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Abstract
We prove Torelli-type uniqueness theorems for both ALG� gravitational instantons
and ALG gravitational instantons which are of order 2. That is, the periods uniquely
characterize these types of gravitational instantons up to diffeomorphism. We define
a period mapping P , which we show is surjective in the ALG cases, and has open
image in theALG� cases. We also construct some new degenerations of hyper-Kähler
metrics on the K3 surface which exhibit bubbling of ALG� gravitational instantons.

1. Introduction
We begin with the following definitions.

Definition 1.1
A hyper-Kähler 4-manifold .X;g; I; J;K/ is a Riemannian 4-manifold .X;g/ with a
triple of Kähler structures .g; I /, .g;J /, .g;K/ such that IJ DK .

We denote by ! D .!1;!2;!3/ the Kähler forms associated to I , J , K , respec-
tively. It is easy to see that !i satisfies

!i ^!j D 2ıij dvolg ; (1.1)

where dvolg is the Riemannian volume element. Conversely, any triple of symplectic
forms !i satisfying (1.1) determines a hyper-Kähler structure if we replace !3 by
�!3 if necessary.

Definition 1.2
A gravitational instanton .X;g;!/ is a noncompact complete nonflat hyper-Kähler
4-manifold X such that jRmg j 2L2.X/.
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IfX is a compact nonflat hyper-Kähler 4-manifold, then it must be the K3 surface
(see [28]). IfX is a gravitational instanton, there are many known types of asymptotic
geometry ofX near infinity: ALE, ALF-Ak , ALF-Dk , ALG, ALH, ALG

�, ALH�. We
refer the reader to [1], [6]–[8], [26], [29], and [32] and the references therein for more
background on gravitational instantons.

There is a well-known Torelli theorem for hyper-Kähler metrics on the K3 sur-
face, and one may ask whether there is an analogue for gravitational instantons. This
is known to hold in several cases: such a Torelli-type theorem was proved by [29] in
the ALE case, by [33] in the ALF-Ak case, by [6] in the ALF-Dk case, and by [8] in
the ALH case. In this paper, we are interested in an analogous result assuming that the
metric is of type ALG or ALG�. In the ALG case, it was observed in [8] that the natu-
ral period mapping may not be injective, and a modified version of the Torelli theorem
was conjectured there. In this paper, we prove the uniqueness part of this conjecture,
which gives the Torelli uniqueness in the ALG case (see Theorem 1.5). We also prove
a Torelli-type uniqueness theorem in the ALG� case (see Theorem 1.10). We note that
recently, a Torelli-type uniqueness theorem in the ALH� case was proved (see [13]).
We will also define a refined period mapping P in both the ALG and ALG� cases,
which we will show to be surjective in the ALG cases, and open in the ALG� cases
(see Theorem 1.7 and Theorem 1.12).

Previously, gravitational instantons of type ALE, ALF, ALG, ALH, and ALH�

have been shown to bubble off of the K3 surface (see, e.g., [8], [10], [16], [18], [27],
[30]). In this paper, we also show that there exist families of Ricci-flat hyper-Kähler
metrics on the K3 surface which have ALG� gravitational instantons occurring as
bubbles (see Theorem 1.13). These are the first known examples of this type of degen-
eration. These examples are produced via a gluing theorem which is actually the cru-
cial tool in proving the aforementioned Torelli uniqueness in the ALG� case.

1.1. ALG gravitational instantons
For background on analysis on ALG gravitational instantons, related classification
results, and relations to moduli spaces of monopoles and Higgs bundles, we refer the
reader to [3], [4], [8], [12], [20], [24], [26], and [31] and the references therein.

In Definition 2.3 below, we will define the standard ALG model space
.Cˇ;�;L.R/;g

C ;!C / for parameters L;R 2 RC, and .ˇ; �/ as in Table 1. Here
we just note that Cˇ;�;L.R/ is diffeomorphic to .R;1/ � N 3

ˇ
, where N 3

ˇ
is a torus

bundle over a circle, and the metric gC as well as the induced metric on the 3-
manifold N 3

ˇ
are flat (the explicit formulas are given in Section 2.3). We let r denote

the coordinate on .R;1/.
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Table 1. Invariants of ALG spaces.

1 I�0 II II� III III� IV IV�

ˇ 2 .0;1� 1
2

1
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5
6

1
4

3
4

1
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2
3

� 2 H Any e
p

�1� 2�
3 e

p
�1� 2�

3

p
�1

p
�1 e

p
�1� 2�

3 e
p

�1� 2�
3

b2.Xˇ/ 5 9 1 8 2 7 3

Definition 1.3 (ALG gravitational instanton)
A complete hyper-Kähler 4-manifold .X;g;!/ is called an ALG gravitational instan-
ton of order n> 0 with parameters .ˇ; �/ as in Table 1, and L> 0 if there existR > 0,
a compact subset XR �X , and a diffeomorphism ˆ W Cˇ;�;L.R/!X nXR such thatˇ̌

rk
gC .ˆ

�g � gC /
ˇ̌
gC DO.r�k�n/; (1.2)ˇ̌

rk
gC .ˆ

�!i �!C
i /

ˇ̌
gC DO.r�k�n/; i D 1; 2; 3; (1.3)

as r ! 1, for any k 2 N0.

Remark 1.4
It was proved in [6, Theorem A] that there exist ALG coordinates so that the order
n is 2 in the I�0 , II, III, IV cases (ˇ � 1

2
) and n D 2 � 1

ˇ
in the II�, III�, IV� cases

(ˇ > 1
2
).

It was shown in [9, Theorem 1.10] that any two ALG gravitational instantons
with the same ˇ are diffeomorphic. So without loss of generality we can view any
ALG gravitational instanton as living on a fixed space Xˇ . The first author and Chen
proved that the naive version of the Torelli-type theorem fails when ˇ > 1=2 (see [8]).
Furthermore, it was shown in [9, Theorem 1.12] that when ˇ > 1=2, each ALG grav-
itational instanton lives in a two-parameter family of ALG gravitational instantons
with the same periods Œ!�, with exactly one element of this family being of order 2.
This reduces the general case to proving a Torelli uniqueness theorem for ALG grav-
itational instantons of order 2, which is our next theorem.

THEOREM 1.5 (ALG Torelli uniqueness)
Let .Xˇ ; g;!/ and .Xˇ ; g

0;!0/ be two ALG gravitational instantons with the same �
and L, which are both ALG of order 2 with respect to a fixed ALG coordinate system
on Xˇ . If

Œ!�D Œ!0� 2H 2
dR.Xˇ /˝R3; (1.4)
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then there is a diffeomorphism ‰ W Xˇ ! Xˇ which induces the identity map on
H 2

dR.Xˇ / such that ‰�g0 D g and ‰�!0 D !.

This will be proved using a modification of the gluing construction in [10] (see
Theorem 6.2 below), and then invoking the Torelli theorem for K3 surfaces. We
remark that the order-2 condition is essential to control the error term in the gluing
construction. Moreover, the assumption that both hyper-Kähler structures are ALG
of order 2 in a fixed coordinate system is also crucial for the proof. However, it is
superfluous in the following sense: it was proved in [9, Theorem 1.11] that any two
ALG gravitational instantons of order 2 with the same .ˇ; �/ and L can be pulled
back to a fixed space Xˇ such that they are both ALG of order 2 in a fixed ALG coor-
dinate system ˆXˇ

(after possibly modifying one of the ALG coordinate systems).
This motivates the following definition.

Definition 1.6
Let Mˇ;�;L be the collection of all gravitational instantons on Xˇ with parameters ˇ,
� , and L which are ALG of order 2 with respect to a fixed ALG coordinate system
ˆXˇ

. For .Xˇ ; g
0;!0/ 2 Mˇ;�;L, the period mapping

P W Mˇ;�;L ! Œ!0�C H 2 ˝ R3 �H 2
dR.Xˇ /˝R3 (1.5)

is defined by

P.!/D
�
Œ!1�; Œ!2�; Œ!3�

�
; (1.6)

where H 2 � Im.H 2
cpt.Xˇ /!H 2.Xˇ //.

We will show that P is well defined in Section 7. The following is our main
result about the period mapping in the ALG cases.

THEOREM 1.7
If .Xˇ ; g;!/ 2 Mˇ;�;L, then

Œ!� � ŒC �¤ .0; 0; 0/ for all ŒC � 2H2.Xˇ IZ/ satisfying ŒC �2 D �2: (1.7)

Furthermore, the period mapping P is surjective onto cohomology triples in Œ!0�C

H 2 ˝R3 satisfying (1.7).

We will prove this in Section 7. In particular, we see that the image of the period
mapping has dimension 3.b2.Xˇ /� 1/, where b2.Xˇ / is given in Table 1.
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1.2. ALG� gravitational instantons
In Section 2, we will define the standard ALG� model space, which is denoted by�

M2�.R/;g
M
�0;L;!

M
�0;L

�
�

�
M2�.R/;L

2gM�0
;L2!M

�0

�
; (1.8)

which depends on parameters � 2 ZC, �0 2 R, R > 0, and an overall scaling parame-
ter L> 0. Here we just note that the manifold M2�.R/ is diffeomorphic to .R;1/�

I3
� , where I3

� is an infra-nilmanifold, which is a circle bundle of degree � over a
Klein bottle. We will let r denote the coordinate on .R;1/, V denote the function
�0 C �

�
log r , and s denote the function rV 1=2. The hyper-Kähler structure is obtained

via a Gibbons–Hawking ansatz. (See Section 2 for explicit formulas.)

Definition 1.8 (ALG� gravitational instanton)
A complete hyper-Kähler 4-manifold .X;g;!/ is called an ALG� gravitational
instanton of order n> 0 with parameters � 2 ZC, �0 2 R, and L> 0 if there exist an
ALG� model space .M2�.R/;g

M
�0;L;!

M
�0;L/ with R > 0, a compact subset XR �X ,

and a diffeomorphism ˆ W M2�.R/!X nXR such thatˇ̌
rk

gM.ˆ
�g � gM�0;L/

ˇ̌
gM DO.s�k�n/; (1.9)ˇ̌

rk
gM.ˆ

�!i �!M
i;�0;L/

ˇ̌
gM DO.s�k�n/; i D 1; 2; 3; (1.10)

as s ! 1, for any k 2 N0.

Remark 1.9
It was proved in [11, Theorem 1.10] that there exist ALG� coordinates on X so that
the order satisfies n � 2. This decay order will be crucial in the proof of Theorem 1.10
below.

It was proved in [9, Theorem 1.6] that any two ALG� gravitational instantons
with the same �, where 1� � � 4, are diffeomorphic to each other. So without loss of
generality we can view any ALG� gravitational instanton as living on a fixed space
X� . With this understood, our next theorem is a Torelli uniqueness theorem for ALG�

gravitational instantons.

THEOREM 1.10 (ALG� Torelli uniqueness)
Let 1� � � 4, and let .X� ; g;!/, .X� ; g

0;!0/ be two ALG� gravitational instantons
with the same parameters �0 and L, which are both ALG� of order 2 with respect to
a fixed ALG� coordinate system on X� . If

Œ!�D Œ!0� 2H 2
dR.X�/˝R3; (1.11)
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then there is a diffeomorphism ‰ W X� ! X� which induces the identity map on
H 2

dR.X�/ such that ‰�g0 D g and ‰�!0 D !.

This will be proved using a new gluing construction: we obtain hyper-Kähler met-
rics on the K3 surface using ALG� gravitational instantons (see Section 1.3 below),
and then we invoke the Torelli theorem for K3 surfaces. In our proof, the requirement
that both metrics are ALG� of order 2 with respect to a fixed ALG� coordinate system
is crucial. However, this assumption is actually superfluous in the following sense. It
was proved in [9, Theorem 1.7] that if .X;g;!/ and .X 0; g0;!0/ are any two ALG�

gravitational instantons of order 2 with the same parameters �, �0, and L, then after
possibly changing the ALG� coordinate system ˆ0 on X 0, we can arrange that the
diffeomorphism map commutes with ˆ and ˆ0. So we can actually view any ALG�

gravitational instanton with parameters �, �0, and L as a gravitational instanton of
order 2 on a fixed space X� with a fixed ALG� coordinate system ˆX�

. Similar to the
ALG case, we make the following definition.

Definition 1.11
Define M�;�0;L to be the collection of all gravitational instantons on X� with parame-
ters �, �0, and L which are ALG� of order 2 with respect to a fixed ALG� coordinate
system ˆX�

. For .X� ; g
0;!0/ 2 M�;�0;L, the period mapping based at !0,

P W M�;�0;L ! Œ!0�C H 2 ˝ R3 �H 2
dR.X�/˝R3; (1.12)

is defined as in (1.6), where H 2 � Im.H 2
cpt.X�/!H 2.X�//.

The following is our main result about the period mapping in the ALG� cases.

THEOREM 1.12
If .X� ; g;!/ 2 M�;�0;L, then

!ŒC �¤ .0; 0; 0/ for all ŒC � 2H2.X� IZ/ satisfying ŒC �2 D �2: (1.13)

Furthermore, the image of the period mapping P is an open subset of space of coho-
mology triples Œ!0�C H 2 ˝R3 satisfying (1.13).

We will prove this in Section 7. In particular, we see that the image of the period
mapping has dimension 3.b2.X�/�1/D 12�3�. We conjecture that the period map-
ping P is also surjective in the ALG� cases.

1.3. ALG� bubbles from the K3 surface
In [23], hyper-Kähler metrics were constructed on elliptic K3 surfaces with 24 I1-
fibers, which have a 2-dimensional Gromov–Hausdorff limit .P1; dML/, where dML
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is called the McLean metric. This was generalized to arbitrary elliptic K3 surfaces
in [22] (see also [34]). Subsequently, the authors gave a new construction on arbi-
trary elliptic K3 surfaces in [10], which also allowed for a detailed description of
the degeneration near the singular fibers, which we briefly describe next. Away from
singular fibers, the degeneration was modeled by a semiflat metric, which was intro-
duced by Greene et al. in [21]. A generalization of the Ooguri–Vafa metric (see [35]),
which we called a multi-Ooguri–Vafa metric (with b monopole points), was used to
describe the degeneration near singular fibers of type Ib . ALG metrics were used
to describe the degeneration near fibers with finite monodromy. In the case of I�� -
fibers, the model used was a Z2-quotient of certain multi-Ooguri–Vafa metrics with
2� monopole points, together with four Eguchi–Hanson metrics due to the four orb-
ifold singularities of the resulting quotient. It was moreover shown in [10] that such
degenerations exist for metrics which are Kähler with respect to the fixed elliptic
complex structure.

In this paper, let K be an elliptic K3 surface with a singular fiber D� of type I�
b

and .18 � b/ singular fibers of type I1, where 1 � b � 14 (recall that an elliptic K3
surface can have up to an I�14-fiber and such elliptic K3 surfaces do exist; see [38]). Let
X be an ALG� gravitational instanton of order 2 with parameters 1� � � 4, �0 2 R,
and L> 0. Near I1-fibers, we use the Ooguri–Vafa metric as before. NearD�, we cut
out a neighborhood ofD� in K and, as a new method, glue it with a neck region and
a rescaling of X . We call the glued manifold M�.

THEOREM 1.13
There exists a family of hyper-Kähler metrics g� on the K3 surface M� such that

.M�; g�/
GH
��! .P1; dML/ as �! 0, and such that nearD�, the rescaling limits are X

together with bC � Taub-NUT bubbles.

In this case of an I�
b
-fiber, the construction in [10] was done to preserve the ellip-

tic complex structure. In this new gluing construction, the original elliptic complex
structure is not preserved. An interesting question is to describe more precisely the
complex structure degeneration of this new family. We also point out that this con-
struction is somewhat analogous to [27] in that we construct a neck region with non-
trivial topology which interpolates between different degree infra-nilmanifolds (ver-
sus nilmanifolds in [27]), and which is responsible for the Taub-NUT bubbles. The
proof of Theorem 1.13 is contained in Sections 3, 4, and 5.

2. The model hyper-Kähler structures
In this section, we explain some properties of ALG and ALG� gravitational instantons
in more detail.
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2.1. Gibbons–Hawking construction
In this subsection, we review the Gibbons–Hawking construction of the ALG� model
metric. (See [11] for more details.) For any positive integer �, the Heisenberg nilman-
ifold Nil32� of degree 2� is the quotient of R3 by the following actions:

�1.�1; �2; �3/� .�1 C 2	; �2; �3/; (2.1)

�2.�1; �2; �3/� .�1; �2 C 2	; �3 C 2	�1/; (2.2)

�3.�1; �2; �3/� .�1; �2; �3 C 2	2��1/: (2.3)

Define

‚�
�

	
.d�3 � �2d�1/; V � �0 C

�

	
log r; (2.4)

for r 2 .R;1/, �0 2 R, and R > e
�
� .1��0/ on the manifold

S1 ! bM2�.R/� .R;1/�Nil32� ! eU �
�
R2 nBR.0/

�
� S1: (2.5)

Then the Gibbons–Hawking metric on bM2�.R/ is given by

g
cM
�0

D V.dr2 C r2d�2
1 C d�2

2 /C V �1 �
2

	2
.d�3 � �2d�1/

2

D V.dx2 C dy2 C d�2
2 /C V �1‚2;

(2.6)

where x C
p

�1y � r � e
p

�1�1 . The model hyper-Kähler forms on the manifoldbM2�.R/ are given by

!I D !
cM
1;�0

DE1 ^E2 CE3 ^E4 D Vdx ^ dy C d�2 ^‚; (2.7)

!J D !
cM
2;�0

DE1 ^E3 �E2 ^E4 D Vdx ^ d�2 � dy ^‚; (2.8)

!K D !
cM
3;�0

DE1 ^E4 CE2 ^E3 D dx ^‚C Vdy ^ d�2; (2.9)

where

¹E1;E2;E3;E4º D ¹V 1=2dx;V 1=2dy;V 1=2d�2; V
�1=2‚º: (2.10)

The Z2-action 
.r; �1; �2; �3/� .r; �1 C	;��2;��3/ induces an automorphism of the
hyper-Kähler structure, and we define the ALG�

� model space as�
M2�.R/;g

M
�0
;!M

1;�0
;!M

2;�0
;!M

3;�0

�
�

� bM2�.R/;g
cM
�0
;!

cM
1;�0

;!
cM
2;�0

;!
cM
3;�0

�
=h
i:

By rescaling, we have .M2�.R/;g
M
�0;L;!

M
1;�0;L;!

M
2;�0;L;!

M
3;�0;L/ for any scaling

parameter L> 0, where

gM�0;L �L2 � gM�0
; !M

i;�0;L �L2 �!M
i;�0
; i D 1; 2; 3;
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Remark 2.1
The model space has the following properties. The cross section r D r0 is an
infranil 3-manifold. There is a holomorphic map uM W M2�.R/ ! C defined as
uM D r2e2

p
�1�1 , with torus fibers. The infinite end of the model space compactifies

complex analytically by adding a singular fiber of type I�� .

2.2. Choice of connection form
In this subsection, we make some important remarks about our choice of connection
form. The connection form satisfies

d‚D
�

	
d�1 ^ d�2 (2.11)

and 
�‚ D �‚. Since dim.H 1
dR.

eU// D 2 and is generated by d�1 and d�2, more
generally we could have chosen

e‚D
�

	
.d�3 � �2d�1 C df C pd�1 C qd�2/; (2.12)

where f W eU ! R, and p;q 2 R. Note that 
�e‚D �e‚ implies that p D 0 and

f .r; �1; �2/C f .r; �1 C 	;��2/D c (2.13)

for a constant c 2 R. The mapping

'f .r; �1; �2; �3/�
�
r; �1; �2; �3 C

c

2
� f

�
(2.14)

commutes with �1, �2, �3 and 
. Moreover, we have

'�
f

e‚D
�

	
.d�3 � �2d�1 C qd�2/: (2.15)

Next, define the mapping

'q.�1; �2; �3/� .�1 � q; �2; �3 � q�2/: (2.16)

It is straightforward to compute that 'q also commutes with �1, �2, �3 and 
. Clearly,
we have '�

q'
�
f

e‚ D ‚, so the mapping 'f ı 'q is an isometry of the Gibbons–

Hawking metric gcM
�0

with respect to the two different choices of connection form.

Since the mapping 'f ı 'q induces a diffeomorphism 'f ı 'q W bM2�.R/=
 !bM2�.R/=
, this mapping is an isometry of the quotient metric. Therefore, we may
assume without loss of generality that f D 0 and p D q D 0, so any choice of
connection form is equivalent to ‚ up to diffeomorphism.
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Remark 2.2
If we replace ‚ in (2.7), (2.8), and (2.9) by

e‚D
�

	
.d�3 � �2d�1 C df C qd�2/ (2.17)

to get e!I , e!J , e!K , then

'�
q'

�
f .e!I ;e!J ;e!K/D .!I ; cosq �!J C sinq �!K ; cosq �!K � sinq �!J /:

In other words, we can use the standard ‚ after a hyper-Kähler rotation.

2.3. ALG model space
In the ALG case, we have the following definition of the model space.

Definition 2.3 (Standard ALG model)
Let ˇ 2 .0; 1� and � 2 H � ¹� 2 C j Im � > 0º be parameters in Table 1, and let L> 0
be a scaling parameter. Consider the space®

.U ;V / j argU 2 Œ0; 2	ˇ�
¯

� .C�C/=.Z˚Z/; (2.18)

where Z˚Z acts on C�C by

.m;n/ � .U ;V /D
�
U ;V C .mC n�/ �L

�
; .m;n/ 2 Z˚Z: (2.19)

We can further identify .U ;V /with .e
p

�1�2�ˇ U ; e�
p

�1�2�ˇ V / to obtain a manifold
Cˇ;�;L. Define

Cˇ;�;L.R/�
®
jU j>R

¯
� Cˇ;�;L: (2.20)

Then there is a flat hyper-Kähler metric

gC D
1

2
.dU ˝ d NU C d NU ˝ dU C dV ˝ d NV C d NV ˝ dV / (2.21)

on Cˇ;�;L.R/ with a hyper-Kähler triple

!C
1 D

p
�1

2
.dU ^ d NU C dV ^ d NV /;

!C
2 D Re.dU ^ dV /; !C

3 D Im.dU ^ dV /:

Each flat space .Cˇ;�;L.R/;g
C ;!C / given as the above is called a standard ALG

model.
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Let Xˇ be an ALG gravitational instanton with an ALG model Cˇ;�;L. Table 1
exhibits some important geometric invariants of Xˇ . By [8], Xˇ is biholomorphic to
a rational elliptic surface minus the fiber at infinity and the first line of Table 1 is the
Kodaira type of the fiber at infinity. The second and third lines are the parameters in
Cˇ;�;L. By [9, Theorem 1.10], any two ALG gravitational instantons with the same
ALG model Cˇ;�;L are diffeomorphic to each other, so the second Betti number in the
last line of Table 1 is well defined.

Remark 2.4
The model space has the following properties. Letting r D jU j, the cross section ¹r D

r0º is a flat 3-manifold. There is a holomorphic map uC W Cˇ;�;L.R/ ! C defined

as uC D U
1
ˇ , with torus fibers, which have area L2 � Im � . As mentioned above, the

infinite end of the model space compactifies complex analytically by adding a singular
fiber of the specified type in the first row of Table 1.

3. Building blocks and approximate metrics
In this section, we will describe the construction of the “approximate” hyper-Kähler
triple, using a gluing construction. We will divide the K3 surface into the following
regions: the ALG�

� bubbling region, the Gibbons–Hawking neck transition region, the
Ooguri–Vafa regions, and the collapsing semi-flat hyper-Kähler structure away from
singular fibers.

We start with an elliptic K3 surface 	K W K ! P1 with an I�
b
-fiber for some

1� b � 14 and I1-fibers of number .18�b/. Away from all singular fibers, we choose
the hyper-Kähler structure as !sf, given by a semi-flat metric (see [10, Section 2.2]).
Near the I1-fibers, we glue in Ooguri–Vafa metrics as in [10] and [23]. These regions
contribute exponentially small error terms to the weighted estimates, so in the follow-
ing we will take this as understood, and will not consider those regions in any detail.
We will denote this region of the K3 surface by K� D K nD�, where D� is the I�

b
-

fiber, and we will continue to denote the “approximately hyper-Kähler” definite triple
on this region by !sf even though it is not semi-flat near the I1-fibers.

Near the I�
b
-fiber, as in [10], we consider the local double cover, which is an I2b-

fiber. We choose local coordinate Y on the base of the local double cover and local
coordinate X 2 C=.Z�1.Y /˚ Z�2.Y // on the fiber of the local double cover such
that �D dX ^ dY , and for some holomorphic function h.Y /,

�1.Y /D 1 and �2.Y /D
b

	
p

�1
logY C h.Y /: (3.1)
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3.1. ALG�
� bubbling region

Given a fixed � 2 ¹1; 2; 3; 4º, let .X;gX ;!X / be an ALG�
� gravitational instanton

with parameters �, �0, and L. Without loss of generality, by scaling we can assume
that LD 1. Recall that the model space is the Z2-quotient of the Gibbons–Hawking
model M2�.R/, where the Riemannian metric gcM and hyper-Kähler triple !

cM of
the Z2-covering space bM2�.R/ are given by the following explicit formulas (as in
Section 2) when r is sufficiently large:

g
cM D V.dr2 C r2d�2

1 C d�2
2 /C V �1‚2;

!
cM
1 D Vdx ^ dy C d�2 ^‚;

!
cM
2 D Vdx ^ d�2 � dy ^‚; !

cM
3 D dx ^‚C Vdy ^ d�2;

(3.2)

where V D �
�
log rC �0 and �0 2 R. To perform the gluing construction, we will take

a large region in X and appropriately scale down both .gX ;!X / and .gM;!M/. We
will fix parameters � and t such that

�! 0; t ! 0; � �
�

t
! 0: (3.3)

Let us consider the rescaled coordinates Qx � � � x, Qy � � � y for .x; y/ 2B	�1.02/�

R2. Immediately, Qr D . Qx2 C Qy2/
1
2 D � � r . We will work with the cutoff region X n

¹r > 2��1º with the rescaled ALG�
� hyper-Kähler structure . QgX ; Q!X /D .�2 �gX ; �2 �

Q!X /. Then the rescaled metric and hyper-Kähler triple on the asymptotic model can
be written in terms of the rescaled coordinates:

eV D T C
�

	
� log Qr C �0; T �

�

	
log

� 1
�

�
	 1; (3.4)

�2 � g
cM D eV .d Qx2 C d Qy2 C �2d�2

2 /C �2 � eV �1 �‚2; (3.5)

�2 �!
cM
1 D eV � d Qx ^ d Qy C �2 � d�2 ^‚; (3.6)

�2 �!
cM
2 D � � eV � d Qx ^ d�2 � � � d Qy ^‚; (3.7)

�2 �!
cM
3 D � � d Qx ^‚C � � eV � d Qy ^ d�2: (3.8)

Note that the cutoff region becomes O2t.p/�X n ¹Qr > 2tº in terms of Qr .

3.2. Neck transition region
The next building block is the neck transition region. To begin with, we take a flat
product metric onQ� R2 � S1 D R2 � .R=2	Z/ with 0� � .02; 0/ 2 R2 � S1,

gQ D dx2 C dy2 C d�2
2 D dr2 C r2d�2

1 C d�2
2 ; �2 2 Œ0; 2	�: (3.9)
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For fixed �0 in (3.2) and small parameter �
 1, let

eP D ¹ Qp1; Qp2; : : : ; Qp2�C2bº �
�
R2 n ¹02º

�
� ¹0º �Q (3.10)

be a fixed set such that the following properties hold.
(1) (Balancing condition) Let Qdm � dQ.0�; Qpm/ for any 1�m� 2� C 2b. Then

2�C2bX
mD1

log.1= Qdm/C 2	 Imh.0/D 2	�0; (3.11)

where h is the holomorphic function in (3.1).
(2) (Z2-invariance) 
. Qpm/D Qp2�C2bC1�m for any 1�m� 2� C 2b.
Let P be the dilation of the set eP by ��1. More specifically, we define

pm � .��1 � Qxm; �
�1 � Qym; 0/ 2

�
R2 n ¹02º

�
� S1; 1�m� 2� C 2b; (3.12)

where Qpm D . Qxm; Qym; 0/. Then there are constants 
0 > 0 independent of � such that


0 � ��1 � dQ.p˛; 0
�/� 
�1

0 � ��1; (3.13)


0 � ��1 � dQ.p˛; pˇ /� 
�1
0 � ��1; 1� ˛ < ˇ � 2� C 2b: (3.14)

For every pm 2 P with 1�m� 2� C 2b, there exists a unique Green’s function Gm

on .R2 � S1; gQ/ that satisfies ��gQGm D 2	ıpm
and has the asymptoticsˇ̌̌

Gm �
1

2	
log

1

dQ.x; pm/

ˇ̌̌
� C � e�dQ.x;pm/ as dQ.x;P /! 1: (3.15)

The proof is standard and we omit it. The above Green’s function was also used in [10]
to construct the neck transition region (see [10, Lemma 4.1]). Let G0 �

P2�C2b
mD1 Gm

be the superposition that solves the equation ��gQG0 D 2	
P2�C2b

mD1 ıpm
. We also

take

G� �
2� C b

	
log

� 1
�

�
C
�

	
� log Qr CG0 C Imh

�
Q� � . QxC

p
�1 Qy/

�
; (3.16)

where Q�� �
�
b , r � ��1 � Qr , and h is the holomorphic function defined in (3.1). Letting

T � �
�
log. 1

�
/, we have Q�� e� �T

b . Switching to the rescaled metric QgQ D �2gQ, let
us discuss the asymptotic behavior of the Green’s functionG� in terms of the distance
function Qr , which will be used in the discussions of the rescaling geometry in the later
subsections. Applying (3.11) and (3.16), then the following holds for any sufficiently
small �
 1 and x 2Q.
(1) (Near the origin) If Qr.x/! 0, then G� has the expansion

G�.x/D T C �0 C
�

	
� log Qr.x/CE.x/; (3.17)
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where jE.x/j � C � Q� � Qr.x/D C � �
�
b � Qr.x/ for some constants C > 0 inde-

pendent of �.
(2) (Near the infinity ofQ) If Qr.x/! 1, thenˇ̌

G�.x/� Im �2. Q� � Q
/
ˇ̌

D
ˇ̌̌
G�.x/�

�
T �

b

	
� log Qr.x/C Imh. Q� � Q
/

�ˇ̌̌
�
C � �2

Qr.x/2
; (3.18)

where Q
 � Qx C
p

�1 Qy, C > 0 is independent of �, and �2 is the function in
(3.1).

(3) (Near a pole pm 2 P ) If QdQ.x; pm/� 
0
4
for some pm 2 P , then there exists

a constant C > 0 independent of � such thatˇ̌̌
G�.x/�

�
Gm.x/C T [ C

�

	
log Qdm

�ˇ̌̌
� C;

T [ �
2� C 1

2	
� log

� 1
�

�
:

(3.19)

(4) (Bounded region) If there existR0 > 0 and d0 > 0 such thatR�1
0 � Qr.x/�R0

and QdQ.x;P / � d0

4
, then jG�.x/ � T j � C , where C D C.R0; d0/ > 0 is

independent of �.
Now we apply the Gibbons–Hawking construction using the Green’s function

G�. Let VN be the total space of the circle bundle S1 ! VN
�
�!Q n .P [ ¹0�º/, where

‚� is an S1-connection form that satisfies the monopole equation d‚� D �gQ ıdG�.

Then we have a family of hyper-Kähler metrics g VN and hyper-Kähler triples !
VN

when G� > 0:

g
VN D �2.G� � gQ CG�1

� ‚2
�/DG�.d Qx2 C d Qy2 C �2d�2

2 /C �2G�1
� ‚2

�;

!
VN

1 D �2.G�dx ^ dy C d�2 ^‚�/DG�d Qx ^ d Qy C �2d�2 ^‚�;

!
VN

2 D �2.G�dx ^ d�2 � dy ^‚�/D �G� � d Qx ^ d�2 � �d Qy ^‚�;

!
VN

3 D �2.dx ^‚� CG�dy ^ d�2/D �d Qx ^‚� C �G�d Qy ^ d�2:

(3.20)

It is easy to check that the completion .N ; gN ;!N / of . VN ; g
VN ;!

VN / along the set
P of monopole points, called the neck transition region, is smooth and hyper-Kähler.
Moreover, the neck transition region .N ; gN ;!N / is invariant under the involution
h
i Š Z2, and hence it descends to a hyper-Kähler manifold .N; gN;!N/, whereN �

N =h
i.
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3.3. Attaching the pieces
Let .X;gX ;!X / be an ALG�

� gravitational instanton of order 2. We will next glue the
end of X onto the neck transition region N near the origin. By definition, there exist
a compact subset XR �X and a diffeomorphism ‰ W M !X nXR such that for any
k 2 N, ˇ̌

rk
gM.‰

�!X � !M/
ˇ̌
� Ck �

�
r � V.r/

1
2

��2�k
: (3.21)

Thanks to the following lemma, we are able to compare the two hyper-Kähler triples
�2 � !

cM and !N as Qr ! 0.

LEMMA 3.1
There exists a diffeomorphism

‰N W
®
x 2 N j t � Qr.x/� 2t

¯
�!

®
x 2 bM j t � Qr.x/� 2t

¯
(3.22)

such that .‰N /�dr D dr , .‰N /�d�1 D d�1, .‰N /�d�2 D d�2, and

.‰N /�‚D‚� C 	�
 (3.23)

for some 1-form 
 on ¹x 2Q j t � Qr.x/� 2tº that satisfies 
�	�
 D �	�
, andˇ̌
rk

gN .	
�
/

ˇ̌
� Ck � Q� � t1�k � V.��1/�

1Ck
2 ; (3.24)ˇ̌

rk
gN

�
.‰N /�.�2 � !

cM/� !N
�ˇ̌

� Ck � Q� � t1�k � V.��1/�
2Ck

2 ; (3.25)

for any k 2 N0. Moreover, ‰N descends to a diffeomorphism

‰N W
®
x 2 N j t � Qr.x/� 2t

¯
�!

®
x 2 M j t � Qr.x/� 2t

¯
: (3.26)

Proof
The proof is the same as that of [27, Lemma 6.1]. Here we only mention the major
difference. First, both N and bM can be viewed as principal S1-bundles over eU �

R2 �S1 with the connections ‚� and ‚, respectively, where eU � R2 nBR.02/. One
can easily check that they have the same Euler number 2� when t � Qr.x/� 2t.

Therefore, there exists a bundle isomorphism F W N ! bMwhich covers the iden-
tity map on eU � S1. Moreover, the curvature difference is given by

F �.d‚/� d‚� D �Q ı d.E/; (3.27)

where E 2 C1.Q/ is the function given by the expansion (3.17). Applying the
asymptotic estimate in (3.17), we have thatˇ̌

�Q ı d.E/
ˇ̌
gN � C � Q� � V.��1/�1: (3.28)
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Standard Hodge theory implies that there exist a diffeomorphism ‰N , a flat connec-
tion ‚flat, and a 1-form 
 on eU � S1 such that

.‰N /�‚�‚� D‚flat C 	�
; (3.29)

jrk
gN 
j � Ck � Q� � t1�k � V.��1/�

1Ck
2 : (3.30)

As discussed in Section 2.2, the flat connection‚flat can be removed by appropriately
choosing a bundle diffeomorphism. So the proof is done.

LEMMA 3.2
There exists a triple of 1-forms � on ¹x 2 N j t � Qr.x/� 2tº such that 
�� D � and

.‰N /�.�2 � !
cM/� !N D d�: (3.31)

Moreover, � satisfies the estimate

jrk
gN �j � Ck � Q� � t3 �

�
t � V.��1/

1
2

��1�k
(3.32)

for any k 2 N0. Moreover, ‰N descends to a diffeomorphism

‰N W
®
x 2 N

ˇ̌
t � Qr.x/� 2t

¯
�!

®
x 2 M

ˇ̌
t � Qr.x/� 2t

¯
: (3.33)

Once we have Lemma 3.1, the proof of Lemma 3.2 follows from the same argu-
ments as in [27, Proposition 6.2]. We omit the details.

Next, we glue the cutoff region ¹r � 2��1º � X as introduced above into the
neck region N. We define the diffeomorphism

ˆ� .‰ ı‰N/�1 (3.34)

from ¹��1 � r � 2��1º � X to a subset ¹t � Qr � 2tº � N. Combining Lemma 3.2
and the asymptotic estimate of an ALG� gravitational instanton, we have the follow-
ing.

LEMMA 3.3
There exists a triple of 1-forms �X on ¹x 2 N j t � Qr.x/� 2tº such that .ˆ�1/�.�2 �

!X /� !N D d�X and satisfies the estimate

jrk
gN�X jgN � Ck � .�2 C Q� � t3/ �

�
t � V.��1/

1
2

��1�k
(3.35)

for any k 2 N0.

Next, we will glue a subset of K� onto the end of the neck region with Qr large.
As shown in [23, Construction 2.6] and [9, Proposition 2.3], the hyper-Kähler triple
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Q��2 � !sf of the rescaled semi-flat metric on K�, up to a Z2-covering, can be written
in terms of the Gibbons–Hawking ansatz by applying the harmonic function

Vsf � Im �2. Q� � Q
/D T �
b

	
log Qr C Imh. Q� � Q
/ (3.36)

which is the leading term of (3.18). Then we have the following lemma.

LEMMA 3.4
For any sufficiently small parameter �
 1, let r� be a large number such that 1 �

G�.x/� 100 as r� � Qr.x/� 2r�. There exist a triple of 1-forms �sf on ¹x 2 N j r� �

Qr.x/� 2r�º and a diffeomorphism ˆ[ from ¹x 2 N j r� � Qr.x/� 2r�º to a subset of
K� such that for all k 2 N0,

!N � .ˆ[/�. Q��2 � !sf/D d�sf; (3.37)

jrk
gN�sfjgN � Ck � �2 � Q�1Ck : (3.38)

Notice that (3.38) follows from (3.18), and r� is comparable to Q��1.
With the above preparations, we are ready to define the closed glued manifold

on which we will construct a family of collapsing hyper-Kähler metrics with a given
ALG� gravitational instanton bubbling out. Now let us take the neck transition region
N equipped with the hyper-Kähler triple !N for any �
 1, as constructed in Sec-
tion 3.2. In the region ¹x 2 N j t � Qr.x/ � 2tº, we glue N with the finite part ¹r �

2��1º of an ALG� gravitational instanton X using the diffeomorphism ˆ. In the
region ¹x 2 N j r� � Qr.x/ � 2r�º, we attach N with K� using the diffeomorphism
ˆ[ as in Lemma 3.4. Using the above gluing maps, we obtain a closed smooth 4-
manifold M�. Now we construct a family of approximately hyper-Kähler triples Q!�

on M�.

LEMMA 3.5 (Approximate hyper-Kähler triple)
For any sufficiently small parameter �
 1, let r� be a large number such that 1 �

G�.x/� 100 as r� � Qr.x/� 2r�. Then there exist two triples of 1-forms �X and �sf

such that the glued definite triple

Q!� �

8̂̂<̂
:̂
�2 � !X Qr � t;

!N C d.' � �X � � �sf/ t � Qr � 2r�;

Q��2 � !sf Qr � 2r�

(3.39)

satisfies the following estimates with respect to the associated Riemannian metric Qg�

for any k 2 N0:
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sup
t�r�2t

ˇ̌
rk

Qg�

�
Q!� � .ˆ�1/�.�2 � !X /

�ˇ̌
Qg�

� Ck � .�2 C Q� � t3/ �
�
t � V.��1/

1
2

��2�k
; (3.40)

sup
r��r�2r�

ˇ̌
rk

Qg�

�
Q!� � .ˆ[/�. Q��2 � !sf/

�ˇ̌
Qg�

� Ck � �2 � Q�2Ck; (3.41)

where Q�� e� �T
b D �

�
b , ' and  are smooth cutoff functions satisfying

' D

´
1 Qr � t;

0 Qr � 2t;
and  D

´
1 Qr � 2r�;

0 Qr � r�;
(3.42)

and !sf is the hyper-Kähler triple of the semi-flat metric with area of each fiber equal
to Q� � � and diameter comparable to 1.

Proof
The proof is straightforward. The error estimate in the region ¹t � Qr � 2tº is given by
Lemma 3.3, and the error estimate in ¹r� � Qr � 2r�º is due to Lemma 3.4.

It turns out that the manifold is indeed diffeomorphic to the K3 surface, but for
now we do not need this fact, we only need the following calculation of the Betti
numbers.

COROLLARY 3.6
For � sufficiently small, the smooth 4-manifold M� satisfies

b1.M�/D 0; b2
C.M�/D 3; b2

�.M�/D 19; �.M�/D 24: (3.43)

Proof
This is proved using a Mayer–Vietoris argument and the estimates in Lemma 3.5,
which show that ƒ2

C.M�/ is a trivial bundle if � is small. We omit the details which
are similar to [27, Proposition 6.6].

4. Metric geometry and regularity scales
To begin with, we list the notation. We will always fix a small parameter �
 1.
(1) Let us denote g� � Q�2 � Qg�. Then it holds that there is some constant C0 > 0

independent of � such that C�1
0 � Diamg�

.M�/� C0.
(2) We define the smoothing function r of the distance function Qr by
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r.x/D

8̂̂<̂
:̂
� �R0 Qr.x/� � �R0;

Qr.x/ 2� �R0 � Qr.x/� r�;

2r� Qr.x/� 2r�;

where R0 is the constant R in Definition 1.8, and r� is the constant in
Lemma 3.4.

(3) Given � 2 ZC, let T [ � 2�C1
2�

� log. 1
�
/, and let d be the following:

d.x/D

8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

.T [/�
1
2 dQ.x; pm/� .T [/�1

for some 1�m� 2� C 2b;

.T [/
1
2 � dQ.x; pm/ 2.T [/�1 � dQ.x; pm/� 1

for some 1�m� 2� C 2b;

.T [ C 1
2�

log 1
dQ.x;pm/

/
1
2 2� dQ.x; pm/� 
0

4
� ��1

�dQ.x; pm/ for some 1�m� 2� C 2b:

(4) Let us define T � �
�
log. 1

�
/ and a smooth function LT that satisfies

LT .x/�

8̂̂̂̂
<̂
ˆ̂̂:
1 Qr.x/� � �R0;

T C �0 C �
�
log Qr.x/ 2� �R0 � Qr.x/� 
0

4
;

T C Imh.0/� b
�
log Qr.x/ 2
�1

0 � Qr.x/� r�;

1 Qr.x/� 2r�:

Next, we describe the C k;˛-regularity scale.

Definition 4.1 (Local regularity)
Let .M n; g/ be a Riemannian manifold. Given r; � > 0, k 2 N, ˛ 2 .0; 1/, .M n; g/ is
said to be .r; k C ˛; �/-regular at x 2 M n if g is at least C k;˛ in B2r.x/ such that
the following holds. Let .B̂2r.x/; Og; Ox/ be the Riemannian universal cover of B2r.x/.
Then Br. Ox/ is diffeomorphic to a Euclidean disk Dn such that for any 1� i; j � n,

j Ogij � ıij jC 0.Br . Ox// C
X

jmj�k

r jmj � j@m Ogij jC 0.Br . Ox// C rkC˛Œ Ogij �C k;˛.Br . Ox// < �;

where m is a multi-index, and the last term is the Hölder seminorm.

Definition 4.2 (C k;˛-regularity scale)
Let .M n; g/ be a smooth Riemannian manifold. The C k;˛-regularity scale rk;˛.x/ at
x 2M n is defined to be the supremum of all r > 0 such thatM n is .r; kC ˛; 10�9/-
regular at x.
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Remark 4.3
Note that rk;˛ is 1-Lipschitz on any Riemannian manifold .M n; g/, that is,ˇ̌

rk;˛.x/� rk;˛.y/
ˇ̌
� dg.x; y/; 8x;y 2M n: (4.1)

Let Sb be the subset of M� which consists of a small annular region in K cen-
tered around the I�

b
-fiber, the neck region N, and the ALG� manifold X . The follow-

ing proposition gives the regularity scale estimates and bubble limits of g� on Sb .

PROPOSITION 4.4
Let s be a smooth function that satisfies

s.x/D

8̂̂̂̂
<̂
ˆ̂̂:

Q� � .LT .x//
1
2 � r.x/ QdQ.x; pm/� 2
0

for all 1�m� 2� C 2b;

Q� � � � d.x/ QdQ.x; pm/� 1
4

0

for some 1�m� 2� C 2b:

(4.2)

Then the following properties hold.
(1) Given k 2 N and ˛ 2 .0; 1/, there exists v0 D v0.k;˛/ such that for any suffi-

ciently small parameter �
 1 and x 2 Sb , the .k;˛/-regularity scale rk;˛ at
x satisfies

v�1
0 �

rk;˛.x/

s.x/
� v0: (4.3)

(2) There is a uniform constant C0 > 0 such that for every �
 1 and x 2 Sb , we
have

C�1
0 �

s.y/

s.x/
� C0; y 2Bs.x/=4.x/:

(3) Let �j ! 0 be a sequence, and let xj 2 Sb be a sequence of reference points.
Then the rescaled spaces .Sb; s.xj /

�2 � g�j
;xj / converge in the Gromov–

Hausdorff topology to one of the following spaces as �j ! 0:
� the Taub-NUT space .C2; gTN/ and the ALG�

� gravitational instanton
.X;gX /,

� the flat manifolds R3, R2 � S1, R2, and the flat cone R2=Z2,
� P1 equipped with the McLean metric dML with bounded diameter.

Proof
We will prove (4.3) by contradiction. Suppose that there does not exist a uniform
constant v0 with respect to fixed constants k 2 ZC and ˛ 2 .0; 1/. That is, there is a
sequence �j ! 0 and a sequence of points xj 2 Sb such that
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rk;˛.xj /

s.xj /
! 0 or

rk;˛.xj /

s.xj /
! 1: (4.4)

Let us work with the rescaled sequence .Sb; Og�j
;xj / with Og�j

� s.xj /
�2 � g�j

as
�j ! 0. In the proof, we will show that the C k;˛-regularity scale at xj with respect
to Og�j

is uniformly bounded from above and below as �j ! 0, which contradicts
(4.4). We will derive a contradiction in each of the following cases depending upon
the location of xj . Denote xj � 	.xj / 2Q=Z2 for any xj 2 N.

Case (I). There exists a constant �0 � 0 such that Qr.xj / � ��1
j ! �0 as j ! 1.

Let us consider the �0 � R0 case first. By definition, we have s.xj /D Q�j � �j �R0.
We consider the rescaled metric

Og�j
� . Q�j � �j �R0/

�2g�j
: (4.5)

By the gluing construction, we have that, for any k 2 ZC,

.Sb; Og�j
;xj /

C k

��! .X;R�2
0 � gX ;x1/: (4.6)

Notice that the ALG� gravitational instanton .X;R�2
0 � gX / is a Ricci-flat but nonflat

space, which implies that for any k 2 ZC and ˛ 2 .0; 1/ there exists a constant v0 > 0

such that 2
v0

� rk;˛.x1/ � v0

2
. Therefore, for any k 2 ZC and ˛ 2 .0; 1/, v�1

0 �

rk;˛.xj /� v0 holds with respect to Og�j
, which contradicts (4.4). Therefore, the proof

in the case �0 �R0 is complete. The proof in the �0 >R0 case is the same.
Case (II1). There exists some constant �0 > 0 such that

��1
j � QdQ.xj ; pm/ � T [

j ! �0 as j ! 1; (4.7)

where T [
j � 2�C1

2�
log. 1

�j
/. We first assume that �0 � 1. By definition, s.xj /D Q�j �

�j � .T [
j /

� 1
2 . Recall that the metric g�j

satisfies g�j
D Q�2

j �gN near xj and by (3.20),

gN D �2
j � .G�j

� gQ CG�1
�j
‚2/; (4.8)

whereˇ̌̌
G�j

.x/� T [
j �

1

2dQ.x; pm/

ˇ̌̌
� C for dQ.x; pm/� r0 �

1

4
InjRadgQ.Q/:

Let .u1; u2; u3/ be a fixed coordinate system in Br0
.pm/ with respect to the metric

gQ. Consider the rescaled metric Og�j
� s.xj /

�2 � g�j
and the rescaled coordinates

centered at pm D .p1;m; p2;m; p3;m/ 2 P ,

. Ou1; Ou2; Ou3/� T [
j .u1 � p1;m; u2 � p2;m; u3 � p3;m/:
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Then by the explicit computations, .Sb; Og�j
;xj / C

k-converges for any k 2 ZC, to
the Taub-NUT space .C2; gTN;x1/, where the Taub-NUT metric gTN can be written
explicitly in terms of the Gibbons–Hawking ansatz

gTN D V0g
R

3

C V �1
0 ‚2; V0 D 1C .2r/�1; (4.9)

and r is the Euclidean distance to the origin of R3. Therefore, there exists a constant
v0 such that v�1

0 � rk;˛.xj /� v0 with respect to the rescaled metric Og�j
. Rescaling

back to g�j
, we find that the above estimate contradicts (4.4). This completes the

proof under the assumption �0 � 1. The proof in the case �0 > 1 is the same.
Case (II2). For some pm 2 P , the points xj satisfy

��1
j � QdQ.xj ; pm/ � T [

j ! 1 and ��1
j � QdQ.xj ; pm/! 0 (4.10)

as j ! 1. In this case, by definition

s.xj /D Q�j � �j � .T [
j /

1
2 � dj ; (4.11)

where dj � dQ.xj ; pm/. We will work with Og�j
� s.xj /

�2 � g�j
and the rescaled

coordinates centered at pm D .p1;m; p2;m; p3;m/ 2 P ,

. Ou1; Ou2; Ou3/� d�1
j � .u1 � p1;m; u2 � p2;m; u3 � p3;m/;

where .u1; u2; u3/ is a fixed coordinate system in Br0
.pm/. One can verify that

.Sb; Og�j
;xj /

GH
��! .R3; gR

3

;x1/ (4.12)

with dR
3
.x1; 0

3/D 1. The detailed and explicit rescaling computations can be found
in [27] and [10]. Moreover, if we lift the metric to the local universal cover around
xj , then a ball of definite size radius has uniformly bounded C k;˛-geometry. This
implies that rk;˛.xj /� v0 > 0. The upper bound for rk;˛.xj / follows from (4.1) and
the calculation in Case (II1). We get a contradiction with (4.4) as rescaling back to
g�j

.
Notice that R3 is precisely the asymptotic cone of the Taub-NUT space.
Case (II3). There is some constant d0 such that for some pm 2 P ,

��1
j � QdQ.xj ; pm/! d0 as j ! 1: (4.13)

By the definition of s, we have that

s.xj /D Q�j � �j � .T [
j /

1
2 � d0 �

�
1C o.1/

�
: (4.14)

It suffices to work with the rescaled metric . Q�j ��j � .T [
j /

1
2 � d0/

�2 � g�j
, still denoted

by Og�j
, and prove that the regularity scale rk;˛.xj / is uniform bounded from above

and below. Then the contradiction arises.
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Straightforward computations imply that Og1 D d�2
0 � gQ, which is a rescaling of

the flat base metric gQ on R2 � S1. Since dQ.P; 0�/ � B0 � ��1
j ! 1, it follows

that the origin 02 2 R2 translates to infinity and the Z2-action limits to the identity.
Therefore, the rescaled limit is isometric to R2 � S1. The collapsing keeps curvature
uniformly bounded away from P . Then there is some uniform constant v0 > 0 such
that rk;˛.xj / � v0 > 0. The upper bound for rk;˛.xj / follows from (4.1) and the
calculation in Case (II2).

Notice that R2 � S1 is the flat base of the metric gN .
Case (II4). For some pm 2 P , we have

��1
j � QdQ.xj ; pm/! 1 and QdQ.xj ; pm/! 0 as j ! 1: (4.15)

Let us denote dj � ��1
j � QdQ.xj ; pm/. In this case, the definition of s implies that

s.xj /D Q�j � �j �
�
T [

j C
1

2	
log

1

dj

� 1
2

� dj : (4.16)

We will prove that in terms of the rescaled metric Og�j
� s.xj /

�2g�j
, the regularity

scale rk;˛.xj / has a uniform lower bound and upper bound, which contradicts (4.4).
The flat product metric gQ can be written as gQ D dx2 C dy2 C d�2

2 in coor-
dinates. We also rescale the above coordinate system of R2 centered around xj D

.xj ; yj / by letting

. Ox; Oy/� d�1
j � .x � xj ; y � yj /: (4.17)

Explicit tensorial computations show that

.Sb; Og�j
;xj /

GH
��! .R2; gR

2

; 02/; (4.18)

where the Euclidean metric gR
2
has the expression gR

2
� d Ox2

1 C d Oy2
1. By assump-

tion, dQ.xj ; 0
�/=dj ! 1, which implies that the origin 02 2 R2 translates to infinity

and hence the Z2-action limits to the identity as j ! 1.
The finite set P converges to a single point p0 2 R2 and dR

2
.p0; 0

2/D 1. The
above collapsing keeps curvature uniformly bounded away from the point p0. So
there is some uniform constant v0 > 0 such that rk;˛.xj /� v0 > 0. The upper bound
for rk;˛.xj / follows from (4.1) and the calculation in Case (II3).

Case (III). There exists some constant d0 such that

QdQ.xj ;P /� d0 > 0; Qr.xj / � ��1
j ! 1; Lj � LTj

.xj /! C1: (4.19)

There are the following subcases to analyze.
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First, assume that Qr.xj /! 0 as j ! 1. In this case, by definition,

s.xj /D Q�j �L
1
2

j � Qrj : (4.20)

We will prove that under the rescaling Og�j
D .s.xj //

�2 � g�j
and . Ox; Oy/ D Qr�1

j �

. Qx; Qy/, the convergence

.Sb; Og�j
;xj /

GH
��! .R2=Z2; d

R
2=Z2 ;x1/ (4.21)

holds, where dR
2=Z2.x1; 0

2/ D 1, and the flat metric on R2=Z2 can be written in
terms of the limit coordinate system of . Ox; Oy/. Notice that R2=Z2 is the asymptotic
cone of the ALG�

� space .X;gX ;!X /. Moreover, we will show that the rescaled met-
rics Og�j

has uniformly bounded curvature away from the cone tip. This suffices to
produce the desired contradiction because the upper bound on rk;˛.xj / follows from
(4.1) and the calculation in Case (II4).

To prove the above claim, let us choose a domain

U�j
�

®
x 2 N � Sb � M�j

ˇ̌
��1

j � Or.x/� �j

¯
(4.22)

for a sequence �j that satisfies limj !1
�j

Lj
D 0. Then for any xj 2 U�j

,

eL2�.xj /

Lj

D 1C o.1/ as j ! 1: (4.23)

By explicit tensorial computations on the Gibbons–Hawking metric gN , we can
check that the Z2-covering of .U�j

; Og�j
/ will smoothly converge to the flat metric

d Ox2
1 C d Oy2

1 on R2, where . Ox1; Oy1/ is the limit of . Ox; Oy/. Also notice that the
limiting reference point x1 satisfies dR

2
.x1; 0

2/D 1. Then the Z2-quotient metric
Og�j

converges to the flat metric on R2=Z2.
Next, we consider the case Qr.xj /! d 0

0 > 0. By definition,

s.xj /D Q�j � T
1
2

j � d 0
0 �

�
1C o.1/

�
(4.24)

as j ! 1. It suffices to work with the rescaled metric . Q�j � T
1
2

j � d 0
0/

�2 � g�j
, still

denoted by Og�j
, and we can show that the regularity scale rk;˛.xj / has a uniform

lower bound. Moreover, the rescaled limit in this case is isometric to R2=Z2 as well.
We skip the detailed computations since the arguments are the same.

The last possibility is when xj satisfies Qr.xj /! 1 and Lj ! 1. In the proof,
we still use the rescaled metric Og�j

D .s.xj //
�2 � g�j

and the rescaled coordinates
. Ox; Oy/D Qr�1

j � .x; y/. The computations are the same. We only mention that, as Qrj D
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Qr.xj / becomes very large, one can obtain the rescaled limit R2=Z2 as long as Lj !

1.
When Qrj is sufficiently large such that Lj ! L0 > 0 as j ! 1, we will obtain

another rescaled limit. This becomes Case (IV).
Case (IV). There is some constant L0 > 0 such that Lj !L0 > 0. In this case,

s.xj /� Q�j �L
1
2

j � Qrj D Q�j � Qrj �L0 �
�
1C o.1/

�
(4.25)

as j ! 1. In the meantime, notice that

Lj D
�
Tj C Imh.0/�

b

	
log Qrj

�
�
�
1C o.1/

�
(4.26)

as j ! 1. It is easy to verify that s.xj / is a bounded constant. Then the rescaled limit
is the McLean metric on P1. Moreover, the convergence keeps curvature uniformly
bounded away from the singular fiber.

The above covers all the points on Sb , which completes the proof.

5. Perturbation to hyper-Kähler metrics
In this section, we will glue an ALG� gravitational instanton into a region near an
I�
b
-fiber of an elliptic K3 surface 	K W K ! P1. For our purpose, it suffices to assume

that the singular fibers of 	K consist of an I�
b
-fiber for some 1� b � 14 and I1-fibers

of number .18 � b/. Following the notation in Section 6 of [10], we denote by Sb

the subset of M� which consists of a small annular region in K centered around the
I�
b
-fiber, the neck region N, and the ALG� manifold X . We denote by SI1 the subset

of M� which consists of small annular regions in K centered around I1-fibers and
Ooguri–Vafa manifolds. Let R� be the regular region in K . We will prove that the
glued manifold M� admits collapsing hyper-Kähler metrics with prescribed behav-
iors. In the following weighted analysis, the weight function � as a global smooth
function on M� is defined as follows:

�.x/�

8̂̂<̂
:̂
s.x/ x 2 Sb;

s1.x/ x 2 SI1 ;

1 x 2 R�;

(5.1)

where s1 is the canonical scale function defined in Section 6.3 of [10]. With respect
to the weight function �, we will define the following weighted Hölder norms.

Definition 5.1
For any fixed parameter � 
 1, let g� be the approximately hyper-Kähler metric
defined on the glued manifold M�. Let U � M� be a compact subset. Then the
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weighted Hölder norm of a tensor field � 2 T r;s.U / of type .r; s/ is defined as fol-
lows:
(1) The weighted C k;˛-seminorm of � is defined by

Œ��
C

k;˛
�
.x/� sup

°
�kC˛��.x/ �

jrk O�. Ox/� rk O�. Oy/j

.d Og�
. Ox; Oy//˛

ˇ̌̌
Oy 2Brk;˛.x/. Ox/

±
;

Œ��
C

k;˛
� .U /

� sup
®
Œ��

C
k;˛
�
.x/

ˇ̌
x 2U

¯
;

where rk;˛.x/ is the C k;˛-regularity scale at x, Ox denotes a lift of x to the
universal cover of B2rk;˛.x/.x/, the difference of the two covariant derivatives
is defined in terms of parallel translation in Brk;˛.x/. Ox/, and O�, Og� are the lifts
of �, g�, respectively.

(2) The weighted C k;˛-norm of � is defined by

k�k
C

k;˛
� .U /

�

kX
mD0

k�m�� � rm�kC 0.U / C Œ��
C

k;˛
� .U /

:

Now let us briefly describe the perturbation scheme to produce hyper-Kähler
triples from the approximate triples constructed in Section 3. This original charac-
terization is due to Donaldson [15], which has also been used in [8], [10], [17], [19],
and [27]. Let M 4 be an oriented 4-manifold with a volume form dvol0. A triple of
closed 2-forms ! D .!1;!2;!3/ is said to be definite if the matrixQD .Qij / defined
by 1

2
!i ^ !j D Qij dvol0 is positive definite. A definite triple ! is called a hyper-

Kähler triple if Qij D ıij . Given a definite triple !, the associated volume form

is defined as dvol! � .det.Q//
1
3 dvol0, and we denote by Q! � .det.Q//�

1
3Q the

normalized matrix with unit determinant. Every definite triple ! determines a Rie-
mannian metric g! such that each !j , j 2 ¹1; 2; 3º, is self-dual with respect to g!

and dvolg! D dvol!.
Suppose that we have a closed definite triple ! on M�. We want to find a triple of

closed 2-forms � D .�1; �2; �3/ such that ! � ! C � is an actual hyper-Kähler triple
on M� satisfying

1

2
.!i C �i /^ .!j C �j /D ıij dvol!C� ; (5.2)

which is equivalent to

1

2
.!i ^!j C!i ^ �j C!j ^ �i C �i ^ �j /

D
1

6
ıij

3X
kD1

.!2
k C �2

k C 2!k ^ �k/: (5.3)
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Writing � D �C C �� with �g!�˙ D ˙�˙, we define the matrices AD .Aij / and
S�� D .Sij / by

�C
i D

3X
j D1

Aij!j ;
1

2
��

i ^ ��
j D Sij dvol!; 1� i � j � 3: (5.4)

Then (5.3) is equivalent to

tf.Q!A
T CQ!ACAQ!A

T /D tf.�Q! � S��/; (5.5)

where tf.B/ � B � 1
3
Tr.B/ Id for a 3 � 3 real matrix B , and Q! is the 3 � 3 real

matrix such that det.Q!/D 1 and

1

2
!i ^!j D .Q!/ij dvol! : (5.6)

Then observe that a solution of

dC� C � D F0

�
tf.�Q! � Sd��/

�
;

d�� D 0; � 2�1.M�/˝R3; � 2 H C
g!
.M�/˝R3;

(5.7)

is also a solution of (5.5). Here F0 denotes the local inverse near zero of

G0 W S0.R
3/! S0.R

3/; A 7! tf.Q!A
T CAQ! CAQ!A

T /

on the space of trace-free symmetric .3 � 3/-matrices S0.R
3/, and d˙� is the self-

dual or anti-self-dual part of d� D � ��, respectively. The linearization of the elliptic
system (5.7) at � D 0 is given by L D .D ˚ Id/˝ R3 W .�1.M�/˚ H C

g!
.M�//˝

R3 �! .�0.M�/˚�2
C.M�//˝R3, where

D � d� C dC W�1.M�/�!
�
�0.M�/˚�2

C.M�/
�
:

For any sufficiently small �
 1, we will solve the elliptic system (5.7). The proof
of the existence of hyper-Kähler triples requires the following version of the implicit
function theorem.

LEMMA 5.2
Let F W A ! B be a map between two Banach spaces with

F .x/D F .0/C L .x/C N .x/; (5.8)

where the operator L W A ! B is linear and N .0/D 0. Assume that
(1) L is an isomorphism with kL �1k � CL for some CL > 0;
(2) there are constants r > 0 and CN > 0 such that:



254 CHEN, VIACLOVSKY, and ZHANG

(a) r < .10CL �CN /
�1,

(b) kN .x/� N .y/kB � CN � .kxkA C kykA/ � kx � ykA for all x;y 2

Br .0/� A,
(c) kF .0/kB � r

10CL
.

Then F .x/D 0 has a unique solution x 2 A such that kxkA � 2CLkF .0/kB.

To apply the implicit function theorem, first we fix two Banach spaces

A �
�
C 1;˛

�

�
V�1.M�/

�
˚ H C.M�/

�
˝R3; B�

�
C

0;˛
��1

�
�2

C.M�/
��

˝R3;

where � 2 .�1; 0/, ˛ 2 .0; 1/, and V�1.M�/� ¹� 2�1.M�/ j d��D 0º. The follow-
ing error estimate is an immediate corollary of Lemma 3.5.

COROLLARY 5.3
There exists C0 > 0 independent of the parameters � and t such that��F .0/

��
B

� C0 � .�2 C Q� � t3/ � Q���C1 � t���1 � V.��1/
���1

2 CC0 � �2 � Q�2:

Proof
Let Nr � ¹x 2 N j r � Qr.x/� 2rº. Then by Lemma 3.5,

kQ! � Idk
C

0;˛
��1

.Nt/
� C0 � .�2 C Q� � t3/ � Q���C1 � t���1 � V.��1/

���1
2 ;

kQ! � Idk
C

0;˛
��1

.Nr�
/
� C0 � �2 � Q�2:

On the other hand, the error estimate near an I1-fiber is much smaller. In fact, by
Theorem 4.4 of [23] (see also [10, Proposition 8.2]),

kQ! � Idk
C

0;˛
��1

.Tı0;2ı0
.SI1 //

� C1 � e�C2� Q��1

(5.9)

for some constants C1 > 0, C2 > 0 independent of Q� (and hence �), where
Tı0;2ı0

.SI1/ is an annular neighborhood of definite size ı0 > 0 independent of Q�.

We also need the weighted estimate on the nonlinear errors.

LEMMA 5.4 (Nonlinear estimate)
There exists some constant K0 > 0 independent of � such that for any v1; v2 2

B1.0/� A, we have that��N�.v1/� N�.v2/
��
B

�K0 � . Q� � �/��1.T [/
1��

2

�
kv1kA C kv2kA

�
� kv1 � v2kA:
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Proof
For any v1; v2 2B1.0/� A, by explicit computations,ˇ̌

N�.v1/� N�.v2/
ˇ̌
�K0 �

�
jd��1j C jd��2j

�
�
ˇ̌
d�.�1 � �2/

ˇ̌
;

where K0 > 0 is independent of �. Multiplying by the weight function s.x/��C1, we
have that

s.x/��C1 �
ˇ̌
N�.v1/� N�.v2/

ˇ̌
�K0 � s.x/��C1 �

�
jd��1j C jd��2j

�
�
ˇ̌
d�.�1 � �2/

ˇ̌
:

By definition, the scale function s.x/ achieves the minimum Q� � � � .T [/�
1
2 when

dQ.x; pm/� .T [/�1 for some 1�m� 2� C 2b. Then we have that��N�.v1/� N�.v2/
��

C 0
�C1

.M�/

�K0 � . Q� � �/��1.T [/
1��

2

�
kv1kC 1

�.M�/ C kv2kC 1
�.M�/

�
�
�
kv1 � v2kC 1

�.M�/

�
:

By similar computations, we also have the desired estimate for the C 0;˛-seminorm.
This completes the proof.

The following is the main ingredient needed to carry out the perturbation.

PROPOSITION 5.5 (Weighted linear estimate)
Let M� be the glued manifold with a family of approximately hyper-Kähler metrics
g�. Then there exists C > 0, independent of �, such that for every self-dual 2-form
�C 2 B, there exists a unique pair .�; N�C/ 2 A such that for some � 2 .�1; 0/ and
˛ 2 .0; 1/,

L�.�; N�C/D �C; (5.10)

k�k
C

1;˛
� .M�/

C kN�Ck
C

0;˛
��1

.M�/
� Ck�Ck

C
0;˛
��1

.M�/
: (5.11)

The proof is very similar to the proof of Proposition 8.7 in [10] which follows
from a contradiction argument and applying various Liouville theorems on the blowup
limits. We omit the details and only mention the outline.
(1) If the blowup limit is an ALF or ALG� gravitational instanton .X;g;p/ with

p 2 X , the Liouville theorem invoked in the proof is that any 1-form ! that
satisfies �H! D 0 and limdg.x;p/!1 j!.x/j ! 0 has to vanish everywhere,
that is, ! � 0 on X . Indeed, the Bochner formula and the Ricci-flatness imply
that�j!j2 � 0, and the vanishing of ! is then a consequence of the maximum
principle.
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(2) If the blowup limit is a flat space in Proposition 4.4, namely, R3, R2 �S1, R2,
R2=Z2, then we will quote the following Liouville theorem: if � 2 .�1; 0/,
then any harmonic function f that satisfies jf j � C � r� for any r 2 .0;1/

has to be identically zero, where r is the Euclidean distance to a fixed point.
(3) The Liouville theorem corresponding to .P1; dML/ is Proposition 7.8 in [10].

Combining the above results, we now prove the perturbation theorem.

THEOREM 5.6
Let .X;gX ;!X / be an order-2 ALG�

� gravitational instanton for some � 2 ¹1; 2; 3;

4º. Then for any integer 1� b � 14 and for any sufficiently small parameter �
 1,
there exists a family of hyper-Kähler structures .M�; h�;!h�

/ on the K3 surface M�

such that the following properties hold as �! 0.

(1) We have Gromov–Hausdorff convergence .M�; h�/
GH
��! .P1; dML/, where

dML is the McLean metric on P1 with a finite singular set S � ¹q0; q1; : : : ;

q18�bº � P1. Moreover, the curvatures of h� are uniformly bounded away
from S , but are unbounded around S .

(2) The hyper-Kähler structures .M�; h�;!h�
/ satisfy the uniform error estimate

for some positive number 0 < � 
 min¹1; �
b
º,

kh� � g�k
C

0;˛
0

.M�/
� C � .�2�
 C �

�
b

�
/; (5.12)

k!h�
� !�k

C
0;˛
0

.M�/
� C � .�2�
 C �

�
b

�
/; (5.13)

where g� is the metric determined by the definite triple !�, and the C
0;˛
0 -norm

is the weighted norm in Definition 5.1 when k D 0 and �D 0.
(3) Rescalings of .M�; h�;!h�

/ around qi for 1 � i � 18 � b converge in the
pointed C k-topology (for all k 2 ZC) to a complete Taub-NUT gravitational
instanton on C2.

(4) Rescalings of .M�; h�;!h�
/ around q0 converge in the pointed C k-topology

(for all k 2 ZC) to the given ALG�
� gravitational instanton .X;gX ;!X / or

one of .� C b/ copies of complete Taub-NUT gravitational instantons.

Proof of Theorem 5.6
We will apply Lemma 5.2 to perform the perturbation. Let

Cerr � C0 � .�2 C Q� � t3/ � Q���C1 � t���1 � V.��1/
���1

2 CC0 � �2 � Q�2; (5.14)

CN � . Q� � �/��1 � .T [/
1��

2 (5.15)

be the constants in Corollary 5.3 and Lemma 5.4. Recall that � and t are chosen such
that � D �

t
! 0. To prove (5.13), we only need to fix the parameter t � �

�
10 for a
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fixed � 
 1 and let �D �1C 

10
. Then it is obvious that Cerr � CN ! 0 as �! 0.

The uniform linear estimate is given by Proposition 5.5. Then Lemma 5.2 implies that
there exists a solution which satisfies the desired estimate. Moreover, (5.13) follows
from (5.15). The classification of the intermediate bubbles is given by Proposition 4.4
and noticing that the solutions h� are sufficiently close to g�.

6. Proofs of Torelli uniqueness theorems
In this section, we complete the proofs of Theorem 1.10 and Theorem 1.5. We also
explain the reason for the order 2 assumption in Theorem 1.5.

6.1. Proof of Theorem 1.10: ALG� Torelli uniqueness
Let .X� ; g;!/ and .X� ; g

0;!0/ be ALG� gravitational instantons onX� with the same
parameters �0, L, which are both of order 2 with respect to the coordinates ˆX�

and
which satisfy (1.11). Let 	K W K ! P1 be any elliptic K3 surface with a single fiber
of type I�

b
, call it D�, but has all other singular fibers of type I1. Let U D ¹x 2 M� j

Qr.x/� tº and V D ¹x 2 M� j Qr.x/� 2tº. Then M� D U [ V . The gluing procedure
in Section 3.3 produces approximate hyper-Kähler triples Q!� and Q!0

� on M�. Note
that U \ V deformation retracts onto the 3-manifold I3

� .

LEMMA 6.1
The manifold I3

� D Nil32� =Z2 is an infra-nilmanifold, which is a circle bundle of
degree � over a Klein bottle. Furthermore, we have b1.I3

� /D 1, withH 1
dR.I

3
� / gener-

ated by the 1-form d�1.

Proof
The first statement follows since Nil32� is a circle bundle over a torus, and the quotient
space is then clearly a circle bundle over a Klein bottle. From [27, Proposition 2.3],
we have b1.Nil32�/D 2, with H 1

dR.Nil
3
2�/ generated by d�1 and d�2. These forms are

harmonic with respect to any left-invariant and Z2-invariant metric on Nil32� . Of these
generators, only d�1 is invariant under this action, so the lemma follows from the
Hodge theorem.

The Mayer–Vietoris sequence in de Rham cohomology for ¹U;V º is

(6.1)

From the gluing in Section 3, we have
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.ˆ�1/�.�2 � !/� !N D d�; .ˆ�1/�.�2 � !0/� !N D d�0; (6.2)

where � and �0 are triples of 1-forms on ¹x 2 N j t � Qr.x/� 2tº. From Lemma 3.5,
on the region ¹x 2 N j t � Qr.x/� 2tº, the approximate hyper-Kähler triples are

Q! D !N C d.' � �/; Q!0 D !N C d.' � �0/; (6.3)

where ' is a cutoff function which is 1 when Qr.x/ � t, and is 0 when Qr.x/ � 2t.
Clearly, the image of Œ Q!i � 2 H 2

dR.M�/ in H 2
dR.U /˚H 2

dR.V / is .Œ!i �; Œ!
V
i �/. Since

the two ALG� gravitational instantons have the same Œ!i � D Œ!0
i � and we also use

the same !V
i for both, we see that the image of Œ!i � and Œ!0

i � are the same. So their
difference is in the image ofH 1

dR.I
3
� /. To see the image, we start with d�1 2H 1

dR.I
3
� /.

It can be written as the difference of 'd�1 on U and .' � 1/d�1 on V . The form
d.'d�1/D d..' � 1/d�1/ can be viewed as a 2-form on M� which is the image of
d�1 in H 2

dR.M�/. Therefore, Œ Q!i � and Œ Q!0
i � may differ by a multiple of Œd.'d�1/�.

Fortunately, we can modify the 1-form �i by the same multiple of d�1, and we then
obtain Œ Q!i �D Œ Q!0

i � 2H
2
dR.M�/. This modification will not affect any of the estimates

in the proof of the gluing theorem. In fact, the change of �i contributes an error term
of the size of jd�1j, which can be absorbed in the error estimate (3.40). Notice that
the estimate jd�1j D O.r�1.log r/�1=2/ holds for a fixed ALG� model, and simple
rescaling computations justify the claim.

Then we need to perturb the approximate hyper-Kähler triples to be actually
hyper-Kähler. The resulting cohomology classes will not be exactly the same any-
more, but the span of them will remain the same since H 2

C.M�/ is spanned by
the approximate hyper-Kähler triples. Therefore, by a rescaling and a hyper-Kähler
rotation, we can get the same Œ!HK

i � on M�. Observe that the rescaling factor con-
verges to 1 and the hyper-Kähler rotation matrix converges to the identity matrix
as � ! 0. By the Torelli-type theorem for K3 surfaces, there exists an isometry
between them which maps the hyper-Kähler triples onto each other, and induces the
identity mapping on H 2.M�/ (see [2], [5], [36]). Therefore, the restriction of these
maps to the ALG� bubbling regions will then converge to an isometry of the ALG�

spaces as �! 0, since the isometry must map the ALG� regions to each other. Obvi-
ously, this isometry will map the hyper-Kähler triples onto each other. The homology
class of a fiber generates H2.I

3
� IR/ D R and is nontrivial in both H2.U IR/ and

H2.V IR/ under the natural inclusions. From the Mayer–Vietoris sequence in homol-
ogy, it follows that the natural mapping H2.V IR/ ! H2.M�IR/ is injective. By
duality, the restriction H 2.M�IR/ ! H 2.V IR/ Š H 2.X� IR/ is surjective, which
implies that the isometry of the ALG� regions also induces the identity map on
H 2.X� IR/ŠH 2

dR.X�/, so we are done.
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6.2. Proof of Theorem 1.5: ALG Torelli uniqueness
The next goal is to prove Theorem 1.5, which requires the following gluing result.

THEOREM 6.2
Let .X;gX ;!X / be an ALG gravitational instanton of order 2 with �.X/D �0. Then
there exists a family of hyper-Kähler structures .M�; h�;!h�

/ on the K3 surface M�

such that the following holds as �! 0.

(1) We have Gromov–Hausdorff convergence .M�; h�/
GH
��! .P1; dML/, where

dML is the McLean metric on P1 with a finite singular set S � ¹q0; q1; : : : ;

q24��0
º � P1. Moreover, the curvatures of h� are uniformly bounded away

from S , but are unbounded around S .
(2) Rescalings of .M�; h�;!h�

/ around qi for 1 � i � 24 � �0 converge to a
complete Taub-NUT gravitational instanton on C2.

(3) Rescalings of .M�; h�;!h�
/ around q0 converge to the given ALG gravita-

tional instanton .X;gX ;!X /.

Proof
The proof is a straightforward generalization of [10, Theorem 1.1] using a general
hyper-Kähler triple gluing argument as in Section 5. In [10], we assumed that the
ALG gravitational instantons were isotrivial which was necessary to preserve the
complex structure. Since we are not fixing the complex structure on the K3 surface,
only the order 2 assumption is necessary. For this, we just need to note that [10,
Proposition 5.6] holds for any order-2 ALG space; the isotrivial condition is not nec-
essary.

Let .Xˇ ; g;!/ and .Xˇ ; g
0;!0/ be ALG gravitational instantons on Xˇ with the

same parameters ˇ, � , andL, which are both of order 2with respect to the coordinates
ˆXˇ

and which satisfy (1.4). The parameter ˇ determines a fiber D of type I�0 , II,
III, IV, II�, III�, IV� as in Table 1. Let 	K W K ! P1 be any elliptic K3 surface
with a single fiber D� of the dual type, which means I�0 , II

�, III�, IV�, II, III, IV,
respectively, but has all other singular fibers of type I1. We use an attaching map ‰
from ¹��1 � r � 2��1º �Xˇ to a small annular region in K centered around D� to
obtain a manifold M�, where � is sufficiently small. Let U be the subset such that
r � ��1, and let V be the subset such that r � 2��1. Then M� DU [ V .

The gluing procedure in the proof of Theorem 6.2 produces approximate hyper-
Kähler triples Q!� and Q!0

� on the M�. Note that U \ V deformation retracts onto the
3-manifold N 3

ˇ
which is the restriction of an elliptic fibration with a single fiber of

type D� to S1.
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LEMMA 6.3
The manifold N 3

ˇ
is flat and satisfies b1.N 3

ˇ
/D b2.N 3

ˇ
/D 1. Furthermore, a gener-

ator for b1.N 3
ˇ
/ is the 1-form d�1, where �1 is the angular coordinate on the cone

C.2	ˇ/.

Proof
The 3-manifold N 3

ˇ
is a T 2-fibration over S1. We cover S1 D R=2	ˇZ by two

intervals .0; 2	ˇ/ and .	ˇ; 3	ˇ/. Then we can write N 3
ˇ
as the union of N 3

ˇ;1
�

.0; 2	ˇ/� T 2 and N 3
ˇ;2

� .	ˇ; 3	ˇ/� T 2. The Mayer–Vietoris sequence is

If the monodromy group is A, then the map

H 1
dR.N

3
ˇ;1/˚H 1

dR.N
3
ˇ;2/D R2 ˚R2 !H 1

dR.N
3
ˇ;1 \N 3

ˇ;2/D R2 ˚R2 (6.4)

is given by .C1;C2/ 7! .C1 � C2;C1 � AC2/ for C1;C2 2 R2, whose kernel is the
same as ker.A � Id/. For singular fibers of finite monodromy, ker.A � Id/D 0. The
map

H 0
dR.N

3
ˇ;1/˚H 0

dR.N
3
ˇ;2/!H 0

dR.N
3
ˇ;1 \N 3

ˇ;2/ (6.5)

is a rank-1 map .a; b/ 7! .a � b; a � b/. So H 1
dR.N

3
ˇ
/D R and it is generated by the

image of .2	ˇ; 0/ 2H 0
dR.N

3
ˇ;1

\N 3
ˇ;2
/. To see this image, we note that the difference

of the function �1 on .	ˇ; 3	ˇ/�T 2 with the function �1 on .0; 2	ˇ/�T 2 is exactly
2	ˇ on .0;	ˇ/� T 2 and 0 on .	ˇ; 2	ˇ/� T 2, and all their derivatives are d�1. So
the image of .2	ˇ; 0/ is d�1. In other words, we have proved thatH 1

dR.N
3
ˇ
/D hd�1i.

By Poincaré duality, b2.N 3
ˇ
/D b1.N 3

ˇ
/D 1. The flatness of N 3

ˇ
is a corollary of the

fact that the flat metric on N 3
ˇ;1

and N 3
ˇ;2

can be glued into a flat metric on N 3
ˇ
.

The proof of Theorem 6.2 uses [10, Proposition 5.6], which implies that

ˆ�
Xˇ
.!/� !C D d�; ˆ�

Xˇ
.!0/� !C D d�0 (6.6)

for some triples of 1-forms � and �0 defined on the end of the model space. On
the region U , away from the damage zone, the approximate hyper-Kähler triples are
exactly the same (they are semi-flat, with I1-fibers resolved using Ooguri–Vafa met-
rics). Using the same Mayer–Vietoris sequence (6.1), and Lemma 6.3, we can adjust
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the 1-form �i on the “damage zone” by a term of the form d.'�1/, to arrange that
Œ!i � D Œ!0

i � in H
2
dR.M�/. The remainder of the proof is then exactly the same as in

the ALG� case above.

7. Results on the period mapping
In this section, let .X;g;!/ be an ALG or ALG� gravitational instanton of order 2. In
either case, we define a smooth function s WX ! Œ1;1/ as follows. In the ALG case,
let s be a smooth extension of r via the diffeomorphism ˆ W Cˇ;�;L.R/! X n XR,
where ˆ and r are defined as in Section 1.1. In the ALG� case, let s be a smooth
extension of s via the diffeomorphism ˆ W M2�.R/ ! X n XR, where ˆ and s are
defined as in Section 1.2. Our analysis required the following weighted Sobolev
norms.

Definition 7.1
Let .X;g;!/ be an ALG or ALG� gravitational instanton. For any fixed ı 2 R, we
define the weight function O%ı on X as

O%ı � s�ı�1: (7.1)

Then the weighted Sobolev norms are defined as follows:

k!kL2
ı

.X/ �
�Z

X

j! � O%ı j2 dvolX
� 1

2

;

k!k
W

k;2
ı

.X/
�

� kX
mD0

krm!k2

L2
ı�m

.X/

� 1
2

:

Remark 7.2
We remark that this convention differs from the convention in [7, Definition 4.1] in
the ALG cases, but agrees with the convention in [11, Definition 4.1] in the ALG�

cases.

Our convention on the Sobolev weight is explained by the following important
lemma.

LEMMA 7.3
Let .X;g;!/ be a gravitational instanton of type either ALG or ALG� of order 2.
For any ı 2 R and k 2 N0, there exists a constant Ck;ı > 0 so that

kX
mD0

sup
x2X

ˇ̌�
s.x/

�m�ı
rm!.x/

ˇ̌
� Ck!k

W
kC3;2
ı

.X/
(7.2)

for all ! 2W
kC3;2

ı
.X/.
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Proof
The proof is a standard rescaling argument. (See [11, Propositions 3.2 and 3.3] for
more details.)

7.1. Harmonic 2-forms of order 2
In order to properly define the period map, we begin with a proposition relating com-
pactly supported de Rham cohomology and decaying harmonic 2-forms.

PROPOSITION 7.4
For any ALG or ALG� gravitational instanton .X;g;!/ of order 2,®

! DO.s�2/ 2�2.X/
ˇ̌
�! D 0

¯
D

®
! DO.s�2/ 2�2.X/

ˇ̌
d! D d�! D 0

¯
D

®
! DO.s�2/ 2�2

�.X/
ˇ̌
d! D d�! D 0

¯
D Im

�
H 2

cpt.X/!H 2.X/
�

D
°
Œ!� 2H 2.X/;

Z
D

! D 0
±
;

where D is any fiber arising from the compactification of X to a rational elliptic
surface.

Proof
We first consider the ALG� case. If ! D O.s�2/ 2 �2.X/, and �! D 0, then by
standard elliptic regularity, ! 2 W

k;2

ı
for any k 2 N0 and ı > �2. So the boundary

term in Z
r<R

�
.!;�!/� .d!;d!/� .d�!;d�!/

�
(7.3)

goes to 0 when R ! 1, which implies that d! D d�! D 0. Conversely, if d! D

d�! D 0, then �! D 0.
Then we study Im.H 2

cpt.X/ ! H 2.X//. Define U D ¹x 2 X; r.x/ > Rº. Then
U deformation retracts to the 3-manifold I3

� . By Lemma 6.1, H 1.I3
� / is generated

by d�1. By Poincaré duality, H2.I
3
� / is generated by ŒD�, where D is any fiber, so

H2.U / is also generated by ŒD�. Therefore, if Œ!� 2H 2.X/ and
R

D ! D 0, then !jU
is exact, so there exists � 2�1.U / such that ! D d� on U . Let � be a cutoff function
which is 0 when r � R and is 1 when r � 2R. Then ! � d.� � �/ is compactly sup-
ported, so Œ!� 2 Im.H 2

cpt.X/ ! H 2.X//. Conversely, if ! is compactly supported,
then it is trivial to see that

R
D
! D 0.

Let ! DO.s�2/ 2�2.X/ be such that �! D 0. Then for any D sufficiently far
from a basepoint, we have

R
D
! D 0 since the area of D is independent of the choice

of D. So there is a map
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®
! DO.s�2/ 2�2.X/ W d! D d�! D 0

¯
!

°
Œ!� 2H 2.X/ W

Z
D

! D 0
±
:

To show the surjectivity, for any compactly supported closed form !, choose an arbi-
trary 0 < � < 1 and a basis �i of 2-forms in W k;2

�1�
.X/�L2.X/ such that ��i D 0.
Since .�i ; �j /L2 is invertible, there exist ci 2 R such that

.!; �j /L2 D
�X

i

ci�i ; �j

�
L2
: (7.4)

By [11, Proposition 4.5(2)], there exists � 2W
kC2;2

1C
 such that

�� D ! �
X

i

ci�i : (7.5)

Since Z
r<R

�
.�i ;��i /� .d�i ; d�i /� .d��i ; d

��i /
�

(7.6)

also decays as R! 1, �i are closed and coclosed. So,

! � dd�� D d�d� C
X

i

ci�i 2W
k;2

�1C
 (7.7)

is closed and coclosed. The self-dual part is
P3

iD1 fi!i for decaying harmonic func-
tions fi , which must be zero. By [11, Lemma A.8], the closed and coclosed anti-self-
dual form ! � dd�� must be O.s�2/, which implies the surjectivity.

To show the injectivity, assume that d� D ! DO.s�2/ 2�2.X/ is also coclosed.
We write ! D dr ^ ˛C ˇ, where ˛ is a 1-form on I3

� D ¹r D r0º, and ˇ is a 2-form
on ¹r D r0º. Then

0D d! D �dr ^ dI3
�
˛C dI3

�
ˇC dr ^

@ˇ

@r
: (7.8)

Define � �
R r

1 ˛ on U . Then

d� D dr ^ ˛C

Z r

1

dI3
�
˛ D dr ^ ˛C

Z r

1

@ˇ

@r
D dr ^ ˛C ˇ D !: (7.9)

So, � � � is closed on U . By Lemma 6.1,H 1.U / is generated by d�1. So there exist
a constant c and a function  on U such that � � � D cd�1 C d . Then ! D d�,
where �D � C d.� � /. Moreover, �D � � cd�1 when r � 2R. So � 2W

kC1;2
�1C
 .X/

for any � > 0, which comes from the definition of � and the assumption on the decay
of ˛. Therefore,
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r<R

�
.!;d�/� .d�!;�/

�
(7.10)

also converges to 0 as R! 1. In other words, ! D d�D 0 since d�! D 0.
Using the same proof, and the ALG asymptotic analysis in [7], a similar proof

also holds for ALG gravitational instantons of order 2. See also [24, Section 7.1.3]
and Theorems 9.3 and 9.4 of [10].

7.2. Definition of the period map
In this subsection, we prove that the period mappings are well defined.

PROPOSITION 7.5
The period mappings P in Definition 1.6 and Definition 1.11 are well defined.

Proof
We first consider the ALG case. If .Xˇ ; g;!/ 2 Mˇ;�;L, then it is ALG with respect
to the fixed ALG coordinate system ˆXˇ

. Then !1 is taken to be the Kähler form
which is asymptotic to the elliptic complex structure, and the choice of !2 and !3

is also determined since they are asymptotic to the model Kähler forms in the ˆXˇ

coordinates. The point is that our Definition 1.3 removes the freedom of hyper-Kähler
rotations, so we have a well-defined ordered choice of the three Kähler forms. From
[7, Theorem 4.14], there is a holomorphic function u W Xˇ ! C which is an elliptic
fibration. The level sets of u are tori. As u! 1, these level sets are close to the model
holomorphic tori. Therefore the homology class ŒD� of any fiber is well defined, the
same class for all elements in Mˇ;�;L. Since the forms !2 and !3 are orthogonal
to !1, any torus which is holomorphic for I is Lagrangian with respect to J or K .
Use Proposition 7.4 to identify H 2 with order-2 decaying harmonic anti-self-dual
2-forms; the classes Œ!2� and Œ!3� automatically lie in H 2. Finally, since the holo-
morphic tori for I and I0 are homologous, we have

R
D.!1 �!0

1/D 0 since the areas
of the holomorphic tori are the same. Using [9, Proposition 3.1], the argument in the
ALG� case is exactly the same.

7.3. The nondegeneracy condition
In this subsection, we prove the nondegeneracy condition stated in Theorems 1.7 and
1.12:

!ŒC �¤ .0; 0; 0/ for all ŒC � 2H2.X IZ/ satisfying ŒC �2 D �2: (7.11)

To prove this, we use the gluing construction in Theorem 6.2 in the ALG case and
Theorem 5.6 in the ALG� case. A basic transversality argument shows that we can
represent any ŒC � 2 H2.X IZ/ by an embedded surface 
 W C ! X . If (7.11) is not
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satisfied by an ALG or ALG� gravitational instanton .X;!X /, then by choosing a
small enough gluing parameter �, we can assume that the glued closed definite triple
!� D !X near 
.C /. A Mayer–Vietoris argument in homology shows that ŒC � is
nontrivial in H2.M�;Z/. So there exists ŒC � 2H2.M�;Z/ such that ŒC �2 D �2 and
Œ!�� � ŒC � D 0. In the perturbation arguments, the span of the hyper-Kähler classes
Œ!HK

�
� on the K3 surface M� is the same as the span of Œ!��. Therefore, Œ!HK

�
� � ŒC �D

0, which is a contradiction with the well-known nondegeneracy condition on the K3
surface M�.

7.4. Proofs of Theorem 1.7 and Theorem 1.12
We follow the route map of [8, Section 7]. For any point in Œ!0�CH 2 ˝R3 satisfying
(7.11), we can connect it to Œ!0� by zigzags of the form�

Œ˛1;0�C t Œˇ1�; Œ˛2�; Œ˛3�
�
; (7.12)�

Œ˛1�; Œ˛2;0�C t Œˇ2�; Œ˛3�
�
; (7.13)

or �
Œ˛1�; Œ˛2�; Œ˛3;0�C t Œˇ3�

�
: (7.14)

We require that all the points in the zigzags satisfy (7.11). This assumption is clearly
possible since (7.11) holds outside a set of codimension 3. Let us consider the ALG
case. For the path in (7.12), we have

.X;!1;0 � ˛1;0;!2 � ˛2;!3 � ˛3/ 2 Mˇ;�;L: (7.15)

Using Proposition 7.4, we choose the representative ˇ1 in the class Œˇ1� by requir-
ing it to be closed, coclosed, and anti-self-dual with respect to the hyper-Kähler metric
determined by .X;!1;0;!2;!3/. Since ˇ1 is anti-self-dual,

ˇ1 ^!1;0 D ˇ1 ^!2 D ˇ1 ^!3 D 0: (7.16)

Then we choose ct 2 R such that

!1;t � !1;0 C tˇ1 C ct

p
�1@I

N@I

�
� � log juj

�
(7.17)

satisfies Z
X

.!2
1;t �!2

1;0/D 0; (7.18)

where I , J , K are the hyper-Kähler structures determined by .X;!1;0;!2;!3/, u W

X ! C is the I -holomorphic function which makes X a rational elliptic surface
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minus the fiber at infinity, and � is a cutoff function which is 0 for small juj and is 1
for large juj. Using (7.16), the formula dd c

I D 2
p

�1@I
N@I , and Stokes’s theorem, we

have Z
X

.!2
1;t �!2

1;0/D

Z
X

t2ˇ2
1 C 2ct

Z
X

!1;0 ^
p

�1@I
N@I

�
� � log juj

�
: (7.19)

From (7.19), we see that the constant ct indeed exists since

0¤

Z
X

!1;0 ^
p

�1@I
N@I

�
� � log juj

�
; (7.20)

and the integral is finite. In the (7.13) case, we use
p

�1@J
N@J instead of

p
�1@I

N@I ,
and in the (7.14) case, we use

p
�1@K

N@K .
Back to the (7.12) case, consider the collection S of t 2 Œ0; 1� for which there

exist ıt > 0 and 't 2W
k;2

�ıt
.X;!1;0/ for any k 2 N0 such that

.X;!t � !1;t C
p

�1@I
N@I't ;!2;!3/ 2 Mˇ;�;L: (7.21)

By assumption, 0 2 S . If t0 2 S , then by definition of S , applying Lemma 7.3 and
using a standard elliptic regularity argument, we see that for t sufficiently close to t0,
!1;t C

p
�1@I

N@I't0 will be ALG of order 2. Furthermore,Z
X

.!1;t C
p

�1@I
N@I't0/

2 �!2
1;0 D

Z
X

.!2
1;t �!2

1;0/D 0: (7.22)

By [40, Theorem 1.1], there exists a bounded solution 't of the equation

.!1;t C
p

�1@I
N@I't /

2 D ef !2
1;t ; (7.23)

where

f � log
!2

t �!2
1;t

!2
1;t

D log
!2

1;0 �!2
1;t

!2
1;t

DO.r�4/; (7.24)

and the middle equality follows from (7.16). By [26, Proposition 2.6],
R

X
jr!1;t

't j
2 �

!2
1;t <1. Then by [26, Proposition 2.9(ib)], there exists a ıt > 0 so that

sup j't j � Cs�ıt : (7.25)

Then [26, Proposition 2.9(ii)] implies that

sup jrk
!1;t

't j � Cks
�ıt �k ; (7.26)

since these estimates are implied by Hein’s weighted Hölder estimates. This implies
that 't 2 W

k;2

�ıt
.X;!1;0/ for any k 2 N if we slightly shrink ıt . Consequently, S is
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open. Since the Tian–Yau and Hein estimates depend only on geometric bounds and
do not depend on the choice of complex structure, the above argument also works for
the paths (7.13) and (7.14). It is easy to see that this implies that the image of the
period mapping is open. The above arguments hold in the ALG� case (with Mˇ;�;L

replaced by M�;�0;L), so this completes the proof of Theorem 1.12.
To finish the proof of Theorem 1.7, we need to show that S is closed in the ALG

cases. So suppose that ti ! t1 is a sequence in S . ThenZ
X

.tr!1;0
!ti � 2/

!2
1;0

2
D

Z
X

!1;0 ^ .!ti �!1;0/

D

Z
X

!1;0 ^ .!1;ti �!1;0/

D cti

Z
X

!1;0 ^
p

�1@I
N@I

�
� � log juj

�
D �

t2i
2

Z
X

ˇ2
1 � C (7.27)

for a constant independent of ti , andZ
X

.tr!tj
!ti � 2/

!2
tj

2
D

Z
X

!tj ^ .!ti �!tj /

D

Z
X

!1;tj ^ .!1;ti �!1;tj /

D

Z
X

.!1;0 C tjˇ1/^
�
.ti � tj /ˇ1

C .cti � ctj /
p

�1@I
N@I

�
� � log juj

��
D .cti � ctj /

Z
X

!1;0 ^
p

�1@I
N@I

�
� � log juj

�
C tj .ti � tj /

Z
X

ˇ2
1

D
�
�
t2i
2

C
t2j

2
C tj .ti � tj /

�Z
X

ˇ2
1

D �
.ti � tj /

2

2

Z
X

ˇ2
1 ! 0 (7.28)

as i; j ! 1. These bounds imply the following pointwise bound.

THEOREM 7.6
The function e.ti /D tr!0

!ti D tr!ti
!0 is uniformly bounded on X .
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Proof
We use (7.27) and (7.28) to go through the arguments in [8, Section 7], with some
minor modifications, to get the required bound. First, we cover X by balls with
radius 1 in the sense of the metric determined by .X;!1;0;!2;!3/ such that the num-
ber of balls containing any point in X is uniformly bounded. Then we use these balls
to replace the sets UN in [8, Theorem 7.3], to obtain the subsets VNi

� UN which
carry a large percentage of the volume of UN (with respect to the background met-
ric), and which satisfy a diameter bound (with respect to the metric !ti ). Note that the
proof of [14, Lemma 1.3] is valid in the ALG case, since ALG metrics are volume
noncollapsed in bounded scales at infinity.

To prove the analogue of [8, Theorem 7.4], we need to show that if there
exists a sequence of cohomology classes Œ†i � 2 H2.X;Z/ satisfying Œ†i �

2 D �2

and
R

†i
!ti ! 0,

R
†i
!2 ! 0,

R
†i
!3 ! 0 as i ! 1, then there are only finitely

many distinct Œ†i �. To prove this, recall that by the assumption of Theorem 1.7
based on [9, Theorem 1.10], X is in particular diffeomorphic to an isotrival ALG
gravitational instanton. These compactify to an isotrivial rational elliptic surface S
by adding a finite monodromy fiber D1 at infinity. By [26, Section 3.1], S n D1

deformation retracts onto the dual finite monodromy fiber. Therefore, the intersection
form ofH 2.X;Z/ is an extended Dynkin diagram. Next, for example, assume that the
extended Dynkin diagram is QD4. ThenH 2.X;Z/ is generated by ŒEi �, i D 1; 2; : : : ; 5,
with ŒEi �

2 D �2 for all i , ŒEi � � ŒEj �D 1 for all ¹i; j º D ¹1; 2º; ¹1; 3º; ¹1; 4º; ¹1; 5º,
and ŒEi � � ŒEj �D 0 otherwise. The homology class of each fiber is

ŒF �D 2ŒE1�C ŒE2�C ŒE3�C ŒE4�C ŒE5�: (7.29)

The intersection numbers of ŒF � with all ŒEi � are zero. We write Œ†i � as

Œ†i �D ai ŒF �C bi ŒE1�C ci ŒE2�C di ŒE3�C ei ŒE4�: (7.30)

Then the self-intersection number of bi ŒE1�C ci ŒE2�C di ŒE3�C ei ŒE4� is �2. The
extended Dynkin diagram restricted to this subset is the unextended Dynkin diagram,
which has negative definite intersection form. This implies that there are only finitely
many distinct bi ŒE1� C ci ŒE2� C di ŒE3� C ei ŒE4� with self-intersection �2. Then,
we use

R
F
!ti D

R
F
!1;0 ¤ 0 to control ai . The proofs for other extended Dynkin

diagrams are similar.
This proves a uniform curvature bound, and this yields a bound on the !i -

holomorphic radius exactly as in [8, Theorem 7.4]. The proof of [8, Theorem 7.4]
relies on [37, Proposition 2.1], which is valid in the ALG case since these are
volume noncollapsed in bounded scales at infinity. Theorem 7.6, Lemma 7.7, and
Theorem 7.8 of [8] then go through exactly the same in the ALG cases, with UN

replaced by balls of radius 1. Note that only the hyper-Kähler condition is used in [8,
Theorem 7.6].
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The equation !2
ti

D !2
1;0 and the bound on tr!ti

!1;0 D tr!1;0
!ti imply that there

exists a constant C independent of ti such that

C�1!1;0 � !ti � C!1;0: (7.31)

Since the difference !1;ti �!1;0 decays uniformly, there exists a constant R such that
1
2
!1;0 � !1;ti � 2!1;0 for all s �R. So

j�!1;0
'ti j D

ˇ̌
tr!1;0

.!ti �!1;ti /
ˇ̌
D

ˇ̌
tr!1;0

!ti � 2� cti�!1;0

�
� � log juj

�ˇ̌
� C

on X . Moreover,Z
X

j�!1;0
'ti j

!2
1;0

2

�

Z
X

.tr!1;0
!ti � 2/

!2
1;0

2
C jcti j

Z
X

ˇ̌
�!1;0

�
� � log juj

�ˇ̌!2
1;0

2
� C; (7.32)

where we have used the fact that !2
ti

D !2
1;0, which implies that tr!1;0

!ti � 2. So
for ı D 1

100
, k�!1;0

'ti kL2
�1Cı

.X;!1;0/ � C . Now we consider the operator �!1;0
W

W
2;2

1Cı
.X;!1;0/ ! L2

�1Cı
.X;!1;0/. By the ALG weighted analysis in [6]–[8], and

[24], it is easy to see that any function in the kernel of this operator must be a constant,
and consequently there exists another function Q'ti 2W

2;2

1Cı
.X;!1;0/ such that 'ti � Q'ti

is a constant and

k Q'ti kW
2;2
1Cı

.X;!1;0/
� Ck�!1;0

Q'ti kL2
�1Cı

.X;!1;0/

D Ck�!1;0
'ti kL2

�1Cı
.X;!1;0/ � C: (7.33)

This implies that k Q'ti kW 2;p.¹s�4Rº;!1;0/ � C.p/ for any p > 1 using the bound on
j�!1;0

'ti j. For any ˛ 2 .0; 1/, by the Evans–Krylov estimate (see, e.g., [39, Sec-
tion 2.4]),

Œ@N@ Q'ti �C ˛.¹s�3Rº;!1;0/ � C.˛/: (7.34)

By standard elliptic estimates, for any k 2 N and any ˛ 2 .0; 1/,

k Q'ti kC k;˛.¹s�2Rº;!1;0/ � C.k;˛/: (7.35)

When s �R,

j�!1;ti
C!ti

Q'ti j � C
ˇ̌
.!1;ti C!ti /^ .!ti �!1;ti /

ˇ̌
!1;ti

C!ti

D C j!2
1;0 �!2

1;ti
j!1;ti

C!ti

� C j!2
1;0 �!2

1;ti
j!1;0

� Cs�4: (7.36)
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Let �R be a cutoff function which is 1 when s � 2R and is 0 when s � R. Then
j�!1;ti

C!ti
�ti j � Cs�4, where �ti � �R � Q'ti

We use the Moser iteration technique to prove that k�ti kC 0 � C for a constant C
independent of ti and p. For any j D 0; 1; 2; 3; : : : and p D 2j ,

p2

Z
X

�
2p�2
ti

jr!1;ti
C!ti

�ti j
2 .!1;ti C!ti /

2

2

D

Z
X

ˇ̌
r!1;ti

C!ti
.�

p
ti
/
ˇ̌2 .!1;ti C!ti /

2

2

D �

Z
X

�
p
ti
�!1;ti

C!ti
.�

p
ti
/
.!1;ti C!ti /

2

2

D �p.p � 1/

Z
X

�
2p�2
ti

jr!1;ti
C!ti

�ti j
2 .!1;ti C!ti /

2

2

� p

Z
X

�
2p�1
ti

�!1;ti
C!ti

�ti

.!1;ti C!ti /
2

2
: (7.37)

We have used the fact that �ti �'ti is a constant when s � 2R, and there exists ıti > 0

such that 'ti 2W
k;2

�ıti

.X;!1;0/. Therefore,Z
X

ˇ̌
r!1;ti

C!ti
.�

p
ti
/
ˇ̌2 .!1;ti C!ti /

2

2

D �
p2

2p � 1

Z
X

�
2p�1
ti

�!1;ti
C!ti

�ti

.!1;ti C!ti /
2

2
:

Recall that by Theorem 1.2(i) of [25], there exist a constant C and a weight function

 with
R

X
 

!2
1;0

2
D 1 such that for any � 2 C1

0 .X/,�Z
X

j� � �0j4s�4
!2

1;0

2

� 1
2

� C

Z
X

jr!1;0
�j2
!2

1;0

2
; (7.38)

where �0 �
R

X
 �

!2
1;0

2
. Equation (7.38) also holds for �p

ti
because (7.38) is unchanged

if we add � by a constant, and �p
ti

can be written as a constant plus a function in

W
k;2

�ıti

.X;!1;0/. Then

j�0j2 � C
�Z

s�2R

j�0j4s�4
!2

1;0

2

� 1
2

� C
�Z

X

j� � �0j4s�4
!2

1;0

2

� 1
2

CCk�k2
C 0.¹s�2Rº

: (7.39)

So
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�Z
X

j�j4s�4
!2

1;0

2

� 1
2

� C

Z
X

jr!1;0
�j2
!2

1;0

2
CCk�k2

C 0.¹s�2Rº/
(7.40)

for � D �
p
ti
and a constant C independent of ti and p. Therefore,�Z

X

j�ti j
4ps�4

!2
1;0

2

� 1
2

� C

Z
X

jr!1;0
�

p
ti

j2
!2

1;0

2
CCk�ti k

2p

C 0.¹s�2R/º

� C

Z
X

ˇ̌
r!1;ti

C!ti
.�

p
ti
/
ˇ̌2 .!1;ti C!ti /

2

2
CCk�ti k

2p

C 0.¹s�2R/º

�
Cp2

2p � 1

Z
X

j�ti j
2p�1s�4

!2
1;0

2
CCk�ti k

2p

C 0.¹s�2Rº/

�
Cp2

2p � 1

Z
X

�2p � 1

2p
j�ti j

2p C
1

2p

�
s�4

!2
1;0

2
CCk�ti k

2p

C 0.¹s�2R/º

� C
�
p

Z
X

j�ti j
2ps�4

!2
1;0

2
C 1C k�ti k

2p

C 0.¹s�2R/º

�
: (7.41)

For p D 1,Z
X

j�ti j
2s�4

!2
1;0

2
� C

�Z
X

j�ti j
4s�4

!2
1;0

2

� 1
2

� C

Z
X

j�ti js
�4
!2

1;0

2
CCk�ti k

2
C 0.¹s�2R/º

CC

� C�

Z
X

j�ti j
2s�4

!2
1;0

2
CC��1

CCk�ti k
2
C 0.¹s�2R/º

CC (7.42)

for all � > 0. If we choose � such that the coefficient C� < 1
2
, thenZ

X

j�ti j
2s�4

!2
1;0

2
� C: (7.43)

As in [8, p. 715], k�ti kC 0.X/ � C using (7.41). This implies that

k'ti kC 0 � k Q'ti kC 0 C j'ti � Q'ti j � 2k Q'ti kC 0 � C (7.44)

because 'ti � Q'ti is a constant and 'ti decays. Using the Evans–Krylov estimate and
standard elliptic estimates on B.x; 1;!1;0/ for any x 2 X , k'ti kC k.X;!1;0/ � C.k/

for constants C.k/ independent of ti .
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The bound on
R

X
j�ti j

2s�4 !2
1;0

2
also implies a bound on

R
X

jr!1;0
�ti j

2 !2
1;0

2
by

(7.37). This implies that Z
X

jr!1;0
'ti j

2
!2

1;0

2
� C: (7.45)

Finally, we use [26, Proposition 2.9] to prove that there exist a constant ı > 0 and
constants C.k; ı/ > 0 independent of ti such that

kskCırk
!1;0

'ti k � C.k; ı/ (7.46)

for all k. Then we use the Arzelà–Ascoli lemma, a diagonal argument, and standard
elliptic estimates to finish the proof.

7.5. Closing remarks
There is a folklore conjecture that some examples constructed using gauge theory
by Biquard and Boalch [3] are ALG and by varying parameters, achieve all possible
periods satisfying (7.11). See [20] for some progress towards this conjecture. We
also mention that there is a folklore conjecture that some examples constructed using
gauge theory by Biquard and Boalch [3] and Cherkis and Kapustin [12] are ALG�

and by varying parameters, achieve all possible periods satisfying (7.11).
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