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EDITOR'S NOTE:
This article is part of the special series “IntegratingGlobal Climate Change into Ecological Risk Assessment: Strategies,

Methods and Examples.” The papers were generated from a SETAC Pellston Workshop held at Oscarsborg Fortress near
Oslo, Norway, June 2022. The international workshop included climate change modelers, risk assessors, toxicologists, and
other specialists with a diversity of backgrounds and experience. The findings of the series demonstrate that climate change
can successfully be incorporated as an integral part of risk assessment for a wide range of environments, to address the
issues of long‐term, adaptive environmental management.

Abstract
The Society of Environmental Toxicology and Chemistry (SETAC) convened a Pellston workshop in 2022 to examine how

information on climate change could be better incorporated into the ecological risk assessment (ERA) process for chemicals
as well as other environmental stressors. A major impetus for this workshop is that climate change can affect components of
ecological risks in multiple direct and indirect ways, including the use patterns and environmental exposure pathways
of chemical stressors such as pesticides, the toxicity of chemicals in receiving environments, and the vulnerability of species
of concern related to habitat quality and use. This article explores a modeling approach for integrating climate model
projections into the assessment of near‐ and long‐term ecological risks, developed in collaboration with climate scientists.
State‐of‐the‐art global climate modeling and downscaling techniques may enable climate projections at scales appropriate
for the study area. It is, however, also important to realize the limitations of individual global climate models and make use of
climate model ensembles represented by statistical properties. Here, we present a probabilistic modeling approach aiming
to combine projected climatic variables as well as the associated uncertainties from climate model ensembles in conjunction
with ERA pathways. We draw upon three examples of ERA that utilized Bayesian networks for this purpose and that also
represent methodological advancements for better prediction of future risks to ecosystems. We envision that the modeling
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approach developed from this international collaboration will contribute to better assessment and management of risks from
chemical stressors in a changing climate. Integr Environ Assess Manag 2024;20:367–383. © 2023 The Authors. Integrated
Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental
Toxicology & Chemistry (SETAC).
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INTRODUCTION
Current and projected global climate change will affect

the physical environment and biological diversity in both
terrestrial and aquatic ecosystems. This includes combined
and interactive effects of climate change with anthropogenic
changes in chemical, physical, and biological stressors. Im-
proving the methodologies to assess the risk of chemical
stressors in the context of climate scenarios and climate
model projections will provide a better foundation for the
future management of chemicals (Cains et al., 2023), and
more generally for environmental management adapted to
climate change.
The 6th Assessment Report of the Intergovernmental

Panel on Climate Change (IPCC AR6) states with high
confidence that ecosystem damage by pollutants, to-
gether with habitat fragmentation and unsustainable use
of natural resources, will increase ecosystem vulnerability
to climate change globally, even within protected areas
(SPM.B.2.2) (IPCC, 2022). Moreover, numerous potential
interactions between climate change and chemical stres-
sors have been highlighted, for example, by the European
Environment—State and Outlook 2020 Report (European
Environment Agency [EEA], 2019): accumulated chemicals
in soil sediment and ice will be increasingly remobilized by
storms, ice melting, or flooding, due to the increasing
frequency and magnitude of such events. Nevertheless,
the potential influences of climate change have not yet
been systematically incorporated into frameworks for en-
vironmental assessments of chemical and other stressors
(e.g., EEA, 2018).
A call for research on global climate change and envi-

ronmental contaminants by the Society of Environmental
Toxicology and Chemistry (SETAC) (Wenning et al., 2010)
resulted in a compilation of current knowledge on climate
change impacts on chemical exposure and vulnerability of
organisms, populations, communities, and ecosystems
(Hooper et al., 2013; Moe et al., 2013; Stahl, Jr et al.,
2013), and identification of seven principles for integrating
climate change into environmental risk assessment (ERA) of
chemical stressors (Landis et al., 2013). However, barriers
to incorporating climate change into traditional ERA
frameworks and methodology were also recognized
(Landis et al., 2014). For example, there are large un-
certainties associated with projections of climate variables,
even within any given emission scenario (Figure 1A). This is
difficult to handle explicitly and transparently within the
traditional practices of ERA, where uncertainty sources

tend to be merged into single quantities such as assess-
ment factors (Figure 1B).

To bridge this gap, a SETAC Pellston workshop® was
organized in June 2022 to stimulate collaboration between
climate modelers and environmental risk experts (Stahl Jr.
et al., 2023). The participants identified and discussed nu-
merous examples of ecosystems where environmental risks
of chemicals are known to be influenced by climate change.
A more detailed description of environmental processes as
well as societal and institutional processes relevant for
chemical risk management is given by Cains et al. (2023).
Three of these examples were selected as case studies
(Table 1) for the purpose of developing and evaluating a
quantitative modeling approach for integrating climate
model projections into ERA.

Preliminary key messages from this exercise (Moe et al.,
2022) stated that better integration of the two disciplines
will benefit from (as discussed in the section “Climate in-
formation”) the following: projections from ensembles of
global climate models (GCMs) (Lee et al., 2021), regional
downscaling of future climate projections to suitable spatial
scales by dynamical and empirical–statistical downscaling
techniques (Doblas‐Reyes et al., 2021; Erlandsen et al.,
2020), temporal aggregation of climate projections in the
form of probability distribution functions represented by
statistical parameters (Benestad, Parding, Erlandsen, et al.,
2019) and incorporation of the resulting probability dis-
tributions, henceforth referred to as “climate information,”
into environmental exposure and ecological effect assess-
ments by probabilistic modeling techniques.

A principle in climate modeling is the need for large
ensembles of GCMs to capture the uncertainty associated
with individual models (Deser et al., 2012; Lee et al., 2021).
However, the use of GCMs for use in local‐scale assess-
ment and decision‐making poses many challenges (Doblas‐
Reyes et al., 2021; Ranasinghe et al., 2021; Wilby & Dessai,
2010), some of which will be addressed in this article. We
use the term “climate information” (e.g., Nilsen et al., 2022)
to refer to quantitative information derived from climate
model projections, which is robust to model assumptions,
representative of the most recent knowledge available,
and relevant for the specific case study. Such inter-
disciplinary collaboration is needed to identify and quantify
the most important elements of the physical environment
(e.g., air, water, and soil temperature; precipitation; wind;
evaporation; air pressure) influencing ecosystem processes
and to obtain both statistical robustness (large enough
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sample) and relevance for the ecosystem (spatial scale)
(John et al., 2021). Moreover, probabilistic approaches are
needed to combine the propagation of uncertainty in
climate projections, weather stochasticity, and model

parameters into a probabilistic characterization of risk
(Maertens et al., 2022).
Overall, the workshop confirmed the need for collabo-

ration between climate modelers and environmental

Integr Environ Assess Manag 2024:367–383 © 2023 The AuthorsDOI: 10.1002/ieam.4879

FIGURE 1 Examples of representation of uncertainty assessment: in climate model projections (A) and in traditional ERA frameworks (B). The graph (A)
represents annual precipitation over Norway as percentage deviation (%) from the period 1971 to 2000, modified after The Norwegian Centre for Climate
Services (Hanssen‐Bauer et al., 2017). The flow chart (B) is redrawn after the SETAC (2018) Technical Issue Paper on environmental risk assessment. ERA,
environmental risk assessment; SETAC, Society of Environmental Toxicology and Chemistry

TABLE 1 Overview of the three case studies used to evaluate the proposed modeling approach to environmental risk assessment
incorporating climate model projections. More details are given in the section case studies

Case study properties Case study no. 1 Case study no. 2 Case study no. 3

Location and geographic
region

Skuterud, Viken, Southeast Norway Great Barrier Reef, Northeast Australia Yakima River, Cascadia,
Washington, Northwest USA

Ecosystem type Stream Near‐shore coast River

Chemical stressors and
other stressors

Pesticides (trifloxystrobin,
clopyralid)

Herbicides (diuron), nutrients (total
nitrogen), sediments; biological
(predation, competition)

Pesticides (malathion,
diazinon, chlorpyrifos),
dissolved oxygen

Risk assessment
endpoint

Risk quotient (based on the ratio of
PEC to NOEC or EC50)

Hard corals' demographic rates and
indicators (mortality, bleaching, cover)

Chinook salmon demographic
rates and population size

Expected climate
impacts on risk
components
(examples)

Precipitation—pesticide
application and run‐off
(exposure); temperature—
chemical degradation (exposure)

Precipitation—nutrient run‐off
(exposure); temperature—coral
bleaching (vulnerability); cyclones—
physical damage (vulnerability)

Temperature and DO—fish
development and survival
(vulnerability)

Reference (Oldenkamp et al., 2023) (Mentzel et al., 2023) (Landis et al., 2023)

Abbreviations: DO, dissolved oxygen; EC50, half‐maximal effect concentration; NOEC, no observed effect concentration; PEC, predicted environmental
concentration.
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scientists to coproduce knowledge on climate change (cf.
Chambers et al., 2021). The objective of this article is to
propose, describe, and evaluate a modeling approach for
integrating climate model projections with quantitative
approaches to ERA of chemical stressors. In this article, we
use the terms “chemical stressor” or “contaminants” to in-
clude both hazardous substances and nutrients. For this
purpose, we have considered state‐of‐the‐art method-
ologies within both climate modeling and environmental
risk modeling to find common ground and optimize pos-
sibilities for connecting information from the two scientific
fields (Figure 2). In brief, the three pillars representing
main novel aspects of the proposed modeling approach
are as follows:

(1) Climate information: derivation and use of relevant and
robust climate information represented by statistical
properties of climate model projections.

(2) Climate‐induced vulnerability: consideration of how cli-
mate change can modify the sensitivity of individuals to
chemicals in a natural ecosystem, included here as a third
component of environmental risk characterization, and

(3) Probabilistic modeling: use of Bayesian networks (BNs)
as a probabilistic and potentially causal modeling
methodology for integrating climate information repre-
sented by statistical properties into the risk components.

Initial applications of this modeling approach are demon-
strated in three case studies resulting from the workshop
(Table 1), which are described in more detail in three re-
spective papers (Landis et al., 2023; Mentzel et al., 2023;
Oldenkamp et al., 2023) and summarized in Tables 2 and 3.
The three case studies are based on discussions and analyses
carried out during the months following the workshop (Stahl
Jr. et al., 2023). The stages of model development range
from de novo and preliminary model construction that does

Integr Environ Assess Manag 2024:367–383 © 2023 The Authorswileyonlinelibrary.com/journal/ieam

(A)

(B)

FIGURE 2 Proposed modeling approach for integration of climate model projections into environmental risk assessment (ERA) of chemical stressors. (A)
Compared to traditional ERA (Figure 1B), the main novel aspects are as follows: (1) derivation of robust and relevant climate information; (2) assessment of
climate‐induced vulnerability to chemical stress; and (3) use of probabilistic and (preferably) causal modeling methodology for integrating the components of
the risk characterization. (B) Examples of climate information and potential influence on the main components of ERA

370 Integr Environ Assess Manag 20, 2024—MOE ET AL.
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not yet fully integrate the various assessment endpoints
(Mentzel et al., 2023) to a post‐hoc incorporation of climate
change into an established ERA model (Landis et al., 2023).
The main steps of deriving and processing future climate
information and integrating it with a complete risk assess-
ment are outlined schematically in Figure 3. Rather than
completing all the steps outlined in Figure 3, the purpose of
the resulting case study papers is to demonstrate some of the
steps needed to incorporate climate projections into a
probabilistic ERA, to give examples of relevant information
and assumptions, and to highlight opportunities and limi-
tations of this approach.

MODELING APPROACH AND
BACKGROUND INFORMATION

Concepts and principles

An overview of relevant concepts related to climate mod-
eling is presented in Table 4. Scientific communities usually
define “risk” in terms of both probability and consequence,
but in practice, these two elements are often combined into a
single quantity or score (e.g., as the product), even in mete-
orological communities (Palmer & Richardson, 2014). In the
guidance for IPCC authors (Reisinger et al., 2020), the core
definition of risk to human and ecological systems is “the
potential for adverse consequences,” which includes un-
certainty as the potential for an outcome. According to this
guidance, “This uncertainty does not necessarily have to be
quantified, but authors need to provide some sense of the
nature and degree of uncertainty to allow a meaningful risk
assessment and risk management responses to be under-
taken.” The probabilistic methodology described in the sec-
tion “Integration of climate and risk components” furthermore
provides a tool for incorporating uncertainty, provided that
the uncertainty can be quantified by probabilities.
The IPCC has described risk in terms of the three

components: exposure, hazard, and vulnerability (Reisinger

et al., 2020) “In the context of climate change impacts, risks
result from dynamic interactions between climate‐related
hazards with the exposure and vulnerability of the affected
human or ecological system to the hazards. Hazards, ex-
posure and vulnerability may each be subject to uncertainty
in terms of magnitude and likelihood of occurrence, and
each may change over time and space due to socio-
economic changes and human decision‐making.” Here, we
will consider vulnerability as a modifying factor of chemical
risk in addition to exposure and hazard, inspired by (but not
identical to) IPCC's definition, and describe the potential
influence of climate change on all three components
(Figure 2).
In this context, hazard can be interpreted as the response

of organisms exposed to chemicals under standard or
modified laboratory test conditions (usually representing the
individual level), while vulnerability can be interpreted as the
response of the organisms to climate change within a nat-
ural ecosystem, affected by physical disturbance, habitat
quality, species interactions, and so forth (community level).
In the following subsections, we will describe examples of
how climate change can influence each of these compo-
nents, with reference to the case studies as well as to other
recent research methods applied for this purpose.
The first SETAC Pellston workshop on global climate

change resulted in a list of seven principles for guiding the
decision on when and how to incorporate climate change
information into ERA (Landis et al., 2013).

1) Consider the importance of global climate change‐
related factors in the ERA process and subsequent
management decisions.

2) Assessment endpoints should be expressed as eco-
system services.

3) Responses of endpoints can be positive or negative.
4) The ERA process requires a multiple‐stressor approach,

and responses may be nonlinear.

Integr Environ Assess Manag 2024:367–383 © 2023 The AuthorsDOI: 10.1002/ieam.4879

FIGURE 3 Schematic illustration and example of work flow for integrating climate model projections with risk characterization, as exemplified by the three
case studies

INTEGRATING CLIMATE INFORMATION INTO RISK ASSESSMENT—Integr Environ Assess Manag 20, 2024 373

 15513793, 2024, 2, D
ow

nloaded from
 https://setac.onlinelibrary.w

iley.com
/doi/10.1002/ieam

.4879 by U
niversity O

f N
otre D

am
e, W

iley O
nline Library on [23/02/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



5) Develop conceptual cause–effect diagrams that consider
relevant management decisions as well as appropriate
spatial and temporal scales to allow consideration of
both direct and indirect effects of climate change.

6) Determine the major drivers of uncertainty, estimating
and bounding stochastic uncertainty spatially and tem-
porally, and continue the process as management activ-
ities are implemented.

7) Plan for adaptive management to account for changing
environmental conditions and consequent changes to
endpoints.

The authors furthermore suggested that the nature of the
interaction of climate change with chemicals and other
stressors requires approaches that depict the probabilistic
nature of the system, and that analyses of such systems may

benefit from the use of BNs. Here, while building upon these
seven principles, we focus on the probabilistic modeling
methodology for chemical risk and other specific consid-
erations for incorporating climate model projections. For this
purpose, in the following, we describe the traditional com-
ponents of chemical risk (exposure and hazard) as well as
vulnerability (as defined in the Introduction) and present ex-
amples of how climate change can influence each compo-
nent (summarized in Table 3; examples in Figure 2B).

Components of chemical risk and influence
of climate change

Climate and chemical exposure. The IPCC recognizes that
risks can arise from direct impacts of climate change,
as well as indirectly via human responses to climate change

Integr Environ Assess Manag 2024:367–383 © 2023 The Authorswileyonlinelibrary.com/journal/ieam

TABLE 4 Explanation of important terms and abbreviations used in this article

Term Explanation

Climate change Long‐term shifts in temperatures and weather patterns, primarily due to burning fossil fuels like coal, oil, and
gas. (Source: https://www.un.org/en/climatechange/what-is-climate-change).

Climate information Quantitative information derived from climate model projections and represented by statistical properties,
aimed to be robust to model assumptions, representative of the most recent knowledge available, and
relevant for the study area.

CMIP Climate Model Intercomparison Project: A collaborative framework designed to improve knowledge of climate
change organized by the WGCM of the WCRP to foster the climate model improvements and to support
national and international assessments of climate change.

CORDEX Coordinated Regional Climate Downscaling Experiment; an international framework coordinating international
work on downscaling under the WCRP.

Downscaling A process that makes it possible to estimate the response in local temperature or precipitation to global
warming. The two main methods are (1) dynamical downscaling with RCMs and (2) (empirical–)statistical
downscaling. Downscaling can also introduce errors and inaccuracies.

ERA Ecological Risk Assessment (more commonly used in North America); Environmental Risk Assessment (more
commonly used in Europe; can be used in North America to include ecological+ human health risk
assessment).

GCM Global Climate Models: Models simulating earth's atmosphere, and ocean and land processes. Also referred to
as General Circulation Models.

Model predictions For atmospheric and oceanic models, predictions are those simulations that use the best description that we
have of the current state of the atmosphere and calculate the most likely development some time ahead.
This includes seasonal and decadal forecasts. We say that these models are “initialized.”

Model projections Simulations with climate models constrained by a given future development in external factors (“boundary
conditions”), such as greenhouse gases or land‐use changes. Model projections do not necessarily start with
a best description of the current state, but with a plausible scenario. The CMIP simulations are typically
referred to as “climate change projections.”

RCM Regional Climate Model: A climate model forced by specified lateral and ocean conditions from a GCM.

RCP Representative Concentration Pathways: Scenarios of greenhouse gas concentrations and radiative forcing
used for climate modeling.

SSP Shared Socioeconomic Pathway: Scenarios of projected socioeconomic global changes up to 2100.

WCRP World Climate Research Programme: An international program to coordinate global climate research,
established in 1980 under the joint sponsorship of the World Meteorological Organization (WMO) and the
International Council for Science (ICSU), and has also been sponsored by the Intergovernmental
Oceanographic Commission (IOC) of UNESCO since 1993.

WGCM Working Group on Coupled Modeling, with the overall mission to foster the development and review of
coupled climate models.

374 Integr Environ Assess Manag 20, 2024—MOE ET AL.
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(IPCC, 2022; Reisinger et al., 2020). In this vein, we em-
phasize both the direct environmental and indirect anthro-
pogenic factors that can impact chemical exposure in the
context of climate change. Hader et al. (2022) reviewed how
global change (i.e., climate change, society's responses to
these changes, and other large‐scale societal changes) may
impact the emission, persistence, fate, and transport of
chemicals in agricultural settings in Europe. An example of
the interlinkages between direct climate change and in-
direct anthropogenic driving forces on pesticide exposure in
an aquatic environment influenced by agriculture is outlined
in Figure 4, based on some of the findings of the review
(Hader et al., 2022). Changes in environmental conditions
can affect both how suitable an environment may be for
agricultural pest species as well as the suitability of the land
for different crops. In turn, increases in pest pressures may
result in increased pesticide usage. Changes in field con-
ditions may impact the types of crops grown and other
agricultural practices, which can impact the soil's phys-
icochemical properties, which can in turn impact the ca-
pacity for microbial degradation of pesticides in the
environment. Changes in precipitation patterns can then
directly affect how much pesticide runs off from the agri-
cultural soil into an adjacent water body. Likewise, the
emissions, fate, and transport of other chemicals could be
impacted by climate change and attendant human re-
sponses. For example, increased intensity and frequency of
droughts could increase the use of wastewater for irrigation
in some regions (e.g., southern Europe), resulting in new
exposure pathways of pharmaceuticals and other consumer
product residues present after the water treatment process
(Hader et al., 2022).

A key component of understanding chemical exposure
under climate change conditions is understanding how
chemical emissions may change as society adapts to
changed environmental conditions. For example, in the
context of agriculture and pesticide emissions, two different
approaches have been adopted across studies. The first
utilizes regression modeling between pesticide application
amounts and weather or climate variables, and then uses
projections of future climate variables to project changes in
pesticide application (e.g., Chiu et al., 2017; Kattwinkel
et al., 2011). The second approach relates weather or cli-
mate variables to pest growth, physiology, and/or behavior;
uses climate projections to predict how these pests may
respond to these environmental changes; and pairs this with
available information on chemical treatment practices (e.g.,
Gagnon et al., 2016; Steffens et al., 2015). Further details on
these two methods and how they can be used to help in-
corporate climate change into a probabilistic ERA are de-
scribed in Oldenkamp et al. (2023).
Several other studies have focused on other aspects of

climate change and influence on chemical exposure, for ex-
ample, on the duration of pesticide exposure (Rohr et al.,
2011), on chemical fate and bioaccumulation (Gouin et al.,
2013), and on factors related to resource damage assessment
and restoration (Rohr et al., 2013). The multifaceted nature of
the impact of climate change on chemical emissions, fate,
and transport, and ultimately environmental exposure, and
the attendant uncertainties associated with each facet high-
light the need for a probabilistic, causal modeling approach.

Climate and chemical hazard (organism level). The potential
effects of climate change on the toxicity of chemical

Integr Environ Assess Manag 2024:367–383 © 2023 The AuthorsDOI: 10.1002/ieam.4879

FIGURE 4 Example of potential causal impacts from climate change on exposure to pesticides in an aquatic environment considering environmental factors
(i.e., direct effects) and anthropogenic factors (i.e., indirect effects). Based on information in Hader et al. (2022)
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contaminants have received attention during the last two
decades (Noyes et al., 2009). A promising research method
for quantifying such effects are toxicokinetic models and
experiments, which are used to assess how external con-
centrations (e.g., water concentrations) translate to internal
concentrations (body burdens) through processes of uptake,
elimination, biotransformation, and distribution (Gergs
et al., 2019; Mangold‐Döring et al., 2022). For most tested
chemical–temperature interactions, there is an increase in
toxicological sensitivity, but the interactions are species‐
and chemical‐specific (Freitas et al., 2019; Huang et al.,
2023). Temperature may also affect organism physiology
(Polazzo et al., 2022) by influencing bioenergetics and fit-
ness (Noyes & Lema, 2015). For an improved assessment of
the combined effect of chemicals and temperature, it is
important that the direct stress effect of temperature be
incorporated into toxicokinetic‐toxicodynamic (TK‐TD)
models so that an overall impact at the individual level is
obtained. This in turn can be used in risk assessments or as
an input for the assessment of population‐ or community‐
level effects (see the section “Climate and vulnerability to
chemical stressors [community level]”).
Adverse outcome pathway (AOP) networks are another

widely used approach, which facilitate describing and arraying
evidence of potential chemical and nonchemical interactions
from initiation events at the molecular level through to im-
pacts on individuals (Hooper et al., 2013). They can be useful
in providing evidence‐based hypotheses and retrospective
descriptions of how exposures to climate and chemical ex-
posures may affect adverse outcomes. The Great Barrier Reef
case study (Mentzel et al., 2023) exemplifies how AOP con-
structs can be developed to inform ERA, and how this can be
aligned with probabilistic network models, and further de-
veloped into a quantitative model. However, most AOP net-
works developed to date do not account for toxicokinetic
aspects, and are most applicable at the organism or sub-
organismal level. Relevant data are often lacking to elaborate
on biological pathways beyond the individual, resulting in a
large uncertainty in the conceptual model as to multistressor
effects on populations, and how these interact with ecosys-
tems over time and larger landscapes (Rohr et al., 2016).

Climate and vulnerability to chemical stressors (community
level). A continuing challenge is understanding the com-
bined effects of multiple stressors and at biological end-
points beyond the individual scale, in the context of
ecological interactions and other environmental processes
(Moe et al., 2013; Polazzo et al., 2022). This challenge is
addressed by two of the case studies, where climate‐related
impacts on the vulnerability of individuals are extended to
the population level (salmon populations) (Landis et al.,
2023) and community level (coral reef) (Mentzel et al., 2023).
Several promising modeling approaches are being devel-
oped for evaluating chemical and climate interactions at the
community level (Bracewell et al., 2019; Turschwell et al.,
2022). However, for decision‐making purposes, there are
still few evaluations of impacts to populations, communities,

and habitats (Rohr et al., 2016), typically due to a lack of
data. Understanding the spatial and temporal factors of
these interactions is another important consideration at
population and community levels. Conceptual models
analogous to AOP networks but structured at higher bio-
logical and spatiotemporal scales may help identify the most
critical climate‐related processes that make biological as-
sessment endpoints vulnerable to chemical stress, and
thereby guide the development of relevant climate in-
formation for ERA.

The literature on the interaction between temperature
(increased continuously or episodically) and contaminants at
different levels of biological organization was recently re-
viewed by Bracewell et al. (2019) and Polazzo et al. (2022).
Focusing on extreme climatic events, the latter paper
identified only a few studies (13) that included biological
effects of heat waves in combination with chemical pollu-
tion, and found that the reported combined effects varied
largely with trophic level and with the type of endpoint (e.g.,
individuals or populations). As the interactive effects of
chemical and climatic stressors can also be highly chemical‐
specific, it would be useful to group chemicals (and other
stressors) by their mode of action (van den Brink et al.,
2016). A refinement of this approach is urgently needed as it
is impossible to evaluate the interactive effects of temper-
ature for every chemical separately, so generalizations need
to be made (van den Brink et al., 2019).

Climate information: Robust statistical properties
of climate projections

The term “climate information” (Nilsen et al., 2022) was
introduced to the workshop by climate scientists and rec-
ommended for use as a bridge between climate models and
impact studies. The workshop's efforts to incorporate cur-
rently available climate information into the case study
models, or to prepare the models for such developments in
future projects, are summarized in Table 3. The term “cli-
mate model projections” is used to describe simulations of
climate variables for future decades, produced by GCMs
based on plausible scenarios for the concentrations of
greenhouse gases and other relevant atmospheric con-
stituents (see Table 4). Climatic impact drivers of importance
to ERAs of chemicals include precipitation, droughts, and air
temperature (Noyes et al., 2009). The intensity, frequency,
and spatial extent of chemical risk often involve local and
short‐term events. Global climate models, in contrast, are
only good at representing long temporal scales (e.g., dec-
ades) and larger regional scales (e.g., continents) (Benestad
et al., 2023; Ranasinghe et al., 2021). For local applications
to ERA, for example, to a river stretch, an understanding of
climate impacts at a catchment scale is needed, which
GCMs are not designed to provide. However, local climates
depend on surrounding regional conditions and remote
situations through teleconnections, such as the El Niño
Southern Oscillation (Diaz et al., 2001; Doblas‐Reyes et al.,
2021). Therefore, local climate can be better approached by
spatial downscaling of GCM projections.
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Two main approaches for regional downscaling are com-
monly referred to as “top‐down” and “bottom‐up” (Pulido‐
Velazquez et al., 2022). The “top‐down” approach involves
downscaling climate projections from GCMs under a range of
emission scenarios to provide inputs, for example, for models
that predict impacts and analyze adaptation measures. Two
common top‐down ways to simulate regional and local
climate conditions are “dynamical downscaling” through re-
gional climate models (RCMs) and “empirical‐statistical
downscaling” through statistical modeling (Murphy, 1999).
Both types of downscaling can involve various techniques
with different assumptions, strengths, and weaknesses
(Doblas‐Reyes et al., 2021) and should, therefore be used in
combination to make the most robust projections for the
future. The output from RCMs (i.e., grid box area average)
represents a larger spatial scale than historical observations
(point measurements) and may require bias correction to be
comparable to actual observations. Empirical–statistical
downscaling, on the other hand, aims at reproducing sim-
ilar aspects as those measured, and can also involve sto-
chastic weather models known as weather generators. An
alternative or supplement to the top‐down approach is a
bottom‐up approach, where vulnerability thresholds and local
responses are empirically studied to define locally suitable
adaptation strategies (Pulido‐Velazquez et al., 2022). Bottom‐
up approaches can make use of local knowledge through
participative approaches to foresight future climate scenarios
and define locally relevant adaptation strategies. Two ex-
amples of bottom‐up methods for identifying what aspects
are most important on a local scale are stress testing and
sensitivity tests (Benestad, Parding, Mezghani, et al., 2019;
Mtongori et al., 2015).
A key challenge is how to generate and make use of the

available climate information in a way that can be accom-
modated by the ERA (Figures 1 and 2). The uncertainty re-
lated to several sources must be recognized (Beven, 2016;
Kundzewicz et al., 2018), including choices of GCM models
and downscaling techniques. The level of uncertainty is
furthermore dependent on spatial and temporal scales of
interest (see examples in Stahl Jr. et al. [2023]). A large set
(ensemble) of GCMs can produce a plausible range of
possible outlooks (Deser et al., 2012). However, a practical
challenge for ERA is how to summarize the information
provided by an ensemble in a way that captures the relevant
uncertainties connected to regional climate variability.
Benestad et al. (2023) suggested that the output from such
ensembles often appears to follow a normal distribution,
implying that the most relevant climate information can be
captured by the mean and standard deviation, alternatively
by other statistical types of distributions.
Aggregated information and statistical properties are often

more predictable and more robust than individual outcomes
due to “the law of small numbers,” making probabilistic rep-
resentation of modeling results generally preferable to point
estimates (Erlandsen et al., 2020; Moe et al., 2022). In addi-
tion, it is important that data and other information are rele-
vant for the particular purpose and evaluated in a proper way,

using methods of comparable complexity to appropriately
capture the inherent uncertainty in both environmental
changes and ecological responses (John et al., 2021). The
production of climate information for a given ERA case
(Figure 2B) should therefore be guided by the needs specified
in the problem formulation, the selection of ecological as-
sessment endpoints, and the identification of the main cause–
effect relationships.

Integration of climate and risk components: probabilistic
methods

Bayesian networks are a type of probabilistic modeling
method that has gained popularity for use in ERA
(Kaikkonen et al., 2021) and that lends itself to the in-
corporation of probabilistic climate information. Bayesian
networks are graphical models where the causal or empirical
relationships between components (nodes) in the system
are expressed by directional connections (arcs). The nodes
are often defined by discrete states (e.g., intervals or cate-
gories), which are given probabilities that are conditional on
their parent node values (Kjærulff & Madsen, 2013). Some
examples of BNs in ERA are aligned with traditional frame-
works (Figure 1B) and applied to calculate a risk quotient as
a probability distribution derived from the ratio between
exposure and effect distributions (Carriger & Barron, 2020;
Mentzel, Grung, Tollefsen, et al., 2022). The BN Relative
Risk Model (BN‐RRM) (Landis, 2021) is a more advanced
application based on a more strictly causal structure. The
RRM principles emphasize the importance of multiple
stressors and ecological assessment endpoints and the
spatial overlap of endpoints' habitats and occurrence of
stressors.
While BN models are more commonly being used in ERAs

of chemicals and other stressors, there are still few examples
that involve climate model projections, to our knowledge
(Gaasland‐Tatro, 2016; Martínez‐Megías et al., 2023;
Mentzel, Grung, Holten, et al., 2022). In other fields, such as
geosciences and hydrology, environmental assessments
with BN models more often include climate models (e.g.,
Adams et al., 2022; Couture et al., 2018). However, these
models often aim to predict contaminant concentrations
rather than effects on biological endpoints.
Bayesian networks (or similar probabilistic network mod-

eling methodologies) have several important features that are
useful within the context of incorporating climate change into
ERA. First, they allow for uncertainty quantification of dif-
ferent model components to be propagated throughout the
network. Second, they are amenable to exploration of alter-
native scenarios, including scenarios of environmental man-
agement (e.g., pesticide application). Third, they allow
quantification of environmental risk by both probability and
consequence, in accordance with IPCC as well as other
common definitions of risk. Fourth, calculations of relative risk
applied to multiple ecological endpoints can be compared
and ranked for different scenarios. Finally, they are partic-
ularly applicable for incorporating stakeholder knowledge
and perspectives including uncertainty.
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With this methodology, climate information in the form of
probability distributions (Figure 1A) can be linked to one or
more components of the risk characterization (Figure 1B)
using conditional probability tables or other mathematical
expressions that can propagate the uncertainty of the cli-
mate information. Existing examples of BNs that incorporate
climate projections have typically used projections from only
one or a few climate models, rather than from an ensemble
as recommended recently (Moe et al., 2022). This is also the
case with the case studies described in this paper (Table 1).
However, the probabilistic structure of these models means
that they are able to incorporate more robust climate in-
formation derived from model ensembles.
The flexible structure of BN models also allows for ex-

panding the basic risk characterization to include climate‐
related vulnerability of ecological endpoints as a third risk
component (Figure 2). This tripartite risk definition is in-
spired by the IPCC's risk concept (Reisinger et al., 2020) and
can allow more efficient use of information on climate
effects on ecological components and interactions in as-
sessments. In principle, this structure allows for explicit
modeling of the concepts labeled climate‐induced toxicant
sensitivity and toxicant‐induced climate sensitivity (Hooper
et al., 2013; Moe et al., 2013). These concepts have also
been used more recently in the context of temperature
fluctuations and extreme events (Polazzo et al., 2022;
Verheyen et al., 2019), although it might be difficult to dis-
tinguish the two phenomena in practice. Finally, the condi-
tional probability tables of BN models can easily represent
nonlinear relationships and statistical interactions between
stressors, both of which are common in ecosystems. Short-
comings of the methodology are discussed in the section
“Strengths and weaknesses of the proposed modeling
approach.”

CASE STUDIES
Three systems were selected as case studies to test this

ERA modeling approach (Table 1), as described in the in-
troductory paper (Stahl Jr. et al., 2023). These case studies
were subsequently evaluated according to the three pillars of
this modeling approach and the principles of incorporation of
climate information as outlined earlier (Tables 2 and 3). The
selected case studies (Table 1) represent three types of eco-
systems: generic streams in agricultural areas in Norway
(Oldenkamp et al., 2023), near‐shore coral reefs in Australia
(Mentzel et al., 2023), and a river network with salmonid
populations in the United States (Landis et al., 2023). The
three case studies were selected prior to the workshop to
focus the discussions and to help develop and evaluate the
risk modeling approach. While these case studies focus on a
chemical stressor such as pesticides as well as nutrients, the
approach presented here is meant to be generic and appli-
cable for any type of chemical stressor.
Case study 1 was used in the European Union Innovative

Training Network ECORISK2050 to explore new approaches
for integrating climate projections with risk calculation, via
the pesticide exposure model WISPE (Mentzel, Grung,

Holten, et al., 2022). The climate projections that were ap-
plicable for this project resulted from the old climate sce-
nario A1B and can now be considered obsolete but served
the purpose of model development. Expected changes for
northern Europe, such as increased rainfall, might result in
increased pest pressure and pesticide emissions but could
also be counteracted by improved agricultural practices or
technologies (Hader et al., 2022). The WISPE tool was run by
manual initiation with a climate file from individual climate
models and does not readily allow efficiency for climate
input from multimodel ensembles. However, by leveraging
the existing input and output from WISPE based on two
climate models (Mentzel, Grung, Holten, et al., 2022), the
authors quantified key functional relationships between
pesticide application rates, climatic variables (a monthly
precipitation index), and peak exposures emerging from the
WISPE model for individual pesticides. This functional rela-
tionship (regression models with associated uncertainty) can
in turn be used to incorporate more updated climate in-
formation from ensemble models and to improve the pes-
ticide exposure and risk assessment.

For Case study 2 (Mentzel et al., 2023), a BN model for
near‐shore coral reefs in the Mackay region of the Great
Barrier Reef was built de novo based on a combination of
extensive local data sources, the eReefs modeling database
(CSIRO, 2015), regional climate projections, hydrological
modeling, literature reviews, and expert judgment. The aim
was to assess the collective risks of climate and catchment‐
related stressors on multiple endpoints for corals. An AOP
network was used to conceptually delineate the effects of
climate‐related variables and the herbicide diuron on coral
bleaching, mortality, and extent of cover. It illustrated both
diuron‐induced climate sensitivities and climate‐induced
diuron sensitivities (equivalent to “vulnerability” in
Figure 2), which informed the conceptualization and devel-
opment of the BN. The BN was used to quantitatively
compare the effects of historic and future projected climate
on inshore hard corals. It demonstrated how risk may be
predicted for multiple physical and biological stressors in-
cluding temperature, ocean acidification, cyclones, sedi-
ments, macroalgae competition, crown‐of‐thorns starfish
(Acanthaster planci) predation, and chemical stressors such
as nitrogen and herbicide exposure, provided that sufficient
data and knowledge are available for model parameter-
ization. Climate scenarios included an ensemble of 16
downscaled models encompassing current and future con-
ditions based on two more recent greenhouse gas emission
scenarios (RCP4.5 and 8.5).

Case study 3 was built upon a completed ERA model
(Mitchell et al., 2021) to include climate scenarios and their
impacts on Chinook salmon (Oncorhynchus tshawytscha)
populations via water quality and pesticides. Key water
quality input variables were adjusted based on a study of
dissolved oxygen and temperature relationships across
streams in the Sierra Nevada, California (Ficklin et al., 2013).
Output from a 16‐member ensemble of GCMs forced with
the A2 emission scenario was statistically downscaled and

Integr Environ Assess Manag 2024:367–383 © 2023 The Authorswileyonlinelibrary.com/journal/ieam

378 Integr Environ Assess Manag 20, 2024—MOE ET AL.

 15513793, 2024, 2, D
ow

nloaded from
 https://setac.onlinelibrary.w

iley.com
/doi/10.1002/ieam

.4879 by U
niversity O

f N
otre D

am
e, W

iley O
nline Library on [23/02/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



used as input to the Soil Water and Assessment model at a
subbasin level (Ficklin et al., 2013). As for Case study 1,
climate projections that were already available for the re-
gion were used for model development, although resulting
from an old climate scenario (A2). Future scenarios of pes-
ticide concentration distributions were derived from in situ
measured concentrations, by additional applications due to
climate shifts as described by Stöckle et al. (2010), and de-
creased applications.
The three case study models were subjected to sensitivity

analysis involving a quantification of the degree of mutual
information between a target node (assessment endpoint)
and the parent nodes, including both exposure‐ and
climate‐related variables. Outcomes from this sensitivity
analysis varied across the case studies. For Case study 1, the
hypothetical pesticide application scenarios had a stronger
influence on the assessment endpoints than the main cli-
matic variable (precipitation index). In contrast, in Case
studies 2 and 3, the climate‐related environmental variables
had a stronger influence on the assessment endpoint than
the chemical stressors (pesticides and nutrients). These
outcomes suggest that when more ecologically relevant
components are included in a risk assessment, such as the
increased vulnerability of certain species or demographic
stages at higher water temperatures, then climate‐related
factors can play an important role in the assessment relative
to the chemical stressors.
The case studies were evaluated against each of the

principles presented in Table 2. The evaluation demon-
strated that the three study systems were all useful as case
studies for exploring the proposed climate information and
ERA modeling approach, but also that they all have poten-
tial for improvement. For example, all case study models
contain conditional probability tables that include nonlinear
cause–effect relationships as well as uncertainty. However,
Case study 1 does not yet include cause–effect connections
from exposure to effect (but instead an exposure/effect
ratio), and Case study 2 has not yet integrated the various
assessment endpoints representing the coral communities.
While the modeling approach presented here builds upon
the seven principles listed above, it has more explicit rec-
ommendations regarding the quantity, quality, and proc-
essing of climate model projections for integration with the
risk components (as described in the section “Components
of chemical risk and influence of climate change”). These
aspects are listed in Table 3, which also presents an over-
view of how each of these pillars has been implemented in
the case study models so far.

DISCUSSION

Strengths and weaknesses of the proposed modeling
approach

The proposed modeling approach (Figure 2) aims to
bridge a gap in scientific methodology at the intersection
between climate modeling and environmental risk mod-
eling, in particular, the handling of environmental variability

and uncertainty. There are, as yet, few studies that combine
the use of GCM ensembles with environmental impact
analysis including ecological endpoints. Most assessment
studies use climate projections from only one or a few
GCMs, which implies a risk of bias due to low “sample size.”
On the other hand, a large ensemble of GCMs implies
methodological challenges in handling the vast array of
climate projections. The approach described here can be
further developed into a framework of statistical and prob-
abilistic modeling methods to generate climate information,
in a format that is both representative of key statistical
properties of the climate model ensemble and relevant to
the ecosystem of interest. However, successful integration
of approaches from the two modeling fields will require
close collaboration between climate experts and environ-
mental assessment experts.
The environmental risk modeling described in this article

and the case studies build upon the traditional ERA com-
ponents of exposure and hazard characterization (Figure 1B)
(Society of Environmental Toxicology and Chemistry, 2018),
but also expand this to include an ecological vulnerability
component, inspired by IPCC's risk concept (IPCC, 2022;
Reisinger et al., 2020). Moreover, all components and rela-
tionships can be quantified by probability distributions, as a
more informative and flexible alternative than the single‐
value scores often used in ERA. The approach and BN im-
plementation described here can also be adapted to other
conceptual frameworks for environmental assessment
and management, such as the Drivers–Pressures–States–
Impacts–Responses (DPSIR) causal framework used by the
European Environment Agency. Examples related to eco-
logical assessment and management of water quality under
climate change according to the EU Water Framework Di-
rective are given by Moe et al. (2019) and see Cains et al.
(2023), respectively.
The successful use of BN modeling for the purpose of

ERA has increased during the last decade (Moe et al., 2021).
Nevertheless, there are several methodological challenges
associated with this method. Variables of BN models are
normally (but not necessarily) discretized into states, which
reduces the resolution and precision of the models, and can
result in low sensitivity of a target node, for example, to
changes in climate scenarios. The quantification of proba-
bility distributions will require more information, alter-
natively expert judgment, than a so‐called deterministic
(single‐value) risk characterization. On the other hand, stat-
istical methods such as hierarchical Bayesian models can be
used for capturing even more information on uncertainty
(e.g., of parameters) than what is common practice for BN
models. Moreover, BNs cannot include feedback loops, al-
though adaptations can be made. The BN models proposed
here can be further advanced in several directions, for ex-
ample, dynamic BNs for future projections allowing feed-
back loops (Gaasland‐Tatro, 2016), spatially explicit BN
models with links to geographical information systems
(Piffady et al., 2021), cumulative risk of multiple stressors
calculated as the joint probability of threshold exceedances,
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adapted to the specific type of stressor interaction (Welch,
2023), and decision‐support tools with decision nodes and
cost/benefit nodes (influence diagrams) (Rachid et al., 2021).
In local contexts, the uncertainties associated with

global and downscaled climate projections may still be
too large to be of practical use for decision‐making.
Therefore, alternative approaches such as physical climate
storylines can be supplementary tools for incorporating
value judgments and responses to policy options (Kuni-
mitsu et al., 2023).

CONCLUSION AND OUTLOOK
The novelty of this modeling approach lies in the pro-

duction and use of robust climate information as a means to
bridge multimodel ensemble climate modeling and proba-
bilistic environmental risk modeling. The risk modeling can
build upon the traditional ERA components of exposure and
hazard characterization but may also include an ecological
vulnerability component. Furthermore, a BN (or other
probabilistic modeling methodologies) will allow all com-
ponents and relationships to be quantified by probability
distributions, as a more informative and flexible alternative
than the single‐value risk scores and assessment factors
traditionally used in ERA.
This article has summarized and evaluated three relatively

simple case studies from the SETAC Pellston workshop on
global climate change and ERA (Stahl Jr. et al., 2023), each
illustrating one or more aspects of the proposed modeling
approach implemented as BN models. The application of
our approach to three case studies has demonstrated the
generality of the methodology across ecosystems and
geographic regions. A more thorough model development
and analysis of the case studies, which was beyond the
scope of this workshop, should ideally include both climate
projections from larger climate model ensembles, more re-
cent climate scenarios, and both dynamical and empirical–
statistical downscaling applied to all cases. More elaborate
examples would also allow a more systematic evaluation of
the costs and benefits of our proposed approach compared
to alternatives.
We envision that the probabilistic modeling approach

can help to meet the needs for improved methodology
identified by scientific communities within both climate
science and environmental toxicology science (Stahl Jr
et al., 2017), as well as for other types of scientific assess-
ments. The role of probabilistic modeling as a prerequisite
for such integration must be recognized by scientists in
both fields. The benefits of probabilistic risk assessment for
an uncertain climate also need to be recognized by
chemical risk managers (Cains et al., 2023) and other
decision‐makers whose decisions this framework is
meant to support. As stated recently by climate scientists
(Sillmann et al., 2018; Zscheischler et al., 2018), impact
modelers and decision‐makers need to work closely to-
gether with climate scientists to understand the complex
events related to climate change.
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