TORELLI-TYPE THEOREMS FOR GRAVITATIONAL
INSTANTONS WITH QUADRATIC VOLUME GROWTH
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Abstract

We prove Torelli-type uniqueness theorems for both ALG* gravitational instantons
and ALG gravitational instantons which are of order 2. That is, the periods uniquely
characterize these types of gravitational instantons up to diffeomorphism. We define
a period mapping &P, which we show is surjective in the ALG cases, and has open
image in the ALG™ cases. We also construct some new degenerations of hyper-Kiihler
metrics on the K3 surface which exhibit bubbling of ALG* gravitational instantons.

1. Introduction
We begin with the following definitions.

Definition 1.1
A hyper-Kihler 4-manifold (X, g, I, J, K) is a Riemannian 4-manifold (X, g) with a
triple of Kihler structures (g, 1), (g, J), (g, K) such that IJ = K.

We denote by @ = (w1, w3, w3) the Kéhler forms associated to I, J, K, respec-
tively. It is easy to see that w; satisfies

Wi \wj =28ij dVOlg, (1.1)

where dvolg is the Riemannian volume element. Conversely, any triple of symplectic
forms w; satisfying (1.1) determines a hyper-Kihler structure if we replace w3 by
—ws if necessary.

Definition 1.2
A gravitational instanton (X, g,®) is a noncompact complete nonflat hyper-Kahler
4-manifold X such that |Rmg | € L2(X).
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If X is a compact nonflat hyper-Kéhler 4-manifold, then it must be the K3 surface
(see [28]). If X is a gravitational instanton, there are many known types of asymptotic
geometry of X near infinity: ALE, ALF-Ay, ALF-Dy, ALG, ALH, ALG*, ALH*. We
refer the reader to [ 1], [6]-[8], [26], [29], and [32] and the references therein for more
background on gravitational instantons.

There is a well-known Torelli theorem for hyper-Kéhler metrics on the K3 sur-
face, and one may ask whether there is an analogue for gravitational instantons. This
is known to hold in several cases: such a Torelli-type theorem was proved by [29] in
the ALE case, by [33] in the ALF-Ay case, by [6] in the ALF-Dy, case, and by [8] in
the ALH case. In this paper, we are interested in an analogous result assuming that the
metric is of type ALG or ALG*. In the ALG case, it was observed in [8] that the natu-
ral period mapping may not be injective, and a modified version of the Torelli theorem
was conjectured there. In this paper, we prove the uniqueness part of this conjecture,
which gives the Torelli uniqueness in the ALG case (see Theorem 1.5). We also prove
a Torelli-type uniqueness theorem in the ALG™ case (see Theorem 1.10). We note that
recently, a Torelli-type uniqueness theorem in the ALH* case was proved (see [13]).
We will also define a refined period mapping £ in both the ALG and ALG™ cases,
which we will show to be surjective in the ALG cases, and open in the ALG* cases
(see Theorem 1.7 and Theorem 1.12).

Previously, gravitational instantons of type ALE, ALF, ALG, ALH, and ALH*
have been shown to bubble off of the K3 surface (see, e.g., [8], [10], [16], [18], [27],
[30]). In this paper, we also show that there exist families of Ricci-flat hyper-Kéhler
metrics on the K3 surface which have ALG™ gravitational instantons occurring as
bubbles (see Theorem 1.13). These are the first known examples of this type of degen-
eration. These examples are produced via a gluing theorem which is actually the cru-
cial tool in proving the aforementioned Torelli uniqueness in the ALG™ case.

1.1. ALG gravitational instantons

For background on analysis on ALG gravitational instantons, related classification
results, and relations to moduli spaces of monopoles and Higgs bundles, we refer the
reader to [3], [4], [8], [12], [20], [24], [26], and [31] and the references therein.

In Definition 2.3 below, we will define the standard ALG model space
(Bﬂ’t’L(R),g‘e,w‘e) for parameters L,R € R4, and (f8,7t) as in Table 1. Here
we just note that €g ; 1 (R) is diffeomorphic to (R, 00) x Ng, where Ng is a torus
bundle over a circle, and the metric g€ as well as the induced metric on the 3-
manifold N /? are flat (the explicit formulas are given in Section 2.3). We let r denote
the coordinate on (R, 00).
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Table 1. Invariants of ALG spaces.

oo 15 I * m | v v
peon | 4| 4 | 8 [ 41 ] 4 | 3

TeH Any | eVTTF | oVTTHE | JTT | ST | eVTHE | VT
bz(X/s) 5 9 1 8 2 7 3

Definition 1.3 (ALG gravitational instanton)

A complete hyper-Kihler 4-manifold (X, g, ) is called an ALG gravitational instan-
ton of order n > 0 with parameters (8, t) as in Table 1, and L > 0 if there exist R > 0,
a compact subset Xg C X, and a diffeomorphism ® : €g , 1 (R) — X \ X such that

|VEe(@%g —g%)| e = O™, (1.2)
[VEc (@ 0 —08)| e =00r™* ™), i=123 (1.3)
g‘(‘f 4 i g‘é ) 9 &9y .

as r — oo, for any k € Nj.

Remark 1.4
It was proved in [6, Theorem A] that there exist ALG coordinates so that the order
n is 2 in the I§, IL, IIL, IV cases (8 < 1) and n =2 — % in the IT*, IIT*, IV* cases

B
B>

It was shown in [9, Theorem 1.10] that any two ALG gravitational instantons
with the same § are diffeomorphic. So without loss of generality we can view any
ALG gravitational instanton as living on a fixed space Xg. The first author and Chen
proved that the naive version of the Torelli-type theorem fails when g > 1/2 (see [8]).
Furthermore, it was shown in [9, Theorem 1.12] that when 8 > 1/2, each ALG grav-
itational instanton lives in a two-parameter family of ALG gravitational instantons
with the same periods [w], with exactly one element of this family being of order 2.
This reduces the general case to proving a Torelli uniqueness theorem for ALG grav-
itational instantons of order 2, which is our next theorem.

THEOREM 1.5 (ALG Torelli uniqueness)

Let (Xg,g,w) and (Xg,g',@") be two ALG gravitational instantons with the same t
and L, which are both ALG of order 2 with respect to a fixed ALG coordinate system
on Xg. If

(0] =[] € Hk(Xg) @ R, (1.4)
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then there is a diffeomorphism ¥V : Xg — Xg which induces the identity map on
HZ2 (Xp) such that ¥*g' = g and V*@' = o.

This will be proved using a modification of the gluing construction in [10] (see
Theorem 6.2 below), and then invoking the Torelli theorem for K3 surfaces. We
remark that the order-2 condition is essential to control the error term in the gluing
construction. Moreover, the assumption that both hyper-Kéhler structures are ALG
of order 2 in a fixed coordinate system is also crucial for the proof. However, it is
superfluous in the following sense: it was proved in [9, Theorem 1.11] that any two
ALG gravitational instantons of order 2 with the same (8, t) and L can be pulled
back to a fixed space X g such that they are both ALG of order 2 in a fixed ALG coor-
dinate system ®x, (after possibly modifying one of the ALG coordinate systems).
This motivates the following definition.

Definition 1.6

Let Mg . 1 be the collection of all gravitational instantons on Xg with parameters f3,
7, and L which are ALG of order 2 with respect to a fixed ALG coordinate system
®x,. For (Xg,8% ®°) € Mg -1, the period mapping

P Mg — [0+ #? Q@R C Hi(Xp) ® R? (1.5)
is defined by
2(@) = ([01], [@2]. [w3]). (1.6)

where 2 = Im(HZ, (Xg) — H?(Xp)).

We will show that &7 is well defined in Section 7. The following is our main
result about the period mapping in the ALG cases.

THEOREM 1.7
If (Xp,g @) € Mp L, then

[@]-[C] #(0,0,0) forall [C] € Hy(Xg;Z) satisfying [C]? = -2. (1.7)

Furthermore, the period mapping & is surjective onto cohomology triples in [@°] +
2% @ R3 satisfying (1.7).

We will prove this in Section 7. In particular, we see that the image of the period
mapping has dimension 3(b2(Xg) — 1), where b,(Xg) is given in Table 1.
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1.2. ALG" gravitational instantons
In Section 2, we will define the standard ALG* model space, which is denoted by

(m2v (R)v gzj(},Lv me(},L) = (m2v (R)9 ngg)ty sz,?g)7 (18)

which depends on parameters v € Z, k9 € R, R > 0, and an overall scaling parame-
ter L > 0. Here we just note that the manifold 915, (R) is diffeomorphic to (R, o0) X
43, where 43 is an infra-nilmanifold, which is a circle bundle of degree v over a
Klein bottle. We will let r denote the coordinate on (R, o0), V denote the function
Ko + 7 logr, and s denote the function rV1/2_ The hyper-Kihler structure is obtained
via a Gibbons—Hawking ansatz. (See Section 2 for explicit formulas.)

Definition 1.8 (ALG™ gravitational instanton)

A complete hyper-Kihler 4-manifold (X, g,®) is called an ALG* gravitational
instanton of order n > 0 with parameters v € Z, ko € R, and L > 0 if there exist an
ALG™ model space (92, (R), gZﬁL, w%,L) with R > 0, a compact subset Xg C X,
and a diffeomorphism ® : 95, (R) — X \ Xg such that

| VEw (@ g — g 1)

|VEm (%0 — 0%y )|y = O, i =1,2,3, (1.10)

gm =06, (1.9)

as s — 00, for any k € Nj.

Remark 1.9

It was proved in [11, Theorem 1.10] that there exist ALG* coordinates on X so that
the order satisfies n > 2. This decay order will be crucial in the proof of Theorem 1.10
below.

It was proved in [9, Theorem 1.6] that any two ALG* gravitational instantons
with the same v, where 1 < v < 4, are diffeomorphic to each other. So without loss of
generality we can view any ALG™ gravitational instanton as living on a fixed space
X,. With this understood, our next theorem is a Torelli uniqueness theorem for ALG*
gravitational instantons.

THEOREM 1.10 (ALG™ Torelli uniqueness)

Let1 <v <4, andlet (X,,g,®), (X,,g @) be two ALG* gravitational instantons
with the same parameters ko and L, which are both ALG™ of order 2 with respect to
a fixed ALG* coordinate system on X,. If

[0] = [0'] € Hi(X,) @ R?, (1.11)
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then there is a diffeomorphism ¥ : X,, — X, which induces the identity map on
HZ2 (Xy) such that V*g' = g and V*0' = .

This will be proved using a new gluing construction: we obtain hyper-Kéhler met-
rics on the K3 surface using ALG™ gravitational instantons (see Section 1.3 below),
and then we invoke the Torelli theorem for K3 surfaces. In our proof, the requirement
that both metrics are ALG™ of order 2 with respect to a fixed ALG* coordinate system
is crucial. However, this assumption is actually superfluous in the following sense. It
was proved in [9, Theorem 1.7] that if (X, g, ) and (X', g’,®’) are any two ALG*
gravitational instantons of order 2 with the same parameters v, ko, and L, then after
possibly changing the ALG* coordinate system @’ on X’, we can arrange that the
diffeomorphism map commutes with ® and ®’. So we can actually view any ALG*
gravitational instanton with parameters v, ko, and L as a gravitational instanton of
order 2 on a fixed space X, with a fixed ALG* coordinate system ®y, . Similar to the
ALG case, we make the following definition.

Definition 1.11

Define M, «,,L to be the collection of all gravitational instantons on X, with parame-
ters v, ko, and L which are ALG™ of order 2 with respect to a fixed ALG™ coordinate
system @, . For (X,, g% °) € M, 4, 1, the period mapping based at @,

P My oL — [0+ 22 @R C HE(X,) @ R, (1.12)

is defined as in (1.6), where /2% = Im(H2,(X,) = H?(X,)).
The following is our main result about the period mapping in the ALG™ cases.

THEOREM 1.12
If(Xy,8,®) € My k.1, then

w[C] # (0,0,0) forall [C] € Ha(X,;7Z) satisfying [C]* = =2. (1.13)

Furthermore, the image of the period mapping &2 is an open subset of space of coho-
mology triples [@°] + 7% @ R? satisfying (1.13).

We will prove this in Section 7. In particular, we see that the image of the period
mapping has dimension 3(b2(X,) —1) = 12 —3v. We conjecture that the period map-
ping & is also surjective in the ALG™ cases.

1.3. ALG™ bubbles from the K3 surface
In [23], hyper-Kéhler metrics were constructed on elliptic K3 surfaces with 24 1 -
fibers, which have a 2-dimensional Gromov—Hausdorff limit (P!, dyy ), where dyir.
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is called the McLean metric. This was generalized to arbitrary elliptic K3 surfaces
in [22] (see also [34]). Subsequently, the authors gave a new construction on arbi-
trary elliptic K3 surfaces in [10], which also allowed for a detailed description of
the degeneration near the singular fibers, which we briefly describe next. Away from
singular fibers, the degeneration was modeled by a semiflat metric, which was intro-
duced by Greene et al. in [21]. A generalization of the Ooguri—Vafa metric (see [35]),
which we called a multi-Ooguri—Vafa metric (with b monopole points), was used to
describe the degeneration near singular fibers of type I,. ALG metrics were used
to describe the degeneration near fibers with finite monodromy. In the case of I}-
fibers, the model used was a Z,-quotient of certain multi-Ooguri—Vafa metrics with
2v monopole points, together with four Eguchi—-Hanson metrics due to the four orb-
ifold singularities of the resulting quotient. It was moreover shown in [10] that such
degenerations exist for metrics which are Kéhler with respect to the fixed elliptic
complex structure.

In this paper, let K be an elliptic K3 surface with a singular fiber D* of type I
and (18 — b) singular fibers of type I;, where 1 < b < 14 (recall that an elliptic K3
surface can have up to an I -fiber and such elliptic K3 surfaces do exist; see [38]). Let
X be an ALG™ gravitational instanton of order 2 with parameters 1 <v <4, ko € R,
and L > 0. Near I; -fibers, we use the Ooguri—Vafa metric as before. Near D*, we cut
out a neighborhood of D* in K and, as a new method, glue it with a neck region and
arescaling of X. We call the glued manifold M.

THEOREM 1.13
There exists a family of hyper-Kdhler metrics g, on the K3 surface M) such that

(M, g2) LY (P, dyi) as A — 0, and such that near D*, the rescaling limits are X
together with b 4+ v Taub-NUT bubbles.

In this case of an I} -fiber, the construction in [10] was done to preserve the ellip-
tic complex structure. In this new gluing construction, the original elliptic complex
structure is not preserved. An interesting question is to describe more precisely the
complex structure degeneration of this new family. We also point out that this con-
struction is somewhat analogous to [27] in that we construct a neck region with non-
trivial topology which interpolates between different degree infra-nilmanifolds (ver-
sus nilmanifolds in [27]), and which is responsible for the Taub-NUT bubbles. The
proof of Theorem 1.13 is contained in Sections 3, 4, and 5.

2. The model hyper-Kiihler structures
In this section, we explain some properties of ALG and ALG* gravitational instantons
in more detail.
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2.1. Gibbons—Hawking construction

In this subsection, we review the Gibbons—Hawking construction of the ALG* model
metric. (See [11] for more details.) For any positive integer v, the Heisenberg nilman-
ifold Nil3, of degree 2v is the quotient of R* by the following actions:

01(61.65.603) = (0; + 27, 6. 63), 2.1)
02(01.65.,603) = (61,60, + 27,05 + 276;), (2.2)
03(01,60,,63) = (61,605,605 + 21207 1), (2.3)
Define
0= %(d93 —0,d60)), V=ko+ %log r, 2.4)

forr € (R,00), ko € R, and R > e v (1=%0) on the manifold

ST M,y (R) = (R,00) x Nil}, — U = (R \ Br(0)) x S'.  (2.5)
Then the Gibbons—Hawking metric on 55?2,, (R) is given by

2
S 2, 2102 2 -1V 2
Sxo = V(dr=+r2doy +doy) +V F(d93 —0,d6) 2.6)

=V(dx* +dy* +do3) + V7 'e?,

where x + V—1y =7r - e¥Y=191 The model hyper-Kdhler forms on the manifold
Moy (R) are given by

wr =0 =E'ANE*+ E>ANE*=Vdx Ady +db, £ O, 2.7)

wy = =E'ANE*—E>AE*=Vdx Adby —dy A ©, (2.8)

wg =0 = E'ANE* + E2AE* = dx A © + Vdy A db, (2.9)
where

(E',E2 E3 E* = (V' 2dx, v'2dy, vV2d6,,v—1/26). (2.10)

The Z,-action ((r, 01, 05, 63) = (r, 01 + 7w, —6,, —03) induces an automorphism of the
hyper-Kihler structure, and we define the ALG}, model space as

Mmoo M M) (A mom  m M
(WZV(R)v gKO 7601’;(05 a)z,Ko’w3,K0) = (m2v(R)y gKO9(01,/(07602’/(070)3,[(0)/0)'

. o m m m :
By rescaling, we have (DJTZV(R),gKO’L,a)l,KO,L,a)z’KO,L,a)&KO,L) for any scaling
parameter L > 0, where

m o o_ 72 M m g2 M .
gK(),LZL 8o a)i’KO,L=L Wi o i=1,2,3,
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Remark 2.1

The model space has the following properties. The cross section r = ry is an
infranil 3-manifold. There is a holomorphic map ugy : 95, (R) — C defined as
Usn = r2e2V =161 , with torus fibers. The infinite end of the model space compactifies
complex analytically by adding a singular fiber of type L.

2.2. Choice of connection form
In this subsection, we make some important remarks about our choice of connection
form. The connection form satisfies

d0 = 2d6, A db, @2.11)
T

and (*® = —@. Since dim(Hle(ﬁ)) = 2 and is generated by d6; and d6,, more
generally we could have chosen

6= %(0”3 — 0,d0, + df + pd6; + qdby), 2.12)

where f : U — R, and P,q € R. Note that O =-0 implies that p = 0 and
f(r,01,0)+ f(r,01 +m,—0,) =c (2.13)
for a constant ¢ € R. The mapping
c
(ﬂf(i’,91,92,93)5(F,91,92,93+5—f) (2.14)
commutes with o1, 02, 03 and (. Moreover, we have
936 = %(d63 — 0,d0) + qdby). (2.15)
Next, define the mapping

(pq(Ql, 92, 03) = (91 —dq, 92, 93 —q@z). (216)

It is straightforward to compute that ¢, also commutes with o1, 02, 03 and ¢. Clearly,
we have ¢ go}@ = O, so the mapping ¢ s o ¢, is an isometry of the Gibbons—
Hawking metric g}f’j with respect to the two different choices of connection form.
Since the mapping ¢r o ¢, induces a diffeomorphism ¢ s o @, : i)?th(R) Jt—
93?2,, (R)/t, this mapping is an isometry of the quotient metric. Therefore, we may
assume without loss of generality that f = 0 and p = ¢ = 0, so any choice of
connection form is equivalent to ® up to diffeomorphism.
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Remark 2.2
If we replace ® in (2.7), (2.8), and (2.9) by

®= %(d03 — 0,d0, + df +qdb,) 2.17)
to get @y, Wy, Wk, then
<p;(p;(51,5],51() = (wy,co8q -wy +sing - wg,cosq - wg —sing - wy).
In other words, we can use the standard ® after a hyper-Kihler rotation.

2.3. ALG model space
In the ALG case, we have the following definition of the model space.

Definition 2.3 (Standard ALG model)
Let B e (0,1]and r e H= {r € C | Imt > 0} be parameters in Table 1, and let L > 0
be a scaling parameter. Consider the space

{(%, V)| arg% €[0.2nB]} C(CxC)/(Z&®Z), (2.18)
where Z @ Z acts on C x C by
(m,n)-(%,V)= (%,"//—i- (m +I1‘L’)-L), (m,n)eZd7L. (2.19)

We can further identify (%, 7) with (e¥~ 12789 ¢=v=127B 4} o obtain a manifold
€11 Define

CprL(R)={|%|>R} CCp1. (2.20)

Then there is a flat hyper-Kéhler metric

1 ) : _ _
g“v’:E(dﬂg/®d02/+d%®d%+d”//®d“l/+d”//®d7/) (2.21)

on €g ;1 (R) with a hyper-Kihler triple

wf =——

wS =Re(d% ndV),  of =Im[du AdV).

AU NdU +dV AdY),

Each flat space (Cg .1 (R), g€ %) given as the above is called a standard ALG
model.
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Let Xg be an ALG gravitational instanton with an ALG model €g ;1. Table 1
exhibits some important geometric invariants of Xg. By [8], X is biholomorphic to
a rational elliptic surface minus the fiber at infinity and the first line of Table 1 is the
Kodaira type of the fiber at infinity. The second and third lines are the parameters in
€g.1.1- By [9, Theorem 1.10], any two ALG gravitational instantons with the same
ALG model €g . 1, are diffeomorphic to each other, so the second Betti number in the
last line of Table 1 is well defined.

Remark 2.4
The model space has the following properties. Letting r = |%/|, the cross section {r =
ro} is a flat 3-manifold. There is a holomorphic map ue : €g ;,1.(R) — C defined

asue = U %, with torus fibers, which have area L2 - Imt. As mentioned above, the
infinite end of the model space compactifies complex analytically by adding a singular
fiber of the specified type in the first row of Table 1.

3. Building blocks and approximate metrics

In this section, we will describe the construction of the “approximate” hyper-Kéhler
triple, using a gluing construction. We will divide the K3 surface into the following
regions: the ALG], bubbling region, the Gibbons—Hawking neck transition region, the
Ooguri—Vafa regions, and the collapsing semi-flat hyper-Kéhler structure away from
singular fibers.

We start with an elliptic K3 surface g : KX — P! with an I, -fiber for some
1 <b < 14 and I; -fibers of number (18 —b). Away from all singular fibers, we choose
the hyper-Kihler structure as @*', given by a semi-flat metric (see [10, Section 2.2]).
Near the I; -fibers, we glue in Ooguri—Vafa metrics as in [10] and [23]. These regions
contribute exponentially small error terms to the weighted estimates, so in the follow-
ing we will take this as understood, and will not consider those regions in any detail.
We will denote this region of the K3 surface by K* = K \ D*, where D* is the I}-
fiber, and we will continue to denote the “approximately hyper-Kahler” definite triple
on this region by ®* even though it is not semi-flat near the I, -fibers.

Near the IZ -fiber, as in [10], we consider the local double cover, which is an I,p-
fiber. We choose local coordinate ¢ on the base of the local double cover and local
coordinate 2" € C/(Zt1(#') ® Z12(#)) on the fiber of the local double cover such
that Q = d 2" A d¢/, and for some holomorphic function 7 (%),

(#)=1 and (%)= log? + h(¥). (3.1)

b
wa/—1
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3.1. ALG] bubbling region

Given a fixed v € {1,2,3,4}, let (X, g%, ®¥) be an ALG; gravitational instanton
with parameters v, kg, and L. Without loss of generality, by scaling we can assume
that L = 1. Recall that the model space is the Z,-quotient of the Gibbons—Hawking
model 915, (R), where the Riemannian metric g™ and hyper-Kihler triple @™ of
the Z;-covering space Moy (R) are given by the following explicit formulas (as in
Section 2) when r is sufficiently large:

g™ = V(dr? + r2d6? + do2) + V' @2,
o™ =Vdx Ady +db, A O, (32)

ol =Vdx ndf—dy AO,  oF =dx A©O + Vdy Adbs,

where V = ~logr + ko and ko € R. To perform the gluing construction, we will take
a large region in X and appropriately scale down both (g%, ®%) and (g™, 0™). We
will fix parameters A and t such that

-~ >

A—0, t—0, o — 0. 3.3)
Let us consider the rescaled coordinates ¥ =A-x, ¥ = A -y for (x,y) € B,—1(0%) C
R2. Immediately, 7 = (¥ + )72)% = A - r. We will work with the cutoff region X \
{r > 20~} with the rescaled ALG* hyper-Kihler structure (%, %) = (2. gX, 12.
®%). Then the rescaled metric and hyper-Kihler triple on the asymptotic model can
be written in terms of the rescaled coordinates:

~ Vv - Vv 1
V=T+2 log7 +xo, Tz—log(—) > 1, (3.4)

b1 b1 A
22 g™ = V(A5 +d§2 +A2d02) + A2 V1. 02, (3.5)
220l =V . dindj+A2-doy A0, (3.6)
22wl =XV dindf—A-dj AO, 3.7)
A2 0P =2 dZiAO+A-V-dj Adb. (3.8)

Note that the cutoff region becomes O,((p) = X \ {F > 2t} in terms of 7.

3.2. Neck transition region
The next building block is the neck transition region. To begin with, we take a flat
product metric on Q = R? x S! = R? x (R/27xZ) with 0* = (02,0) e R x S,

g2 =dx* +dy* +d02 =dr® +r%d6? +d62, 6, €]0,2x]. (3.9)
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For fixed k¢ in (3.2) and small parameter A < 1, let
P ={p1, p2 - Pavyan} C (RZ\{0%}) x {0} C Q (3.10)

be a fixed set such that the following properties hold.
(1)  (Balancing condition) Let dy,, = d 2 (0*, p,) for any 1 <m < 2v + 2b. Then

2v+2b
> log(1/dm) + 27 Imh(0) = 27k, (3.11)
m=1
where £ is the holomorphic function in (3.1).
2) (Zy-invariance) ((Pm) = Pav+2b+1—m forany 1 <m <2v + 2b.
Let P be the dilation of the set P by A~!. More specifically, we define

=A% AT 50,00 € (RP\{0?}) x ST, 1<m=<2v+2b, (3.12)
where Py = (Xm, Ym,0). Then there are constants ty > 0 independent of A such that
- A1 <d9(pe.0%) <yt A7, (3.13)

A <d%(pa.pp) <ip" AT 1<a<B <20 +2b. (3.14)

For every p,, € P with 1 <m <2v + 2b, there exists a unique Green’s function G,
on (R2 x S, g2) that satisfies —A g2 Gm =278y, and has the asymptotics

<C.e7d%G@Pm) 5 d9(x, P) — oo. (3.15)

1 1
G — —log —————
™ om R0 (x. )|

The proof is standard and we omit it. The above Green’s function was also used in [10]
to construct the neck transition region (see [10, Lemma 4.1]). Let Gy = an”:fb Gm
be the superposition that solves the equation —A 0 Go = 27 Zi": 12b 8p,,- We also
take

wtb 1 ) . _
G = "ﬂ log(x)+%-logr—l—Go—i—Imh(/M(x—i-\/—ly)), (3.16)

where A = A5, r = A7, and h is the holomorphic function defined in (3.1). Letting
T=_ log(%), wehave A = e~ . Switching to the rescaled metric §¢ = 122, let
us discuss the asymptotic behavior of the Green’s function G in terms of the distance
function 7, which will be used in the discussions of the rescaling geometry in the later
subsections. Applying (3.11) and (3.16), then the following holds for any sufficiently
small A < 1and x € Q.

(1) (Near the origin) If 7(x) — 0, then G has the expansion

Gax) =T + o + — -logF(x) + E(x). (3.17)
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where |E(x)| < C-A-7(x) = C - A% - 7(x) for some constants C > 0 inde-
pendent of A.
(2) (Near the infinity of Q) If 7(x) — oo, then

G(x) —Im2(A- )|

b . o C-A?
= |62~ (7= ogF) +mrG- D) | = =5 319
where g: =X + +/—1y, C > 0 is independent of A, and , is the function in

G.1.
3) (Near a pole p,, € P) If de (x, pm) <4 + for some p,, € P, then there exists
a constant C > 0 independent of A such that

‘Gl(g) - (Gm@) L %logdm)‘ <cC

Zv—l-ll 1
-log( — ).
2 g)t

(3.19)

T’ =

@) (Bounded region) If there exist Rg > 0 and do > 0 such that R L<7(x) <Ry
and d2(x, P) > %, then |G, (x) — T| < C, where C = C(Ro,do) > 0 is
independent of A.

Now we apply the Gibbons—Hawking construction using the Green’s function

G,. Let N be the total space of the circle bundle S! — N 0\ (P U{0*}), where

©; is an S!-connection form that satisfies the monopole equation d®; = * g00dG,.

Then we have a family of hyper-Kihler metrics g% and hyper-Kihler triples o®
when G, > 0:

o

gV =2%(Gy - g2 + G;'03) = G, (dX* + dj* + A?d63) + A*°G; ' 03,

o] —AZ(GAdxAdy+d92A®A) Gpdi ANdF + A%doy A O,
(3.20)

a)2 =A%(Grdx AdOy —dy AO) =AG, -dX AdBy—AdT A Oy,

a)3 =A%(dx AOy + Gyrdy Adby) = AdX A Oy + AGrdF A dbs.

It is easy to check that the completion (N, gV, 0?) of (J\7 , gﬁ ,wﬁ ) along the set
P of monopole points, called the neck transition region, is smooth and hyper-Kéhler.
Moreover, the neck transition region (N, g, @®) is invariant under the involution
(1) = Z,, and hence it descends to a hyper-Kihler manifold (), g”%, "), where 0t =

N/{1).
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3.3. Attaching the pieces

Let (X, g%, %) bean ALG; gravitational instanton of order 2. We will next glue the
end of X onto the neck transition region N near the origin. By definition, there exist
a compact subset Xg C X and a diffeomorphism W : 9t — X \ Xg such that for any
keN,

Ve (WX —0™)| < - (r- V() 7 (3.21)
Thanks to the following lemma, we are able to compare the two hyper-Kihler triples
A2 - 0™ and @V as 7 — 0.
LEMMA 3.1
There exists a diffeomorphism
UV {x e N [t<F(x) <2t} — {x e M|t <7(x) <2t} (3.22)
such that (WN)*dr = dr, (WY)*d6; = d6;, (YV)*db, = db,, and
WM)*0 =0, + 1%t (3.23)
Sfor some 1-form ¢ on {x € Q |t <TF(x) <2t} that satisfies (*n*{ = —x*(, and
Ve (@0 < G- Rt veTh) T (3.24)
VEL (@)% 0™) oY) < G - Xt F (o )T (3.25)
for any k € Ny. Moreover, YV descends to a diffeomorphism
P {x eM[t<F(x) <2t} — {x e M|t <F(x) <2t}. (3.26)
Proof
The proof is the same as that of [27, Lemma 6.1]. Here we only mention the major
difference. First, both & and 9 can be viewed as principal S!-bundles over U C
R? x S with the connections ® and ®, respectively, where U = R? \ Bg(02). One
can easily check that they have the same Euler number 2v when t < 7(x) < 2t.

Therefore, there exists a bundle isomorphism F : N — M which covers the iden-
tity map on U x S!. Moreover, the curvature difference is given by

F*(d©)—d®) = %g o d(E), (3.27)

where £ € C*°(Q) is the function given by the expansion (3.17). Applying the
asymptotic estimate in (3.17), we have that

¥ 0 d(E)|,» <C A-V(e™H (3.28)
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Standard Hodge theory implies that there exist a diffeomorphism W# , a flat connec-
tion Oy, and a 1-form ¢ on U x S such that

(W)*0 - O = Opa + ¢, (3.29)

Vit < Ce-X- R ye )~ E (3.30)

As discussed in Section 2.2, the flat connection ®g,, can be removed by appropriately

choosing a bundle diffeomorphism. So the proof is done. ([
LEMMA 3.2

There exists a triple of 1-forms & on {x € N |t <F(x) <2t} such that 1*& = & and
W02 0™ — 0V = dt. (3.31)

Moreover, & satisfies the estimate
IVEEI <G X8 (- V(e HE) T (332)
for any k € Ng. Moreover, WV descends to a diffeomorphism

W x eN|t<F(x) <2t} — {x e M| t<F(x) <2t}. (3.33)

Once we have Lemma 3.1, the proof of Lemma 3.2 follows from the same argu-
ments as in [27, Proposition 6.2]. We omit the details.

Next, we glue the cutoff region {r < 20~!} C X as introduced above into the
neck region 1. We define the diffeomorphism

O = (VoyhH! (3.34)

from {07! <r <207!} C X to a subset {t <7 <2t} C 91. Combining Lemma 3.2
and the asymptotic estimate of an ALG™ gravitational instanton, we have the follow-
ing.

LEMMA 3.3
There exists a triple of 1-forms n* on {x € M|t < F(x) <2t} such that (d~1)* (A2 -
0X) — 0™ = dnX and satisfies the estimate

VEanXgm < Ce- Q2 +1-8) - (- V(e™H3) T (3.35)
for any k € Nj.

Next, we will glue a subset of K™ onto the end of the neck region with 7 large.
As shown in [23, Construction 2.6] and [9, Proposition 2.3], the hyper-Kéhler triple
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272 . @ of the rescaled semi-flat metric on K *, up to a Zp-covering, can be written
in terms of the Gibbons—Hawking ansatz by applying the harmonic function

- b -
Vg=Imy(A-{) =T — —log7F +Imh(A-C) (3.36)
b4
which is the leading term of (3.18). Then we have the following lemma.

LEMMA 3.4

For any sufficiently small parameter A < 1, let r), be a large number such that 1 <
G (x) <100 as ry <7(x) <2ry. There exist a triple of 1-forms 3*f on {x e N | ry <
7(x) < 2r;) and a diffeomorphism ®° from {x € M| r), <F(x) <2r;} to a subset of
K* such that for all k € Ny,

o™ — (@) A7 0%) =dy, (3.37)
VEan|gn < Cp - A% A1HE, (3.38)

Notice that (3.38) follows from (3.18), and r, is comparable to 2L

With the above preparations, we are ready to define the closed glued manifold
on which we will construct a family of collapsing hyper-Kihler metrics with a given
ALG™ gravitational instanton bubbling out. Now let us take the neck transition region
M equipped with the hyper-Kihler triple @™ for any A < I, as constructed in Sec-
tion 3.2. In the region {x € 91 | t < 7(x) < 2t}, we glue I with the finite part {r <
207!} of an ALG™ gravitational instanton X using the diffeomorphism ®. In the
region {x € | ry < F(x) <2r,}, we attach DN with J* using the diffeomorphism
®" as in Lemma 3.4. Using the above gluing maps, we obtain a closed smooth 4-
manifold M. Now we construct a family of approximately hyper-Kihler triples @ ;,
on Mj.

LEMMA 3.5 (Approximate hyper-Kihler triple)

For any sufficiently small parameter A < 1, let r), be a large number such that 1 <
G;.(x) <100 as ry <7(x) <2r;. Then there exist two triples of 1-forms 3% and y*
such that the glued definite triple

Az.wX fft,
@r= 0" +d@- X —y ) t<F<2r, (3.39)
A2 @ F>2r

satisfies the following estimates with respect to the associated Riemannian metric g,
for any k € Ny:



244 CHEN, VIACLOVSKY, and ZHANG

sup |VE (@1 — (@7)*(A?-0¥))|

t<r<2t &2
<C- (W24 (£ V(e H) T, (3.40)
sup  |VE (@2 — (@) (A2 0 )z,
r)<t<2r,
< Cp- A2 A2k (3.41)
where J = e~ = A b, @ and r are smooth cutoff functions satisfying
1 7F<t, J " 1 7>2ry, (3.42)
Q= N an = ~ .
0 7=>2t, 0 7=<r,

and w*' is the hyper-Kidihler triple of the semi-flat metric with area of each fiber equal
to A - A and diameter comparable to 1.

Proof
The proof is straightforward. The error estimate in the region {t < 7 < 2t} is given by
Lemma 3.3, and the error estimate in {r) <7 < 2r;} is due to Lemma 3.4. O

It turns out that the manifold is indeed diffeomorphic to the K3 surface, but for
now we do not need this fact, we only need the following calculation of the Betti
numbers.

COROLLARY 3.6
For A sufficiently small, the smooth 4-manifold M satisfies

bY(M;) =0, b3 (M,) =3, b2(M;) =19, x(M;) =24. (3.43)

Proof

This is proved using a Mayer—Vietoris argument and the estimates in Lemma 3.5,
which show that A% (M) is a trivial bundle if A is small. We omit the details which
are similar to [27, Proposition 6.6]. O

4. Metric geometry and regularity scales

To begin with, we list the notation. We will always fix a small parameter A < 1.

(D Let us denote g, = 22 £,. Then it holds that there is some constant Cy > 0
independent of A such that CO_1 < Diamyg, (M}) < Co.

(2) We define the smoothing function ¢ of the distance function 7 by
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A-Ro F(x)=<A-Ro,
tx) = qF(x) 21-Ro=<F(x)=ry,
2r), 7(&) >2r,,
where R is the constant R in Definition 1.8, and r, is the constant in

Lemma 3.4.
(3)  Givenv € Zy, let T® = 221 . Jog(4), and let d be the following:

(T3 d2(x, pm) < (T")!
for some 1 <m <2v 4+ 2b,
(T2 -d2(x, pm) 2T <dQ(x. pm) <1

o(x) =
for some 1 <m <2v + 2b,

1 _
(T"+ﬁlogm)z 2<d2(x, pm) <9 -A7!
d2(x, pm) for some 1 <m <2v + 2b.

4) Let us define 7 = — log(%) and a smooth function £7 that satisfies

1 F(x) <A Ro,

T + o + 5 logF(x) 2X-Rg <F(x) <7,
Lr(x) = P .

T—l—Imh(O)—;logr(&) 21 ST (x)<ry,

1 7F(x) > 2r;.

Next, we describe the C**-regularity scale.

Definition 4.1 (Local regularity)

Let (M™, g) be a Riemannian manifold. Given r,e >0,k € N, x € (0,1), (M", g) is
said to be (r,k + o, €)-regular at x € M™ if g is at least C5? in B, (x) such that
the following holds. Let (lg(\x), £, X) be the Riemannian universal cover of By, (x).
Then B, (X) is diffeomorphic to a Euclidean disk D" such that for any 1 <i, j <n,

A ~ k A
18 — Sijlcos,ay + D, F 10" gilcogs, gy + T 81l cras, ) <€

|m|<k

where m is a multi-index, and the last term is the Holder seminorm.

Definition 4.2 (C*® -regularity scale)

Let (M™, g) be a smooth Riemannian manifold. The C*%-regularity scale Tk.o(x) at
x € M" is defined to be the supremum of all » > 0 such that M" is (r,k + «, 10_9)-
regular at x.
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Remark 4.3
Note that rg 4 is 1-Lipschitz on any Riemannian manifold (M", g), that is,

|rk,a(x)_rk,a(y)|Sdg(xfy)f VX,J’EM"- 4.1)

Let &, be the subset of M, which consists of a small annular region in X cen-
tered around the IZ-ﬁber, the neck region 1, and the ALG™ manifold X . The follow-
ing proposition gives the regularity scale estimates and bubble limits of g, on §p.

PROPOSITION 4.4
Let s be a smooth function that satisfies

A(Lr(x) T -v(x) d2(x, pm) > 20
foralll <m <2v +2b,
X (x) d2(x, pm) < 110

for some 1 <m <2v + 2b.

P

s(x) = 4.2)

>

Then the following properties hold.

(1) Givenk e Nand o € (0, 1), there exists vo = vo(k, ) such that for any suffi-
ciently small parameter A < 1 and x € 8y, the (k,)-regularity scale ri o at
x satisfies

o < r’;z‘g) <. 4.3)

2) There is a uniform constant Cy > 0 such that for every A < 1 and x € 8, we
have

_ ]
Co' <= <Co, yE€Byuyalx).

3) Let A j — 0 be a sequence, and let x ; € 8y, be a sequence of reference points.
Then the rescaled spaces (8p,5(x ;)72 - gx;.Xj) converge in the Gromov—
Hausdorff topology to one of the following spaces as A; — 0:

. the Taub-NUT space (C?,g™) and the ALG} gravitational instanton
(X.g%),
. the flat manifolds R3 R%Zx SY R? and the flat cone RZ/ZZ,
. P! equipped with the McLean metric dyy. with bounded diameter.
Proof

We will prove (4.3) by contradiction. Suppose that there does not exist a uniform
constant vy with respect to fixed constants k € Z and « € (0, 1). That is, there is a
sequence A ; — 0 and a sequence of points x ; € &, such that
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Tiea(X ;) S0 Tiea(X ;)

4.4
s(x ;) s(x ) 4

Let us work with the rescaled sequence (85,84 ;,% ;) with g, . = s(x;)72- gx; as
Aj — 0. In the proof, we will show that the C ke _regularity scale at x j with respect
to g]j is uniformly bounded from above and below as A; — 0, which contradicts
(4.4). We will derive a contradiction in each of the following cases depending upon
the location of x ;. Denote x ; = 7(x ;) € Q/Z, for any x ; € 9.

Case (1). There exists a constant op > 0 such that 7(x ;) -A;l — 0g as j — o0.
Let us consider the 09 < Ry case first. By definition, we have s(x ;) = A j Aj-Ro.
We consider the rescaled metric

g1, =X+ Ro)2ga,. 4.5)

By the gluing construction, we have that, for any k € Z,

A ck —
(Sbag)tjvxj)_>(X7R()2'gX7xOO)' (46)

Notice that the ALG™ gravitational instanton (X, Ry 2. gX) is a Ricci-flat but nonflat
space, which implies that for any k € Z and « € (0, 1) there exists a constant vy > 0
such that % < rka(Xeo) < ”70. Therefore, for any k € Z4 and o € (0, 1), val <
rk.a(X ;) < vo holds with respect to g, ;, which contradicts (4.4). Therefore, the proof
in the case o9 < Ry is complete. The proof in the oy > R case is the same.

Case (111 ). There exists some constant yo > 0 such that

A5t d2(x . pm) - T; —yo as ] — oo, @.7)

2v+1
2w

where ij = log(%j). We first assume that yo < 1. By definition, s(x ;) = ij .

Aj- (T]'.’)_% - Recall that the metric g, ; satisfies g5, = ;15 -g¥ near x ; and by (3.20),

g =23-(Gy, - 4%+ G; 0%, 4.8)
where
1 |-
Gy, (x)— T}b T 24%x. pw) <C ford®(x,pm)<ro= ZIHJRade(Q)'

Let (u1,u2,u3) be a fixed coordinate system in By, (p,,) with respect to the metric
g2. Consider the rescaled metric gyj =s5(x;)2- g, and the rescaled coordinates
centered at py, = (P1,m, P2.m> P3.m) € P,

(tiq,U2,13) = TJI?(Ml — Pim U2 — Pam U3 — D3.m)-
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Then by the explicit computations, (85,84 ;,%;) C k_converges for any k € Z , to
the Taub-NUT space (C?, g™, x o), where the Taub-NUT metric g™ can be written
explicitly in terms of the Gibbons—Hawking ansatz

g = Vog]R3 + V5 e, Vo=1+(r), (4.9)

and r is the Euclidean distance to the origin of R3. Therefore, there exists a constant
vo such that vy' < rg o (x ;) < vo with respect to the rescaled metric g ;. Rescaling
back to g, ;, we find that the above estimate contradicts (4.4). This completes the
proof under the assumption yy < 1. The proof in the case Yo > 1 is the same.

Case (1l ). For some p,, € P, the points x ; satisfy

A;l'dh‘Q&japm)'T})—)OO and A;I-Jg(gj,pm)—>0 (4.10)
as j — oo. In this case, by definition
x 1
s(xj)=A;-2;-(T))2 - d;, @.11)

where d; = dQ(L,-,pm)- We will work with g, . = s(x;)72- gx; and the rescaled
coordinates centered at p,, = (p1,m. P2,m, P3,m) € P,

@l 112, 013) = dj ' - (U1 = prms Uz — P2ms U3 — P3m),

where (41, u2,u3) is a fixed coordinate system in B,,(p,;). One can verify that
A GH 3
(86.82,.%) — (R?, g%, xo0) (4.12)

with d®° (X 00,0%) = 1. The detailed and explicit rescaling computations can be found
in [27] and [10]. Moreover, if we lift the metric to the local universal cover around
x j, then a ball of definite size radius has uniformly bounded C k.e_geometry. This
implies that rg o (x j) > vo > 0. The upper bound for rg o (x ;) follows from (4.1) and
the calculation in Case (II;). We get a contradiction with (4.4) as rescaling back to
8aj-

Notice that R3 is precisely the asymptotic cone of the Taub-NUT space.

Case (113 ). There is some constant dg such that for some p,, € P,

)L]_-I'JQ(Ej,pm)—)do as j — oo. (4.13)
By the definition of s, we have that
= 1
s(xj)=A;A; (T2 -do- (1 +0(1)). (4.14)

It suffices to work with the rescaled metric (5& A (T]*-’)% dg)~2- g2 still denoted
by &5, and prove that the regularity scale r¢ o (x ;) is uniform bounded from above
and below. Then the contradiction arises.
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Straightforward computations imply that g = d 2. g2, which is a rescaling of
the flat base metric g€ on R? x S!. Since d2(P,0*) > B, - A1 = oo, it follows
that the origin 0% € R? translates to infinity and the Z,-action limits to the identity.
Therefore, the rescaled limit is isometric to R? x S!. The collapsing keeps curvature
uniformly bounded away from P. Then there is some uniform constant vy > 0 such
that r¢ o (x ;) > vo > 0. The upper bound for r 4(x ;) follows from (4.1) and the
calculation in Case (II,).

Notice that R2 x S is the flat base of the metric g*.

Case (1l4). For some p,, € P, we have

A1 d9(x . pm) > oo and  d2(x;.pm)—>0 asj—>oo.  (419)

Let us denote d; = )LJ_.I dQ (x . pm). In this case, the definition of s implies that

- 1 12
b
5(xj):kj-kj-(Ti+Elogd—j) -d;. (4.16)
We will prove that in terms of the rescaled metric g A =5(x j)—z g » the regularity
scale rg o (x ;) has a uniform lower bound and upper bound, which contradicts (4.4).
The flat product metric g€ can be written as g2 = dx? + dy? + d62 in coor-
dinates. We also rescale the above coordinate system of R? centered around x j=

(xj,y;) by letting
& D) =dit-(x—x;. 9 —y)). 4.17)

Explicit tensorial computations show that
(Sb,ﬁxj,xj)ﬂ(Rz,ng,Oz), 4.18)

where the Euclidean metric ng has the expression ng = d32 +dJ2,. By assump-
tion, d 2 (x ;+0%)/dj — oo, which implies that the origin 0% € R? translates to infinity
and hence the Z,-action limits to the identity as j — oo.

The finite set P converges to a single point po € R? and d¥° (pg,0?) = 1. The
above collapsing keeps curvature uniformly bounded away from the point pg. So
there is some uniform constant vg > 0 such that r 4 (x ;) > vo > 0. The upper bound
for ry o (x ;) follows from (4.1) and the calculation in Case (II3).

Case (I1I). There exists some constant d such that

d%(x; P)>dy>0. #(x;)-A;'—>o00, Lj=2r(x;)—>+oo. (4.19)

There are the following subcases to analyze.
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First, assume that 7 (x ;) — 0 as j — oo. In this case, by definition,

~ 1
s(xj)=A;-L;-Fj. (4.20)

We will prove that under the rescaling g, , = (s(x;)2- gx; and (%,)) = fj_l .
(%, 7), the convergence

~ GH 2
(86.81,. %)) — (R?/Zp,d™ /7 x ) @.21)

holds, where d®°/%2 (X 0,0%) = 1, and the flat metric on R?/Z, can be written in
terms of the limit coordinate system of (X, ). Notice that R?/Z, is the asymptotic
cone of the ALG:= space (X, gX JwX ). Moreover, we will show that the rescaled met-
rics g, ; has uniformly bounded curvature away from the cone tip. This suffices to
produce the desired contradiction because the upper bound on rg 4 (x ;) follows from
(4.1) and the calculation in Case (II4).

To prove the above claim, let us choose a domain

Ug, ={x eNCSCM, |&' <Fx) <&} (4.22)
for a sequence &; that satisfies lim; . i—f/ = 0. Then for any x ; € U,

szi(ij) =1+o0(l) asj— oo. (4.23)
Lj
By explicit tensorial computations on the Gibbons—Hawking metric g?, we can
check that the Z-covering of (Ug;, guj) will smoothly converge to the flat metric
dR2, + d$2 on R?, where (00, Joo) is the limit of (£, ). Also notice that the
limiting reference point x _ satisfies d R? (X oo, 0?) = 1. Then the Z,-quotient metric
gqj. converges to the flat metric on R?/Z,.
Next, we consider the case 7(x ;) — dg > 0. By definition,

s(xj)=2; .Tj% ~dg - (1 +o(D)) (4.24)

as j — oo. It suffices to work with the rescaled metric (5& Ix Tj% dy)T- g, still
denoted by guj, and we can show that the regularity scale rg o(x ;) has a uniform
lower bound. Moreover, the rescaled limit in this case is isometric to Rz/ Zo as well.
We skip the detailed computations since the arguments are the same.

The last possibility is when x ; satisfies 7(x ;) — 0o and L ; — co. In the proof,
we still use the rescaled metric gkj = (s(x;)) 72" gx; and the rescaled coordinates

(x,9)=F ; . (x,y). The computations are the same. We only mention that, as 7; =
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F(x ;) becomes very large, one can obtain the rescaled limit R?/Z, aslong as L; —
00.

When 7; is sufficiently large such that L ; — Lo > 0 as j — oo, we will obtain
another rescaled limit. This becomes Case (IV).

Case (IV). There is some constant Lo > 0 such that L ; — Lo > 0. In this case,

~ 1 ~
s(x;)=Aj-L;-Fj=2A;-Fj-Lo-(1+0(1)) (4.25)

as j — oo. In the meantime, notice that
b -
Lj=(T; +1mh(©) — ~logF; ) - (1+o(1)) (4.26)
T

as j — oo. Itis easy to verify that s(x ;) is a bounded constant. Then the rescaled limit
is the McLean metric on P!. Moreover, the convergence keeps curvature uniformly
bounded away from the singular fiber.

The above covers all the points on &5, which completes the proof. O

5. Perturbation to hyper-Kihler metrics

In this section, we will glue an ALG™ gravitational instanton into a region near an
I -fiber of an elliptic K3 surface wx : K — IP!. For our purpose, it suffices to assume
that the singular fibers of 7w x consist of an IZ -fiber for some 1 < b < 14 and I, -fibers
of number (18 — b). Following the notation in Section 6 of [10], we denote by &
the subset of M, which consists of a small annular region in KX centered around the
IZ—ﬁber, the neck region 91, and the ALG™ manifold X. We denote by §; , the subset
of M) which consists of small annular regions in K centered around I;-fibers and
Ooguri—Vafa manifolds. Let R, be the regular region in K. We will prove that the
glued manifold M) admits collapsing hyper-Kéhler metrics with prescribed behav-
iors. In the following weighted analysis, the weight function p as a global smooth
function on M is defined as follows:

s(x) x €8y,
p(x)={s1(x) x €8, (5.1
1 X € RA,

where s; is the canonical scale function defined in Section 6.3 of [10]. With respect
to the weight function p, we will define the following weighted Holder norms.

Definition 5.1
For any fixed parameter A < 1, let g, be the approximately hyper-Kéhler metric
defined on the glued manifold M,. Let U C M, be a compact subset. Then the
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weighted Holder norm of a tensor field y € T"*(U) of type (r, s) is defined as fol-
lows:
(1) The weighted C***-seminorm of y is defined by

1(®) = VR i)
(dg, (X, 9))*
[X]Cllz.rx(U) = Sup{[){]clli,a (x) | x €U},

- |V . .
[X]C‘/z’ﬂ (x)= SUP{Pk+a H(x)- y € Brk‘a(x)(x)}»

where 7y o (x) is the C*-regularity scale at x, & denotes a lift of x to the
universal cover of By, ,(x)(¥), the difference of the two covariant derivatives
is defined in terms of parallel translation in B, ,(x)(X), and ¥, g, are the lifts
of y, g, respectively.

(2)  The weighted C¥®-norm of y is defined by

k
_ m—u  \ym
||)(||C/i.a(U) = Z I V% xllcowy + [X]Cﬁ,a(U).

m=0

Now let us briefly describe the perturbation scheme to produce hyper-Kahler
triples from the approximate triples constructed in Section 3. This original charac-
terization is due to Donaldson [15], which has also been used in [8], [10], [17], [19],
and [27]. Let M* be an oriented 4-manifold with a volume form dvoly. A triple of
closed 2-forms @ = (w1, w2, w3) is said to be definite if the matrix Q = (Q;;) defined
by %a)i AN wj = Qj; dvolg is positive definite. A definite triple @ is called a hyper-
Kdihler triple if Q;; = §;;. Given a definite triple @, the associated volume form
is defined as dvol, = (det(Q))3 dvoly, and we denote by Qg = (det(Q))"3 O the
normalized matrix with unit determinant. Every definite triple @ determines a Rie-
mannian metric g, such that each w;, j € {1,2,3}, is self-dual with respect to g,
and dvolg,, = dvoly,.

Suppose that we have a closed definite triple @ on M} . We want to find a triple of
closed 2-forms § = (0;, 05, 03) such that @ = @ + @ is an actual hyper-Kéhler triple
on M, satisfying

1
E(a)i +0;) AMwj +6;) =46 dvoly 1. 5.2)
which is equivalent to

1
z(a)l-/\a)j +a)i/\9j +a)j/\9,-+91/\9j)

3
1
= ESij];(w,§+9,f + 2wk A Og). (5.3)
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Writing § = 61 4+ 0~ with *gwoi = +60%, we define the matrices A = (4;;) and
Se— = (Sij) by

3
1
0 =) Aijo;. SO0 A0 =Sydvoly, 1<i<j<3 (54)
ji=1

Then (5.3) is equivalent to

tf(QuA” + QoA + 40, AT) = tf(— Q0 — Sp-), (5.5)
where tf(B) = B — %Tr(B) Id for a 3 x 3 real matrix B, and Q,, is the 3 x 3 real
matrix such that det(Q,) = 1 and

1
Ea)i Nw; = (Qa))ij dvol,, . (5.6)

Then observe that a solution of

d¥n+ & =Fo(tf(—Qw — Sa—)).

5.7
d*=0, neQ (M) BR,  EeH] (M) R,

is also a solution of (5.5). Here §o denotes the local inverse near zero of
Go:. 7R3 > AR}, A tf(QuAT + A0, + A0,A47)

on the space of trace-free symmetric (3 x 3)-matrices .%(R?), and d ¥y is the self-
dual or anti-self-dual part of d §n = 6 — &, respectively. The linearization of the elliptic
system (5.7) at g = 0 is given by £ = (2 @ Id) @ R? : (Q' (M) & H, (M;)) ®
R? — (QO%(M)) ® Q3.(M))) ® R?, where

Z2=d* +dT Q' (M;) — (QUM,) & Q7 (My)).

For any sufficiently small A < 1, we will solve the elliptic system (5.7). The proof
of the existence of hyper-Kihler triples requires the following version of the implicit
function theorem.

LEMMA 5.2
Let 7 : 24 — B be a map between two Banach spaces with

F(x)=70)+ ZL(x) + A (x), (5.8)

where the operator L : A — B is linear and A (0) = 0. Assume that
(1) & isanisomorphism with ||| < Cr, for some Cp, > 0;
2) there are constants v > 0 and Cy > 0 such that:
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(@ r<(10CL-Cy)7},
® A @)= A Ds =Cn-(xla+lylla)-llx —yllaforalx,ye
B (0) C,
©  NFOls < ¢
Then % (x) = 0 has a unique solution x € 2 such that || x ||o < 2CL||-% (0)]|ss.

To apply the implicit function theorem, first we fix two Banach spaces
A= (CL4(R1 (M) & HT (M) ®RP,  B= (C2(Q3 (M) ® R,

where 11 € (=1,0), & € (0, 1), and Q1(M;) = {n € QM) | d*n = 0} The follow-
ing error estimate is an immediate corollary of Lemma 3.5.

COROLLARY 5.3
There exists Co > 0 independent of the parameters A and t such that

—u—1

| ZO) ] <Co- A2+ X-8) - AHF Ly (e™) T 4+ Co- A2 A%

Proof
Let 0, = {x €M |r <7(x) <2r}. Then by Lemma 3.5,

100 —1dllcoa ) = Co (A2 + X+ €) A4 471 y(e ) 75,
o

2 72
”Q(x)_ldncgi‘fl(mrx) ECOA 'A, .

On the other hand, the error estimate near an I;-fiber is much smaller. In fact, by
Theorem 4.4 of [23] (see also [10, Proposition 8.2]),

_ . —C2~/~1_1
Qo —1d ”02"11 (Tsy.250(51,)) <Ci-e (5.9)

for some constants C; > 0, C; > 0 independent of X (and hence A), where
T5,.25,(81,) is an annular neighborhood of definite size §o > 0 independent of A. [J

We also need the weighted estimate on the nonlinear errors.
LEMMA 5.4 (Nonlinear estimate)
There exists some constant Ko > 0 independent of A such that for any vi,v; €

B1(0) C 2, we have that

|43 (1) = A2 (v2)]| 5 < Ko - (i'l)“_l(Tb)l_Tu(HUle + [lvzlla) - lvr = valla.
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Proof
For any v1, v, € B1(0) C 2, by explicit computations,

| (1) = A (v2)| < Ko - (Id"mil + 1d " n2l) - [d ™ (n1 — n2)

’

where K¢ > 0 is independent of A. Multiplying by the weight function s(x) #*!, we
have that

s(x) T A (1) — A2 (02)]
< Ko-s(x) 7 (ld |+ 1d " n2l) - |[d~(n — n2)|.

By definition, the scale function s(x) achieves the minimum A - A - (Tb)_% when
d2(x, pm) < (T?)~! for some 1 <m <2v + 2b. Then we have that

G ERAC] R

7 n—1 by 154
<Kop-(A-1) (T°) = (”Ul ”C)L(M,\) + HUZHC&(M,O) : (”UI - UZHC)L(M,\))'

By similar computations, we also have the desired estimate for the C %%-seminorm.
This completes the proof. O

The following is the main ingredient needed to carry out the perturbation.

PROPOSITION 5.5 (Weighted linear estimate)

Let M), be the glued manifold with a family of approximately hyper-Kdhler metrics
gx. Then there exists C > 0, independent of A, such that for every self-dual 2-form
gt € B, there exists a unique pair (n,€1) € A such that for some p € (—1,0) and
a € (0,1),

LmET)=¢T, (5.10)

”n”C;]L'a(MA) + ||§+”C3f1(<MA) = C||g+||C2f1(M;L)' (5.11)

The proof is very similar to the proof of Proposition 8.7 in [10] which follows
from a contradiction argument and applying various Liouville theorems on the blowup
limits. We omit the details and only mention the outline.

(1) If the blowup limit is an ALF or ALG™ gravitational instanton (X, g, p) with
p € X, the Liouville theorem invoked in the proof is that any 1-form w that
satisfies Agw = 0 and limg, (x, p)—>00 |@(x)| — O has to vanish everywhere,
that is, ® = 0 on X. Indeed, the Bochner formula and the Ricci-flatness imply
that A|w|? > 0, and the vanishing of w is then a consequence of the maximum
principle.
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(2)  If the blowup limit is a flat space in Proposition 4.4, namely, R3, R? x S, R?,
R?/7Z,, then we will quote the following Liouville theorem: if w € (—1,0),
then any harmonic function f that satisfies | f| < C - r* for any r € (0, 00)
has to be identically zero, where r is the Euclidean distance to a fixed point.
3) The Liouville theorem corresponding to (P!, dyy ) is Proposition 7.8 in [10].
Combining the above results, we now prove the perturbation theorem.

THEOREM 5.6

Let (X, g%, %) be an order-2 ALG}, gravitational instanton for some v € {1,2,3,
4}. Then for any integer 1 < b < 14 and for any sufficiently small parameter ) < 1,
there exists a family of hyper-Kdhler structures (M, hj, @y, ) on the K3 surface M
such that the following properties hold as A — 0.

(1) We have Gromov—Hausdorff convergence (M, h}) ﬂ) (P, dwi), where
dwm is the McLean metric on P' with a finite singular set 8 = {qo.q1, ...,
G1s—p} C PL. Moreover, the curvatures of hy, are uniformly bounded away
from &, but are unbounded around §.

2) The hyper-Kdhler structures (My, hj, @y, ) satisfy the uniform error estimate
for some positive number 0 < e < min{1, 7},

113 = gall o agyy < € - (W27 +A579), (5.12)

lon, = @1ll o uyy < C - (A7 +A57), (5.13)

where g, is the metric determined by the definite triple @ ), and the C(? “*_norm
is the weighted norm in Definition 5.1 when k = 0 and 1 = 0.

(3)  Rescalings of (M, hy,®p,) around q; for 1 <i < 18 — b converge in the
pointed C k-topology (for all k € 7.1 ) to a complete Taub-NUT gravitational
instanton on C2.

(4)  Rescalings of (M, hy,®p,) around qo converge in the pointed C k_topology
(for all k € Z.1.) to the given ALG? gravitational instanton (X, g%, %) or
one of (v + b) copies of complete Taub-NUT gravitational instantons.

Proof of Theorem 5.6
We will apply Lemma 5.2 to perform the perturbation. Let

Cor=Co- A2+ 4-8) A M w1y )5 12222, (5.14)
Cy=@G- )1 (Th)y = (5.15)

be the constants in Corollary 5.3 and Lemma 5.4. Recall that A and t are chosen such

that 0 = % — 0. To prove (5.13), we only need to fix the parameter t = ATo for a
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fixede <l andlet u = -1+ 16_0' Then it is obvious that Ce, - Cy — 0 as A — 0.
The uniform linear estimate is given by Proposition 5.5. Then Lemma 5.2 implies that
there exists a solution which satisfies the desired estimate. Moreover, (5.13) follows
from (5.15). The classification of the intermediate bubbles is given by Proposition 4.4
and noticing that the solutions % are sufficiently close to g . O

6. Proofs of Torelli uniqueness theorems
In this section, we complete the proofs of Theorem 1.10 and Theorem 1.5. We also
explain the reason for the order 2 assumption in Theorem 1.5.

6.1. Proof of Theorem 1.10: ALG* Torelli uniqueness

Let (X,,g,w) and (X,, g’,w") be ALG* gravitational instantons on X,, with the same
parameters ko, L, which are both of order 2 with respect to the coordinates ®x, and
which satisfy (1.11). Let mx : K — P! be any elliptic K3 surface with a single fiber
of type I, call it D*, but has all other singular fibers of type I;. Let U = {x € M, |
F(x)>thand V ={x € M, | 7(x) <2t}. Then M) = U U V. The gluing procedure
in Section 3.3 produces approximate hyper-Kihler triples @, and @', on M. Note
that U NV deformation retracts onto the 3-manifold J3.

LEMMA 6.1

The manifold J3 = Nil;v /7, is an infra-nilmanifold, which is a circle bundle of
degree v over a Klein bottle. Furthermore, we have b'(43) = 1, with Hle (43) gener-
ated by the 1-form d6,.

Proof

The first statement follows since Nil3,, is a circle bundle over a torus, and the quotient
space is then clearly a circle bundle over a Klein bottle. From [27, Proposition 2.3],
we have b! (Nilgv) =2, with H, le(Nilgv) generated by d0; and df,. These forms are
harmonic with respect to any left-invariant and Z,-invariant metric on Nil3,,. Of these
generators, only d6 is invariant under this action, so the lemma follows from the
Hodge theorem. O

The Mayer—Vietoris sequence in de Rham cohomology for {U, V'} is

0 » Hig(U) @ Hig (V) —— Hip(Z3) U

6.1)
& Hig(My) —— Hig(U) © Hip(V) —— Hir(Z)) — 0.

From the gluing in Section 3, we have
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(@ H*A? - w) -0 =dy, (@ H*A-w) - =dy, (6.2)

where 7 and 5’ are triples of 1-forms on {x € 91| t < 7(x) < 2t}. From Lemma 3.5,
on the region {x € 91| t <7(x) < 2t}, the approximate hyper-Kahler triples are

d=0"+d-n), & =" +dp-7), (6.3)

where ¢ is a cutoff function which is 1 when 7(x) < t, and is 0 when 7(x) > 2t.
Clearly, the image of [@;] € H%(M,) in H&(U) ® HZ (V) is ([wi], [0]]). Since
the two ALG™ gravitational instantons have the same [w;] = [@]] and we also use
the same o/ for both, we see that the image of [w;] and [w]] are the same. So their
difference is in the image of H j (43). To see the image, we start with d6; € H{; (43).
It can be written as the difference of ¢d6; on U and (¢ — 1)d6; on V. The form
d(pdb6,) = d((¢p — 1)d61) can be viewed as a 2-form on M, which is the image of
d6y in HZ(M,). Therefore, [@;] and [@]] may differ by a multiple of [d(¢d6;)].
Fortunately, we can modify the 1-form 7; by the same multiple of d9;, and we then
obtain [@;] = [@]] € H (M}). This modification will not affect any of the estimates
in the proof of the gluing theorem. In fact, the change of »; contributes an error term
of the size of |d6|, which can be absorbed in the error estimate (3.40). Notice that
the estimate |d6;| = O(r~'(logr)~'/?) holds for a fixed ALG* model, and simple
rescaling computations justify the claim.

Then we need to perturb the approximate hyper-Kéhler triples to be actually
hyper-Kéhler. The resulting cohomology classes will not be exactly the same any-
more, but the span of them will remain the same since J€J2r(,M 4) is spanned by
the approximate hyper-Kihler triples. Therefore, by a rescaling and a hyper-Kéhler
rotation, we can get the same [a)iHK] on M. Observe that the rescaling factor con-
verges to 1 and the hyper-Kéhler rotation matrix converges to the identity matrix
as A — 0. By the Torelli-type theorem for K3 surfaces, there exists an isometry
between them which maps the hyper-Kéhler triples onto each other, and induces the
identity mapping on H?(M3) (see [2], [5], [36]). Therefore, the restriction of these
maps to the ALG™® bubbling regions will then converge to an isometry of the ALG*
spaces as A — 0, since the isometry must map the ALG* regions to each other. Obvi-
ously, this isometry will map the hyper-Kihler triples onto each other. The homology
class of a fiber generates Hp(43;R) = R and is nontrivial in both H,(U;R) and
H,(V; R) under the natural inclusions. From the Mayer—Vietoris sequence in homol-
ogy, it follows that the natural mapping H,(V;R) — H,(M,;R) is injective. By
duality, the restriction H?(M;;R) — H?*(V;R) = H?(X,;R) is surjective, which
implies that the isometry of the ALG" regions also induces the identity map on
H?(X,;R) = H%(X,), so we are done.
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6.2. Proof of Theorem 1.5: ALG Torelli uniqueness
The next goal is to prove Theorem 1.5, which requires the following gluing result.

THEOREM 6.2

Let (X, g%, wX) be an ALG gravitational instanton of order 2 with x(X) = yo. Then
there exists a family of hyper-Kdhler structures (M, hj, @y, ) on the K3 surface M
such that the following holds as A — 0.

GH

(1) We have Gromov—Hausdorff convergence (M, hy) — (P!, dwi), where
dm is the McLean metric on P! with a finite singular set 8 = {qo.q1., ...,
G24—yo} C PL. Moreover, the curvatures of h), are uniformly bounded away
from &8, but are unbounded around §.

(2)  Rescalings of (My,hj,@p,) around q; for 1 <i <24 — yo converge to a
complete Taub-NUT gravitational instanton on C2.

(3)  Rescalings of (M, h,,®p,) around qo converge to the given ALG gravita-
tional instanton (X, g%, wX).

Proof

The proof is a straightforward generalization of [10, Theorem 1.1] using a general
hyper-Kéhler triple gluing argument as in Section 5. In [10], we assumed that the
ALG gravitational instantons were isotrivial which was necessary to preserve the
complex structure. Since we are not fixing the complex structure on the K3 surface,
only the order 2 assumption is necessary. For this, we just need to note that [10,
Proposition 5.6] holds for any order-2 ALG space; the isotrivial condition is not nec-
essary. O

Let (Xg,g.@) and (Xg, g’,®") be ALG gravitational instantons on Xg with the
same parameters 3, T, and L, which are both of order 2 with respect to the coordinates
@y, and which satisfy (1.4). The parameter 8 determines a fiber D of type I, I,
III, IV, IT*, TIT*, IV* as in Table 1. Let g : K — P! be any elliptic K3 surface
with a single fiber D* of the dual type, which means Iy, IT*, IIT*, IV*, II, IIL, IV,
respectively, but has all other singular fibers of type I;. We use an attaching map ¥
from{A"l<r<22"1YCcX g to a small annular region in X centered around D* to
obtain a manifold M, where A is sufficiently small. Let U be the subset such that
r > A~1, and let V be the subset such that » <2A~!. Then M =U U V.

The gluing procedure in the proof of Theorem 6.2 produces approximate hyper-
Kihler triples @, and @/ on the M. Note that U N V deformation retracts onto the
3-manifold N g’ which is the restriction of an elliptic fibration with a single fiber of
type D* to S1.
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LEMMA 6.3
The manifold N E is flat and satisfies b* (N é’) =b%(N é’) = 1. Furthermore, a gener-
ator for bl(Ng) is the 1-form d6,, where 01 is the angular coordinate on the cone

€2xp).

Proof
The 3-manifold N is a T>-fibration over S'. We cover S' = R/27pZ by two

intervals (0,278) and (78,37f). Then we can write Ng’ as the union of N§1 =
(0,27f) x T? and Nj , = (B, 37f) x T?. The Mayer-Vietoris sequence is

Hap (NG) —— Hag(Nj,) @ Hgp(NG,) —— Hag(NG, NN ,) U

L Hgp(N3) — Hig(N5,) & Hig(Njo) —— Hap(Nj; N NG ,).

If the monodromy group is A, then the map
Hle(N,g,l) ® Hle(N,g,z) =R’®R* - Hle(Ng,l N ngﬂ) =R*®R> (64

is given by (Cy, C,) > (C; — C5,Cy — AC,) for Cy, C, € R?, whose kernel is the
same as ker(A — Id). For singular fibers of finite monodromy, ker(A4 —Id) = 0. The
map

HJ)R(NEJ) ® HfR(NE,z) - H(?R(Ng,l n NE’,Z) (6.5)

is a rank-1 map (a,b) > (@ —b,a —b). So Hjz(N;) = R and it is generated by the
image of (27f,0) € H% (N 5,1 NN 3,2). To see this image, we note that the difference
of the function #; on (78,37 B) x T? with the function 8; on (0,278) x T? is exactly
27B on (0,78) x T? and 0 on (B, 27B) x T2, and all their derivatives are d6;. So
the image of (27, 0) is d6;. In other words, we have proved that H j, (N g’) = (df,).
By Poincaré duality, bz(Ng) =bh! (Ng) = 1. The flatness of Ng is a corollary of the
fact that the flat metric on N 5”1 and N ﬁ3’2 can be glued into a flat metric on N g’ O

The proof of Theorem 6.2 uses [10, Proposition 5.6], which implies that
CI>}‘(B(w)—w€ =dny, <I>3‘(B(w’)—w€ =dy (6.6)

for some triples of 1-forms # and %’ defined on the end of the model space. On
the region U, away from the damage zone, the approximate hyper-Kihler triples are
exactly the same (they are semi-flat, with I; -fibers resolved using Ooguri—Vafa met-
rics). Using the same Mayer—Vietoris sequence (6.1), and Lemma 6.3, we can adjust
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the 1-form 7; on the “damage zone” by a term of the form d(¢68;), to arrange that
[i] = [®]] in H}(M}). The remainder of the proof is then exactly the same as in
the ALG™ case above.

7. Results on the period mapping

In this section, let (X, g, @) be an ALG or ALG* gravitational instanton of order 2. In
either case, we define a smooth function s : X — [1, 00) as follows. In the ALG case,
let s be a smooth extension of r via the diffeomorphism @ : €g ; 1.(R) — X \ Xg,
where ® and r are defined as in Section 1.1. In the ALG* case, let s be a smooth
extension of s via the diffeomorphism @ : 95, (R) — X \ Xg, where ® and s are
defined as in Section 1.2. Our analysis required the following weighted Sobolev
norms.

Definition 7.1
Let (X, g, ®) be an ALG or ALG* gravitational instanton. For any fixed § € R, we
define the weight function o5 on X as

o5 =s071. (7.1)

Then the weighted Sobolev norms are defined as follows:

ol 300 = ([ lo- 2 avolx ).
X

Nl—

D=

k
[lygaon = (2 IV"l2: )
m=0

Remark 7.2

We remark that this convention differs from the convention in [7, Definition 4.1] in
the ALG cases, but agrees with the convention in [11, Definition 4.1] in the ALG*
cases.

Our convention on the Sobolev weight is explained by the following important
lemma.

LEMMA 7.3
Let (X, g,w) be a gravitational instanton of type either ALG or ALG* of order 2.
For any § € R and k € Ny, there exists a constant Cy s > 0 so that
k
Z su§|(s(x))m_8Vma)(x)’ < C||w||W8k+3.z(X) (7.2)

m=0%€

for all € Wi32(X),
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Proof
The proof is a standard rescaling argument. (See [11, Propositions 3.2 and 3.3] for
more details.) O

7.1. Harmonic 2-forms of order 2
In order to properly define the period map, we begin with a proposition relating com-
pactly supported de Rham cohomology and decaying harmonic 2-forms.

PROPOSITION 7.4
For any ALG or ALG™ gravitational instanton (X, g, ) of order 2,

{w=0(%)€Q*X)| Aw =0}
={w=0(s?)€Q*X)|do =d*» =0}
={w=0(s%)eQ2(X)|do=d*» =0}

=Im(H2 (X) > H*(X)) = {[w] e H*(X), /D w= 0},

where D is any fiber arising from the compactification of X to a rational elliptic
surface.

Proof

We first consider the ALG* case. If o = O(s2) € Q%(X), and Aw = 0, then by
standard elliptic regularity, w € ngk’2 for any k € Ny and § > —2. So the boundary
term in

/ (0, Aw) — (dw,dw) — (d*w,d* v)) (7.3)
r<R

goes to 0 when R — oo, which implies that dw = d*w = 0. Conversely, if dw =
d*w =0, then Aw = 0.

Then we study Im(H2,(X) — H?(X)). Define U = {x € X,r(x) > R}. Then
U deformation retracts to the 3-manifold 43. By Lemma 6.1, H'(43) is generated
by d6;. By Poincaré duality, H(43) is generated by [D], where D is any fiber, so
H,(U) is also generated by [D]. Therefore, if [w] € H?(X) and fD w =0, then |y
is exact, so there exists n € Q1(U) such that w = dnon U. Let x be a cutoff function
which is O when r < R and is 1 when » > 2R. Then @ — d () - n) is compactly sup-
ported, so [w] € Im(chpt(X ) — H?2(X)). Conversely, if w is compactly supported,
then it is trivial to see that [, @ = 0.

Let w = O(s™2) € Q2(X) be such that Aw = 0. Then for any D sufficiently far
from a basepoint, we have | p @ = 0 since the area of D is independent of the choice
of D. So there is a map



TORELLI-TYPE THEOREMS FOR GRAVITATIONAL INSTANTONS 263
(0= 0(s2) € Q*(X) 1 dw = d*o» =0} —> {[w] € H2(X): f w= o}.
D

To show the surjectivity, for any compactly supported closed form w, choose an arbi-
trary 0 < € < 1 and a basis 7; of 2-forms in wk:2 (X) C L?(X) such that An; = 0.

—1—€
Since (n;,7n;) 2 is invertible, there exist ¢; € R such that

(@.n))12 = (Zcim‘,ﬂj)Lz- (7.4)
i
By [11, Proposition 4.5(2)], there exists ¢ € Wlk_:;Z,Z such that
Ap=w—> cii. (7.5)
i
Since
/KR((ni, Ani) = (dni.dni) — (d*ni.d*n,)) (7.6)

also decays as R — oo, n; are closed and coclosed. So,

w—dd*¢=d*dp+Y cin e W, (7.7)

1

is closed and coclosed. The self-dual part is Z? —, fiw; for decaying harmonic func-
tions f;, which must be zero. By [11, Lemma A.8], the closed and coclosed anti-self-
dual form @ — dd*¢ must be O(s~2), which implies the surjectivity.

To show the injectivity, assume that dp = @ = O(s~2) € Q2(X) is also coclosed.
We write @ = dr Aa + B, where a is a 1-form on 43 = {r = ro}, and B is a 2-form
on {r =rg}. Then

a
0=dw=—dr/\d43a+d(,3,3+dr/\a—'8. (7.8)
v v r
Define y = [/« on U. Then
r raﬂ
d)/=dr/\()t+[ dJsot:dr/\a—i-/ — =drra+B=w. (7.9)
o0 v ooar

So, y — ¢ is closed on U. By Lemma 6.1, H!(U) is generated by df;. So there exist
a constant ¢ and a function ¥ on U such that y — ¢ = cd6; + d. Then w = dp,
where n = ¢ + d(y - ). Moreover, n =y —cdf; whenr >2R.Son e W_liZrlE’Z(X)

for any € > 0, which comes from the definition of y and the assumption on the decay
of «. Therefore,
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[ (@dn-@omn) (2.10)

also converges to 0 as R — oo. In other words, @ = dn = 0 since d *w = 0.

Using the same proof, and the ALG asymptotic analysis in [7], a similar proof
also holds for ALG gravitational instantons of order 2. See also [24, Section 7.1.3]
and Theorems 9.3 and 9.4 of [10]. O

7.2. Definition of the period map
In this subsection, we prove that the period mappings are well defined.

PROPOSITION 7.5
The period mappings &2 in Definition 1.6 and Definition 1.11 are well defined.

Proof

We first consider the ALG case. If (Xg,g,®) € Mg 1, then it is ALG with respect
to the fixed ALG coordinate system ®x,. Then w; is taken to be the Kihler form
which is asymptotic to the elliptic complex structure, and the choice of w, and w3
is also determined since they are asymptotic to the model Kéhler forms in the ®x,
coordinates. The point is that our Definition 1.3 removes the freedom of hyper-Kéhler
rotations, so we have a well-defined ordered choice of the three Kdhler forms. From
[7, Theorem 4.14], there is a holomorphic function u : Xg — C which is an elliptic
fibration. The level sets of u are tori. As u — 00, these level sets are close to the model
holomorphic tori. Therefore the homology class [D] of any fiber is well defined, the
same class for all elements in Mg ;1. Since the forms w, and w3 are orthogonal
to wy, any torus which is holomorphic for / is Lagrangian with respect to J or K.
Use Proposition 7.4 to identify .72 with order-2 decaying harmonic anti-self-dual
2-forms; the classes [w;] and [w3] automatically lie in .7#2. Finally, since the holo-
morphic tori for I and I are homologous, we have |’ plw1— w?) = 0 since the areas
of the holomorphic tori are the same. Using [9, Proposition 3.1], the argument in the
ALG™ case is exactly the same. O

7.3. The nondegeneracy condition
In this subsection, we prove the nondegeneracy condition stated in Theorems 1.7 and
1.12:

w[C] # (0,0,0) forall [C] € Ho(X;7Z) satisfying [C]* = —2. (7.11)

To prove this, we use the gluing construction in Theorem 6.2 in the ALG case and
Theorem 5.6 in the ALG™ case. A basic transversality argument shows that we can
represent any [C] € H»(X;Z) by an embedded surface ¢ : C — X. If (7.11) is not
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satisfied by an ALG or ALG* gravitational instanton (X, %), then by choosing a
small enough gluing parameter A, we can assume that the glued closed definite triple
®j; = @X near ((C). A Mayer—Vietoris argument in homology shows that [C] is
nontrivial in H, (M}, Z). So there exists [C] € Ha (M, Z) such that [C]? = —2 and
[@wa] - [C] = 0. In the perturbation arguments, the span of the hyper-Kihler classes
[@5] on the K3 surface M), is the same as the span of [@,]. Therefore, [5*]-[C] =
0, which is a contradiction with the well-known nondegeneracy condition on the K3

surface M.

7.4. Proofs of Theorem 1.7 and Theorem 1.12
We follow the route map of [8, Section 7]. For any point in [@°] + 72 ® R3 satisfying
(7.11), we can connect it to [@°] by zigzags of the form

([061,0] + t[B1], [o2], [063]), (7.12)

(la]. [z 0] + t[B2]. [er3]). (7.13)
or

([ea]. [e2]. [3,0] + 2[B3])- (7.14)

We require that all the points in the zigzags satisfy (7.11). This assumption is clearly
possible since (7.11) holds outside a set of codimension 3. Let us consider the ALG
case. For the path in (7.12), we have

(X.w10=a1,0.02 =02, w3 =03) € Mg 1 1. (7.15)

Using Proposition 7.4, we choose the representative 1 in the class [1] by requir-
ing it to be closed, coclosed, and anti-self-dual with respect to the hyper-Kahler metric
determined by (X, 1,0, w2, ®3). Since B is anti-self-dual,

BiAwio=PB1Awr=P1 Aw3=0. (7.16)
Then we choose ¢; € R such that
w1 = w10+ 1P1 + crvV/—1379; (x - log |u)) (7.17)
satisfies

[ (07, —wiy) =0, (7.18)
X

where /, J, K are the hyper-Kéhler structures determined by (X, w1,0. w2, ®3), u :
X — C is the I-holomorphic function which makes X a rational elliptic surface
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minus the fiber at infinity, and y is a cutoff function which is 0 for small |u| and is 1
for large |u|. Using (7.16), the formula ddj = 2+/—10d;0;, and Stokes’s theorem, we
have

/(a)i,—a)io)z/. t2,3f—|—2q/ w10 A V—13701 () -log |ul). (7.19)
X X X

From (7.19), we see that the constant ¢; indeed exists since

075[ w1,0 AV —13797(x -logul), (7.20)
X

and the integral is finite. In the (7.13) case, we use v/—19 70y instead of ~/—19;3;,
and in the (7.14) case, we use v—19x k.

Back to the (7.12) case, consider the collection & of ¢ € [0, 1] for which there
exist §; > 0 and ¢; € W_kgtz(X, w1,0) for any k € Ny such that

(Xva)t = W1,z + —18151(%7602, a)3) € ‘Mﬂ,‘C,L' (72])

By assumption, 0 € §. If ¢y € &, then by definition of &, applying Lemma 7.3 and
using a standard elliptic regularity argument, we see that for ¢ sufficiently close to g,
w1,s + vV —10707¢;, will be ALG of order 2. Furthermore,

/;((a)l,t + vV =10707¢1,)* — a)f,o = /X(a)lz’, —a)io) =0. (7.22)

By [40, Theorem 1.1], there exists a bounded solution ¢; of the equation

(@10 +~V=10191¢:)? = e w3, (7.23)
where
02 — 2 02 — w2
£ =log ' : 1, — log 1,0 _ Lt _ 0. (7.24)
W1 W

and the middle equality follows from (7.16). By [26, Proposition 2.6], | x Vo, 01 |2 x
a)it < 00. Then by [26, Proposition 2.9(ib)], there exists a §; > 0 so that

sup ;| < Cs™%. (7.25)
Then [26, Proposition 2.9(i1)] implies that
sup |VE | < Cpes ™07k, (7.26)

since these estimates are implied by Hein’s weighted Holder estimates. This implies
that ¢; € W_kétz(X ,w1,0) for any k € N if we slightly shrink §;. Consequently, § is
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open. Since the Tian—Yau and Hein estimates depend only on geometric bounds and
do not depend on the choice of complex structure, the above argument also works for
the paths (7.13) and (7.14). It is easy to see that this implies that the image of the
period mapping is open. The above arguments hold in the ALG™ case (with Mg ¢ 1,
replaced by M, ,,1.), so this completes the proof of Theorem 1.12.

To finish the proof of Theorem 1.7, we need to show that § is closed in the ALG
cases. So suppose that t; — f is a sequence in §. Then

2
@70

[ (tr(ul,o wtl‘ _2)_ :[ 1,0 AN (a)l‘,j _a)l,O)
X 2 e
=/ w1,0 A (01,; — w1,0)
X
=c,l./ wl,o/\x/—lalél()(-log|u|)

X
tiz 2
=—— Bi=C (7.27)
2 Jx

for a constant independent of #;, and
2

[
/ (trw;, wy; —2)% = / wr; AN (@ — ;)
X ‘ X
= / W1y, /\(a)l,ti _wl,tj)
X
= [ @o 180 A (- 1)
X
+ (ct; —c))N'—=1979; (x - log|ul))
— (e —e1y) [ 010 A V1013 (7 logu)
X

1 —m[xﬂ%

20 ,
= (—é + B +tj(ti —tj))/Xﬂl
ti —1;)?
_ _M/ B2 50 (7.28)
2 X
as i, j — oo. These bounds imply the following pointwise bound.

THEOREM 7.6
The function e(t;) = try, 0y, = e, Wo is uniformly bounded on X .
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Proof

We use (7.27) and (7.28) to go through the arguments in [8, Section 7], with some
minor modifications, to get the required bound. First, we cover X by balls with
radius 1 in the sense of the metric determined by (X, w10, @2, ®3) such that the num-
ber of balls containing any point in X is uniformly bounded. Then we use these balls
to replace the sets Uy in [8, Theorem 7.3], to obtain the subsets Vy, C Uy which
carry a large percentage of the volume of Uy (with respect to the background met-
ric), and which satisfy a diameter bound (with respect to the metric wy, ). Note that the
proof of [14, Lemma 1.3] is valid in the ALG case, since ALG metrics are volume
noncollapsed in bounded scales at infinity.

To prove the analogue of [8, Theorem 7.4], we need to show that if there
exists a sequence of cohomology classes [X;] € Ha(X,Z) satisfying [Z;]? = —2
and fEi wy, — 0, fEi wy — 0, fEi w3 — 0 as i — oo, then there are only finitely
many distinct [X;]. To prove this, recall that by the assumption of Theorem 1.7
based on [9, Theorem 1.10], X is in particular diffeomorphic to an isotrival ALG
gravitational instanton. These compactify to an isotrivial rational elliptic surface S
by adding a finite monodromy fiber Dy, at infinity. By [26, Section 3.1], S \ Deo
deformation retracts onto the dual finite monodromy fiber. Therefore, the intersection
form of H?(X,Z) is an extended Dynkin diagram. Next, for example, assume that the
extended Dynkin diagram is D4. Then H2(X,Z) is generated by [E;],i = 1,2,...,5,
with [E;]? = =2 for all i, [E;]- [E;] =1 for all {i, j} = {1,2},{1,3},{1,4},{1,5},
and [E;] - [E ;] = 0 otherwise. The homology class of each fiber is

[F]=2[E\] + [E2] + [E3] + [Es] + [E5]. (7.29)
The intersection numbers of [F] with all [E;] are zero. We write [X;] as
[Ei] = ai[F] + b; [El] + ¢ [Ez] + di[E3] + e [E4] (7.30)

Then the self-intersection number of b;[E1] + ¢;[E>] + d;[E3] + e;[E4] is —2. The
extended Dynkin diagram restricted to this subset is the unextended Dynkin diagram,
which has negative definite intersection form. This implies that there are only finitely
many distinct b;[E1] + ¢;[E2] + di[E3] + e;i[E4] with self-intersection —2. Then,
we use [rw, = [ w10 # 0 to control a;. The proofs for other extended Dynkin
diagrams are similar.

This proves a uniform curvature bound, and this yields a bound on the w;-
holomorphic radius exactly as in [8, Theorem 7.4]. The proof of [8, Theorem 7.4]
relies on [37, Proposition 2.1], which is valid in the ALG case since these are
volume noncollapsed in bounded scales at infinity. Theorem 7.6, Lemma 7.7, and
Theorem 7.8 of [8] then go through exactly the same in the ALG cases, with Uy
replaced by balls of radius 1. Note that only the hyper-Kahler condition is used in [8,
Theorem 7.6]. |
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The equation 0):2, = a)12 o and the bound on o, 01,0 = Ue; o Wy imply that there

exists a constant C independent of #; such that
Clwi o <w, <Cwy. (7.31)

Since the difference w1, — w10 decays uniformly, there exists a constant R such that
%a)l,o <wiy <2wi, foralls > R. So

|Awy 0@ | = |tToy o (@ — ©1,4)] = |ttwy o @ —2— ¢ Awy o (x - loglul)| < C

on X. Moreover,

2
®71,0
A |Aw1_0(/7t,- | 2

E/ (tra)1’0 a)ti _2)
X

6()2

2
@10 1,0
2

+|cti|/X|Ale0()(-log|u|)} <C, (132

where we have used the fact that wfl, = wf ,, which implies that tr, ,w;, > 2. So
1 ; .
for § = 155> 1 Awy 0%t ||L31+8(X,w1,0) < C. Now we consider the operator Ay, , :

W2E(X.w10) > L2 s(X.01,0). By the ALG weighted analysis in [6]-[8], and
[24], it is easy to see that any function in the kernel of this operator must be a constant,
and consequently there exists another function ¢;; € lejrzs (X, w1,0) such that ¢;, — @y,
is a constant and

iz ”lefs(X,wl,o) =C ”Awlﬂ@ti ”L2_1+8(X,w1.0)
=C ||Aw1,0(0t,- ”L31+8(X,w1,0) <C. (733)

This implies that ||@y, [|lw2.» (s<4R},0, o) < C(p) for any p > 1 using the bound on
[Aw, o@1;|. For any o € (0,1), by the Evans—Krylov estimate (see, e.g., [39, Sec-
tion 2.4]),

[00¢1, |ce((s<3R}y,01.0) < C(@). (7.34)
By standard elliptic estimates, for any k € N and any « € (0, 1),
01 | cro (s <2y, 01 0) < Ck, ). (7.35)
When s > R,
1Awy ,, +or, P | = C (@1, + @) A (@ — wl”!‘)’wui +or,
=C |a)12,0 - wlz,t,- |w1,[i +or;

<Clwtg— o7 w0 <Cs™™ (7.36)
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Let yr be a cutoff function which is 1 when s > 2R and is 0 when s < R. Then
|Awy .+, & | < Cs™*, where &, = yr - @y,

We use the Moser iteration technique to prove that ||&;, | co < C for a constant C
independent of #; and p. Forany j =0,1,2,3,...and p =2/,

(w1, + Ct)t,-)2
/ 27 Voo o iy

2 (w1 + wg; )?
:/;(|le’1[+{1)[1' (E | - A

(01,1 +a),)2
— [ 68 B v €)1

2 @Ls +)”

__P(P_l)f Ezp - wl.t,'-i-w,ift,- )

(a)l,ti + 6()l‘,‘ )2

> (7.37)

2p—1
_p/ ‘i:ti Aw1,;i+w1i§ti
X

We have used the fact that §;, — ¢;, is a constant when s > 2R, and there exists §;;, > 0
such that ¢;, € W—k(S,Z (X, 1,0). Therefore,
1

2 (w1, + C()z,)2
/;(|Vw1,;[+wtl- (Stl i - A~

_ /E2p N £ (01,4 + 0y)?
2p_1 wl,l‘i+wli ti 2 :

Recall that by Theorem 1.2(i) of [25], there exist a constant C and a weight function
¥ with [ ¢ “To = 1 such that for any & € C§°(X),

2
w2 1 w2
(/X Ié—éfol“s“‘%o)zSC[XIVM,OSIZ%, (1.38)

2
where & = |. x VE %. Equation (7.38) also holds for Stf because (7.38) is unchanged
if we add £ by a constant, and Etf can be written as a constant plus a function in

W52 (X.1,0). Then

P =C([_ thlts @ioy!

1
=c([ 1e-alts SN Ny 09

So
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/ |$|4 - 10 <C/ |le 05'2 +C”$”C0({s<2R}) (7-40)

for & = 5,’; and a constant C independent of #; and p. Therefore,

2 1
([ o lorsms 250y
x 2
2

<C / Vo, oét, |2— + Cll&; ”CO({S§2R)}

2 (w1 + wt,)

<€ [ [Bon o, EIP AT 1 €I

Cp -
- /lE 2Pl +210 2+ Cllg, ||c0({s52R})

Cp 2p 2p
SZP—I/X( 2p |E | p)s 2 +C||Et, ||CO({s<2R)}

2
2p . —4@
=<C(p [ 16500 14 I o) (.41)
For p =1,

w2 w21
Ryt l ( ,4—4&)2
fX|st,|s 0 < f|st,|s .

=c [ lls —4— T ClE IZogscomy + €

<c€/ |&, %5 —42L0 4 et
+C ”St,' ”CO({ssZR)} +C (7~42)

for all € > 0. If we choose € such that the coefficient Ce < %, then

2
[ &, st =2 < C. (7.43)
X 2
Asin [8, p. 715], [[&; [lco(x) < C using (7.41). This implies that

oz llco < @z llco + e — @ | < 2[1@5; lco < C (7.44)

because ¢;; — @y, is a constant and ¢;; decays. Using the Evans—Krylov estimate and
standard elliptic estimates on B(x,1,w1,0) for any x € X, [l¢y, [lck (x,0, o) = C(k)
for constants C (k) independent of #;.
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2 2
The bound on [y [&,]2s7#Z52 also implies a bound on [y Ve, o&, 2“5 by
(7.37). This implies that
2
w
[X Voo P> = C. (7.45)

Finally, we use [26, Proposition 2.9] to prove that there exist a constant § > 0 and
constants C(k, §) > 0 independent of #; such that

Is*+0VE ol < Ck. ) (7.46)

for all k. Then we use the Arzela—Ascoli lemma, a diagonal argument, and standard
elliptic estimates to finish the proof.

7.5. Closing remarks

There is a folklore conjecture that some examples constructed using gauge theory
by Biquard and Boalch [3] are ALG and by varying parameters, achieve all possible
periods satisfying (7.11). See [20] for some progress towards this conjecture. We
also mention that there is a folklore conjecture that some examples constructed using
gauge theory by Biquard and Boalch [3] and Cherkis and Kapustin [12] are ALG*
and by varying parameters, achieve all possible periods satisfying (7.11).
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