: Biological Sciences* 286, 20190863.
717 <https://doi.org/10.1098/rspb.2019.0863>

718 Poirotte, C., Massol, F., Herbert, A., Willaume, E., Bomo, P.M., Kappeler, P.M., Charpentier,
719 M.J.E., 2017. Mandrills use olfaction to socially avoid parasitized conspecifics. *Sci Adv* 3.
720 <https://doi.org/10.1126/sciadv.1601721>

721 Poulin, R., Filion, A., 2021. Evolution of social behaviour in an infectious world: comparative
722 analysis of social network structure versus parasite richness. *Behav Ecol Sociobiol* 75, 1–9.
723 <https://doi.org/10.1007/s00265-021-03039-8>

724 Råberg, L., Graham, A.L., Read, A.F., 2009. Decomposing health: tolerance and resistance to
725 parasites in animals. *Philosophical Transactions of the Royal Society B: Biological Sciences*
726 364, 37–49. <https://doi.org/10.1098/rstb.2008.0184>

727 Rathke, E., Fischer, J., 2021. Social aging in male and female Barbary macaques. *Am J Primatol.*
728 <https://doi.org/10.1002/ajp.23272>

729 Razzoli, M., Nyuyki-Dufe, K., Gurney, A., Erickson, C., McCallum, J., Spielman, N., Marzullo, M.,
730 Patricelli, J., Kurata, M., Pope, E.A., Touma, C., Palme, R., Largaespada, D.A., Allison, D.B.,
731 Bartolomucci, A., 2018. Social stress shortens lifespan in mice. *Aging Cell* 17, e12778.
732 <https://doi.org/10.1111/ACEL.12778>

733 Ricklefs, R.E., 2008. The evolution of senescence from a comparative perspective. *Funct Ecol*
734 22, 379–392. <https://doi.org/10.1111/j.1365-2435.2008.01420.x>

735 Romero, L.M., 2004. Physiological stress in ecology: Lessons from biomedical research. *Trends*
736 *Ecol Evol* 19, 249–255. <https://doi.org/10.1016/j.tree.2004.03.008>

737 Rosati, A.G., Hagberg, L., Enigk, D.K., Otali, E., Emery Thompson, M., Muller, M.N., Wrangham,
738 R.W., Machanda, Z.P., 2020. Social selectivity in aging wild chimpanzees. *Science* (1979)
739 370, 473–476. <https://doi.org/10.1126/science.aaz9129>

740 Sah, P., Leu, S.T., Cross, P.C., Hudson, P.J., Bansal, S., 2017. Unraveling the disease
741 consequences and mechanisms of modular structure in animal social networks. *Proceedings*
742 *of the National Academy of Sciences* 114, 4165–4170.
743 <https://doi.org/10.1073/pnas.1613616114>

744 Sah, P., Méndez, J.D., Bansal, S., 2019. A multi-species repository of social networks. *Sci Data*
745 6, 44. <https://doi.org/10.1038/s41597-019-0056-z>

746 Sapolsky, R.M., 2004. Social Status and Health in Humans and Other Animals. *Annu Rev*
747 *Anthropol* 33, 393–418.

748 Shakhar, K., Shakhar, G., 2015. Why Do We Feel Sick When Infected? Can Altruism Play a Role?
749 *PLoS Biol* 13, 1–15. <https://doi.org/10.1371/journal.pbio.1002276>

750 Sheldon, B.C., Kruuk, L.E.B., Alberts, S.C., 2022. The expanding value of long-term studies of
751 individuals in the wild. *Nat Ecol Evol* 6, 1799–1801. <https://doi.org/10.1038/s41559-022-01940-7>

753 Shizuka, D., Johnson, A.E., 2019. How demographic processes shape animal social networks.
754 *Behavioral Ecology* 1–11. <https://doi.org/10.1093/beheco/arz083>

755 Silk, J.B., 2007a. The adaptive value of sociality in mammalian groups. *Philos Trans R Soc Lond*
756 *B Biol Sci* 362, 539–559. <https://doi.org/10.1098/rstb.2006.1994>

757 Silk, J.B., 2007b. The adaptive value of sociality in mammalian groups. *Philos Trans R Soc Lond*
758 *B Biol Sci* 362, 539–559. <https://doi.org/10.1098/rstb.2006.1994>

759 Siracusa, E.R., Higham, J.P., Snyder-mackler, N., Brent, L.J.N., 2022a. Social ageing: exploring
760 the drivers of late-life changes in social behaviour in mammals. *Biol Lett* 18, 20210643.

761 Siracusa, E.R., Negron-Del Valle, J.E., Phillips, D., Platt, M.L., Higham, J.P., Snyder-Mackler, N.,
762 Brent, L.J.N., 2022b. Within-individual changes reveal increasing social selectivity with age
763 in rhesus macaques. *Proc Natl Acad Sci U S A* 119.
764 <https://doi.org/10.1073/pnas.2209180119>

765 Siracusa, E.R., Valle, J.E.N.-D., Phillips, D., Platt, M.L., Higham, J.P., Snyder-Mackler, N., Brent,
766 L.J.N., 2022c. Within-individual changes reveal increasing social selectivity with age in
767 rhesus macaques. *bioRxiv* 2022.05.31.494118. <https://doi.org/10.1101/2022.05.31.494118>

768 Snyder-Mackler, N., Burger, J.R., Gaydosh, L., Belsky, D.W., Noppert, G.A., Campos, F.A.,
769 Bartolomucci, A., Yang, Y.C., Aiello, A.E., Rand, A.O., Harris, K.M., Shively, C.A., Alberts,
770 S.C., Tung, J., 2020. Social determinants of health and survival in humans and other
771 animals. *Science* (1979) 9553. <https://doi.org/10.1126/science.aax9553>

772 Soulsbury, C.D., Siitari, H., Lebigre, C., 2017. Stabilising selection on immune response in male
773 black grouse *Lyrurus tetrix*. *Oecologia* 186, 1–10. <https://doi.org/10.1007/s00442-017-4014-1>

775 Stephenson, J.F., 2019. Parasite-induced plasticity in host social behaviour depends on sex and
776 susceptibility. *Biol Lett* 15. <https://doi.org/10.1098/RSBL.2019.0557>

777 Stewart, P.D., Macdonald, D.W., 2003. Badgers and Badger Fleas: Strategies and Counter-
778 Strategies. *Ethology* 109, 751–764. <https://doi.org/10.1046/j.1439-0310.2003.00910.x>

779 Stockmaier, S., Stroeymeyt, N., Shattuck, E.C., Hawley, D.M., Meyers, L.A., Bolnick, D.I., 2021.
780 Infectious diseases and social distancing in nature. *Science* 371.
781 <https://doi.org/10.1126/science.abc8881>

782 Stockmaier, S., Ulrich, Y., Albery, G.F., Cremer, S., Lopes, P.C., 2023. Behavioural defences
783 against parasites across host social structures. *Funct Ecol*. <https://doi.org/10.1111/1365-2435.14310>

785 Strauss, E.D., Decasien, A.R., Galindo, G., Hobson, E.A., Shizuka, D., Curley, J.P., 2022.
786 DomArchive: a century of published dominance data. *Philosophical Transactions of the
787 Royal Society B* 377. <https://doi.org/10.1098/RSTB.2020.0436>

788 Stroeymeyt, N., Grasse, A. V, Crespi, A., Mersch, D.P., Cremer, S., Keller, L., 2018. Social
789 network plasticity decreases disease transmission in a eusocial insect. *Science* (1979) 362,
790 941–945. <https://doi.org/10.1126/science.aat4793>

791 Sweeny, A.R., Albery, G.F., 2022. Exposure and susceptibility: The Twin Pillars of infection. *Funct
792 Ecol* 36, 1713–1726. <https://doi.org/10.1111/1365-2435.14065>

793 Thompson, D.C., Barbu, M.G., Beiu, C., Popa, L.G., Mihai, M.M., Berteau, M., Popescu, M.N.,
794 2020. The Impact of COVID-19 Pandemic on Long-Term Care Facilities Worldwide: An
795 Overview on International Issues. *Biomed Res Int*. <https://doi.org/10.1155/2020/8870249>

796 Thompson González, N., Machanda, Z., Emery Thompson, M., 2023. Age-related social
797 selectivity: An adaptive lens on a later life social phenotype. *Neurosci Biobehav Rev* 152,
798 105294. <https://doi.org/10.1016/j.neubiorev.2023.105294>

799 Tokuyama, N., Furuichi, T., 2017. Leadership of old females in collective departures in wild
800 bonobos (*Pan paniscus*) at Wamba. *Behav Ecol Sociobiol* 71.
801 <https://doi.org/10.1007/s00265-017-2277-5>

802 Tompkins, D.M., Begon, M., 1999. Parasites can regulate wildlife populations. *Parasitology Today*
803 15, 311–313. [https://doi.org/10.1016/S0169-4758\(99\)01484-2](https://doi.org/10.1016/S0169-4758(99)01484-2)

804 van de Pol, M., Verhulst, S., 2006. Age-dependent traits: a new statistical model to separate
805 within- and between-individual effects. *Am Nat* 167, 766–73. <https://doi.org/10.1086/503331>

806 VanderWaal, K.L., Ezenwa, V.O., 2016. Heterogeneity in pathogen transmission: mechanisms
807 and methodology. *Funct Ecol* n/a-n/a. <https://doi.org/10.1111/1365-2435.12645>

808 Vanderwaal, K.L., Obanda, V., Omondi, G.P., McCowan, B., Wang, H., Fushing, H., Isbell, L.A.,
809 2016. The strength of weak ties and helminth parasitism in giraffe social networks.
810 *Behavioral Ecology* 27, 1190–1197. <https://doi.org/10.1093/beheco/arw035>

811 Viney, M.E., Riley, E.M., Buchanan, K.L., 2005. Optimal immune responses: Immunocompetence
812 revisited. *Trends Ecol Evol* 20, 665–669. <https://doi.org/10.1016/j.tree.2005.10.003>

813 Watkins, H. V., Blouin-Demers, G., 2019. Body size, not age, predicts parasite load in clark's
814 spiny lizards (*Sceloporus clarkii*). *Can J Zool* 97, 220–224. https://doi.org/10.1139/CJZ-2017-0328/SUPPL_FILE/CJZ-2017-0328SUPPLA.DOCX

815

816 Watowich, M.M., Chiou, K.L., Montague, M.J., Unit, C.B.R., Simons, N.D., Horvath, J.E., Ruiz-
817 Lambides, A. V., Martínez, M.I., Higham, J.P., Brent, L.J.N., Platt, M.L., Snyder-Mackler, N.,
818 2022. Natural disaster and immunological aging in a nonhuman primate. *Proceedings of the
819 National Academy of Sciences* 119, e2121663119.
820 <https://doi.org/10.1073/PNAS.2121663119>

821 Webber, Q.M.R., Albery, G.F., Farine, D.R., Pinter-wollman, N., 2023. Behavioural ecology at the
822 spatial-social interface. *Biological Reviews* 1–40.

823 Weinstein, S.B., Buck, J.C., Young, H.S., 2018. A landscape of disgust. *Science (1979)* 359,
824 1213–1215.

825 Williams, G.C., 1957. Pleiotropy, Natural Selection, and the Evolution of Senescence. *Evolution
826 (N Y)* 11, 398. <https://doi.org/10.2307/2406060>

827 Zylberberg, M., Klasing, K.C., Hahn, T.P., 2013. House finches (*Carpodacus mexicanus*) balance
828 investment in behavioural and immunological defences against pathogens. *Biol Lett* 9.
829 <https://doi.org/10.1098/RSBL.2012.0856>

830