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. Determination of Forced Convection Effects on the Response of
. Membrane-Based Ion-Selective Electrodes via Numerical
. Solution to the Navier-Stokes-Nernst-Plank-Poisson Equations

4 Austin J. Andrews* Philippe Biihlmann © and Christopher J. Hogan ¥

5 Ion selective electrodes (ISEs) enable measurements via the build-up of a phase boundary
6 potential at the surface of a sensing membrane. While a framework exists to understand
7 the performance of ISEs in stagnant samples, the influences of fluid flow on ISEs is less
8 studied. We model the transport of charged ions in solution occurring near interfaces between
9 ISE membranes and aqueous samples when subject to an external flow. We developed a
10 numerical model extending the Pressure-Implicit with Splitting of Operators (PISO) algorithm

1 to incorporate the Navier-Stokes-Nernst-Plank-Poisson system of equations. We find that

12 external flow distorts the aqueous side of the formed double layer at the ISE membrane and

13 aqueous sample interface, leading to an increase in the phase boundary potential. The change

14 in potential is shown to be a function of a novel set of dimensionless numbers, most notably the

15 Debye Length Reynolds number, i.e., the Reynolds number with the Debye Length as the system

16 dimension.

7 I. Introduction

18 The transport of dilute, charged species via both hydrodynamic and electrostatic forces governs a variety of

19 engineered systems, including but not limited to charged particle transport in aerosols[1] and their collection in
20 electrostatic precipitators [2], flow batteries [3], desalination processes [4], and ion-selective electrodes (ISEs) [5]. In
21 many of these instances, in particular the latter, charged species transport is not only affected by external and internal
22 electric fields, but also through the unequal partitioning of charged species (solutes) at phase boundaries. Unequal
s partitioning leads to charge separation at the interface and formation of an electric double layer; this ultimately leads to
2« a measurable potential difference. For ISEs, the potential difference arises at the interface of the ISE membrane and an
s aqueous solution that contains the analyte ion of interest. Formation of this phase boundary potential allows for the
2 measurement of the concentration of this analyte ion. Considerable effort has been dedicated to the design of specific
2z  membrane materials to obtain selectivity for various different target ions [6]. In general, ISE membranes comprise

2s (i) a polymeric membrane matrix that provides the membrane with mechanical robustness, (ii) the analyte ion either
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in a free form or in the form of a complex with an ion-selective receptor (usually referred to as ionophore), as well
as a (iii) counter ion (referred to as ionic site) that is either covalently attached to the matrix polymer or has such a
high hydrophobicity that leaching into aqueous samples is negligible. A phase boundary potential forms because the
analyte ion and counterions differ in their free energies of transfer from the sample into the membrane phase [7]. While
ISE theory typically assumes local equilibrium at the interface of the sample and membrane phase, the transport of
ions between the two phases both by diffusion and convection may influence the magnitude of the phase boundary
potential. A well-known illustration for this are the zero-current transmembrane ion fluxes that often determine the
lower detection limits of ISEs [8]. Also, through experimental measurements of membrane resistance, Dlugolecki et
al. found that external fluid flow may influence the electric double layer particularly for low solution concentrations
[9]. However, the effect of fluid flow on phase boundary potentials has only been qualitatively explored in prior work,
mainly because explicit computation of ion transport accounting for fluid flow requires numerical solution to the
Navier-Stokes-Nernst-Plank-Poisson (NS-NPP) set of equations, which combine conservation of mass and momentum
for fluid flow with mass conservation of each charged species, with Poisson’s equation for the electric potential. This is
a complex set of equations with extensive coupling, and is a stiff system of equations.

Modeling of ISEs presents unique challenges due to the need to account for ion exchange at the ISE membrane
and aqueous sample interface. Ions differentially transport across membrane interfaces primarily due to differences in
affinity for the sample and the membrane phase and may be further altered by binding of the analyte ion to ion receptors
in the membrane phase [10]. Prior work conducted for modeling ISE systems has hence more frequently examined
numerical solutions to the NPP equations, i.e. the Nernst-Planck-Poisson (NPP) equations, which do not consider
fluid flow [11-15]. In these studies, there has been two primarily employed methods to handle the phase boundary
interface. First, coupling between phases has been accomplished using two separate simulation domains, with the
Chang-Jaffe boundary condition [13, 16] at the interface, which relates the flux across the ISE membrane and aqueous
sample interface to a reversible Ist order reaction. Second, interface mass transfer has been modeled by generalizing ion
transport to include gradients in ion activity [14], allowing for a singular domain, keeping track of spatial variations in
the affinity of ions for the two contacting phases.

There have been studies exploring the effects of fluid flow on ion motion within flow-through ion exchange
membranes that are used for electrodialysis (ED)[17-22]. In these studies, the NS-NPP equations were applied, but
their their use was limited to the aqueous phase, focusing on electroconvection and instabilities occurring from an
applied external voltage. The ion concentrations at the phase boundaries were determined by boundary conditions such
as specifying a fixed ion concentration[18] or modeling by Butler-Volmer kinetics[19]. In contrast to electrodialysis
systems, ISE sensing devices are rarely operated with an applied external potential and hence ion currents in ISEs are
usually near zero. Instabilities that lead to electroconvection generally occur when the ion currents are beyond the ohmic

region [23]. Therefore, it is expected that fluid instabilities arising in ED cells are absent from the problems considered
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in this study, where no external potential is applied.

As understanding the potential response is critical to the design and implementation of ISEs as sensing devices,
it is important to know if and when external flow affects the response of such devices, and to probe fundamental
behavior of systems with coupled ion mass transfer, fluid flow, and electrostatics at interfaces. In addition to applications
in electrodialysis, the NS-NPP equations have been solved to predict the behavior of nanopore sensors [24], model
electrostatic precipitators [25], and examine EHD-assisted droplet formation (i.e. electrosprays) [26], among others.
As alluded to above, numerical solutions of these sets of equations has been particularly difficult, and the choice of
numerical schemes is crucial to ensure accuracy and convergence [27]. As the aforementioned works utilize different
numerical schemes, we believe there is still a need to advance NS-NPP solution schemes and to examine fundamental
NS-NPP transport solutions near phase boundaries. Towards this end, here we develop an NS-NPP solution scheme to
model ion transport and the evolution of the phase boundary potential in systems that approximate ISEs and which also
resemble classical laminar flow boundary layers. Described in the subsequent section, the numerical solution scheme
developed utilizes the finite volume method for spatial discretization and extends Issa’s Pressure-Implicit with Splitting
of Operators (PISO) [28] solution algorithm for incompressible flows to include coupling between the NS and NPP
equations. The NPP equations are solved using Hagelaar’s method [29]. A high order embedded Runge-Kutta(RK)
method with variable step size is used for time discretization. Development of this method was conducted using the
open source package OpenFOAM [30]. Algorithm validation is performed via comparison to a series of analytical
solutions, classical solutions, and prior experiments. Subsequently, the algorithm is applied to examine the phase
boundary potential developed across a membrane while simultaneously a laminar boundary layer develops (i.e., the
Blasius solution augmented by mass transfer of charged species). We show that the dimensionless phase boundary

potential is positively correlated to increased fluid flow and decreased ion diffusion rates.

II. Theory and Solution Scheme

A. Governing Equations
To model the effects of fluid flow on ion transport in ISE systems, with the assumptions of incompressible (assuming
low fluid Mach number), laminar (low fluid Reynolds number) and isothermal flow, the Navier-Stokes equations

(Equation 1a and Equation 1n), Nernst-Planck equation (Equation 1d), and Poisson equation (Equation 1¢) are employed
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and are defined as:
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where U is the fluid velocity, P is the hydrodynamic pressure, p is the fluid density, v is the fluid kinematic viscosity, ¢
is the electrostatic potential, f, is the electrostatic body force, € is the permittivity, F the Faraday constant, ¢; the molar
concentration of ion species i, z; the charge of species i, D; the ion diffusion coefficient, R the universal gas constant,
T the temperature of the surrounding medium, k; is the single ion partition coefficients, and o the membrane mass
fraction, differentiating between the membrane phase (¢ = 1) and aqueous (@ = 0). The third term on the right hand
side of Equation 1b is equal to zero when the flow is incompressible, i.e. Equation la is satisfied, and is added for
numerical stability [31]. The body force term f, represents the drag force imparted onto the fluid from the movement of
charged particles and is defined as f, = ZZ? Fc;z;V¢ . This body force is a simplification of the more general Lorenz
force [32] by disregarding effects from magnetic fields, which is commonly done for ions in solution. To improve
stability of the numerical solution and coupling between the membrane and water phase, the simulation domain is
monothetic with ion selectivity modeled through single ion partition coefficients and the mass transfer model from
Haroun et al. represented by ® in Equation le [33]. Originally formulated to enforce non equal partitioning of gases
(Henry’s law), Haroun’s mass transfer model ensures mass conservation at phase boundaries and enforces the jump

condition that occurs with non-equal partitioning of ions, i.e., the ratio of ions present in the water (c.4) and membrane

phases (¢nem) are non unity C"f’ = k # 1 [33]. The additional flux (®), referred to as the "solubility flux", acts to

z
counteract the nonphysical diffusive flux that would arise from a concentration jump at interfaces, where Va # 0. At
thermodynamic equilibrium, when c g = kCmem, the solubility flux (@) is equal in magnitude to the diffusive flux at the
interface when central discretization schemes are used regardless of the mesh size near the interface [33]. This interface
model is similar to the traditionally used Chang-Jaffe boundary conditions assuming diffusion limited surface reactions,
but with the added benefit of a singular domain to describe the NPP equations. To our knowledge, this approach, which
has been successfully employed in gas partitioning into liquids [34, 35], has not employed in conjunction with the

NS-NPP equations previously, and has not been employed in examining ion selectivity across phase boundaries. We

also note that here binary values of @ are employed, but more general a can be treated as a phase fraction and the
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Table 1 Mathematical description of the boundary conditions as labeled in 1a with » representing the face
normal direction and / the identity matrix. The subscripts / and p signify the value at the boundary face and
neighboring cell, respectively.

Boundary Ions (¢;) Potential (¢) Velocity (U) Pressure (P)
! =0 =0 Uy = (1,0,0) G =0
2 Gip=0  Ghp=0 %, =0 Gr =0
3 Gip=0  Ghp=0 %, =0 Pr=0
4 G20 $2y=0 Up=XU0,+U-20m")0,)* 2L,=0
5 Gip=0 =0 Us =(0,0,0) =0
: B0 #i : -
Membrane-Water Interface - - U r=1(0,0,0) g—‘; =0

approach applied here can be extended to mixtures unlike the Chang-Jaffe boundary condition.

B. Domain and Boundary Conditions

In lieu of modeling a complete ISE sensor geometry, we base our model off of classical boundary layers with a
leading edge, as the fluid flow and shear stress in the absence of ion migration and electrostatic body forces are well
known in this scenario. The specific computational domain employed is a 2D representation of flow over a flat membrane
and is shown in Figure 1. Here the numerical solution of the NS equations (U and P) is restricted to only the white
region labeled "Water" in 1a. The electric potential (¢), a continuous variable, is solved for in both the aqueous phase
and the membrane phase (shaded gray in 1b) without distinction between phases, as we modeled both phases with the
same electrical permittivity. The species concentration (c;) is also solved for in both the aqueous phase and membrane
phase, but accounting for partitioning at the water-membrane interface via Haroun’s solubility flux approach [33]. The
same computational mesh was used for both the global domain, comprising of the aqueous and membrane phase, as well
as the aqueous phase. Therefore, the fluid properties solved within the separate water subdomain are easily mapped to
the global domain for solution of Equation 1d. In Figure 1a, each boundary is labeled and the corresponding boundary
conditions may be found in Table 1. The domain was made sufficiently large such that the effect of boundary conditions,
namely the zero gradient condition on the potential, would not affect the results near the ISE membrane and aqueous
sample interface. The computational mesh was designed using hanging nodes and successive refinement to ensure high
spatial resolution near the membrane and fluid interface without compromising the overall simulation cost, particularly
as the unsteady nature of this simulation and highly coupled equations make computational cost high. The mesh selected

had 4.3 - 10° hexahedral cells and is shown in Figure 1b.

*The boundary condition at Boundary 4 is commonly referred to as the symmetry condition. The implementation of this boundary condition for
multi-dimensional variables such as U is the mean of the adjacent cell and the mirror image produced by the Householder transformation. [36]
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Fig. 1 Schematic of the computational domain of a liquid flow over an immiscible membrane phase. (a)
Dimensions and labeled boundaries, with more details provided in Table 1. (b) Computational mesh used in
this study, with insets providing higher magnification of the ISE membrane and aqueous sample interface. All
units presented in this figure are dimensionless, with the dimensionless length scale defined as x* = x_\l/]o More
information about the non-dimensionalization procedure can be found in the Theory and Solution Scheme
section.

C. Numerical Solution Scheme

A custom C++ program was developed to solve Equations 1a-e using the finite volume method and open source
library OpenFOAM. This library abstracts many of the aspects of finite volume discretization and subsequent matrix
construction and numerical solution. This allows developers to focus on higher level solution algorithms and add
additional transport equations such as those present in the NS-NPP equations. To solve the coupled system of Equations
la-e for the dependant variables U, P, ¢, ¢y, c1, ... and ¢;, a modification to the PISO algorithm [28] to include the
NPP equations along with an embedded singly-diagonal implicit Runge-Kutta(SDIRK) [37] time discretization is used.
Time steps are varied using a PPID time step controller[38] with a desired normalized numerical solution error of
1 - 107, More information on the specific implementation of time step control is included in the supporting information.
Within the PISO algorithm, a sub loop for the Nernst-Planck equation coupling with the Poisson equation is solved
using the semi-implicit algorithm from Hagelaar et al. [29]. The modified PISO algorithm implemented along with the
implementation of Hagelaar’s method is shown in Algorithm 1.

To explain the modifications to the PISO algorithm, the notation used is consistent to what is largely used by
the OpenFOAM community and can be found in detail within Jasak’s PhD thesis [39]. For brief explanation of the
notation, the H operator includes all off diagonal components of the discretized momentum equation (Equation 1b) along
with any explicit source terms arising from boundary conditions and time discretization methods. The a coefficient
represents the diagonal components of the discretized momentum equation. All iterative values, n, i, j, k in Algorithm

1 use superscripts with parenthesis () to indicate iteration steps, and brackets [] to indicate the SDIRK stage. The
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algorithm begins by calculating the fluid variables (U and p) with the standard PISO algorithm implementation as
is done within OpenFOAM’s solver pisoFOAM with the addition of the electrostatic body force, which is calculated
explicitly by values from previous iterations. Following the computation of U and p, the electrostatic potential and
species concentrations are solved using Hagelaar’s algorithm without update to fluid variables U and p. The Algorithm
ends with another iteration of the PISO algorithm, but this time with updated values for ¢ and c¢. The Algorithm was
structured such that the variables with the strongest coupling, such as the pairs U and p and ¢ and c, have adequate
convergence before incorporating the weaker, but still prevalent, body force term that couples the fluid variables to
the species transport. The "stop" condition for each loop is based on convergence of the resulting linear systems
for Equations la-e. The convergence is determined based on the L norm of the matrix residuals and is defined as
r= m >, |b — Ax| where A and b are the coefficient matrix and source term produced from the finite
volume and time discretization of the variable x with X representing the average value of x. Convergence was determined
when the L; norm was at or bellow 1 - 1076 before exiting the iteration loops presented in Algorithm 1.

For the spatial discretization, built-in functionality of OpenFOAM’s matrix constructors were employed. For all
transport equations, divergence operators were discretized using 1st order upwind methods, while gradient operators
used Gaussian integration with 2nd order linear interpolation without non-orthogonal or skewness corrections. This
solver uses a custom time discretization following the work of Dalessandro et al.[40] for incorporating SDIRK methods
into OpenFOAM. The specific method used was a 3rd order 3 stage embeded SDIRK method with a 2nd order error
estimator from Alexander[37]. For the special case of solving the Poisson equation with only Neumann boundary
conditions (electric field equal to zero on all boundaries), the fixed point method [41] is applied. Here the compatibility
condition and fixed point value are enforced by modifying the resulting matrix equation from the discretization of
Equation Ic by solving the modified linear system A'x = b" — b where A’ = A+ A(i,i)and b = b + A(i, i)¢rer. Here
i represents the cell location of the fixed value (¢,. ) and b’ is the average of the matrix source term b'. For further
details of implementation, the complete code is linked in the supporting information.

The order of the numerical solution was inspired by Oliveira’s PISO extension for buoyancy driven flows [42] where
similarly the NS equations are modified to include a body force derived from a scalar transport equation, in Oliveira’s
case the heat equation and here the Poisson equation, which in turn is influenced by the ion transport equation. While
the exact solution order may affect stability and convergence rates, the proposed algorithm was deemed suitable for the
present study and has been validated with a series of analytical, experimental and prior numerical studies. The first
comparison is to experimental measurements of the velocity profile in an electrostatic precipitator, where the velocity
is influenced by the electrostatic body force [43] and hence its determination requires solution to the NS-NPP set of
equations. The second is a comparison to Schonke’s [44] analytical solution for the NPP set of equations, testing our
ability to recover solutions with coupled mass transfer and electrostatics. The third is recovery of the classical Blasius

solution for boundary layers of a flat plate. In the absence of electrostatic effects, for the geometry tested here (Figure



Algorithm 1 Segregated solver for the numerical solution to the coupled NS-NPP equations.
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1), simulations recover the Blasius solution, showing that the flow modeled is a viscous boundary layer flow in the
developing region. Validation results can be found in the supplemental material. Further validations more specific to
ISEs are discussed in the Results and Discussion section [11]. Simulations were run on a Minnesota Supercomputing
Institute (MSI) cluster utilizing 8 cores for each simulation and requiring roughly 120 hours of run time for each case

noted in the subsequent section.

D. Non-Dimensionalization and Test Cases

To reduce the number of independent parameters affecting fluid flow and transport of charged ions in solution, we
adopt a non-dimensionalization conventionally utilized in studying boundary layer formation from external flow of a
viscous fluid over a surface [45]. We define the non-dimensional length scale as x* = % where Uy is the bulk fluid
velocity and x the spatial dimension, the non-dimensional time scale as 7 = l’]—‘é and the non-dimensional velocity as
U= U% This variable transformation fixes fluid behavior to problem geometry (x*) and time scale (7), allowing for

examination of other transport phenomena, such as ion motion within the formed fluid boundary layer, with fixed fluid

Fco

characteristics. We correspondingly define the non-dimensional potential as ¢* = </>pr§

where ¢ is the reference ion
concentration and the non-dimensional concentration as ¢* = CLO This combination of fluid and electrochemical variable

transformations leads to the non-dimensionalization of Equations la-e as:

V-U* =0 (2a)
v - _ - - . 2 . =
—+U'V- U= VP4 V20 + V- [(VO)T - S (VU1 + Z iz V" (2b)
i=1
Vg = _ i iz (2¢)
2 1ot
Rey, ¥y 5
act N 1
—L4v. (c;f[U*+ziﬁw*+®*]) = —V2: 2d)
or SC,‘ SC[

L1 -k

=——>V 2
Sc; a+ki(1-a) @ (2e)
(2f)
2
where the resulting dimensionless parameters are the fluid kinetic to chemical potential energy ratio i 5 = i({_ll?];’ the ion

v

Schmidt number S¢ = % and the Debye-length Reynolds number Re g, = Yodav with the Debye length Ay = \/% .
The Debye-length Reynolds number determines the relative strength of the fluid flow inertia within one Debye length
of the fluid-membrane interface. When Re,, is large (Regp >> 1), significant changes to ion transport rates, driven
by fluid flow, occur in the region most sensitive to changes in electrostatic potential. Conversely, when Regy, is
small (Regp << 1), electrostatic forces dominate ion transport, i.e., convection has little influence on transport at

the membrane interface. As will be seen in later sections, this parameter will be paramount to exploring the effects
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of fluid flow on partitioning of ions across the membrane-water interface. Dimensionless numbers associated with
membrane and ion transport found in prior work [11] (i.e., when solving the NPP equations) can be defined from this

set of non-dimensional parameters, including the dimensionless potential i r¢* = ¢%, dimensionless length scale

R’e‘db = ﬁ and dimensionless time scale 5 RTeZ = /;Z—D. These dimensionless ratios will be used in the subsequent
db db

sections for analyzing the mass transfer of ions and associated changes in the potential across the membrane-water
phase boundary.

A series of simulations where preformed varying Sc, Regp, and ¢ ¢ for a binary salt solution. To accomplish this
using the code developed for Equations 1a-e, variables v, cg, U and p were set to 1 m2s!, 1 mol m3, 1 ms™ and
96485 kg m™ (having the same magnitude as Faraday’s constant) respectively. The remaining three variables, i.e., D;, €
and 7, were modulated to represent Sc, Reg, and i ¢. For each case the non-dimensional ion concentration (c*) was
initialized as a constant value of 1.0 in both the membrane and water phases for the cation (+1 charge) and anion (-1
charge). Similarly, the non-dimensional velocity (U*) was set to a magnitude of 1 with a direction parallel to the plate.
For a test of this model, it was assumed here that the ion diffusion coefficient varied neither in space or phase and that it
was the same between the anion and cation. Permittivity (€) was also held constant throughout the domain irrespective
of phase. For all cases the single ion partition coeflicients (k;) were held constant with a value of 2 (hydrophilic) for
the cation and 0.5 (hydrophobic) for the anion, similar to parameters used by [11] in examining transport across an
interface. To ensure accurate capture of the thin double layer, the mesh was designed to have a cell thickness at the
phase boundary of no more than 0.0214, when Regp = 0.1, noting that the mesh and dimensions of the membrane are
scaled based on fluid properties and not the Debye length. To test mesh quality, a secondary mesh with resolution of
1.5 - 10° hexahedral cells and fa phase boundary cell thickness of no more than 0.011,4; was run for two selected cases
(Reap =1,y =1,5¢ =1000 and Reyp, = 0.1, ¢ = 1, Sc = 1000). The potential between these two mesh resolutions
varied no more than 1% when ——— > 1. Therefore, the first mesh with 4.3 - 10° cells depicted in Figure 1b was used

ScRey,

for the remainder of the study.

ITI. Results and discussion
In the absence of external flow (i.e, when Regp = 0) or when flow is negligible, a double layer is formed and the
resulting potential arises from the non-equal partitioning of ions. This potential can be predicted at the t — oo limit by
recognizing that, at equilibrium, the electrochemical potential of each ion is the same in both phases. For a binary
electrolyte consisting of monovalent ions, this can be formulated to be a function of the single ion partition coefficients,

and is defined as [11, 46]

1 (K,
897 = 300 () ®

10
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where k. and k_ are the single ion partition coefficients of the cation and anion, respectively. Prior research has shown
that Equation 3 accurately describes the phase boundary potential at the # — oo limit when the diffusion potential,
often referred to as the Henderson potential, is negligible, i.e., when the partitioning ions have the same diffusion
coefficient [11, 47]. To demonstrate this and to provide code validation, we compare the temporal evolution of the
phase boundary potential with the expected value obtained from Equation 3 for the case of no-flow. Figure 2a shows
that when D/ /1219 > 1 the potential converges to the predicted value from Equation 3. We observe that the evolution

of the phase boundary potential is clearly divided into a a dynamic phase for tD/ /IZ , < 1 and an effectively static

2

phase at tD //léb > 1, suggesting that the use of tD /47, ,

which is equivalent to #ezb, is a well-scaled dimensionless
time for these systems and is henceforth used to present temporally-varying results. For additional validation, the ion
concentration profiles near the ISE membrane and aqueous sample interface at 1D / /13117 = 10 are compared with the
results obtained from Zhurov et al. [11] in Figure 2b for the case where k, =2 and k_ = 0.5. We apply these same
partition coefficients here and throughout this study. However, specific to this validation, we employ Sc = 3.98 for the
cation and Sc = 1 for the anion in order to match the conditions from Zhurov et al. The concentration profiles for both
the cation and anion in Figure 2b show a high degree of symmetry as in the absence of flow, ion motion is dominated by
near interface electric fields and concentration gradients, which are independent between phases for this problem set
up. The strong agreement here, demonstrates simulations correctly capture ion diffusive and electrophoretic motion as
well as the development of a space-charge induced electrostatic potential field. Additional validations are provided in

the supporting information, including comparison to classical boundary layer results, comparison to analytical NPP

equation solutions and comparison with experimental electrohydrodynamic flow velocity measurements.

(a) (b)
10° . . . 1.5 T
1.371
= !
X
= 1.1} :
510" e | —-
-)\e@ 09r
<
=
0.7
10_2 * * * 0.5 * * * * * * * * *
1072 107" 109 10" 102 5 4 3 2 -1 0 1 2 3 4 5
D/, v'/Rea = y" [ Aay

Fig.2 Results for the no-flow case ( y = 1, Sc = 1000, Re4;, = 0). (a) Temporal evolution of the phase boundary
potential (solid black line) compared to expected potential from Equation 3 (dashed black line). (b) Concentration
profiles of Cation (blue) and Anion (yellow) with comparison between the current study (solid) and results from
Zhurov et al. [11] (dashed). Quantities where taken from the midpoint location of membrane, x* = 5, with the
ISE membrane and aqueous sample interface at y* = 0 and at a time of 1D/ /lz » = 10. Information on the Domain
used refer to Figure 1.
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Adding external flow to this system, Figure (3) displays a series of cation and anion concentration maps for variable
Debye Length Reynolds numbers, with fixed i ¢, which is the dimensionless parameterization of ion mobility, and fixed
Sc, the dimensionless parameterization of ion diffusivity. The case shown in Figures (3a) (cation) and (3e) (anion), with
a Regp = 0.1, shows concentration profiles mostly unaffected by external flow; this case is similar to the validation case
presentation in Figure 2b. The concentration boundary is confined to the narrow region close to the membrane with
near-lateral symmetry. However, with increasing Re 4, analogous to the boundary layer formed for similar problems
of forced convection on surfaces, fluid flow increases ion concentration gradients near the fluid-membrane interface,
particularly at the leading edge, as is evident in Figures (3b-d) and (3f-h), and leads to formation of a growing boundary

layer. As Rey; tends to unity, fluid flow effects on the boundary are pronounced, with noticeable ion concentration

variation at y*-locations near 1.0, in comparison to the boundary layer in the absence of fluid flow of order 0.01 in

1.
0.

thickness.

2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

5 15 20 5 15 20 5 15 20 5 15 20

2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

10 15 20 10 15 20 10 15 20 10 15 20

Fig.3 Spatial distribution of dimensionless ion concentration ¢’ near the ISE membrane and aqueous sample

interface at a time of ST = 10 for the cations (a-d) and anions (e-h) with single ion partition coefficients of 2.0
db

(cation) and 0.5 (anion) as well as iy = 1 and Sc = 1000. From Left to right, varying Re;;, with Re4, = 0.1 (a and
e),Re p = 0.3 (b and f),Re, = 0.8 (c and g) and Rey, = 1.0 (d and h). All spatial dimensions are non-dimensional
defined by Equation 2. The black dashed line represents the phase boundary.

The differences between the low flow velocity (Regp = 0.1) and high flow velocity cases (Reyp, = 1) are also
demonstrated by profile data at x* = 5 as shown in Figure 4a. This x* location is selected intentionally to be close to
the leading edge of the membrane, but sufficiently distal to avoid the influence of edge effects. We specifically plot
ion concentration as a function of y-location normalized by the Debye length, which is the product of y* and Re p
in the employed dimensionless framework. The low Reg;, (dashed lines in Figure 4a) hence leads to concentration
boundary layers of length near unity, i.e., similar in thickness to the Debye length. As Re;, increases to 1.0 (solid lines

in Figure 4a) the encroachment of the fluid boundary layer within 1 Debye length of the interface leads to a small, but
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275

noticeable decrease in the thickness of the charge separation layer in the fluid phase (when normalized by the Debye
length). In in Figure 4b we plot the total charge density (dimensionless) as a function of y*Re;; across the membrane
and aqueous phase, as well as the dimensionless potential ( r¢*) across the interface. This subtle asymmetry brought
about by flow leads a pronounced increase in the potential at distance larger than the Debye length. Insets in Figure 4b
nonetheless show that the potential reach a near constant value close the membrane interface (i.e. after several Debye

lengths), hence the main effect is to increase the phase boundary potential.

(a)
157 T 2
* 1f
205
1371
0 11
0 Az 500
117} -
S e e 0 %
09r
1-1
0.7
0.5 2

5 -4 3 2 -1 5 - 2 1 0 1 2 3 4 5
-1 -1 -1 -1
y"Regy, =yAy Y Rey, = yAy,

Fig. 4 Quantities of interest at varying y+, with the ISE membrane and aqueous sample interface occurring at
y* =0, taken from a location within the membrane, x* = 5, for » = 1, Sc = 1000, Re4;, = 0.1 (dashed lines) and
Regp = 1.0 (solid lines). (a) Dimensionless charge concentration (blue) and dimensionless electric potential ¢y ¢
(yellow) varying over dimensionless length (scaled by Debye length). (b) Dimensionless concentration for cation
(blue) anion(yellow) and dimensionless velocity (U* = U/U,) varying over dimensionless length (scaled by Debye
length).

In Figure 5 we plot the temporal evolution (with tD/ /13 , again as the dimensionless time) of the phase boundary
potential for variable combinations of iy and Sc and Reg;, varying from 0.1-1.0. In all cases, similar to zero flow
condition, we observe dynamic and static regions, separated by D/ /léb near unit value. Interestingly at small times,
independent of Regy,, ¥/, and Sc. the phase boundary potential increases with 1D //lfib scaled to the power of 1,
suggesting early time behavior is completely diffusion limited. With increasing Reg;, in all cases we observe changes
in both the dynamic regime and the static regime. In the dynamic regime, the phase boundary potential begins to
increase more rapidly at higher Re g5, for tD/ /lflb beyond 10~!, with a scaling exponent approaching 1.6 for Regp, = 1.0,
Y =1.0and Sc = 1000, suggesting that fluid flow influences become significant as the system approaches the static
regime. In the static regime, small values of Re;, have minimal effect on the phase boundary potential, but for the
highest Re , values examined we observe instances where the potential is than three times its expected value in the
absence of flow (denoted via horizontal lines in Figure 5).

The change in the phase boundary potential with Re;, is highly dependent upon the values of ¢ ¢ and Sc as is

evident in Figure 6, where we plot the potential in the static limit. Specifically, results apply when tD/ /lflb = 10. For
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Fig. 5 Dimensionless potential temporal evolution with varying Re;;, (Range of 0.1 to 1 in increments of 0.1
indicated by varying color saturation) with (a) » = 1 and Sc = 1000 (b) ¥y = 1 and Sc = 100 (¢) ¢y = 0.1 and
Sc =1000(d) ¥ = 0.1 and Sc = 100. Results are plotted along side the potential predicted by Equation 3 (dashed
black line) and the no-flow case, Re 4, = 0, from Figure 2 (solid black line).

the case of ¢ = 0.1 and Sc = 100, the effect of Re4p on the static potential is minimal, with the potential increasing
from a value of 0.69 at Reyp, = 0.1 to a value of 0.83 at Reyp, = 1. For the case of ¢y = 1 and Sc¢ = 1000, the effect of
Re 45 on the static potential is more substantial, with the potential increasing to a value of 3.6 at Re4;, = 1. Both Sc and
Re 4 parameterize the extent with which external flow affects the diffuse ionic double layers near the membrane-water
interface; higher Sc¢ diminishes ion diffusion in comparison to flow, while higher Re 4, diminishes space charge induced
potential effects. i ¢, the ratio of the fluid kinetic energy to system characteristic electrostatic energy, serves as an
amplification factor, increasing the extent that flow-ion interaction has on the phase boundary potential. To more clearly
discern fluid flow effects and better define the influence of each dimensionless ratio, we introduce the enhancement

T

coeflicient 7, which compares the static portion of the potential ( >> 1) to the expected potential in the case of

ScReflb
no-flow from Equation 3:
20"y
n=—gl-1; 4)
lnﬁ
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An 7 of zero indicates no change in phase boundary potential from its zero-flow limit. The enhancement coefficient may
be modeled as a function of the previously defined system parameters, namely Regp, ¥ ¢ and Sc, alongside dimensionless
numbers parameterizing system length ratios and the properties of the fluid, membrane, and ions. We attempted to
develop this function through two methods. First, following a trial-and-error route, we anticipate that the correlation
for the enhancement coefficient will be functionally similar to heat and mass transfer coefficients, i.e., in the form of

n= 1//}’ f(Reng ¢Y), where f is some function of Rengcy and @, B and y are unknown fitting parameters. Fitting

2

(ZZE,

B = ‘5—‘ andy = % we plot all results obtained in this study in Figure 7 with the ratio of r/ a,//}’ on the y-axis and
Reﬁ ,S¢” on x-axis. Plotted results are also provided in a table in the supporting information. To further determine
the functional dependence of n on Regp, and Sc, we define the fluid scaling parameter w| = RengcV. When w; is
small, the transport of ions is dominated by diffusion having little influence from the fluid flow. Conversely, when w is
large, ion transport is dominated by convective effects. Plotting nw]j" as a function of w; in Figure 7, we find excellent
collapse for all simulated conditions. We subsequently fit the collapsed result using the ratio of two power series in the
e aio!

= == L where a; are unknown coeflicients and / determines the fitting behavior when w — oo; for
ZN 1 J
j=0 4j @i

form of nw;z/s
example when [ = 1, the fit equation reduces to a first order polynomial with a slope of a“N—Ail We elect to use a value of
N =4 and [ = 1 resulting in the following function

2 3 4
25 ajw) +a2w] +a3a4wl

= (%)
7 I % + 6140)‘?

1 +asw; +agw

where a; = 1.92-1072, a5 = —1.47-1072, a3 = 0.68, a5 = 4.3- 1073, a5 = —0.212 and a¢ = 7.06 - 1073, Coefficients
were obtained by the Curve Fitting Toolbox in MATLAB [48], and were selected because all values of w; > 0 produce
a strictly positive enhancement i > 0, and they by definition lead to w; — 0 as  — 0 and also to 77 o< 0.68w1wi/ 3 as
w1 — co. Examining the data in Figure 7, we see a transition near w; = 3 where the effective enhancement (y ~2/%)
departs from a value near O to a near-linear scaling of 0.7 in the range of 5 < w; < 10. Although some values of 7 are
negative at small w;, we believe these to be caused by small numerical errors, and since their relative magnitude is close
to 0, will treat such values as effectively zero. The existence of a transition between no enhancement (w; < 3) and
linear scaling (w; > 3) suggests that there is a critical degree of ion advection, as characterized by w, that must occur
before the effect of external flow is to increase the phase boundary potential.

Membrane based ion-selective electrodes tend to have lower detection limits in the range of 1- 1077 to 1 - 1076
M [49]. To put the above analysis of w; into context we estimate that an external flow velocity of at least 16 cm s°!
is needed for w; > 3, assuming a 1 - 10~7 M solution at room temperature (300K) and an ion diffusion coefficient
of 1-107" m? s’!. This fluid velocity is well above the velocities encountered for such sensors in the majority of

applications, which suggests that changes in phase boundary potential from external flow will only occur for very dilute

systems and in the absence of a background electrolyte. The effects of varying single ion partition coefficients, variable
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Fig. 6 Values at W = 10 plotted for s = 1 and Sc = 1000 (blue triangle), s = 1 and Sc = 100 (purple
db
square), ¢ r = 0.1 and Sc = 1000 (red circle) and ¢ s = 0.1 and Sc = 100 (orange diamond)

ion diffusion coefficients and variable ion concentrations in solution was not explored in this study, which may affect the
exact limit at which external flow (w1) affects the phase boundary potential. Regardless, our results indicate that effects
of external flow on membrane systems are more pronounced in the low concentration limit. This result is consistent
with previous studies on reversed electrolysis cells were the greatest effect of flow on ion transport occurred for the
smallest ion concentrations [9].

As a second approach to collapse results, we note that results do apply for the membrane which is of a specific

length L}, = 20.0 (non-dimensionalized by ULU). To examine the interplay between different length scales affecting the

. . . Aab . .- .
problem, we define a dimensionless ratio w, = (;—”, where 6, is a characteristic mass transfer layer thickness for the
m

DL,

1/2
Ty ) , Where g

fluid after traveling a distance L,, (dimensional) along the membrane. d,, can be defined as ¢,, = (

1/2
is the characteristic shear rate. The shear rate, in turn, scales as y, = 6&, with &,0m = (Ll’j;’ov) . Combining these
definitions yields:
3/2,,3/4 1/2 3/4

_ Aap Yy vl _ o 1/2p 3/4 Aap

wz——123/4l4—]/2—8c Re,, 2 (6)
D / Lm V/ v m

Aab

raised to

Equation 6 leads to a similar functional form for w; as empirically found for wy, but with an added term of

the 3/4 power. We plot iy ~2/5 versus w, in Figure 8 for all test case performed here along side a line of best fit in the

2/5

form of Equation 5. We retain the scaling of y~</> as this find close to optimum in fitting. While the collapse of results

16



330

331

332

333

334

335

336

337

338

339

340

342

343

—2/5

_1 L L L L L L L L L

1 2 3 4 5 6 7 8 9 10
wp = Scl/3Re%5

Fig. 7 Potential enhancement factor r; scaled by x//;z/ > and plotted as a function of system Schmidt number (Sc)
and Debye length Reynolds number (Re ;) for all data (blue circles). Data fitting is provided by Equation 5 and
is shown as the red solid line.

is not as strong as the empirically-tuned result with wi, examination of w, supports the scaling n = (ﬁ“fyf(Rengcy),
and further suggests how results may be affected by adjusting the membrane length. Results would additionally be
influenced by changes in ion partition coefficients for cationic and anionic species, as well as by utilizing unequal
diffusion coeficients for species or unequal electrical permittivities for the fluid and membrane. For this reason, the
solutions presented here cannot be considered universal, with additional simulations required to capture the influences

of changing geometry,changing ion properties, and changing fluid and membrane electrical properties.

IV. Conclusion

We developed a code by modifying the open source library OpenFOAM to solve the Navier-Stokes-Nernst-Planck-
Poisson set of equations to examine coupled mass transfer, fluid flow, and electrostatic potentials for non-equal
partitioning ions at membrane-water interface. This code was used specifically to explore the effects of external viscous
flow on the diffuse ionic double layers at the interface of an ISE membrane and aqueous sample and associated changes
in phase boundary potential. Framing the problem in a manner similar to mass transfer in a developing boundary layer
and utilizing an associated dimensionless framework revealed that the dimensionless numbers w; = Rez/; Sc!'3 or
34g01/2 (A

3/4
wy = Re (L—) , which are functions of the Debye-length Reynolds Number and the Schmidt number, not

b
m
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Fig. 8 Potential enhancement factor 7 scaled by ://}2/ > and plotted as a function of system Schmidt number (Sc)
and Debye length Reynolds number (Re ;) for all data (blue circles) using the fluid scaling parameter w, as
defined in Equation 6. The red solid line represents data fitting by Equation 5 with coefficients a; = 6.14 - 1073,
a» =9.80-1072, a3 =2.12,a4 = 1.76- 107!, as = —1.11 and a¢ = 6.98 - 10~1.

only are appropriate metrics (switches) to determine if hydrodynamic forces affect the formation of the diffuse ionic
double layers, but also can be used to quantitatively predict the extent to which fluid flow affects the phase boundary
potential. Although this study focused on a sole geometry and set of partition concentrations, the results show the
applicability of traditional heat and mass transfer analysis to describe ion transport at ISE membrane and aqueous sample
interfaces in electrohydrodynamic flows, as it is relevant to ISEs and other system where phase boundary potential

modeling is of interest.

V. Supplemental
A link to the Github repository for the code, implementation details for the time step controller, additional code

validation cases, and tabulated data plotted in Figure 7 are available online.
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. Determination of Forced Convection Effects on the Response of
. Membrane-Based Ion-Selective Electrodes via Numerical
. Solution to the Navier-Stokes-Nernst-Plank-Poisson Equations

4 Austin J. Andrews* Philippe Biihlmann © and Christopher J. Hogan ¥

5 Ion selective electrodes (ISEs) enable measurements via the build-up of a phase boundary
6 potential at the surface of a sensing membrane. While a framework exists to understand
7 the performance of ISEs in stagnant samples, the influences of fluid flow on ISEs is less
8 studied. We model the transport of charged ions in solution occurring near interfaces between
9 ISE membranes and aqueous samples when subject to an external flow. We developed a
10 numerical model extending the Pressure-Implicit with Splitting of Operators (PISO) algorithm

1 to incorporate the Navier-Stokes-Nernst-Plank-Poisson system of equations. We find that

12 external flow distorts the aqueous side of the formed double layer at the ISE membrane and

13 aqueous sample interface, leading to an increase in the phase boundary potential. The change

14 in potential is shown to be a function of a novel set of dimensionless numbers, most notably the

15 Debye Length Reynolds number, i.e., the Reynolds number with the Debye Length as the system

16 dimension.

7 I. Introduction

18 The transport of dilute, charged species via both hydrodynamic and electrostatic forces governs a variety of

19 engineered systems, including but not limited to charged particle transport in aerosols[1] and their collection in
20 electrostatic precipitators [2], flow batteries [3], desalination processes [4], and ion-selective electrodes (ISEs) [5]. In
21 many of these instances, in particular the latter, charged species transport is not only affected by external and internal
22 electric fields, but also through the unequal partitioning of charged species (solutes) at phase boundaries. Unequal
s partitioning leads to charge separation at the interface and formation of an electric double layer; this ultimately leads to
2« a measurable potential difference. For ISEs, the potential difference arises at the interface of the ISE membrane and an
s aqueous solution that contains the analyte ion of interest. Formation of this phase boundary potential allows for the
2 measurement of the concentration of this analyte ion. Considerable effort has been dedicated to the design of specific
2z  membrane materials to obtain selectivity for various different target ions [6]. In general, ISE membranes comprise

2s (i) a polymeric membrane matrix that provides the membrane with mechanical robustness, (ii) the analyte ion either
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in a free form or in the form of a complex with an ion-selective receptor (usually referred to as ionophore), as well
as a (iii) counter ion (referred to as ionic site) that is either covalently attached to the matrix polymer or has such a
high hydrophobicity that leaching into aqueous samples is negligible. A phase boundary potential forms because the
analyte ion and counterions differ in their free energies of transfer from the sample into the membrane phase [7]. While
ISE theory typically assumes local equilibrium at the interface of the sample and membrane phase, the transport of
ions between the two phases both by diffusion and convection may influence the magnitude of the phase boundary
potential. A well-known illustration for this are the zero-current transmembrane ion fluxes that often determine the
lower detection limits of ISEs [8]. Also, through experimental measurements of membrane resistance, Dlugolecki et
al. found that external fluid flow may influence the electric double layer particularly for low solution concentrations
[9]. However, the effect of fluid flow on phase boundary potentials has only been qualitatively explored in prior work,
mainly because explicit computation of ion transport accounting for fluid flow requires numerical solution to the
Navier-Stokes-Nernst-Plank-Poisson (NS-NPP) set of equations, which combine conservation of mass and momentum
for fluid flow with mass conservation of each charged species, with Poisson’s equation for the electric potential. This is
a complex set of equations with extensive coupling, and is a stiff system of equations.

Modeling of ISEs presents unique challenges due to the need to account for ion exchange at the ISE membrane
and aqueous sample interface. Ions differentially transport across membrane interfaces primarily due to differences in
affinity for the sample and the membrane phase and may be further altered by binding of the analyte ion to ion receptors
in the membrane phase [10]. Prior work conducted for modeling ISE systems has hence more frequently examined
numerical solutions to the NPP equations, i.e. the Nernst-Planck-Poisson (NPP) equations, which do not consider
fluid flow [11-15]. In these studies, there has been two primarily employed methods to handle the phase boundary
interface. First, coupling between phases has been accomplished using two separate simulation domains, with the
Chang-Jaffe boundary condition [13, 16] at the interface, which relates the flux across the ISE membrane and aqueous
sample interface to a reversible Ist order reaction. Second, interface mass transfer has been modeled by generalizing ion
transport to include gradients in ion activity [14], allowing for a singular domain, keeping track of spatial variations in
the affinity of ions for the two contacting phases.

There have been studies exploring the effects of fluid flow on ion motion within flow-through ion exchange
membranes that are used for electrodialysis (ED)[17-22]. In these studies, the NS-NPP equations were applied, but
their their use was limited to the aqueous phase, focusing on electroconvection and instabilities occurring from an
applied external voltage. The ion concentrations at the phase boundaries were determined by boundary conditions such
as specifying a fixed ion concentration[18] or modeling by Butler-Volmer kinetics[19]. In contrast to electrodialysis
systems, ISE sensing devices are rarely operated with an applied external potential and hence ion currents in ISEs are
usually near zero. Instabilities that lead to electroconvection generally occur when the ion currents are beyond the ohmic

region [23]. Therefore, it is expected that fluid instabilities arising in ED cells are absent from the problems considered
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in this study, where no external potential is applied.

As understanding the potential response is critical to the design and implementation of ISEs as sensing devices,
it is important to know if and when external flow affects the response of such devices, and to probe fundamental
behavior of systems with coupled ion mass transfer, fluid flow, and electrostatics at interfaces. In addition to applications
in electrodialysis, the NS-NPP equations have been solved to predict the behavior of nanopore sensors [24], model
electrostatic precipitators [25], and examine EHD-assisted droplet formation (i.e. electrosprays) [26], among others.
As alluded to above, numerical solutions of these sets of equations has been particularly difficult, and the choice of
numerical schemes is crucial to ensure accuracy and convergence [27]. As the aforementioned works utilize different
numerical schemes, we believe there is still a need to advance NS-NPP solution schemes and to examine fundamental
NS-NPP transport solutions near phase boundaries. Towards this end, here we develop an NS-NPP solution scheme to
model ion transport and the evolution of the phase boundary potential in systems that approximate ISEs and which also
resemble classical laminar flow boundary layers. Described in the subsequent section, the numerical solution scheme
developed utilizes the finite volume method for spatial discretization and extends Issa’s Pressure-Implicit with Splitting
of Operators (PISO) [28] solution algorithm for incompressible flows to include coupling between the NS and NPP
equations. The NPP equations are solved using Hagelaar’s method [29]. A high order embedded Runge-Kutta(RK)
method with variable step size is used for time discretization. Development of this method was conducted using the
open source package OpenFOAM [30]. Algorithm validation is performed via comparison to a series of analytical
solutions, classical solutions, and prior experiments. Subsequently, the algorithm is applied to examine the phase
boundary potential developed across a membrane while simultaneously a laminar boundary layer develops (i.e., the
Blasius solution augmented by mass transfer of charged species). We show that the dimensionless phase boundary

potential is positively correlated to increased fluid flow and decreased ion diffusion rates.

II. Theory and Solution Scheme

A. Governing Equations
To model the effects of fluid flow on ion transport in ISE systems, with the assumptions of incompressible (assuming
low fluid Mach number), laminar (low fluid Reynolds number) and isothermal flow, the Navier-Stokes equations

(Equation 1a and Equation 1n), Nernst-Planck equation (Equation 1d), and Poisson equation (Equation 1¢) are employed
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and are defined as:

V-U=0 (1a)
ou - - P - AT _ 2 o)
—+UV-U=-V— +VV2U+V . V[(VU)T - _(VU)] + = (lb)
ot o 3 P
i=n
V.eVe = Z FeiziVe (1c)
i=1
ac; - FD;
a—;+v'(6i[U+ZiR—TlV¢+®])ZV'DiVCi (1d)
D;(1-k;)
=— vy 1
© a+ki(l-a) ¢ (fe)

where U is the fluid velocity, P is the hydrodynamic pressure, p is the fluid density, v is the fluid kinematic viscosity, ¢
is the electrostatic potential, f, is the electrostatic body force, € is the permittivity, F the Faraday constant, ¢; the molar
concentration of ion species i, z; the charge of species i, D; the ion diffusion coefficient, R the universal gas constant,
T the temperature of the surrounding medium, k; is the single ion partition coefficients, and o the membrane mass
fraction, differentiating between the membrane phase (¢ = 1) and aqueous (@ = 0). The third term on the right hand
side of Equation 1b is equal to zero when the flow is incompressible, i.e. Equation la is satisfied, and is added for
numerical stability [31]. The body force term f, represents the drag force imparted onto the fluid from the movement of
charged particles and is defined as f, = ZZ? Fc;z;V¢ . This body force is a simplification of the more general Lorenz
force [32] by disregarding effects from magnetic fields, which is commonly done for ions in solution. To improve
stability of the numerical solution and coupling between the membrane and water phase, the simulation domain is
monothetic with ion selectivity modeled through single ion partition coefficients and the mass transfer model from
Haroun et al. represented by ® in Equation le [33]. Originally formulated to enforce non equal partitioning of gases
(Henry’s law), Haroun’s mass transfer model ensures mass conservation at phase boundaries and enforces the jump

condition that occurs with non-equal partitioning of ions, i.e., the ratio of ions present in the water (c.4) and membrane

phases (¢nem) are non unity C"f’ = k # 1 [33]. The additional flux (®), referred to as the "solubility flux", acts to

z
counteract the nonphysical diffusive flux that would arise from a concentration jump at interfaces, where Va # 0. At
thermodynamic equilibrium, when c g = kCmem, the solubility flux (@) is equal in magnitude to the diffusive flux at the
interface when central discretization schemes are used regardless of the mesh size near the interface [33]. This interface
model is similar to the traditionally used Chang-Jaffe boundary conditions assuming diffusion limited surface reactions,
but with the added benefit of a singular domain to describe the NPP equations. To our knowledge, this approach, which
has been successfully employed in gas partitioning into liquids [34, 35], has not employed in conjunction with the

NS-NPP equations previously, and has not been employed in examining ion selectivity across phase boundaries. We

also note that here binary values of @ are employed, but more general a can be treated as a phase fraction and the



108

109

110

11

12

13

114

115

116

17

118

19

120

121

122

123

124

125

126

Table 1 Mathematical description of the boundary conditions as labeled in 1a with » representing the face
normal direction and / the identity matrix. The subscripts / and p signify the value at the boundary face and
neighboring cell, respectively.

Boundary Ions (¢;) Potential (¢) Velocity (U) Pressure (P)
! =0 =0 Uy = (1,0,0) G =0
2 Gip=0  Ghp=0 %, =0 Gr =0
3 Gip=0  Ghp=0 %, =0 Pr=0
4 G20 $2y=0 Up=XU0,+U-20m")0,)* 2L,=0
5 Gip=0 =0 Us =(0,0,0) =0
: B0 #i : -
Membrane-Water Interface - - U r=1(0,0,0) g—‘; =0

approach applied here can be extended to mixtures unlike the Chang-Jaffe boundary condition.

B. Domain and Boundary Conditions

In lieu of modeling a complete ISE sensor geometry, we base our model off of classical boundary layers with a
leading edge, as the fluid flow and shear stress in the absence of ion migration and electrostatic body forces are well
known in this scenario. The specific computational domain employed is a 2D representation of flow over a flat membrane
and is shown in Figure 1. Here the numerical solution of the NS equations (U and P) is restricted to only the white
region labeled "Water" in 1a. The electric potential (¢), a continuous variable, is solved for in both the aqueous phase
and the membrane phase (shaded gray in 1b) without distinction between phases, as we modeled both phases with the
same electrical permittivity. The species concentration (c;) is also solved for in both the aqueous phase and membrane
phase, but accounting for partitioning at the water-membrane interface via Haroun’s solubility flux approach [33]. The
same computational mesh was used for both the global domain, comprising of the aqueous and membrane phase, as well
as the aqueous phase. Therefore, the fluid properties solved within the separate water subdomain are easily mapped to
the global domain for solution of Equation 1d. In Figure 1a, each boundary is labeled and the corresponding boundary
conditions may be found in Table 1. The domain was made sufficiently large such that the effect of boundary conditions,
namely the zero gradient condition on the potential, would not affect the results near the ISE membrane and aqueous
sample interface. The computational mesh was designed using hanging nodes and successive refinement to ensure high
spatial resolution near the membrane and fluid interface without compromising the overall simulation cost, particularly
as the unsteady nature of this simulation and highly coupled equations make computational cost high. The mesh selected

had 4.3 - 10° hexahedral cells and is shown in Figure 1b.

*The boundary condition at Boundary 4 is commonly referred to as the symmetry condition. The implementation of this boundary condition for
multi-dimensional variables such as U is the mean of the adjacent cell and the mirror image produced by the Householder transformation. [36]
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Fig. 1 Schematic of the computational domain of a liquid flow over an immiscible membrane phase. (a)
Dimensions and labeled boundaries, with more details provided in Table 1. (b) Computational mesh used in
this study, with insets providing higher magnification of the ISE membrane and aqueous sample interface. All
units presented in this figure are dimensionless, with the dimensionless length scale defined as x* = x_\l/]o More
information about the non-dimensionalization procedure can be found in the Theory and Solution Scheme
section.

C. Numerical Solution Scheme

A custom C++ program was developed to solve Equations 1a-e using the finite volume method and open source
library OpenFOAM. This library abstracts many of the aspects of finite volume discretization and subsequent matrix
construction and numerical solution. This allows developers to focus on higher level solution algorithms and add
additional transport equations such as those present in the NS-NPP equations. To solve the coupled system of Equations
la-e for the dependant variables U, P, ¢, ¢y, c1, ... and ¢;, a modification to the PISO algorithm [28] to include the
NPP equations along with an embedded singly-diagonal implicit Runge-Kutta(SDIRK) [37] time discretization is used.
Time steps are varied using a PPID time step controller[38] with a desired normalized numerical solution error of
1 - 107, More information on the specific implementation of time step control is included in the supporting information.
Within the PISO algorithm, a sub loop for the Nernst-Planck equation coupling with the Poisson equation is solved
using the semi-implicit algorithm from Hagelaar et al. [29]. The modified PISO algorithm implemented along with the
implementation of Hagelaar’s method is shown in Algorithm 1.

To explain the modifications to the PISO algorithm, the notation used is consistent to what is largely used by
the OpenFOAM community and can be found in detail within Jasak’s PhD thesis [39]. For brief explanation of the
notation, the H operator includes all off diagonal components of the discretized momentum equation (Equation 1b) along
with any explicit source terms arising from boundary conditions and time discretization methods. The a coefficient
represents the diagonal components of the discretized momentum equation. All iterative values, n, i, j, k in Algorithm

1 use superscripts with parenthesis () to indicate iteration steps, and brackets [] to indicate the SDIRK stage. The
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algorithm begins by calculating the fluid variables (U and p) with the standard PISO algorithm implementation as
is done within OpenFOAM’s solver pisoFOAM with the addition of the electrostatic body force, which is calculated
explicitly by values from previous iterations. Following the computation of U and p, the electrostatic potential and
species concentrations are solved using Hagelaar’s algorithm without update to fluid variables U and p. The Algorithm
ends with another iteration of the PISO algorithm, but this time with updated values for ¢ and c¢. The Algorithm was
structured such that the variables with the strongest coupling, such as the pairs U and p and ¢ and c, have adequate
convergence before incorporating the weaker, but still prevalent, body force term that couples the fluid variables to
the species transport. The "stop" condition for each loop is based on convergence of the resulting linear systems
for Equations la-e. The convergence is determined based on the L norm of the matrix residuals and is defined as
r= m >, |b — Ax| where A and b are the coefficient matrix and source term produced from the finite
volume and time discretization of the variable x with X representing the average value of x. Convergence was determined
when the L; norm was at or bellow 1 - 1076 before exiting the iteration loops presented in Algorithm 1.

For the spatial discretization, built-in functionality of OpenFOAM’s matrix constructors were employed. For all
transport equations, divergence operators were discretized using 1st order upwind methods, while gradient operators
used Gaussian integration with 2nd order linear interpolation without non-orthogonal or skewness corrections. This
solver uses a custom time discretization following the work of Dalessandro et al.[40] for incorporating SDIRK methods
into OpenFOAM. The specific method used was a 3rd order 3 stage embeded SDIRK method with a 2nd order error
estimator from Alexander[37]. For the special case of solving the Poisson equation with only Neumann boundary
conditions (electric field equal to zero on all boundaries), the fixed point method [41] is applied. Here the compatibility
condition and fixed point value are enforced by modifying the resulting matrix equation from the discretization of
Equation Ic by solving the modified linear system A'x = b" — b where A’ = A+ A(i,i)and b = b + A(i, i)¢rer. Here
i represents the cell location of the fixed value (¢,. ) and b’ is the average of the matrix source term b'. For further
details of implementation, the complete code is linked in the supporting information.

The order of the numerical solution was inspired by Oliveira’s PISO extension for buoyancy driven flows [42] where
similarly the NS equations are modified to include a body force derived from a scalar transport equation, in Oliveira’s
case the heat equation and here the Poisson equation, which in turn is influenced by the ion transport equation. While
the exact solution order may affect stability and convergence rates, the proposed algorithm was deemed suitable for the
present study and has been validated with a series of analytical, experimental and prior numerical studies. The first
comparison is to experimental measurements of the velocity profile in an electrostatic precipitator, where the velocity
is influenced by the electrostatic body force [43] and hence its determination requires solution to the NS-NPP set of
equations. The second is a comparison to Schonke’s [44] analytical solution for the NPP set of equations, testing our
ability to recover solutions with coupled mass transfer and electrostatics. The third is recovery of the classical Blasius

solution for boundary layers of a flat plate. In the absence of electrostatic effects, for the geometry tested here (Figure



Algorithm 1 Segregated solver for the numerical solution to the coupled NS-NPP equations.
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1), simulations recover the Blasius solution, showing that the flow modeled is a viscous boundary layer flow in the
developing region. Validation results can be found in the supplemental material. Further validations more specific to
ISEs are discussed in the Results and Discussion section [11]. Simulations were run on a Minnesota Supercomputing
Institute (MSI) cluster utilizing 8 cores for each simulation and requiring roughly 120 hours of run time for each case

noted in the subsequent section.

D. Non-Dimensionalization and Test Cases

To reduce the number of independent parameters affecting fluid flow and transport of charged ions in solution, we
adopt a non-dimensionalization conventionally utilized in studying boundary layer formation from external flow of a
viscous fluid over a surface [45]. We define the non-dimensional length scale as x* = % where Uy is the bulk fluid
velocity and x the spatial dimension, the non-dimensional time scale as 7 = l’]—‘é and the non-dimensional velocity as
U= U% This variable transformation fixes fluid behavior to problem geometry (x*) and time scale (7), allowing for

examination of other transport phenomena, such as ion motion within the formed fluid boundary layer, with fixed fluid

Fco

characteristics. We correspondingly define the non-dimensional potential as ¢* = </>pr§

where ¢ is the reference ion
concentration and the non-dimensional concentration as ¢* = CLO This combination of fluid and electrochemical variable

transformations leads to the non-dimensionalization of Equations la-e as:

V-U* =0 (2a)
v - _ - - . 2 . =
—+U'V- U= VP4 V20 + V- [(VO)T - S (VU1 + Z iz V" (2b)
i=1
Vg = _ i iz (2¢)
2 1ot
Rey, ¥y 5
act N 1
—L4v. (c;f[U*+ziﬁw*+®*]) = —V2: 2d)
or SC,‘ SC[

L1 -k

=——>V 2
Sc; a+ki(1-a) @ (2e)
(2f)
2
where the resulting dimensionless parameters are the fluid kinetic to chemical potential energy ratio i 5 = i({_ll?];’ the ion

v

Schmidt number S¢ = % and the Debye-length Reynolds number Re g, = Yodav with the Debye length Ay = \/% .
The Debye-length Reynolds number determines the relative strength of the fluid flow inertia within one Debye length
of the fluid-membrane interface. When Re,, is large (Regp >> 1), significant changes to ion transport rates, driven
by fluid flow, occur in the region most sensitive to changes in electrostatic potential. Conversely, when Regy, is
small (Regp << 1), electrostatic forces dominate ion transport, i.e., convection has little influence on transport at

the membrane interface. As will be seen in later sections, this parameter will be paramount to exploring the effects
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of fluid flow on partitioning of ions across the membrane-water interface. Dimensionless numbers associated with
membrane and ion transport found in prior work [11] (i.e., when solving the NPP equations) can be defined from this

set of non-dimensional parameters, including the dimensionless potential i r¢* = ¢%, dimensionless length scale

R’e‘db = ﬁ and dimensionless time scale 5 RTeZ = /;Z—D. These dimensionless ratios will be used in the subsequent
db db

sections for analyzing the mass transfer of ions and associated changes in the potential across the membrane-water
phase boundary.

A series of simulations where preformed varying Sc, Regp, and ¢ ¢ for a binary salt solution. To accomplish this
using the code developed for Equations 1a-e, variables v, cg, U and p were set to 1 m2s!, 1 mol m3, 1 ms™ and
96485 kg m™ (having the same magnitude as Faraday’s constant) respectively. The remaining three variables, i.e., D;, €
and 7, were modulated to represent Sc, Reg, and i ¢. For each case the non-dimensional ion concentration (c*) was
initialized as a constant value of 1.0 in both the membrane and water phases for the cation (+1 charge) and anion (-1
charge). Similarly, the non-dimensional velocity (U*) was set to a magnitude of 1 with a direction parallel to the plate.
For a test of this model, it was assumed here that the ion diffusion coefficient varied neither in space or phase and that it
was the same between the anion and cation. Permittivity (€) was also held constant throughout the domain irrespective
of phase. For all cases the single ion partition coeflicients (k;) were held constant with a value of 2 (hydrophilic) for
the cation and 0.5 (hydrophobic) for the anion, similar to parameters used by [11] in examining transport across an
interface. To ensure accurate capture of the thin double layer, the mesh was designed to have a cell thickness at the
phase boundary of no more than 0.0214, when Regp = 0.1, noting that the mesh and dimensions of the membrane are
scaled based on fluid properties and not the Debye length. To test mesh quality, a secondary mesh with resolution of
1.5 - 10° hexahedral cells and fa phase boundary cell thickness of no more than 0.011,4; was run for two selected cases
(Reap =1,y =1,5¢ =1000 and Reyp, = 0.1, ¢ = 1, Sc = 1000). The potential between these two mesh resolutions
varied no more than 1% when ——— > 1. Therefore, the first mesh with 4.3 - 10° cells depicted in Figure 1b was used

ScRey,

for the remainder of the study.

ITI. Results and discussion
In the absence of external flow (i.e, when Regp = 0) or when flow is negligible, a double layer is formed and the
resulting potential arises from the non-equal partitioning of ions. This potential can be predicted at the t — oo limit by
recognizing that, at equilibrium, the electrochemical potential of each ion is the same in both phases. For a binary
electrolyte consisting of monovalent ions, this can be formulated to be a function of the single ion partition coefficients,

and is defined as [11, 46]

1 (K,
897 = 300 () ®
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where k. and k_ are the single ion partition coefficients of the cation and anion, respectively. Prior research has shown
that Equation 3 accurately describes the phase boundary potential at the # — oo limit when the diffusion potential,
often referred to as the Henderson potential, is negligible, i.e., when the partitioning ions have the same diffusion
coefficient [11, 47]. To demonstrate this and to provide code validation, we compare the temporal evolution of the
phase boundary potential with the expected value obtained from Equation 3 for the case of no-flow. Figure 2a shows
that when D/ /1219 > 1 the potential converges to the predicted value from Equation 3. We observe that the evolution

of the phase boundary potential is clearly divided into a a dynamic phase for tD/ /IZ , < 1 and an effectively static

2

phase at tD //léb > 1, suggesting that the use of tD /47, ,

which is equivalent to #ezb, is a well-scaled dimensionless
time for these systems and is henceforth used to present temporally-varying results. For additional validation, the ion
concentration profiles near the ISE membrane and aqueous sample interface at 1D / /13117 = 10 are compared with the
results obtained from Zhurov et al. [11] in Figure 2b for the case where k, =2 and k_ = 0.5. We apply these same
partition coefficients here and throughout this study. However, specific to this validation, we employ Sc = 3.98 for the
cation and Sc = 1 for the anion in order to match the conditions from Zhurov et al. The concentration profiles for both
the cation and anion in Figure 2b show a high degree of symmetry as in the absence of flow, ion motion is dominated by
near interface electric fields and concentration gradients, which are independent between phases for this problem set
up. The strong agreement here, demonstrates simulations correctly capture ion diffusive and electrophoretic motion as
well as the development of a space-charge induced electrostatic potential field. Additional validations are provided in

the supporting information, including comparison to classical boundary layer results, comparison to analytical NPP

equation solutions and comparison with experimental electrohydrodynamic flow velocity measurements.

(a) (b)
10° . . . 1.5 T
1.371
= !
X
= 1.1} :
510" e | —-
-)\e@ 09r
<
=
0.7
10_2 * * * 0.5 * * * * * * * * *
1072 107" 109 10" 102 5 4 3 2 -1 0 1 2 3 4 5
D/, v'/Rea = y" [ Aay

Fig.2 Results for the no-flow case ( y = 1, Sc = 1000, Re4;, = 0). (a) Temporal evolution of the phase boundary
potential (solid black line) compared to expected potential from Equation 3 (dashed black line). (b) Concentration
profiles of Cation (blue) and Anion (yellow) with comparison between the current study (solid) and results from
Zhurov et al. [11] (dashed). Quantities where taken from the midpoint location of membrane, x* = 5, with the
ISE membrane and aqueous sample interface at y* = 0 and at a time of 1D/ /lz » = 10. Information on the Domain
used refer to Figure 1.
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Adding external flow to this system, Figure (3) displays a series of cation and anion concentration maps for variable
Debye Length Reynolds numbers, with fixed i ¢, which is the dimensionless parameterization of ion mobility, and fixed
Sc, the dimensionless parameterization of ion diffusivity. The case shown in Figures (3a) (cation) and (3e) (anion), with
a Regp = 0.1, shows concentration profiles mostly unaffected by external flow; this case is similar to the validation case
presentation in Figure 2b. The concentration boundary is confined to the narrow region close to the membrane with
near-lateral symmetry. However, with increasing Re 4, analogous to the boundary layer formed for similar problems
of forced convection on surfaces, fluid flow increases ion concentration gradients near the fluid-membrane interface,
particularly at the leading edge, as is evident in Figures (3b-d) and (3f-h), and leads to formation of a growing boundary

layer. As Rey; tends to unity, fluid flow effects on the boundary are pronounced, with noticeable ion concentration

variation at y*-locations near 1.0, in comparison to the boundary layer in the absence of fluid flow of order 0.01 in

1.
0.

thickness.

2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

5 15 20 5 15 20 5 15 20 5 15 20

2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

10 15 20 10 15 20 10 15 20 10 15 20

Fig.3 Spatial distribution of dimensionless ion concentration ¢’ near the ISE membrane and aqueous sample

interface at a time of ST = 10 for the cations (a-d) and anions (e-h) with single ion partition coefficients of 2.0
db

(cation) and 0.5 (anion) as well as iy = 1 and Sc = 1000. From Left to right, varying Re;;, with Re4, = 0.1 (a and
e),Re p = 0.3 (b and f),Re, = 0.8 (c and g) and Rey, = 1.0 (d and h). All spatial dimensions are non-dimensional
defined by Equation 2. The black dashed line represents the phase boundary.

The differences between the low flow velocity (Regp = 0.1) and high flow velocity cases (Reyp, = 1) are also
demonstrated by profile data at x* = 5 as shown in Figure 4a. This x* location is selected intentionally to be close to
the leading edge of the membrane, but sufficiently distal to avoid the influence of edge effects. We specifically plot
ion concentration as a function of y-location normalized by the Debye length, which is the product of y* and Re p
in the employed dimensionless framework. The low Reg;, (dashed lines in Figure 4a) hence leads to concentration
boundary layers of length near unity, i.e., similar in thickness to the Debye length. As Re;, increases to 1.0 (solid lines

in Figure 4a) the encroachment of the fluid boundary layer within 1 Debye length of the interface leads to a small, but
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noticeable decrease in the thickness of the charge separation layer in the fluid phase (when normalized by the Debye
length). In in Figure 4b we plot the total charge density (dimensionless) as a function of y*Re;; across the membrane
and aqueous phase, as well as the dimensionless potential ( r¢*) across the interface. This subtle asymmetry brought
about by flow leads a pronounced increase in the potential at distance larger than the Debye length. Insets in Figure 4b
nonetheless show that the potential reach a near constant value close the membrane interface (i.e. after several Debye

lengths), hence the main effect is to increase the phase boundary potential.

(a)
157 T 2
* 1f
205
1371
0 11
0 Az 500
117} -
S e e 0 %
09r
1-1
0.7
0.5 2

5 -4 3 2 -1 5 - 2 1 0 1 2 3 4 5
-1 -1 -1 -1
y"Regy, =yAy Y Rey, = yAy,

Fig. 4 Quantities of interest at varying y+, with the ISE membrane and aqueous sample interface occurring at
y* =0, taken from a location within the membrane, x* = 5, for » = 1, Sc = 1000, Re4;, = 0.1 (dashed lines) and
Regp = 1.0 (solid lines). (a) Dimensionless charge concentration (blue) and dimensionless electric potential ¢y ¢
(yellow) varying over dimensionless length (scaled by Debye length). (b) Dimensionless concentration for cation
(blue) anion(yellow) and dimensionless velocity (U* = U/U,) varying over dimensionless length (scaled by Debye
length).

In Figure 5 we plot the temporal evolution (with tD/ /13 , again as the dimensionless time) of the phase boundary
potential for variable combinations of iy and Sc and Reg;, varying from 0.1-1.0. In all cases, similar to zero flow
condition, we observe dynamic and static regions, separated by D/ /léb near unit value. Interestingly at small times,
independent of Regy,, ¥/, and Sc. the phase boundary potential increases with 1D //lfib scaled to the power of 1,
suggesting early time behavior is completely diffusion limited. With increasing Reg;, in all cases we observe changes
in both the dynamic regime and the static regime. In the dynamic regime, the phase boundary potential begins to
increase more rapidly at higher Re g5, for tD/ /lflb beyond 10~!, with a scaling exponent approaching 1.6 for Regp, = 1.0,
Y =1.0and Sc = 1000, suggesting that fluid flow influences become significant as the system approaches the static
regime. In the static regime, small values of Re;, have minimal effect on the phase boundary potential, but for the
highest Re , values examined we observe instances where the potential is than three times its expected value in the
absence of flow (denoted via horizontal lines in Figure 5).

The change in the phase boundary potential with Re;, is highly dependent upon the values of ¢ ¢ and Sc as is

evident in Figure 6, where we plot the potential in the static limit. Specifically, results apply when tD/ /lflb = 10. For
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Fig. 5 Dimensionless potential temporal evolution with varying Re;;, (Range of 0.1 to 1 in increments of 0.1
indicated by varying color saturation) with (a) » = 1 and Sc = 1000 (b) ¥y = 1 and Sc = 100 (¢) ¢y = 0.1 and
Sc =1000(d) ¥ = 0.1 and Sc = 100. Results are plotted along side the potential predicted by Equation 3 (dashed
black line) and the no-flow case, Re 4, = 0, from Figure 2 (solid black line).

the case of ¢ = 0.1 and Sc = 100, the effect of Re4p on the static potential is minimal, with the potential increasing
from a value of 0.69 at Reyp, = 0.1 to a value of 0.83 at Reyp, = 1. For the case of ¢y = 1 and Sc¢ = 1000, the effect of
Re 45 on the static potential is more substantial, with the potential increasing to a value of 3.6 at Re4;, = 1. Both Sc and
Re 4 parameterize the extent with which external flow affects the diffuse ionic double layers near the membrane-water
interface; higher Sc¢ diminishes ion diffusion in comparison to flow, while higher Re 4, diminishes space charge induced
potential effects. i ¢, the ratio of the fluid kinetic energy to system characteristic electrostatic energy, serves as an
amplification factor, increasing the extent that flow-ion interaction has on the phase boundary potential. To more clearly
discern fluid flow effects and better define the influence of each dimensionless ratio, we introduce the enhancement

T

coeflicient 7, which compares the static portion of the potential ( >> 1) to the expected potential in the case of

ScReflb
no-flow from Equation 3:
20"y
n=—gl-1; 4)
lnﬁ
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An 7 of zero indicates no change in phase boundary potential from its zero-flow limit. The enhancement coefficient may
be modeled as a function of the previously defined system parameters, namely Regp, ¥ ¢ and Sc, alongside dimensionless
numbers parameterizing system length ratios and the properties of the fluid, membrane, and ions. We attempted to
develop this function through two methods. First, following a trial-and-error route, we anticipate that the correlation
for the enhancement coefficient will be functionally similar to heat and mass transfer coefficients, i.e., in the form of
n= d/}’ f (Rengc“/), where f is some function of Re§b5c7 and @, B and y are unknown fitting parameters. Fitting
o= % B= ‘5—‘ andy = % we plot all results obtained in this study in Figure 7 with the ratio of r/ 1,//1‘} on the y-axis and
Reﬁ ,S¢” on x-axis. Plotted results are also provided in a table in the supporting information. To further determine
the functional dependence of 7 on Reyp and Sc, we define the fluid scaling parameter w; = Reg 5 ¢”. When w is
small, the transport of ions is dominated by diffusion having little influence from the fluid flow. Conversely, when w; is
large, ion transport is dominated by convective effects. Plotting nt//j;” as a function of w; in Figure 7, we find excellent
collapse for all simulated conditions. We subsequently fit the collapsed result using the ratio of two power series in the

N i
form of )W;z/ = % where a; are unknown coeflicients and / determines the fitting behavior when w — oo; for
: j=0 4j @]

example when [ = 1, the fit equation reduces to a first order polynomial with a slope of (;’N—N,l We elect to use a value of

N =4 and [ = 1 resulting in the following function

2 3 4
25 ajw) +a2w1 +a3a4wl

5
% + a4w%

1 +asw; + agw

where a; = 1.92-1072, a5 = —1.47-1072, a3 = 0.68, a5 = 4.3- 1073, a5 = —0.212 and a¢ = 7.06 - 1073, Coefficients
were obtained by the Curve Fitting Toolbox in MATLAB [48], and were selected because all values of w; > 0 produce
a strictly positive enhancement > 0, and they by definition lead to w; — 0 as 7 — 0 and also to  « 0.68w1wi/ 3 as
w1 — co. Examining the data in Figure 7, we see a transition near w; = 3 where the effective enhancement (y ~2/%)
departs from a value near O to a near-linear scaling of 0.7 in the range of 5 < w; < 10. Although some values of 7 are
negative at small w;, we believe these to be caused by small numerical errors, and since their relative magnitude is close
to 0, will treat such values as effectively zero. The existence of a transition between no enhancement (w; < 3) and
linear scaling (w; > 3) suggests that there is a critical degree of ion advection, as characterized by w, that must occur
before the effect of external flow is to increase the phase boundary potential.

Membrane based ion-selective electrodes tend to have lower detection limits in the range of 1- 1077 to 1 - 1076
M [49]. To put the above analysis of w; into context we estimate that an external flow velocity of at least 16 cm s°!
is needed for w; > 3, assuming a 1 - 10~7 M solution at room temperature (300K) and an ion diffusion coefficient
of 1-107" m? s’!. This fluid velocity is well above the velocities encountered for such sensors in the majority of

applications, which suggests that changes in phase boundary potential from external flow will only occur for very dilute

systems and in the absence of a background electrolyte. The effects of varying single ion partition coefficients, variable
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Fig. 6 Values at W = 10 plotted for s = 1 and Sc = 1000 (blue triangle), s = 1 and Sc = 100 (purple
db
square), ¢ r = 0.1 and Sc = 1000 (red circle) and ¢ s = 0.1 and Sc = 100 (orange diamond)

ion diffusion coefficients and variable ion concentrations in solution was not explored in this study, which may affect the
exact limit at which external flow (w1) affects the phase boundary potential. Regardless, our results indicate that effects
of external flow on membrane systems are more pronounced in the low concentration limit. This result is consistent
with previous studies on reversed electrolysis cells were the greatest effect of flow on ion transport occurred for the
smallest ion concentrations [9].

As a second approach to collapse results, we note that results do apply for the membrane which is of a specific
length Ly, = 20.0 (non-dimensionalized by Ulo). To examine the interplay between different length scales affecting the

problem, we define a dimensionless ratio w, = /Eﬂ, where ¢, is a characteristic mass transfer layer thickness for the
m

DL,,
Aab Vs

1/2
fluid after traveling a distance L,, (dimensional) along the membrane. d,, can be defined as ¢,, = ( ) , where yg

1/2
is the characteristic shear rate. The shear rate, in turn, scales as ys = 6&, with 6,0m = (LI’J"OV) . Combining these
mom

definitions yields:

3/2y,3/4 3/4
Y vl o 1/2p. 34 [Aab /
w2= 3/4 77 =S¢ "Rey, (6)
D214y L,,

Aap

T raised to

Equation 6 leads to a similar functional form for w; as empirically found for w;, but with an added term of

the 3/4 power. We plot iy ~%/> versus ws in Figure 8 for all test case performed here along side a line of best fit in the

2/5

form of Equation 5. We retain the scaling of =</~ as this find close to optimum in fitting. While the collapse of results

16



330

331

332

333

334

335

336

337

338

339

340

342

343

—2/5

_1 1 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10
wp = Scl/3Re§£5

Fig. 7 Potential enhancement factor r; scaled by 1/1;2/ > and plotted as a function of system Schmidt number (Sc)
and Debye length Reynolds number (Re ;) for all data (blue circles). Data fitting is provided by Equation 5 and
is shown as the red solid line.

is not as strong as the empirically-tuned result with w;, examination of w; supports the scaling n = 1//}’ f (Regb Sc?),
and further suggests how results may be affected by adjusting the membrane length. Results would additionally be
influenced by changes in ion partition coefficients for cationic and anionic species, as well as by utilizing unequal
diffusion coefficients for species or unequal electrical permittivities for the fluid and membrane. For this reason, the
solutions presented here cannot be considered universal, with additional simulations required to capture the influences

of changing geometry,changing ion properties, and changing fluid and membrane electrical properties.

IV. Conclusion
We developed a code by modifying the open source library OpenFOAM to solve the Navier-Stokes-Nernst-Planck-
Poisson set of equations to examine coupled mass transfer, fluid flow, and electrostatic potentials for non-equal
partitioning ions at membrane-water interface. This code was used specifically to explore the effects of external viscous
flow on the diffuse ionic double layers at the interface of an ISE membrane and aqueous sample and associated changes
in phase boundary potential. Framing the problem in a manner similar to mass transfer in a developing boundary layer
and utilizing an associated dimensionless framework revealed that the dimensionless numbers w; = Rez/; Sc!'3 or

3/4
wy = Rei/; Scll? (%:) , which are functions of the Debye-length Reynolds Number and the Schmidt number, not
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Fig. 8 Potential enhancement factor 7 scaled by z//;z/ > and plotted as a function of system Schmidt number (Sc)

and Debye length Reynolds number (Re ;) for all data (blue circles) using the fluid scaling parameter w, as
defined in Equation 6. The red solid line represents data fitting by Equation 5 with coefficients a; = 6.14 - 1073,
a> =9.80-1072, a3 =2.12,a4 = 1.76- 107!, as = —1.11 and a¢ = 6.98 - 10~1.

only are appropriate metrics (switches) to determine if hydrodynamic forces affect the formation of the diffuse ionic
double layers, but also can be used to quantitatively predict the extent to which fluid flow affects the phase boundary
potential. Although this study focused on a sole geometry and set of partition concentrations, the results show the
applicability of traditional heat and mass transfer analysis to describe ion transport at ISE membrane and aqueous sample
interfaces in electrohydrodynamic flows, as it is relevant to ISEs and other system where phase boundary potential

modeling is of interest.
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