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Anthropogenic change is contributing to the rise in emerging infectious diseases,
which are significantly correlated with socioeconomic, environmental and
ecological factors'. Studies have shown that infectious disease risk is modified by

changes to biodiversity? ®, climate change
and species introductions®. However, it remains unclear
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which global change drivers mostincrease disease and under what contexts.

Here we amassed a dataset from the literature that contains 2,938 observations of
infectious disease responses to global change drivers across 1,497 host-parasite
combinations, including plant, animal and human hosts. We found that biodiversity
loss, chemical pollution, climate change and introduced species are associated with
increases in disease-related end points or harm, whereas urbanization is associated
with decreases in disease end points. Natural biodiversity gradients, deforestation
and forest fragmentation are comparatively unimportant or idiosyncratic as drivers
of disease. Overall, these results are consistent across human and non-human
diseases. Nevertheless, context-dependent effects of the global change driverson
disease were found to be common. The findings uncovered by this meta-analysis
should help target disease management and surveillance efforts towards global
change drivers that increase disease. Specifically, reducing greenhouse gas
emissions, managing ecosystem health, and preventing biological invasions and
biodiversity loss could help to reduce the burden of plant, animal and human
diseases, especially when coupled with improvements to social and economic
determinants of health.

Emerginginfectious diseases are ontherise, often originate fromwild-
life, and are significantly correlated with socioeconomic, environmen-
tal and ecological factors'. As a consequence, there is concern that
anthropogenic global change is contributing to alterations in disease
risk. For example, several studies have demonstrated that infectious
diseaserisk is modified by changes to biodiversity*, climate change’™
and chemical pollution®™, Landscape transformations, such as forest
conversiontoagriculture or urban centres, also regularly shift disease
risk™>2°, Moreover, the movement of people, products and animals
around the planet has resulted in pathogen introductions with mas-
sive health consequences for humans, domesticated plants and ani-
mals, and wildlife?. Mechanistically, global change can alter disease
by affecting the distribution of epidemiological traits in ecological
communities, modulating immune defences, and altering contact
rates among pathogens, wildlife, livestock and humans. For example,
the COVID-19 pandemic, which reshaped the global economic and

public health landscape, has been linked to animal trade and global
travel, and researchers have speculated that there are associations
withurbanization, climate change, air pollution and habitat loss?. This
pandemic has also undoubtedly heightened interest in understand-
ing causes of disease outbreaks and investment in infectious disease
control, mitigation and surveillance.

Althoughthere are many individual studies oninfectious disease risk
and environmental change, as well as syntheses on how some drivers of
ecosystem change affectinfectious diseases'?, formal meta-analyses
are lacking examining how infectious diseases of plants, animals and
humans are modified across global change drivers®. Thisliterature gap
iscritical tofill because resources for infectious disease management
will always be limited and could be poorly targeted without knowl-
edge of which global change drivers most affect infectious disease
risk. Moreover, risk might be high for only certain types of pathogens
or hosts, for wildlife but not human diseases, or for certain ecological
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Fig.1|The number of observations across ecological contexts. a-f, Summary
ofthe number of observations (that s, effect sizes) in the infectious disease
database across the following ecological contexts: global change driver (a),
parasite taxa (b), host taxa (c), experimental venue (d), habitat of the study (e)
and human parasite status (f). g, The locations of field studies show broad
global coverage of studies included in the database. See Extended Data Fig. 2
for the number of parasite taxa as well as the number of parasite taxain the

conditions. For example, the emergence of zoonotic diseases of humans
tends to be driven more by interactions with particular mammalian
and avian taxa than other vertebrate groups* . Thus, understanding
these context dependencies will further enhance the efficacious use
of limited resources for disease control.

Here our primary goal is to use a traditional meta-analytical approach
to determine the magnitude with which global change drivers are asso-
ciated with infectious disease risk and whether these associations
depend on ecological contexts, such as host or parasite/pathogen
(hereafter referred to as parasite, which refers to allinfectious agents
including bacteria and viruses) taxon or human versus non-human
disease. To accomplish these goals, we conducted a literature search
toidentify studies oninfectious disease that considered at least one of
the five major drivers of global change highlighted by the Millennium
Ecosystem Assessment?: biodiversity change, climate change, chemi-
cal pollution, habitat loss/change (defined as anthropogenic destruc-
tion of an ecosystem or the shift in habitat from one type to another;
forexample, slash and burn, clearcutting, urban-to-rural gradient) or
introduced species (Methods).
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database partitioned by ecto- and endoparasites, ecto- and endothermic hosts,
vectors and non-vectors, vector-borne and non-vector-borne parasites, complex
and direct transmission parasites, parasites withand without free-living stages,
parasites that doand do notinfect humans, microparasites and macroparasites,
and zoonotic and non-zoonotic parasites. The numbers of effect sizes and
studies across all of these end points are shown in Supplementary Table 2. The
base mapis from Natural Earth (https://www.naturalearthdata.com/).

Database of infectious disease studies

The databaseresulting from our literature searchincludes 972 studies
and 2,938 observations of global change drivers on disease or parasit-
ismfrom1,006 parasite taxa, 480 host taxaand 1,497 host-parasite taxa
combinations (Fig.1and Extended Data Fig.1). Each continent except
for Antarcticawas well represented with data from field studies across
the global change drivers (Fig.1g). In contrast to many meta-analyses,
we had reasonable coverage of studies within low- and middle-income
countries (LMICs; that is, more than 20 field studies in the LMICs per
driver), except for chemical pollution and introduced species (6 and
3field studiesin the LMICs, respectively; Fig. 1g). Nevertheless, there
weresstill less data available for LMICs, highlighting the need for addi-
tional research in these countries.

Each observationin the database containsinformation on the asso-
ciated global change driver and host and parasite taxa and traits (for
example, human versus non-human parasite), and whether it was
derived from freshwater, marine, or terrestrial systems and laboratory
orfield studies (Fig.1, Extended DataFigs.2 and 3 and Supplementary
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Fig. 2| The effects of five common global change drivers oninfectious
diseaseresponses. Biodiversity change (BC), climate change (CC), chemical
pollution (CP) and introduced species (IS) are associated with increases in
disease-related end points or harm (thatis, introduced species having fewer
parasites). Habitat loss or change (HLC) was associated with significant
decreasesindisease end points. The numbers of studies (n) and effect sizes (k)
foreachdriverareshowninparentheses. The displayed pointsrepresent the
mean predicted values (with 95% confidence intervals) from a meta-analytical
modelwithseparate randomintercepts for study. Global change driver effects
aresignificant when confidenceintervals do not overlap with zero and were
explicitly tested using a two-tailed one sample t-test (indicated by asterisks;
ts5045=5.56,P<0.001for BC; tg;,5=2.04, P=0.044 for CP; t,,44,=4.36,P<0.001
for CC; t3,;5,=—5.13,P<0.001for HLC; t,;, ;= 4.07, P< 0.001 for IS). Points that
donotshare letters are significantly different from one another (P<0.05), as
determined using atwo-sided Tukey’s post hoc multiple-comparison test with
correction for multiple comparisons. Pairwise comparison resultsare shownin
Supplementary Table 3. Sampling variance = 0.14%; within-study heterogeneity
P =89.27%; and between-study heterogeneity *=10.59%.

Table 2). Moreover, eachresponse variable was classified as a host end
point, which captures host symptoms or consequences of infection
(disease presence, disease severity, survival, growth and reproduction)
oraparasite end point, which captures parasite pressure in hosts (para-
site prevalence, incidence, intensity, abundance, survival, growth and
richness). Hedge’s gand log response ratio effect sizes were calculated
from each study, with positive and negative effect sizes represent-
ing increases and decreases in disease, respectively. The exception
was for studies on introduced species, for which decreases and
increases in parasites or disease in the native host received negative
and positive values, respectively, but the opposite was true for non-
native hostsbecause areductionin disease in non-native hosts and an
increase in native hosts were both deemed to be potentially detrimental
(further discussion is provided in the Methods and Supplementary
Information1).

Comparing among global change drivers

Among the global change drivers, habitat loss/change caused sig-
nificant reductions in disease, while chemical pollution, climate
change, introduced species and biodiversity change increased disease
responses or disease-related harm, in order of increasing magnitude.
These patterns were similar using Hedge’s g and log response ratios
(Figs. 2 and 3 and Extended Data Fig. 4) and we therefore focus on
Hedge’s g hereafter. Biodiversity change was associated with a 393%
greater increase in disease compared with chemical pollution, a 111%
greater increase in disease compared with climate change and a 65%
greaterincrease in disease compared withintroduced species (Fig. 2).

Importantly, we found no evidence that effect-size patterns among
global change drivers could be explained by differences in variances
or sample sizes among global change drivers (Extended Data Fig. 5),
extreme values (Extended Data Fig. 6a), or publication (Extended Data
Fig. 6b-d) or time-lag (Extended Data Fig. 6, Supplementary Dataland
Supplementary Information 2) biases.

Comparing among subcategories of drivers

Next, we evaluated global change driver subcategories (Fig. 3). Con-
sistent with previous studies?, the loss of pre-existing biodiversity was
associated with significantly greater increases in infectious disease
outcomes (857% more) compared with natural biodiversity gradients
(for example, latitudinal or elevational gradients in species richness;
Fig.3).Enemyrelease (thatis, the notion thatintroduced species leave
many of their parasites behind in their native range) reduced infec-
tious diseasesinintroduced species, but had weaker effects compared
with biodiversity loss (39% weaker). Mean temperature and carbon
dioxide similarly increased disease but had weaker effects compared
with biodiversity loss (55% and 62% weaker, respectively) and enemy
release (26% and 38% weaker, respectively). Urbanization decreased
infectious diseases, perhaps because urban developmentis associated
withimproved water, sanitation and hygiene for humans, and habitat
loss for many parasites and their non-human hosts'. Specifically, hel-
minths, protists and arthropods were all negatively associated with
urbanization, whereas viruses were non-significantly positively associ-
ated with urbanization (Extended Data Fig. 7a). Furthermore, disease
was reduced in urban settings compared with in rural and peri-urban
settings, whereas there were no differences in disease along urbani-
zation gradients or between urban and natural settings (Extended
Data Fig. 7b). Similarly, the effect of forest fragmentation on disease
depended onthetype of fragmentation being compared, but the effect
of deforestation on disease did not depend on the type of land-use
conversion (Extended DataFig. 7c). All of the other subcategories had
non-significant effects on disease (Fig. 3). Given the limited funds for
infectious disease management, these results suggest that controlling
or mitigating biodiversity loss, introduced species and climate change
might be particularly important for infectious disease control.

Context dependencies

Understanding context dependencies is also crucial for properly
targeting limited resources for disease control. Although the ideal
approach would have been to compare global change driversinasin-
gle model-selection analysis that considered the correlations among
allindependent variables and their interactions, this approach was
not possible due to missing combinations of variables (Methods and
Supplementary Table 2). We circumvented these statistical limita-
tions using two approaches. First, we tested for two-way interactions
between each global change driver and host and parasite taxa and vari-
ous traits of hosts, parasites and studies. Second, to account for the
covariances among predictors and to identify the most parsimonious
combinations of predictors, we fit models with all possible combina-
tions of main effects of host, parasite and study factors for each global
change driver separately (Methods and Supplementary Data1). We then
qualitatively assessed the consistency in the results between these
statistical approaches.

Importantly, these analyses can reveal both when there are and are
not context dependencies. For example, there were many consistent
patterns across global change drivers. For several global change driv-
ers, parasite versus host end point was an important moderator in
either the two-way interaction (Fig. 4a) or model selection (Fig. 4b)
analysesand, in each case, parasite end points were as sensitive or more
sensitive to the global change drivers compared with host end points
(Extended Data Fig. 8aand Supplementary Table 3). Given that parasite
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Fig.3 | Theeffects of subcategories within five common global change
driversonmeaninfectious disease responsesintheliterature. Biodiversity
gradient covers natural variationin biodiversity (for example, across latitude
orelevation), whereas biodiversity lossisaloss of biodiversity usually associated
with ananthropogenic factor®. Forest fragmentation compares different sizes
of forest patches, whereas deforestation compares forests to the absence of
forests (thatis, two different habitats). Enemy release is defined as cases in which
anintroduced host has fewer parasitesinitsintroduced range than native range
or than native species inits introduced range?+3°*¢, Native-to-introduced
transmission occurs when anintroduced hostisacompetent host for anative
parasite and amplifies infections in the native host?.. Introduced-to-native

abundance can change profoundly without changes in symptoms or
disease, especially for hosts that have tolerance (that is, ameliorat-
ing the damage that infection causes) rather than resistance (that is,
‘fighting’ the parasite directly) defence strategies®?, itis unsurprising
that parasite end points, which are capturing parasite abundance, are
more sensitive to global change factors than host end points, which are
capturing host symptoms or consequences of infection.

The effects of global change drivers oninfectious disease outcomes
alsodid not consistently depend on continent (Extended Data Fig. 9a
and Supplementary Table 3), host taxon (Extended Data Fig. 9b and
Supplementary Table 3) or whether the parasite infected humans or
not (Fig. 4a). These results indicate that global change drivers are
having consistent effects on infectious disease risk across space and
broad host taxa, including humans, non-human animals and plants.
Parasites of mollusks were the exception because they responded
more positively to biodiversity change and habitat loss/change
compared with other host taxa, most likely because mollusks are
required hosts for all trematodes, which have complex life cycles,
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transmission is defined as the spread of a parasite fromanintroduced to native
host orfromanative tointroduced host®. For zoonotic diseases, spillover is
animal-to-human and human-to-animal transmission. The numbers of studies
(n) and effect sizes (k) of each subcategory are shown in parentheses. The
displayed pointsrepresent the mean predicted values (with 95% confidence
intervals) from a meta-analytical model with study asarandomintercept.
Confidenceintervals that do not overlap withzero are generally significant
(P<0.05),seethe main text for details. UVB, ultraviolet radiation B; ENSO,
EINifio-Southern Oscillation. Sampling variance = 0.14%; within-study
heterogeneity I = 89.27%; and between-study heterogeneity I*=10.59%.

and theory and evidence indicate that parasites with complex life
cycles tend to be more sensitive to biodiversity change and habitat
loss/change compared with those with simple life cycles?. Although
global change drivers did not differentially affect zoonotic versus
non-zoonotic parasites (Fig. 4a), end points associated with zoonotic
parasites measured from wild or domesticated animals responded
more positively to global change drivers compared with end points
associated with zoonotic parasites measured from humans, and this
effect was generalizable across global change drivers (Extended Data
Fig.10a). Furthermore, although global change drivers generally
did not differentially affect host taxa (Extended Data Fig. 8b), end
points associated with wild animals responded more positively to
global change drivers compared with end points measured from
domesticated animals, and this effect was similarly generalizable
across global change drivers (Extended Data Fig.10a). These results
are not surprising given that humans treat and control diseases in
humans and domesticated animals more so than diseases in wild
animals, which should dampen the effect of global change drivers on
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Fig.4|Context-dependent effects of global change driversoninfectious
diseaseresponses. a, Coefficients from separate tests of two-way interactions
betweeneach global change driver and host and parasite taxa and various traits
ofhosts, parasites and studies. The black sections of the heat map could not be
tested owing to missing data. Here, human parasites are those that caninfect
humans, whereas non-human parasites are those thatare not reported to infect
humans. Zoonotic parasites are those that are spread between humans and
animals, while non-zoonotic parasites are those that are not known to spread
betweenhumansand animals. b, Therelativeimportance scores frommodel
selection examining the effects of five common global change drivers on mean

human and domesticated animal end points. The fact that many global
changedriversincrease zoonotic parasitesin non-human animals and
increase all parasites in wild animals suggests that anthropogenic
change mightincrease the occurrence of parasite spillover fromani-
mals to humans and, therefore, also pandemic risk.

No clear context dependencies emerged from studies on chemical
pollution and climate change (no significant two-way interactions
and allrelative importance scores < 0.5; Fig. 4b). This result was prob-
ably due to the enormous diversity in the pollutants tested, making
it challenging to uncover consistent patterns on infectious disease
and highlighting the need for further infectious disease research on
this global change driver, especially given that many contaminants
can be immunosuppressive®. The lack of context dependencies for
climate change suggests that disease increases in response to climate
change will be consistent and widespread, further stressing the need for
reductionsingreenhouse gas emissions to mitigate these detrimental
impacts of climate change. This resultis in contrast to several studies®
suggesting that parasites with complex life cycles will be disrupted by
climate change more than those with direct life cycles because they

0.25 0.50 0.75 1.00

Importance score

infectious disease responses. In contrast to the two-way interaction analyses,
themodelselection analyses account for the covariances among predictors and
identify the most parsimonious combinations of predictors. The coefficients
fromthese models areshownin Supplementary Datal.Inb, variable definitions
areend point: host or parasite; free-living stage: free-living stage or not; global
change driver (GCD) subfactor (Fig. 3); habitat: freshwater, marine, terrestrial;
hosttaxa (Fig.1); host thermy: ectotherm or endotherm; human parasite:
human parasite or not; parasite size: macroparasite or microparasite; parasite
taxa (Fig.1); transmission route: complex or direct; vector-borne: vector-borne
ornot; venue: laboratory or field; ectoparasite: ectoparasite or endoparasite.

have more necessary host species that could be adversely affected by
climate change.

In contrast to the generally consistent patternsacross host taxaand
certain global change drivers, numerous context dependencies were
detected across parasite taxa and study system for other global change
drivers. For example, when compared to viruses, fungi responded
more positively tointroduced species, and helminths responded more
negatively to habitat loss/change (Extended Data Fig. 9c and Supple-
mentary Table 3). Helminths, which are macroparasites that tend to
have complex life cycles, also responded more positively to biodiversity
loss compared with all other parasite taxa (Extended Data Fig. 9c and
Supplementary Table 3). Similarly, relative to parasites with simple
(thatis, direct) life cycles, parasites with complex life cycles, such as
vector-borne parasites, experienced greater decreases when exposed to
introduced species and greater increases when exposed to biodiversity
loss—results that were generally similar across the two-way interaction
and model selection analyses (Fig. 4, Extended Data Fig. 8b,c and Sup-
plementary Table 3). As parasites with complex life cycles require more
host speciesthanthose withsimplelife cycles, thereisagreater chance
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that one of the hosts is sensitive to global change; it is therefore not
surprising that they tend to be more sensitive to biodiversity loss com-
pared with species with direct life cycles. Moreover, when non-native
speciesareintroduced to ecosystems, parasites with direct life cycles
need to find only a single suitable host species (introduced host or
novel host), whereas hosts with complex life cycles would need to find
new intermediate and final hosts; thus, parasites with direct life cycles
mightincrease more during host species introductions compared with
those with complex life cycles®. Finally, the biodiversity change results
are consistent with ameta-analysis highlighting that biodiversity loss
increases parasites more if they have complex than simplelife cycles?.
Biodiversity loss also increased disease caused by macroparasites more
thandisease caused by microparasites (Extended DataFig. 8d and Sup-
plementary Table 3). Biodiversity loss also increased disease more in
laboratory studies compared with field studies (Extended Data Fig. 8e
and Supplementary Table 3), in aquatic systems compared with ter-
restrial systems (Extended Data Fig. 8f and Supplementary Table 3)
and in ectothermic compared with endothermic hosts (Extended
Data Fig. 8g and Supplementary Table 3). Conversely, habitat loss/
change decreased disease caused by macroparasites more than disease
caused by microparasites (Extended Data Fig. 8d and Supplementary
Table 3). Habitat loss or change also decreased diseasein field studies,
butnotinlaboratory studies (Extended DataFig. 8e and Supplementary
Table 3); and in terrestrial systems, but increased disease in marine
and freshwater systems (Extended Data Fig. 8f and Supplementary
Table 3). Finally, ectoparasites increased more than endoparasites
when exposed to introduced species (Extended Data Fig. 8h and Sup-
plementary Table 3), which may be because ectoparasites are more
vulnerableto host species loss (for example, fewer viable host species
intheintroduced range thanin the native range) than endoparasites™,
therefore reducing ectoparasites in introduced hosts.

Caveats and conclusions

Here werevealed that biodiversity loss, climate change, chemical pol-
lutionand enemy release associated with introduced speciesincreased
disease responses or disease-related harm, whereas urbanization
caused decreases in disease. All of these results were generally con-
sistentacross human and non-human diseases, although other context
dependencies were common. End points from parasites with com-
plex life cycles, such as macroparasites and vector-borne pathogens,
decreased more with habitat loss/change, increased more with biodi-
versity change, and responded less strongly inresponse tointroduced
species compared with end points from parasites with simplelife cycles,
and ectoparasites increased more in response to introduced species
compared with endoparasites.

We hope that our analyses will facilitate disease control, mitigation
and surveillance efforts globally, ultimately improving wildlife and
human health and pandemic preparedness; however, there areimpor-
tant caveats for using these analyses in decision-making. First, the
relationships that we identified might not hold past the range of con-
ditionsincludedin this meta-analysis and we therefore advise against
projecting beyond these conditions. Second, we treated the global
changedriversin this meta-analysisinan unbiased and equal manner.
However, froma policy perspective, the rates of change of the drivers
andtheirrelevance to currentand future epidemic and pandemic risk
are also crucial. For example, some subcategories of drivers, such as
ultraviolet radiation associated withozone depletion, require less atten-
tion because they have already been rectified by global agreements.
Other drivers are expected to asymptote or even improve in certain
parts of the world, such as habitat loss in upper-income countries as
they pursue reforestation. Finally, some drivers are expected to worsen
through time and are associated withincreasesin disease risk, such as
climate change and biodiversity loss, and these drivers might therefore
necessitate the greatest policy attention. The third caveatis that there
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are very few studies in this meta-analysis on interventions to remediate
the effects of global change on disease. Thereis considerable evidence
that simply reversing the magnitude of global change drivers can be
insufficient to fully counteract their effects®. Consequently, we need
more tests of interventions to remediate the highest priority drivers
described herein®and efforts to evaluate whether ecosystemrestora-
tion can be used as a lever to manage disease>*.

Finally, most studies in this meta-analysis consider the effects of a
single stressor or global change driver oninfectious disease end points
despite most organisms experiencing several of these factors concur-
rently and many drivers being interconnected. For example, climate
change and chemical pollution can cause habitat loss and change, which
inturn can cause biodiversity loss and facilitate species introductions.
Itisunclear whether global change drivers generally interact additively,
antagonistically or synergistically and future studies should therefore
more thoroughly examine their interactions, interdependencies and
relative contributions to disease risk. Importantly, greater effort is
needed to identify win-win solutions that address multiple societal
stressors, such as disease, food, energy, water, sustainability and pov-
erty challenges®™. Although our data suggest that climate change and
biological invasions and loss have a partin wildlife and human diseases,
all of these factors also can contribute to, exacerbate and trap people
inrural poverty, which is the strongest predictor of environmentally
transmitted infectious diseases on the planet®. Thus, leveraging the
intersection among environmental, social, economic and political
dimensions will not only be necessary to effectively mitigate against
increasesin disease associated with global change, but will also almost
certainly berequired to meet the United Nation’s sustainable develop-
ment goals targeted at managing the numerous co-dependent global
grand challenges of the twenty-first century®®,
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Methods

We conducted literature searches in Web of Science, Scopus and Pub-
Med on each of the five global change drivers and infectious disease
(the dates of searches and search terms are shown in Supplementary
Table 1). We translated papers in the following languages: Chinese,
French, Japanese, Polish, Portuguese, Russian and Spanish. Only origi-
nal peer reviewed literature was included. Book chapters, conference
proceedings, grey literature and review articles were excluded. We
screened papers to determine whether they drew clear conclusions
about the impact of the global change driver on a parasite (for exam-
ple, parasite growth, prevalence, abundance, intensity, virulence) or
host end point (for example, disease, growth rate, survival) through
experiments or field studies (Supplementary Information). Each of the
five global change drivers was further categorized into subcategories,
whichare providedinFig. 3. From each study, we extracted dataonthe
effect ofthe global change driver on eachinfectious disease end point,
the subcategory of global change driver, the host and parasite species,
and various traits of the study, hosts and parasites. We hand-corrected
all obvious misspellings of parasite and host names and converted those
parasites with multiple hosts to a broader taxonomic resolution (for
example, hosts of domestic dogs and humans were converted to ‘mam-
mals’). Moreover, to correct any changes in taxonomy and any other
non-obvious misspellings, we used the taxize R package (v.0.9.100)* to
match parasite and host names to those in 20 existing databases using
the Global Names Resolver service provided by the Encyclopedia of
Life. Instances of misspellings were clarified, and current taxonomic
nomenclature was applied when appropriate.

Thelist of studies associated with biodiversity change was based on
a previous study?, which combined studies from four meta-analyses
(details are provided in Supplementary Table 1 and ref. 3). Each
meta-analysis included only studies that reported a measure of host
biodiversity as the independent variable (for example, host richness,
Shannon diversity, Simpson diversity). Although our meta-analysis
focuses on anthropogenic change, to remain consistent with ref. 3,
we included both natural and anthropogenically driven biodiversity
gradients. With the exception of natural biodiversity gradients, all of
the other studiesincluded in this meta-analysis had an anthropogenic
driver. For chemical pollution, contaminants were assigned to 1 of 11
contaminant classes described previously®, and we excluded papers
that evaluated the development of a treatment for a parasitic infec-
tion or evaluated how naturally occurring nutrientsinfluence disease
development. Studies onintroduced species focused on enemy release,
transmission of parasites from native to invasive or invasive to native
hosts, dilution effects and scenarios in which an introduced host is a
competent host for a native parasite and amplifies infections in the
native host (definitions of these terms are shown in Fig. 3). The initial
study list and related information were then compiled.

Data extraction and effect sizes

We extracted mean values with associated sample sizes and dispersion
(suchasvariance, s.d.,s.e.m.). Data extraction was then performed and
data were checked for accuracy. All data in biodiversity change were
taken from ref. 3. Data presented in the text or tables were directly
extracted. Data from figures were digitized using WebPlotDigitizer®.
When available, raw data were used to calculate the mean, dispersion
and sample size. When studies presented statistics other than mean
values (such as odds ratio; regression coefficient; correlation coef-
ficient; and ¢, z, x> and f'statistics), we extracted these values and their
subsequent dispersionin place of mean values. Moreover, for data for
whichthe disease end point was measured through time, anatural cubic
splinerelationship was generated between time and disease end point
for each treatmentand the area under the curve (AUC) was then calcu-
lated for each natural cubic spline. The resulting AUC and associated
error were used for the mean and dispersionto calculate an effect size.

We defined our effect size using Hedge’s g, assuming heteroscedastic
population variances among the two groups (SMDH):

g=—" oy

where A and s, are the mean of sample 1, the mean of sample 2 and
the pooleds.d., respectively. s, is calculated as follows:

2, 2
_[51tS8)
5= > (2)

where s, is the s.d. for sample 1and s, is the s.d. for sample 2. When
observations were statistics rather than mean values, we converted the
presented statistic to Hedge’s g using standard conversion equations
within the esc R package (v.0.5.1)*%,

We also calculated effect sizes using the log response ratio (RR):

N
RR=In= 3
5, (3)

where y and y, are the mean of sample 1 and sample 2, respectively.
The variance of the log response ratio is:
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where y, s;and N, are the mean, s.d. and sample size of sample 1, respec-
tively; and y,, s,and N, are the mean, s.d. and sample size of sample 2,
respectively. For observations that were statistics rather than mean
values, conversion from the presented statistic to the RR were not
possible; as such, sample sizes between the two effect sizes were not
equalandall observations within BC did not have associated RR values.

Meta-analyses

Allanalyses were conducted inR (v.4.2.2)*2. Allanalyses were conducted
with meta-analytic multilevel mixed-effects models using the rma.mv
function in the metafor R package (v.4.2-0)*. Our data had multiple
effect sizes from the same studies, so all meta-analytic models were
fit with astudy-level and observation-level random effect, to account
for the non-independence of observations from the same study, and
with a robust variance estimator (that is, CL2 cluster-robust estimate
of variance-covariance matrix as well as Satterthwaite approxima-
tion of d.f.)*. Test statistics and confidence intervals for fixed effects
were computed using one-sample, two-tailed ¢-distributions. Post
hoc comparisons were conducted using two-tailed Tukey’s tests with
multiple-comparison adjustments. Moderators in the meta-analysis
with many consistent effect sizes will result in estimates with small
confidence intervals and moderators with few or inconsistent effect
sizes will result in estimates with large confidence intervals. Statisti-
cal significance was assumed when 95% confidence intervals were not
overlapping zero.

Moderator variables

Wefirst estimated the overall grand mean and the total heterogeneity
explained by the random effect terms. Second, to test for the effects of
broad global change drivers on disease, we conducted ameta-analytical
model with global change driver as the moderator. Third, to test
whether global change driver subfactors differentially affect disease,
we conducted a meta-analytical model with the subfactors of global
changedrivers as the moderator. Fourth, we sought to test for context
dependencies of the effects of global change drivers on disease. The
idealapproachwould have been to compare global change driversina
single model-selection analysis that considered the correlations among
allindependent variables and their interactions, but this approach



was not possible due to missing some combinations of variables. For
example, all habitat loss/change studies were conducted in freshwater
and terrestrial systems (that is, no laboratory or marine studies), also
all fungi were ectoparasitic and some host taxa were too infrequently
tested under certain global change drivers. We therefore conducted
meta-analytical models with the main and interactive moderators of
global change drivers and various host, parasite and study moderators.
Thevarious study moderators taken fromeach study included host taxa,
parasite taxa, vector status (vector/non-vector), vector-borne status
(vector-borne/non-vector-borne), parasite type (endo-/ectoparasite),
human parasite (human/non-human), transmission route (complex/
direct), free living stages (yes/no), macroparasite versus micropara-
site, host thermy (endo-/ectothermic), experimental venue (field/
laboratory), response variable end point (host or parasite focused)
and habitat (freshwater/marine/terrestrial); each of these moderators
were tested separately. Then, to determine whether global change
drivers may increase occurrence of spillover events and potential risk
of pandemics, we assessed whether wild or domesticated animal end
points within the animal diseases only and human or non-human end
points within the zoonotic diseases only showed differential responses
toglobal change drivers. Finally, to determine whether certain context
dependencies existed within the habitat loss/change data, we assessed
whether the effect of urbanization on disease varied by parasite taxon
orland-use comparison (thatis, urbanland-use compared against rural,
peri-urban, natural or along an urbanization gradient) and whether
the effects of deforestation and forest fragmentation depended on
the land-use conversion type (that is, clearcut and regrowth or agri-
culture for deforestation and patch-size gradient or large/continuous
patch versus small patch for fragmentation). Differences in the main
and interactive effects of these moderators was assessed using the
emmeans R package (v.1.8.5)*. Finally, to determine which moderators
best explain disease response to specific global change drivers, we
performed model selection based on AICc in which we fit all possible
combinations of the main effects of the global change subfactors and
various host, parasite and study moderators using the dredge function
inthe MuMIn R package (v.1.47.5)*¢. Model selection was conducted on
each global change driver separately; owing to the different numbers
of observations across global change drivers and missing cell issues
within global change drivers, the replicates varied for each global
change (biodiversity gradient k= 387; climate change k = 310; habitat
loss/change k =1,238; introduced species k =309; chemical pollution
k=336). Model weights and relative importance values for each pre-
dictor variable were calculated from models with a AAICc < 4, which
have moderate to substantial support to be the best model*. All data,
Rscripts and R markdown files are provided.

Publication bias and sensitivity analysis

Publicationbiasis the selective publishing of certain research findings,
such as significant or favourable results. Common publication biases
include small study effects (correlation between observed effects
sizes and standard errors) and time-lag biases (positive results being
published before negative results)*s. To assess these potential biases,
we first used funnel plots to visually inspect the relationship between
model (intercept only) and standard error, but it isimportant to note
that funnel plots assume minimal heterogeneity in data and should
therefore be used as avisual tool only*. Second, we performed multi-
level metaregressions using the inverse sample size or the square root
ofthe effective sample size as moderators to clarify small study effects
(Egger’s test*). Third, we included the publication year as a modera-
torinthis metaregression model to simultaneously test for atime-lag
bias*¢. Fourth, to assess the robustness of our results, we performed a
leave-one-out analysis on the meta-analytical grand mean (intercept
only) model. From this analysis, we determined whether the removal
of asingle study greatly shifted the grand mean estimate*®. Finally, we
conduced fail-safe N analysis to address the file-drawer problem, we

used the Rosenthal, Orwin and Rosenberg publication bias methods
and set our fail-safe N threshold equal to 5N, + 10 such that, if the
values from the methods are greater than our threshold value, then
our results can be considered to be robust with respect to unpublished
non-significant results*.

Given that effect size is afunction of variance and sample size, differ-
ences in the distributions of effect sizes on disease end points among
global change drivers and across contexts might be the product of these
factors®. To test whether differences in effect sizes were driven by dif-
ferencesinsamplesizes and/or variances, we tested for differencesin
sample sizes and variances among global change drivers. We applied
generalized linear mixed effects models (GLMMs; glmer function, Ime4
package, v.1.1-32)* with ‘study’ as arandomintercept to compare vari-
ances and samples sizes among global change drivers, using Gaussian
errors for variance models and Poisson errors for sample size models.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.
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Extended DataFig. 3 |Summary of the number of effect sizes (A-I), studies
(J-R), and parasite taxa (S-a) in the infectious disease database for various
parasite and host contexts. Shown are parasite type (A,], S), host thermy (B,
K, T), vector status (C, L, U), vector-borne status (D, M, V), parasite transmission

(E,N, W), freeliving stages (F, 0, X), host (e.g. disease, host growth, host
survival) or parasite (e.g. parasite abundance, prevalence, fecundity) endpoint
(G, P,Y), micro-vs macroparasite (H, Q, Z), and zoonotic status (I, R, a).
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Extended DataFig. 4| The effects of global change drivers and subsequent
subcategories ondisease responses with Log Response Ratio instead of
Hedge’sg. Here, Log Response Ratio shows similar trends to that of Hedge's g
presented in the main text. The displayed points represent the mean predicted
values (with 95% confidence intervals) from a meta-analytical model with
separaterandom intercepts for study. Points that do not share letters are
significantly different from one another (p < 0.05) based on a two-sided Tukey’s
posthoc multiple comparison test with adjustment for multiple comparisons.
See Table S3 for pairwise comparisonresults. Effects of the five common global
changedrivers (A) have the same directionality, similar magnitude, and
significance as those presented in Fig. 2. Global change driver effects are
significant when confidenceintervals do not overlap with zero and explicitly
tested with two-tailed t-test (indicated by asterisks; tgo ¢, =2.16, p = 0.034 for CP;

Herbicide |
Insecticide |

Metal |

(hn=6,k=6)

(n=6,k=6)
Climate |

Mean precipitation |

Deforestation |
Forest fragmentation |

Urbanization |

(n=136,k=136) |

LA
|
1 *A
I
—e—i |
_—
I

—04 -02 00 02 04 06

Log Response Ratio

= w oy ma e _E_._._!_._

e
¥

4 -2 2 4 6
Log Response Ratio

t,1.4,=2.10, p = 0.039 for CC; t 5,50 = —3.52, p < 0.001 for HLC; t,; , = 2.10,
p=0.040forlS). The subcategories (B) also show similar patterns as those
presentedinFig.3.Subcategories are significant when confidence intervals
donotoverlap withzero and were explicitly tested with two-tailed one sample
t-test (t;o5,=2.17,p = 0.038 for CO,; t, o3 =4.64, p < 0.001 for Enemy Release;
ty745=2.18, p=0.034 for Mean Temperature; t;;o s = —4.05, p < 0.001 for
Urbanization); all other subcategories have p > 0.20. Note that effect size and
study numbersarelower herethanin Figs.3 and 4, because logresponseratios
cannotbe calculated for studies that provide coefficients (e.g., odds ratio)
rather thanraw data; assuch, all observations within BC did not have associated
RRvalues. Despite strong differences insample size, patterns are consistent
across effect sizes, and therefore, we can be confident that the results presented
inthe main text are not biased because of effect size selection.
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Extended DataFig.5|Average standard errors of the effect sizes (A) and
samplesizes per effect size (B) for each of the five global change drivers.
Thedisplayed pointsrepresent the mean predicted values (with 95% confidence
intervals) from the generalized linear mixed effects models with separate
random intercepts for study (Gaussian distribution for standard error model,
A; Poissondistribution for sample size model, B). Points that do not share letters

aressignificantly different from one another (p < 0.05) based onatwo-sided
Tukey’s posthoc multiple comparison test with adjustment for multiple
comparisons. Sample sizes (number of studies, n, and effect sizes, k) for each
driverareasfollows:n=77,k=392forBC;n=124,k=364for CP;n=202,
k=380for CC;n=517,k=1449 for HLC; n=96, k =355 for IS.
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Extended DataFig. 6 | Forest plots of effect sizes, associated variances, and
relative weights (A), Funnel plots (B), and Egger’s Test plots (C) for each of
thefive global change drivers andleave-one-out publication bias analyses
(D).Inpanel A, points are the individual effect sizes (Hedge’s G), error bars are
standard errors of the effect size, and size of the pointsis the relative weight of
the observationinthe model, with larger points representing observations
with higher weightinthe model. Samplesizes are provided for each effect size
inthe meta-analytic database. Effect sizes were plottedinarandomorder.
Egger’stestsindicated significantasymmetries (p < 0.05) in Biodiversity
Change (worstasymmetry - likely not bias, just real effect of positive relationship
betweendiversity and disease), Climate Change - (weak asymmetry, again
likely not bias, climate change generally increases disease), and Introduced
Species (relatively weak asymmetry - unclear whether this is abias, may be

Study

driven by some outliers). No significantasymmetries (p > 0.05) were found in
Chemical Pollution and Habitat Loss/Change, suggesting negligible publication
biasinreported disease responses across these global change drivers (B, C).
Egger’stestincluded publication year asmoderator but found no significant
relationship between Hedge’s g and publication year (p > 0.05) implying no
temporal bias in effect size magnitude or direction. In panel D, the horizontal
redlines denote the grand meanand SE of Hedge’s gand (g =0.1009, SE=0.0338).
Grey pointsand error barsindicate the Hedge’s g and SEs, respectively, using
theleave-one-out method (grand meanis recalculated after agiven study is
removed from dataset). While the removal of certain studies resulted in values
thatdiffered from the grand mean, all estimated Hedge’s g values fell well
within the standard error of the grand mean. This sensitivity analysis indicates
thatour results were robust to theiterative exclusion of individual studies.



A) '
Vir us 1 !
|
1
Protist 1
- |
,>é Helminth f——e— 1
‘é\ |
7] Fungi{ | ® 1
< 1
L
|
Bacteria 1 i
|
Arthropodi 1
: : |
-0.8 -0.4 0.0
Hedge's G
B) '
|
]
2 Rural 1 1
| 1
©
c |
= |
Y Peri—urban { | ® I I
c
g 1
L
w |
c Natural A I
S |
IS
N |
C . I
© Urban Gradient
2 |
S
= |
-0.50 -0.25 0.00 025
Hedge's G
Q) '
|
Continuous Gradient 1 1
1
a I
7 |
'lc High/Low Fragmentation I|—0—|
c
£ !
+—
S 1
(7]
I Clearcut/Regronth - 1
© I
g
- |
Agriculture 1 1
|
| :
-0.5 0.0 0.5
Hedge's G

Extended DataFig.7|See next page for caption.
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Extended DataFig.7|The effects of habitatloss/change ondisease depend
on parasite taxaand land use conversion contexts. A) Enemy type influences
the magnitude of the effect of urbanization on disease: helminths, protists, and
arthropods were all negatively associated with urbanization, whereas viruses
were non-significantly positively associated with urbanization. B) Reference
(control) land use typeinfluences the magnitude of the effect of urbanization
ondisease: disease wasreduced in urban settings compared to rural and peri-
urbansettings, whereas there were no differencesin disease along urbanization
gradients or between urban and natural settings. C) The effect of forest
fragmentation depends on whether alarge/continuous habitat patchis
compared toasmall patch or whether diseaseitis measured along anincreasing
fragmentation gradient (Z=-2.828,p = 0.005). Conversely, the effect of
deforestation on disease does not depend on whether the habitat hasbeen
destroyed and allowed toregrow (e.g., clearcutting, second growth forests, etc.)
orwhetherithasbeenreplaced withagriculture (e.g., row crop, agroforestry,
livestock grazing; Z=1.809, p = 0.0705). The displayed points represent the

mean predicted values (with 95% confidence intervals) from a metafor model
where theresponse variable wasaHedge’s g (representing the effect onan
infectious disease endpointrelative to control), study was treated asarandom
effect,and theindependent variablesincluded enemy type (A), reference land
use type (B), orland use conversion type (C). Datafor (A) and (B) were only
those studies that were within the “urbanization” subcategory; data for (C)
were only those studies that were within the “deforestation” and “forest
fragmentation” subcategories. Sample sizes (number of studies, n, and effect
sizes, k) in (A) for eachenemyaren =48,k =98for Virus;n =193,k =343 for
Protist; n =159, k =490 for Helminth; n =10, k = 24 for Fungi; n =103, k=223 for
Bacteria;and n=30, k =73 for Arthropod. Samplesizesin (B) for each reference
land use type aren =391,k =1073 for Rural; n =29, k = 74 for Peri-urban; n =33,
k =83 for Natural;and n =24, k=58 for Urban Gradient. Sample sizes in (C) for
eachland use conversiontypeare n =7,k =47 for Continuous Gradient;n=16,
k =44 for High/Low Fragmentation; n =11, k =27 for Clearcut/Regrowth; and
n=21,k=43forAgriculture.
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Extended DataFig. 8| The effects of common global change drivers on
meaninfectious diseaseresponsesintheliterature depends on whether
theendpointisthe host or parasite; whether the parasite is avector, is
vector-borne, has acomplex or directlife cycle, oris amacroparasite;
whether the hostis anectothermorendotherm; or the venue and habitat
inwhich thestudy was conducted. A) Parasite endpoints. B) Vector-borne
status. C) Parasite transmission route. D) Parasite size. E) Venue. F) Habitat. G)
Host thermy. H) Parasite type (ecto- or endoparasite). See Table S2 for number
of studies and effect sizes across ecological contexts and global change
drivers. See Table S3 for pairwise comparisonresults. The displayed points

represent the mean predicted values (with 95% confidence intervals) froma
metaformodel where the response variable was aHedge’s g (representing the
effectonaninfectious disease endpointrelative to control), study was treated
asarandom effect, and the independent variablesincluded the main effects
and aninteraction between global change driver and the focalindependent
variable (whether the endpoint measured was a host or parasite, whether the
parasiteis vector-borne, hasacomplex or directlife cycle, is amacroparasite,
whether the study was conducted in the field or lab, habitat, the host is
ectothermic, or the parasiteis an ectoparasite).
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Extended DataFig. 9| The effects of five common global change drivers on
meaninfectious diseaseresponsesin theliterature only occasionally
dependonlocation, host taxon, and parasite taxon. A) Continent in which
thefield study occurred. Lack of replication in chemical pollution precluded us
fromincluding South America, Australia, and Africain this analysis. B) Host
taxa.C) Enemy taxa.See Table S2 for number of studies and effect sizes across
ecological contexts and global change drivers. See Table S3 for pairwise

comparisonresults. The displayed points represent the mean predicted values
(with 95% confidenceintervals) from a metafor model where the response
variable was aHedge’s g (representing the effect on aninfectious disease
endpointrelative to control), study was treated asarandom effect, and the
independentvariablesincluded the main effectsand aninteraction between
global change driver and continent, host taxon, and enemy taxon.
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Extended DataFig.10 | The effects of human vs. non-human endpoints for
thezoonotic disease subset of database and wild vs. domesticated animal
endpoints for the non-human animal subset of database are consistent
across global changedrivers. (A) Zoonotic disease responses measured on
human hosts responded less positively (closer to zero when positive, further
fromzero when negative) than those measured on non-human (animal) hosts
(Z=2.306,p=0.021). Note, ISstudies were removed because of missing cells.
(B) Disease responses measured on domestic animal hosts responded less
positively (closer to zero when positive, further from zero when negative) than
those measured on wild animal hosts (Z=2.636, p =0.008). These results
were consistent across global change drivers (i.e., no significantinteraction
betweenendpoint and global change driver). As many of the global change
driversincrease zoonotic parasites in non-human animals and all parasitesin
wild animals, this may suggest that anthropogenic change mightincrease

the occurrence of parasite spillover from animals to humans and thus also
pandemicrisk. The displayed points represent the mean predicted values

Hedge’s G

(with 95% confidence intervals) from a metafor model where the response
variable wasaHedge’s g (representing the effect onaninfectious disease
endpointrelative to control), study was treated asarandom effect, and the
independent variable of global change driver and human/non-human hosts.
Datafor (A) were only those diseases that are considered “zoonotic”; data for
(B) were only those endpoints that were measured on non-human animals.
Samplesizesin (A) for zoonotic disease measured on human endpoints across
global changedriversaren=3,k=17forBC;n=2,k=6for CP;n=25,k =39 for
CC;andn=175,k =331for HLC. Sample sizesin (A) for zoonotic disease
measured on non-human endpoints across global changedriversaren=25,
k=52forBC;n=2,k=3forCP;n=18,k=29forCC;n=126,k =289 for HLC.
Samplesizesin (B) for wild animal endpoints across global change drivers are
n=28,k=69forBC;n=21,k=44forCP;n=50,k=89forCC;n=121,k=360
forHLC; and n =29, k =45 forIS. Sample sizes in (B) for domesticated animal
endpoints across global change driversaren=2,k=4forBC;n=4,k=11for CP;
n=7k=20forCC;n=78,k=197forHLC;andn=1,k=2forlS.
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