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Ion selective electrodes (ISEs) enable measurements via the build-up of a phase boundary5

potential at the surface of a sensing membrane. While a framework exists to understand6

the performance of ISEs in stagnant samples, the influences of fluid flow on ISEs is less7

studied. We model the transport of charged ions in solution occurring near interfaces between8

ISE membranes and aqueous samples when subject to an external flow. We developed a9

numerical model extending the Pressure-Implicit with Splitting of Operators (PISO) algorithm10

to incorporate the Navier-Stokes-Nernst-Plank-Poisson system of equations. We find that11

external flow distorts the aqueous side of the formed double layer at the ISE membrane and12

aqueous sample interface, leading to an increase in the phase boundary potential. The change13

in potential is shown to be a function of a novel set of dimensionless numbers, most notably the14

Debye Length Reynolds number, i.e., the Reynolds number with the Debye Length as the system15

dimension.16

I. Introduction17

The transport of dilute, charged species via both hydrodynamic and electrostatic forces governs a variety of18

engineered systems, including but not limited to charged particle transport in aerosols[1] and their collection in19

electrostatic precipitators [2], flow batteries [3], desalination processes [4], and ion-selective electrodes (ISEs) [5]. In20

many of these instances, in particular the latter, charged species transport is not only affected by external and internal21

electric fields, but also through the unequal partitioning of charged species (solutes) at phase boundaries. Unequal22

partitioning leads to charge separation at the interface and formation of an electric double layer; this ultimately leads to23

a measurable potential difference. For ISEs, the potential difference arises at the interface of the ISE membrane and an24

aqueous solution that contains the analyte ion of interest. Formation of this phase boundary potential allows for the25

measurement of the concentration of this analyte ion. Considerable effort has been dedicated to the design of specific26

membrane materials to obtain selectivity for various different target ions [6]. In general, ISE membranes comprise27

(i) a polymeric membrane matrix that provides the membrane with mechanical robustness, (ii) the analyte ion either28
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in a free form or in the form of a complex with an ion-selective receptor (usually referred to as ionophore), as well29

as a (iii) counter ion (referred to as ionic site) that is either covalently attached to the matrix polymer or has such a30

high hydrophobicity that leaching into aqueous samples is negligible. A phase boundary potential forms because the31

analyte ion and counterions differ in their free energies of transfer from the sample into the membrane phase [7]. While32

ISE theory typically assumes local equilibrium at the interface of the sample and membrane phase, the transport of33

ions between the two phases both by diffusion and convection may influence the magnitude of the phase boundary34

potential. A well-known illustration for this are the zero-current transmembrane ion fluxes that often determine the35

lower detection limits of ISEs [8]. Also, through experimental measurements of membrane resistance, Dlugolecki et36

al. found that external fluid flow may influence the electric double layer particularly for low solution concentrations37

[9]. However, the effect of fluid flow on phase boundary potentials has only been qualitatively explored in prior work,38

mainly because explicit computation of ion transport accounting for fluid flow requires numerical solution to the39

Navier-Stokes-Nernst-Plank-Poisson (NS-NPP) set of equations, which combine conservation of mass and momentum40

for fluid flow with mass conservation of each charged species, with Poisson’s equation for the electric potential. This is41

a complex set of equations with extensive coupling, and is a stiff system of equations.42

Modeling of ISEs presents unique challenges due to the need to account for ion exchange at the ISE membrane43

and aqueous sample interface. Ions differentially transport across membrane interfaces primarily due to differences in44

affinity for the sample and the membrane phase and may be further altered by binding of the analyte ion to ion receptors45

in the membrane phase [10]. Prior work conducted for modeling ISE systems has hence more frequently examined46

numerical solutions to the NPP equations, i.e. the Nernst-Planck-Poisson (NPP) equations, which do not consider47

fluid flow [11–15]. In these studies, there has been two primarily employed methods to handle the phase boundary48

interface. First, coupling between phases has been accomplished using two separate simulation domains, with the49

Chang-Jaffe boundary condition [13, 16] at the interface, which relates the flux across the ISE membrane and aqueous50

sample interface to a reversible 1st order reaction. Second, interface mass transfer has been modeled by generalizing ion51

transport to include gradients in ion activity [14], allowing for a singular domain, keeping track of spatial variations in52

the affinity of ions for the two contacting phases.53

There have been studies exploring the effects of fluid flow on ion motion within flow-through ion exchange54

membranes that are used for electrodialysis (ED)[17–22]. In these studies, the NS-NPP equations were applied, but55

their their use was limited to the aqueous phase, focusing on electroconvection and instabilities occurring from an56

applied external voltage. The ion concentrations at the phase boundaries were determined by boundary conditions such57

as specifying a fixed ion concentration[18] or modeling by Butler-Volmer kinetics[19]. In contrast to electrodialysis58

systems, ISE sensing devices are rarely operated with an applied external potential and hence ion currents in ISEs are59

usually near zero. Instabilities that lead to electroconvection generally occur when the ion currents are beyond the ohmic60

region [23]. Therefore, it is expected that fluid instabilities arising in ED cells are absent from the problems considered61
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in this study, where no external potential is applied.62

As understanding the potential response is critical to the design and implementation of ISEs as sensing devices,63

it is important to know if and when external flow affects the response of such devices, and to probe fundamental64

behavior of systems with coupled ion mass transfer, fluid flow, and electrostatics at interfaces. In addition to applications65

in electrodialysis, the NS-NPP equations have been solved to predict the behavior of nanopore sensors [24], model66

electrostatic precipitators [25], and examine EHD-assisted droplet formation (i.e. electrosprays) [26], among others.67

As alluded to above, numerical solutions of these sets of equations has been particularly difficult, and the choice of68

numerical schemes is crucial to ensure accuracy and convergence [27]. As the aforementioned works utilize different69

numerical schemes, we believe there is still a need to advance NS-NPP solution schemes and to examine fundamental70

NS-NPP transport solutions near phase boundaries. Towards this end, here we develop an NS-NPP solution scheme to71

model ion transport and the evolution of the phase boundary potential in systems that approximate ISEs and which also72

resemble classical laminar flow boundary layers. Described in the subsequent section, the numerical solution scheme73

developed utilizes the finite volume method for spatial discretization and extends Issa’s Pressure-Implicit with Splitting74

of Operators (PISO) [28] solution algorithm for incompressible flows to include coupling between the NS and NPP75

equations. The NPP equations are solved using Hagelaar’s method [29]. A high order embedded Runge-Kutta(RK)76

method with variable step size is used for time discretization. Development of this method was conducted using the77

open source package OpenFOAM [30]. Algorithm validation is performed via comparison to a series of analytical78

solutions, classical solutions, and prior experiments. Subsequently, the algorithm is applied to examine the phase79

boundary potential developed across a membrane while simultaneously a laminar boundary layer develops (i.e., the80

Blasius solution augmented by mass transfer of charged species). We show that the dimensionless phase boundary81

potential is positively correlated to increased fluid flow and decreased ion diffusion rates.82

II. Theory and Solution Scheme83

A. Governing Equations84

To model the effects of fluid flow on ion transport in ISE systems, with the assumptions of incompressible (assuming

low fluid Mach number), laminar (low fluid Reynolds number) and isothermal flow, the Navier-Stokes equations

(Equation 1a and Equation 1n), Nernst-Planck equation (Equation 1d), and Poisson equation (Equation 1c) are employed
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and are defined as:

∇ · ®𝑈 = 0 (1a)

𝜕 ®𝑈
𝜕𝑡
+ ®𝑈∇ · ®𝑈 = −∇ 𝑃

𝜌 𝑓
+ 𝜈∇2 ®𝑈 + ∇ · 𝜈[(∇ ®𝑈)𝑇 − 2

3
(∇ ®𝑈)] + 𝑓𝑒

𝜌 𝑓
(1b)

∇ · 𝜖∇𝜙 =

𝑖=𝑛∑︁
𝑖=1

𝐹𝑐𝑖𝑧𝑖∇𝜙 (1c)

𝜕𝑐𝑖

𝜕𝑡
+ ∇ · (𝑐𝑖 [ ®𝑈 + 𝑧𝑖

𝐹𝐷𝑖

𝑅𝑇
∇𝜙 + Θ]) = ∇ · 𝐷𝑖∇𝑐𝑖 (1d)

Θ =
𝐷𝑖 (1 − 𝑘𝑖)

𝛼 + 𝑘𝑖 (1 − 𝛼)
∇𝛼 (1e)

where ®𝑈 is the fluid velocity, 𝑃 is the hydrodynamic pressure, 𝜌 𝑓 is the fluid density, 𝜈 is the fluid kinematic viscosity, 𝜙85

is the electrostatic potential, 𝑓𝑒 is the electrostatic body force, 𝜖 is the permittivity, 𝐹 the Faraday constant, 𝑐𝑖 the molar86

concentration of ion species 𝑖, 𝑧𝑖 the charge of species 𝑖, 𝐷𝑖 the ion diffusion coefficient, 𝑅 the universal gas constant,87

𝑇 the temperature of the surrounding medium, 𝑘𝑖 is the single ion partition coefficients, and 𝛼 the membrane mass88

fraction, differentiating between the membrane phase (𝛼 = 1) and aqueous (𝛼 = 0). The third term on the right hand89

side of Equation 1b is equal to zero when the flow is incompressible, i.e. Equation 1a is satisfied, and is added for90

numerical stability [31]. The body force term 𝑓𝑒 represents the drag force imparted onto the fluid from the movement of91

charged particles and is defined as 𝑓𝑒 =
∑𝑖=𝑛
𝑖=1 𝐹𝑐𝑖𝑧𝑖∇𝜙 . This body force is a simplification of the more general Lorenz92

force [32] by disregarding effects from magnetic fields, which is commonly done for ions in solution. To improve93

stability of the numerical solution and coupling between the membrane and water phase, the simulation domain is94

monothetic with ion selectivity modeled through single ion partition coefficients and the mass transfer model from95

Haroun et al. represented by Θ in Equation 1e [33]. Originally formulated to enforce non equal partitioning of gases96

(Henry’s law), Haroun’s mass transfer model ensures mass conservation at phase boundaries and enforces the jump97

condition that occurs with non-equal partitioning of ions, i.e., the ratio of ions present in the water (𝑐𝑎𝑞) and membrane98

phases (𝑐𝑚𝑒𝑚) are non unity 𝑐𝑎𝑞
𝑐𝑚𝑒𝑚

= 𝑘 ≠ 1 [33]. The additional flux (Θ), referred to as the "solubility flux", acts to99

counteract the nonphysical diffusive flux that would arise from a concentration jump at interfaces, where ∇𝛼 ≠ 0. At100

thermodynamic equilibrium, when 𝑐𝑎𝑞 = 𝑘𝑐𝑚𝑒𝑚, the solubility flux (Θ) is equal in magnitude to the diffusive flux at the101

interface when central discretization schemes are used regardless of the mesh size near the interface [33]. This interface102

model is similar to the traditionally used Chang-Jaffe boundary conditions assuming diffusion limited surface reactions,103

but with the added benefit of a singular domain to describe the NPP equations. To our knowledge, this approach, which104

has been successfully employed in gas partitioning into liquids [34, 35], has not employed in conjunction with the105

NS-NPP equations previously, and has not been employed in examining ion selectivity across phase boundaries. We106

also note that here binary values of 𝛼 are employed, but more general 𝛼 can be treated as a phase fraction and the107
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Table 1 Mathematical description of the boundary conditions as labeled in 1a with 𝑛 representing the face
normal direction and 𝐼 the identity matrix. The subscripts 𝑓 and 𝑝 signify the value at the boundary face and
neighboring cell, respectively.

Boundary Ions (𝑐𝑖) Potential (𝜙) Velocity ( ®𝑈) Pressure (𝑃)
1 𝜕𝑐𝑖

𝜕𝑛 𝑓
= 0 𝜕𝜙

𝜕𝑛 𝑓
= 0 ®𝑈 𝑓 = (1, 0, 0) 𝜕𝑃

𝜕𝑛 𝑓
= 0

2 𝜕𝑐𝑖
𝜕𝑛 𝑓

= 0 𝜕𝜙

𝜕𝑛 𝑓
= 0 𝜕 ®𝑈

𝜕𝑛 𝑓
= 0 𝜕𝑃

𝜕𝑛 𝑓
= 0

3 𝜕𝑐𝑖
𝜕𝑛 𝑓

= 0 𝜕𝜙

𝜕𝑛 𝑓
= 0 𝜕 ®𝑈

𝜕𝑛 𝑓
= 0 𝑃 𝑓 = 0

4 𝜕𝑐𝑖
𝜕𝑛 𝑓

= 0 𝜕𝜙

𝜕𝑛 𝑓
= 0 ®𝑈 𝑓 =

1
2 ( ®𝑈 𝑝 + (𝐼 − 2𝑛𝑛𝑇 ) ®𝑈 𝑝) ∗ 𝜕𝑃

𝜕𝑛 𝑓
= 0

5 𝜕𝑐𝑖
𝜕𝑛 𝑓

= 0 𝜕𝜙

𝜕𝑛 𝑓
= 0 ®𝑈 𝑓 = (0, 0, 0) 𝜕𝑃

𝜕𝑛 𝑓
= 0

6 𝜕𝑐𝑖
𝜕𝑛 𝑓

= 0 𝜕𝜙

𝜕𝑛 𝑓
= 0 – –

Membrane-Water Interface – – ®𝑈 𝑓 = (0, 0, 0) 𝜕𝑃
𝜕𝑛 𝑓

= 0

approach applied here can be extended to mixtures unlike the Chang-Jaffe boundary condition.108

B. Domain and Boundary Conditions109

In lieu of modeling a complete ISE sensor geometry, we base our model off of classical boundary layers with a110

leading edge, as the fluid flow and shear stress in the absence of ion migration and electrostatic body forces are well111

known in this scenario. The specific computational domain employed is a 2D representation of flow over a flat membrane112

and is shown in Figure 1. Here the numerical solution of the NS equations (𝑈 and 𝑃) is restricted to only the white113

region labeled "Water" in 1a. The electric potential (𝜙), a continuous variable, is solved for in both the aqueous phase114

and the membrane phase (shaded gray in 1b) without distinction between phases, as we modeled both phases with the115

same electrical permittivity. The species concentration (𝑐𝑖) is also solved for in both the aqueous phase and membrane116

phase, but accounting for partitioning at the water-membrane interface via Haroun’s solubility flux approach [33]. The117

same computational mesh was used for both the global domain, comprising of the aqueous and membrane phase, as well118

as the aqueous phase. Therefore, the fluid properties solved within the separate water subdomain are easily mapped to119

the global domain for solution of Equation 1d. In Figure 1a, each boundary is labeled and the corresponding boundary120

conditions may be found in Table 1. The domain was made sufficiently large such that the effect of boundary conditions,121

namely the zero gradient condition on the potential, would not affect the results near the ISE membrane and aqueous122

sample interface. The computational mesh was designed using hanging nodes and successive refinement to ensure high123

spatial resolution near the membrane and fluid interface without compromising the overall simulation cost, particularly124

as the unsteady nature of this simulation and highly coupled equations make computational cost high. The mesh selected125

had 4.3 · 105 hexahedral cells and is shown in Figure 1b.126

∗The boundary condition at Boundary 4 is commonly referred to as the symmetry condition. The implementation of this boundary condition for
multi-dimensional variables such as𝑈 is the mean of the adjacent cell and the mirror image produced by the Householder transformation. [36]
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Fig. 1 Schematic of the computational domain of a liquid flow over an immiscible membrane phase. (a)
Dimensions and labeled boundaries, with more details provided in Table 1. (b) Computational mesh used in
this study, with insets providing higher magnification of the ISE membrane and aqueous sample interface. All
units presented in this figure are dimensionless, with the dimensionless length scale defined as 𝑥∗ = 𝑥𝑈0

𝜈
. More

information about the non-dimensionalization procedure can be found in the Theory and Solution Scheme
section.

C. Numerical Solution Scheme127

A custom C++ program was developed to solve Equations 1a-e using the finite volume method and open source128

library OpenFOAM. This library abstracts many of the aspects of finite volume discretization and subsequent matrix129

construction and numerical solution. This allows developers to focus on higher level solution algorithms and add130

additional transport equations such as those present in the NS-NPP equations. To solve the coupled system of Equations131

1a-e for the dependant variables 𝑈, 𝑃, 𝜙, 𝑐0, 𝑐1, ... and 𝑐𝑖 , a modification to the PISO algorithm [28] to include the132

NPP equations along with an embedded singly-diagonal implicit Runge-Kutta(SDIRK) [37] time discretization is used.133

Time steps are varied using a PPID time step controller[38] with a desired normalized numerical solution error of134

1 · 10−6. More information on the specific implementation of time step control is included in the supporting information.135

Within the PISO algorithm, a sub loop for the Nernst-Planck equation coupling with the Poisson equation is solved136

using the semi-implicit algorithm from Hagelaar et al. [29]. The modified PISO algorithm implemented along with the137

implementation of Hagelaar’s method is shown in Algorithm 1.138

To explain the modifications to the PISO algorithm, the notation used is consistent to what is largely used by139

the OpenFOAM community and can be found in detail within Jasak’s PhD thesis [39]. For brief explanation of the140

notation, the 𝐻 operator includes all off diagonal components of the discretized momentum equation (Equation 1b) along141

with any explicit source terms arising from boundary conditions and time discretization methods. The 𝑎 coefficient142

represents the diagonal components of the discretized momentum equation. All iterative values, 𝑛, 𝑖, 𝑗 , 𝑘 in Algorithm143

1 use superscripts with parenthesis () to indicate iteration steps, and brackets [] to indicate the SDIRK stage. The144
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algorithm begins by calculating the fluid variables (𝑈 and 𝑝) with the standard PISO algorithm implementation as145

is done within OpenFOAM’s solver pisoFOAM with the addition of the electrostatic body force, which is calculated146

explicitly by values from previous iterations. Following the computation of 𝑈 and 𝑝, the electrostatic potential and147

species concentrations are solved using Hagelaar’s algorithm without update to fluid variables 𝑈 and 𝑝. The Algorithm148

ends with another iteration of the PISO algorithm, but this time with updated values for 𝜙 and 𝑐. The Algorithm was149

structured such that the variables with the strongest coupling, such as the pairs 𝑈 and 𝑝 and 𝜙 and 𝑐, have adequate150

convergence before incorporating the weaker, but still prevalent, body force term that couples the fluid variables to151

the species transport. The "stop" condition for each loop is based on convergence of the resulting linear systems152

for Equations 1a-e. The convergence is determined based on the 𝐿1 norm of the matrix residuals and is defined as153

𝑟 = 1∑( |𝐴𝑥−𝐴𝑥̄ |+|𝑏−𝐴𝑥̄ ) ∑ |𝑏 − 𝐴𝑥 | where 𝐴 and 𝑏 are the coefficient matrix and source term produced from the finite154

volume and time discretization of the variable 𝑥 with 𝑥 representing the average value of 𝑥. Convergence was determined155

when the 𝐿1 norm was at or bellow 1 · 10−6 before exiting the iteration loops presented in Algorithm 1.156

For the spatial discretization, built-in functionality of OpenFOAM’s matrix constructors were employed. For all157

transport equations, divergence operators were discretized using 1st order upwind methods, while gradient operators158

used Gaussian integration with 2nd order linear interpolation without non-orthogonal or skewness corrections. This159

solver uses a custom time discretization following the work of Dalessandro et al.[40] for incorporating SDIRK methods160

into OpenFOAM. The specific method used was a 3rd order 3 stage embeded SDIRK method with a 2nd order error161

estimator from Alexander[37]. For the special case of solving the Poisson equation with only Neumann boundary162

conditions (electric field equal to zero on all boundaries), the fixed point method [41] is applied. Here the compatibility163

condition and fixed point value are enforced by modifying the resulting matrix equation from the discretization of164

Equation 1c by solving the modified linear system 𝐴
′
𝑥 = 𝑏

′ − 𝑏′ where 𝐴′ = 𝐴 + 𝐴(𝑖, 𝑖) and 𝑏
′
= 𝑏 + 𝐴(𝑖, 𝑖)𝜙𝑟𝑒 𝑓 . Here165

𝑖 represents the cell location of the fixed value (𝜙𝑟𝑒 𝑓 ) and 𝑏
′ is the average of the matrix source term 𝑏

′ . For further166

details of implementation, the complete code is linked in the supporting information.167

The order of the numerical solution was inspired by Oliveira’s PISO extension for buoyancy driven flows [42] where168

similarly the NS equations are modified to include a body force derived from a scalar transport equation, in Oliveira’s169

case the heat equation and here the Poisson equation, which in turn is influenced by the ion transport equation. While170

the exact solution order may affect stability and convergence rates, the proposed algorithm was deemed suitable for the171

present study and has been validated with a series of analytical, experimental and prior numerical studies. The first172

comparison is to experimental measurements of the velocity profile in an electrostatic precipitator, where the velocity173

is influenced by the electrostatic body force [43] and hence its determination requires solution to the NS-NPP set of174

equations. The second is a comparison to Schönke’s [44] analytical solution for the NPP set of equations, testing our175

ability to recover solutions with coupled mass transfer and electrostatics. The third is recovery of the classical Blasius176

solution for boundary layers of a flat plate. In the absence of electrostatic effects, for the geometry tested here (Figure177
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Algorithm 1 Segregated solver for the numerical solution to the coupled NS-NPP equations.
𝑛← 1
while RK loop do

𝑖 ← 1
while 𝑈,𝑃,𝜙,𝑐0,𝑐1,...𝑐𝑖 are not converged do

𝑗 ← 1
while 𝑈,𝑃 are not converged do

𝑈 ( 𝑗+1) ← 𝜕𝑈
𝜕𝑡

[𝑛] +𝑈 ( 𝑗 )∇ ·𝑈 ( 𝑗+1) = −∇𝑃 ( 𝑗 ) + 𝜈∇2𝑈 ( 𝑗+1) + ∇ 𝜙
(𝑖)

𝜌

∑𝑆
𝑠=1 𝑒𝑧𝑠𝑐

(𝑖)
𝑠 ⊲ Solve Predictor step

𝑃 ( 𝑗+1) ← ∇ · 1
𝑎
∇𝑃 ( 𝑗+1) = ∇ · 𝐻 (𝑈

( 𝑗+1) ,𝜙 (𝑖) ,𝑐 (𝑖)
𝑖
)

𝑎
⊲ Solve Pressure Equation

𝑈 ( 𝑗+2) ← 𝐻 (𝑈 ( 𝑗+1) ,𝜙 (𝑖) ,𝑐 (𝑖)
𝑖
)

𝑎
− 1
𝑎
∇𝑃 ( 𝑗+1) ⊲ Corrector Step

𝑗 ← 𝑗 + 1
end while
𝑘 ← 1
while 𝜙,𝑐0,𝑐1,...𝑐𝑖 are not converged do

if j == 1 then
𝛽← 𝜖 +∑𝑆

𝑠=1 𝑧
2
𝑠𝛿𝑡𝑐

[𝑛]
𝑠

𝜙 (𝑘+1) ← ∇ · 𝛽∇𝜙 (𝑘+1) = ∑𝑆
𝑠=1 𝑧𝑠𝑐

[𝑛]
𝑠 𝐹 +∑𝑆

𝑠=1 𝐹𝑧𝑠𝛿𝑡 (
𝜕𝑐𝑠
𝜕𝑡

[𝑛] − 𝑧𝑠𝑐 [𝑛]𝑠 𝐹𝐷𝑠

𝑅𝑇
∇𝜙[𝑛]) ⊲ Voltage Predictor

else
𝜙 (𝑘+1) ← ∇ · 𝜖∇𝜙 (𝑘+1) = ∑𝑆

𝑠=1 𝑧𝑠𝑐
[𝑛]
𝑠 𝐹

end if
𝑐 (𝑘+1) ← 𝜕𝑐

𝜕𝑡

[𝑛] + ∇ · (𝑐 (𝑘+1)
𝑖
[𝑧𝑖 𝐹𝐷𝑅𝑇 ∇𝜙

(𝑘+1) +𝑈 [𝑛] + 𝐷𝑖 (1−𝑘𝑖 )
𝛼+𝑘𝑖 (1−𝛼)∇𝛼]]) = ∇ · 𝐷∇𝑐

(𝑘+1)
𝑖

𝑘 ← 𝑘 + 1
end while
𝑗 ← 1
while 𝑈,𝑃 are not converged do

𝑈 ( 𝑗+1) ← 𝜕𝑈
𝜕𝑡

[𝑛] +𝑈 ( 𝑗 )∇ ·𝑈 ( 𝑗+1) = −∇𝑃 ( 𝑗 ) + 𝜈∇2𝑈 ( 𝑗+1) + ∇ 𝜙
(𝑖+1)

𝜌

∑𝑆
𝑠=1 𝑒𝑧𝑠𝑐

(𝑖+1)
𝑠 ⊲ Solve Predictor step

𝑃 ( 𝑗+1) ← ∇ · 1
𝑎
∇𝑃 ( 𝑗+1) = ∇ · 𝐻 (𝑈

( 𝑗+1) ,𝜙 (𝑖+1) ,𝑐 (𝑖+1)
𝑖
)

𝑎
⊲ Solve Pressure Equation

𝑈 ( 𝑗+2) ← 𝐻 (𝑈 ( 𝑗+1) ,𝜙 (𝑖+1) ,𝑐 (𝑖+1)
𝑖
)

𝑎
− 1
𝑎
∇𝑃 ( 𝑗+1) ⊲ Corrector Step

𝑗 ← 𝑗 + 1
end while
𝑖 ← 𝑖 + 1

end while
𝑛← 𝑛 + 1

end while

8



1), simulations recover the Blasius solution, showing that the flow modeled is a viscous boundary layer flow in the178

developing region. Validation results can be found in the supplemental material. Further validations more specific to179

ISEs are discussed in the Results and Discussion section [11]. Simulations were run on a Minnesota Supercomputing180

Institute (MSI) cluster utilizing 8 cores for each simulation and requiring roughly 120 hours of run time for each case181

noted in the subsequent section.182

D. Non-Dimensionalization and Test Cases183

To reduce the number of independent parameters affecting fluid flow and transport of charged ions in solution, we

adopt a non-dimensionalization conventionally utilized in studying boundary layer formation from external flow of a

viscous fluid over a surface [45]. We define the non-dimensional length scale as 𝑥∗ = 𝑥𝑈0
𝜈

where 𝑈0 is the bulk fluid

velocity and 𝑥 the spatial dimension, the non-dimensional time scale as 𝜏 = 𝑡𝜈

𝑈2
0

and the non-dimensional velocity as

𝑈∗ = 𝑈
𝑈0

. This variable transformation fixes fluid behavior to problem geometry (𝑥∗) and time scale (𝜏), allowing for

examination of other transport phenomena, such as ion motion within the formed fluid boundary layer, with fixed fluid

characteristics. We correspondingly define the non-dimensional potential as 𝜙∗ = 𝜙
𝐹𝑐0
𝜌 𝑓𝑈

2
0

where 𝑐0 is the reference ion

concentration and the non-dimensional concentration as 𝑐∗ = 𝑐
𝑐0

. This combination of fluid and electrochemical variable

transformations leads to the non-dimensionalization of Equations 1a-e as:

∇ · ®𝑈∗ = 0 (2a)

𝜕 ®𝑈∗
𝜕𝜏
+ ®𝑈∗∇ · ®𝑈∗ = −∇𝑃∗ + ∇2 ®𝑈∗ + ∇ · [(∇ ®𝑈∗)𝑇 − 2

3
(∇ ®𝑈∗)] +

𝑖=𝑛∑︁
𝑖=1

𝑐∗𝑖 𝑧𝑖∇𝜙∗ (2b)

∇2𝜙∗ =
1

𝑅𝑒2
𝑑𝑏
𝜓 𝑓

𝑖=𝑛∑︁
𝑖=1

𝑐∗𝑖 𝑧𝑖 (2c)

𝜕𝑐∗
𝑖

𝜕𝜏
+ ∇ · (𝑐∗𝑖 [ ®𝑈∗ + 𝑧𝑖

𝜓 𝑓

𝑆𝑐𝑖
∇𝜙∗ + Θ∗]) = 1

𝑆𝑐𝑖
∇2𝑐∗𝑖 (2d)

Θ∗ =
1
𝑆𝑐𝑖

(1 − 𝑘𝑖)
𝛼 + 𝑘𝑖 (1 − 𝛼)

∇𝛼 (2e)

(2f)

where the resulting dimensionless parameters are the fluid kinetic to chemical potential energy ratio 𝜓 𝑓 =
𝜌 𝑓𝑈

2
0

𝑐0𝑅𝑇
, the ion184

Schmidt number 𝑆𝑐 = 𝜈
𝐷

and the Debye-length Reynolds number 𝑅𝑒𝑑𝑏 =
𝑈0𝜆𝑑𝑏
𝜈

with the Debye length 𝜆𝑑𝑏 =

√︃
𝜖 𝑅𝑇

𝐹2𝑐𝑜
.185

The Debye-length Reynolds number determines the relative strength of the fluid flow inertia within one Debye length186

of the fluid-membrane interface. When 𝑅𝑒𝑑𝑏 is large (𝑅𝑒𝑑𝑏 >> 1), significant changes to ion transport rates, driven187

by fluid flow, occur in the region most sensitive to changes in electrostatic potential. Conversely, when 𝑅𝑒𝑑𝑏 is188

small (𝑅𝑒𝑑𝑏 << 1), electrostatic forces dominate ion transport, i.e., convection has little influence on transport at189

the membrane interface. As will be seen in later sections, this parameter will be paramount to exploring the effects190
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of fluid flow on partitioning of ions across the membrane-water interface. Dimensionless numbers associated with191

membrane and ion transport found in prior work [11] (i.e., when solving the NPP equations) can be defined from this192

set of non-dimensional parameters, including the dimensionless potential 𝜓 𝑓 𝜙∗ = 𝜙 𝐹
𝑅𝑇

, dimensionless length scale193

𝑥∗

𝑅𝑒𝑑𝑏
= 𝑥
𝜆𝑑𝑏

and dimensionless time scale 𝜏

𝑆𝑐𝑅𝑒2
𝑑𝑏

= 𝑡𝐷

𝜆2
𝑑𝑏

. These dimensionless ratios will be used in the subsequent194

sections for analyzing the mass transfer of ions and associated changes in the potential across the membrane-water195

phase boundary.196

A series of simulations where preformed varying 𝑆𝑐, 𝑅𝑒𝑑𝑏 and 𝜓 𝑓 for a binary salt solution. To accomplish this197

using the code developed for Equations 1a-e, variables 𝜈, 𝑐0, 𝑈 and 𝜌 𝑓 were set to 1 m2s-1, 1 mol m-3, 1 m s-1 and198

96485 kg m-3 (having the same magnitude as Faraday’s constant) respectively. The remaining three variables, i.e., 𝐷𝑖 , 𝜖199

and 𝑇 , were modulated to represent 𝑆𝑐, 𝑅𝑒𝑑𝑏 and 𝜓 𝑓 . For each case the non-dimensional ion concentration (𝑐∗) was200

initialized as a constant value of 1.0 in both the membrane and water phases for the cation (+1 charge) and anion (-1201

charge). Similarly, the non-dimensional velocity (𝑈∗) was set to a magnitude of 1 with a direction parallel to the plate.202

For a test of this model, it was assumed here that the ion diffusion coefficient varied neither in space or phase and that it203

was the same between the anion and cation. Permittivity (𝜖) was also held constant throughout the domain irrespective204

of phase. For all cases the single ion partition coefficients (𝑘𝑖) were held constant with a value of 2 (hydrophilic) for205

the cation and 0.5 (hydrophobic) for the anion, similar to parameters used by [11] in examining transport across an206

interface. To ensure accurate capture of the thin double layer, the mesh was designed to have a cell thickness at the207

phase boundary of no more than 0.02𝜆𝑑𝑏 when 𝑅𝑒𝑑𝑏 = 0.1, noting that the mesh and dimensions of the membrane are208

scaled based on fluid properties and not the Debye length. To test mesh quality, a secondary mesh with resolution of209

1.5 · 106 hexahedral cells and fa phase boundary cell thickness of no more than 0.01𝜆𝑑𝑏 was run for two selected cases210

(𝑅𝑒𝑑𝑏 = 1, 𝜓 𝑓 = 1, 𝑆𝑐 = 1000 and 𝑅𝑒𝑑𝑏 = 0.1, 𝜓 𝑓 = 1, 𝑆𝑐 = 1000). The potential between these two mesh resolutions211

varied no more than 1% when 𝜏

𝑆𝑐𝑅𝑒2
𝑑𝑏

> 1. Therefore, the first mesh with 4.3 · 105 cells depicted in Figure 1b was used212

for the remainder of the study.213

III. Results and discussion214

In the absence of external flow (i.e, when 𝑅𝑒𝑑𝑏 = 0) or when flow is negligible, a double layer is formed and the215

resulting potential arises from the non-equal partitioning of ions. This potential can be predicted at the 𝑡 →∞ limit by216

recognizing that, at equilibrium, the electrochemical potential of each ion is the same in both phases. For a binary217

electrolyte consisting of monovalent ions, this can be formulated to be a function of the single ion partition coefficients,218

and is defined as [11, 46]219

Δ(𝜓 𝑓 𝜙∗) =
1
2
𝑙𝑛

(
𝑘+
𝑘−

)
(3)
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where 𝑘+ and 𝑘− are the single ion partition coefficients of the cation and anion, respectively. Prior research has shown220

that Equation 3 accurately describes the phase boundary potential at the 𝑡 → ∞ limit when the diffusion potential,221

often referred to as the Henderson potential, is negligible, i.e., when the partitioning ions have the same diffusion222

coefficient [11, 47]. To demonstrate this and to provide code validation, we compare the temporal evolution of the223

phase boundary potential with the expected value obtained from Equation 3 for the case of no-flow. Figure 2a shows224

that when 𝑡𝐷/𝜆2
𝑑𝑏

> 1 the potential converges to the predicted value from Equation 3. We observe that the evolution225

of the phase boundary potential is clearly divided into a a dynamic phase for 𝑡𝐷/𝜆2
𝑑𝑏

< 1 and an effectively static226

phase at 𝑡𝐷/𝜆2
𝑑𝑏

> 1, suggesting that the use of 𝑡𝐷/𝜆2
𝑑𝑏

, which is equivalent to 𝜏

𝑆𝑐𝑅𝑒2
𝑑𝑏

, is a well-scaled dimensionless227

time for these systems and is henceforth used to present temporally-varying results. For additional validation, the ion228

concentration profiles near the ISE membrane and aqueous sample interface at 𝑡𝐷/𝜆2
𝑑𝑏

= 10 are compared with the229

results obtained from Zhurov et al. [11] in Figure 2b for the case where 𝑘+ = 2 and 𝑘− = 0.5. We apply these same230

partition coefficients here and throughout this study. However, specific to this validation, we employ 𝑆𝑐 = 3.98 for the231

cation and 𝑆𝑐 = 1 for the anion in order to match the conditions from Zhurov et al. The concentration profiles for both232

the cation and anion in Figure 2b show a high degree of symmetry as in the absence of flow, ion motion is dominated by233

near interface electric fields and concentration gradients, which are independent between phases for this problem set234

up. The strong agreement here, demonstrates simulations correctly capture ion diffusive and electrophoretic motion as235

well as the development of a space-charge induced electrostatic potential field. Additional validations are provided in236

the supporting information, including comparison to classical boundary layer results, comparison to analytical NPP237

equation solutions and comparison with experimental electrohydrodynamic flow velocity measurements.238
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Fig. 2 Results for the no-flow case (𝜓 𝑓 = 1, 𝑆𝑐 = 1000, 𝑅𝑒𝑑𝑏 = 0). (a) Temporal evolution of the phase boundary
potential (solid black line) compared to expected potential from Equation 3 (dashed black line). (b) Concentration
profiles of Cation (blue) and Anion (yellow) with comparison between the current study (solid) and results from
Zhurov et al. [11] (dashed). Quantities where taken from the midpoint location of membrane, 𝑥∗ = 5, with the
ISE membrane and aqueous sample interface at 𝑦∗ = 0 and at a time of 𝑡𝐷/𝜆2

𝑑𝑏
= 10. Information on the Domain

used refer to Figure 1.
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Adding external flow to this system, Figure (3) displays a series of cation and anion concentration maps for variable239

Debye Length Reynolds numbers, with fixed 𝜓 𝑓 , which is the dimensionless parameterization of ion mobility, and fixed240

𝑆𝑐, the dimensionless parameterization of ion diffusivity. The case shown in Figures (3a) (cation) and (3e) (anion), with241

a 𝑅𝑒𝑑𝑏 = 0.1, shows concentration profiles mostly unaffected by external flow; this case is similar to the validation case242

presentation in Figure 2b. The concentration boundary is confined to the narrow region close to the membrane with243

near-lateral symmetry. However, with increasing 𝑅𝑒𝑑𝑏, analogous to the boundary layer formed for similar problems244

of forced convection on surfaces, fluid flow increases ion concentration gradients near the fluid-membrane interface,245

particularly at the leading edge, as is evident in Figures (3b-d) and (3f-h), and leads to formation of a growing boundary246

layer. As 𝑅𝑒𝑑𝑏 tends to unity, fluid flow effects on the boundary are pronounced, with noticeable ion concentration247

variation at 𝑦∗-locations near 1.0, in comparison to the boundary layer in the absence of fluid flow of order 0.01 in248

thickness.249

Fig. 3 Spatial distribution of dimensionless ion concentration 𝑐∗
𝑖

near the ISE membrane and aqueous sample
interface at a time of 𝜏

𝑆𝑐𝑅𝑒2
𝑑𝑏

= 10 for the cations (a-d) and anions (e-h) with single ion partition coefficients of 2.0
(cation) and 0.5 (anion) as well as 𝜓 𝑓 = 1 and 𝑆𝑐 = 1000. From Left to right, varying 𝑅𝑒𝑑𝑏 with 𝑅𝑒𝑑𝑏 = 0.1 (a and
e),𝑅𝑒𝑑𝑏 = 0.3 (b and f),𝑅𝑒𝑑𝑏 = 0.8 (c and g) and 𝑅𝑒𝑑𝑏 = 1.0 (d and h). All spatial dimensions are non-dimensional
defined by Equation 2. The black dashed line represents the phase boundary.

The differences between the low flow velocity (𝑅𝑒𝑑𝑏 = 0.1) and high flow velocity cases (𝑅𝑒𝑑𝑏 = 1) are also250

demonstrated by profile data at 𝑥∗ = 5 as shown in Figure 4a. This 𝑥∗ location is selected intentionally to be close to251

the leading edge of the membrane, but sufficiently distal to avoid the influence of edge effects. We specifically plot252

ion concentration as a function of y-location normalized by the Debye length, which is the product of 𝑦∗ and 𝑅𝑒𝑑𝑏253

in the employed dimensionless framework. The low 𝑅𝑒𝑑𝑏 (dashed lines in Figure 4a) hence leads to concentration254

boundary layers of length near unity, i.e., similar in thickness to the Debye length. As 𝑅𝑒𝑑𝑏 increases to 1.0 (solid lines255

in Figure 4a) the encroachment of the fluid boundary layer within 1 Debye length of the interface leads to a small, but256
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noticeable decrease in the thickness of the charge separation layer in the fluid phase (when normalized by the Debye257

length). In in Figure 4b we plot the total charge density (dimensionless) as a function of 𝑦∗𝑅𝑒−1
𝑑𝑏

across the membrane258

and aqueous phase, as well as the dimensionless potential (𝜓 𝑓 𝜙∗) across the interface. This subtle asymmetry brought259

about by flow leads a pronounced increase in the potential at distance larger than the Debye length. Insets in Figure 4b260

nonetheless show that the potential reach a near constant value close the membrane interface (i.e. after several Debye261

lengths), hence the main effect is to increase the phase boundary potential.262

-5 -4 -3 -2 -1 0 1 2 3 4 5

0.5

0.7

0.9

1.1

1.3

1.5

0

0.2

0.4

0.6

0.8

1

(a)

0 500
0

0.5

1

-5 -4 -3 -2 -1 0 1 2 3 4 5

-1

-0.5

0

0.5

1

-2

-1

0

1

2

(b)

-500 0 500
0

2

4

Fig. 4 Quantities of interest at varying 𝑦∗, with the ISE membrane and aqueous sample interface occurring at
𝑦∗ = 0, taken from a location within the membrane, 𝑥∗ = 5, for 𝜓 𝑓 = 1, 𝑆𝑐 = 1000, 𝑅𝑒𝑑𝑏 = 0.1 (dashed lines) and
𝑅𝑒𝑑𝑏 = 1.0 (solid lines). (a) Dimensionless charge concentration (blue) and dimensionless electric potential 𝜙𝜓 𝑓
(yellow) varying over dimensionless length (scaled by Debye length). (b) Dimensionless concentration for cation
(blue) anion(yellow) and dimensionless velocity (𝑈∗ = 𝑈/𝑈0) varying over dimensionless length (scaled by Debye
length).

In Figure 5 we plot the temporal evolution (with 𝑡𝐷/𝜆2
𝑑𝑏

again as the dimensionless time) of the phase boundary263

potential for variable combinations of 𝜓 𝑓 and 𝑆𝑐 and 𝑅𝑒𝑑𝑏 varying from 0.1-1.0. In all cases, similar to zero flow264

condition, we observe dynamic and static regions, separated by 𝑡𝐷/𝜆2
𝑑𝑏

near unit value. Interestingly at small times,265

independent of 𝑅𝑒𝑑𝑏, 𝜓 𝑓 , and 𝑆𝑐. the phase boundary potential increases with 𝑡𝐷/𝜆2
𝑑𝑏

scaled to the power of 1,266

suggesting early time behavior is completely diffusion limited. With increasing 𝑅𝑒𝑑𝑏 in all cases we observe changes267

in both the dynamic regime and the static regime. In the dynamic regime, the phase boundary potential begins to268

increase more rapidly at higher 𝑅𝑒𝑑𝑏 for 𝑡𝐷/𝜆2
𝑑𝑏

beyond 10−1, with a scaling exponent approaching 1.6 for 𝑅𝑒𝑑𝑏 = 1.0,269

𝜓 𝑓 = 1.0 and 𝑆𝑐 = 1000, suggesting that fluid flow influences become significant as the system approaches the static270

regime. In the static regime, small values of 𝑅𝑒𝑑𝑏 have minimal effect on the phase boundary potential, but for the271

highest 𝑅𝑒𝑑𝑏 values examined we observe instances where the potential is than three times its expected value in the272

absence of flow (denoted via horizontal lines in Figure 5).273

The change in the phase boundary potential with 𝑅𝑒𝑑𝑏 is highly dependent upon the values of 𝜓 𝑓 and 𝑆𝑐 as is274

evident in Figure 6, where we plot the potential in the static limit. Specifically, results apply when 𝑡𝐷/𝜆2
𝑑𝑏

= 10. For275
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Fig. 5 Dimensionless potential temporal evolution with varying 𝑅𝑒𝑑𝑏 (Range of 0.1 to 1 in increments of 0.1
indicated by varying color saturation) with (a) 𝜓 𝑓 = 1 and 𝑆𝑐 = 1000 (b) 𝜓 𝑓 = 1 and 𝑆𝑐 = 100 (c) 𝜓 𝑓 = 0.1 and
𝑆𝑐 = 1000 (d) 𝜓 𝑓 = 0.1 and 𝑆𝑐 = 100. Results are plotted along side the potential predicted by Equation 3 (dashed
black line) and the no-flow case, 𝑅𝑒𝑑𝑏 = 0, from Figure 2 (solid black line).

the case of 𝜓 𝑓 = 0.1 and 𝑆𝑐 = 100, the effect of 𝑅𝑒𝑑𝑏 on the static potential is minimal, with the potential increasing276

from a value of 0.69 at 𝑅𝑒𝑑𝑏 = 0.1 to a value of 0.83 at 𝑅𝑒𝑑𝑏 = 1. For the case of 𝜓 𝑓 = 1 and 𝑆𝑐 = 1000, the effect of277

𝑅𝑒𝑑𝑏 on the static potential is more substantial, with the potential increasing to a value of 3.6 at 𝑅𝑒𝑑𝑏 = 1. Both 𝑆𝑐 and278

𝑅𝑒𝑑𝑏 parameterize the extent with which external flow affects the diffuse ionic double layers near the membrane-water279

interface; higher 𝑆𝑐 diminishes ion diffusion in comparison to flow, while higher 𝑅𝑒𝑑𝑏 diminishes space charge induced280

potential effects. 𝜓 𝑓 , the ratio of the fluid kinetic energy to system characteristic electrostatic energy, serves as an281

amplification factor, increasing the extent that flow-ion interaction has on the phase boundary potential. To more clearly282

discern fluid flow effects and better define the influence of each dimensionless ratio, we introduce the enhancement283

coefficient 𝜂, which compares the static portion of the potential ( 𝜏

𝑆𝑐𝑅𝑒2
𝑑𝑏

>> 1) to the expected potential in the case of284

no-flow from Equation 3:285

𝜂 =
2𝜙∗𝜓 𝑓
𝑙𝑛
𝐾+
𝐾𝑖

− 1; (4)
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An 𝜂 of zero indicates no change in phase boundary potential from its zero-flow limit. The enhancement coefficient may286

be modeled as a function of the previously defined system parameters, namely 𝑅𝑒𝑑𝑏, 𝜓 𝑓 and 𝑆𝑐, alongside dimensionless287

numbers parameterizing system length ratios and the properties of the fluid, membrane, and ions. We attempted to288

develop this function through two methods. First, following a trial-and-error route, we anticipate that the correlation289

for the enhancement coefficient will be functionally similar to heat and mass transfer coefficients, i.e., in the form of290

𝜂 = 𝜓𝛼
𝑓
𝑓 (𝑅𝑒𝛽

𝑑𝑏
𝑆𝑐𝛾), where 𝑓 is some function of 𝑅𝑒𝛽

𝑑𝑏
𝑆𝑐𝛾 and 𝛼, 𝛽 and 𝛾 are unknown fitting parameters. Fitting291

𝛼 = 2
5 , 𝛽 = 4

5 and 𝛾 = 1
3 , we plot all results obtained in this study in Figure 7 with the ratio of 𝜂/𝜓𝛼

𝑓
on the y-axis and292

𝑅𝑒
𝛽

𝑑𝑏
𝑆𝑐𝛾 on x-axis. Plotted results are also provided in a table in the supporting information. To further determine293

the functional dependence of 𝜂 on 𝑅𝑒𝑑𝑏 and 𝑆𝑐, we define the fluid scaling parameter 𝜔1 = 𝑅𝑒
𝛽

𝑑𝑏
𝑆𝑐𝛾 . When 𝜔1 is294

small, the transport of ions is dominated by diffusion having little influence from the fluid flow. Conversely, when 𝜔1 is295

large, ion transport is dominated by convective effects. Plotting 𝜂𝜓−𝛼
𝑓

as a function of 𝜔1 in Figure 7, we find excellent296

collapse for all simulated conditions. We subsequently fit the collapsed result using the ratio of two power series in the297

form of 𝜂𝜓−2/5
𝑓

=

∑𝑁
𝑖=0 𝑎𝑖𝜔

𝑖
1∑𝑁−𝑙

𝑗=0 𝑎 𝑗𝜔
𝑗

1
where 𝑎𝑖 are unknown coefficients and 𝑙 determines the fitting behavior when 𝜔→∞; for298

example when 𝑙 = 1, the fit equation reduces to a first order polynomial with a slope of 𝑎𝑁

𝑎𝑁−1 . We elect to use a value of299

𝑁 = 4 and 𝑙 = 1 resulting in the following function300

𝜂 = 𝜓
2/5
𝑓

𝑎1𝜔
2
1 + 𝑎2𝜔

3
1 + 𝑎3𝑎4𝜔

4
1

1 + 𝑎5𝜔1 + 𝑎6𝜔
2
1 + 𝑎4𝜔

3
1

(5)

where 𝑎1 = 1.92 · 10−2, 𝑎2 = −1.47 · 10−2, 𝑎3 = 0.68, 𝑎4 = 4.3 · 10−3, 𝑎5 = −0.212 and 𝑎6 = 7.06 · 10−3. Coefficients301

were obtained by the Curve Fitting Toolbox in MATLAB [48], and were selected because all values of 𝜔1 > 0 produce302

a strictly positive enhancement 𝜂 > 0, and they by definition lead to 𝜔1 → 0 as 𝜂→ 0 and also to 𝜂 ∝ 0.68𝜔1𝜓
2/5
𝑓

as303

𝜔1 →∞. Examining the data in Figure 7, we see a transition near 𝜔1 = 3 where the effective enhancement (𝜂𝜓−2/5)304

departs from a value near 0 to a near-linear scaling of 0.7 in the range of 5 < 𝜔1 < 10. Although some values of 𝜂 are305

negative at small 𝜔1, we believe these to be caused by small numerical errors, and since their relative magnitude is close306

to 0, will treat such values as effectively zero. The existence of a transition between no enhancement (𝜔1 < 3) and307

linear scaling (𝜔1 > 3) suggests that there is a critical degree of ion advection, as characterized by 𝜔1, that must occur308

before the effect of external flow is to increase the phase boundary potential.309

Membrane based ion-selective electrodes tend to have lower detection limits in the range of 1 · 10−7 to 1 · 10−6
310

M [49]. To put the above analysis of 𝜔1 into context we estimate that an external flow velocity of at least 16 cm s-1
311

is needed for 𝜔1 > 3, assuming a 1 · 10−7 M solution at room temperature (300K) and an ion diffusion coefficient312

of 1 · 10−9 m2 s-1. This fluid velocity is well above the velocities encountered for such sensors in the majority of313

applications, which suggests that changes in phase boundary potential from external flow will only occur for very dilute314

systems and in the absence of a background electrolyte. The effects of varying single ion partition coefficients, variable315
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Fig. 6 Values at 𝜏
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𝑑𝑏

= 10 plotted for 𝜓 𝑓 = 1 and 𝑆𝑐 = 1000 (blue triangle), 𝜓 𝑓 = 1 and 𝑆𝑐 = 100 (purple
square), 𝜓 𝑓 = 0.1 and 𝑆𝑐 = 1000 (red circle) and 𝜓 𝑓 = 0.1 and 𝑆𝑐 = 100 (orange diamond)

ion diffusion coefficients and variable ion concentrations in solution was not explored in this study, which may affect the316

exact limit at which external flow (𝜔1) affects the phase boundary potential. Regardless, our results indicate that effects317

of external flow on membrane systems are more pronounced in the low concentration limit. This result is consistent318

with previous studies on reversed electrolysis cells were the greatest effect of flow on ion transport occurred for the319

smallest ion concentrations [9].320

As a second approach to collapse results, we note that results do apply for the membrane which is of a specific321

length 𝐿∗𝑚 = 20.0 (non-dimensionalized by 𝜈
𝑈0

). To examine the interplay between different length scales affecting the322

problem, we define a dimensionless ratio 𝜔2 =
𝜆𝑑𝑏
𝛿𝑚

, where 𝛿𝑚 is a characteristic mass transfer layer thickness for the323

fluid after traveling a distance 𝐿𝑚 (dimensional) along the membrane. 𝛿𝑚 can be defined as 𝛿𝑚 =

(
𝐷𝐿𝑚
𝜆𝑑𝑏𝛾𝑠

)1/2
, where 𝛾𝑠324

is the characteristic shear rate. The shear rate, in turn, scales as 𝛾𝑠 = 𝑈0
𝛿𝑚𝑜𝑚

, with 𝛿𝑚𝑜𝑚 =

(
𝐿𝑚𝜈

𝑈0

)1/2
. Combining these325

definitions yields:326

𝜔2 =
𝜆

3/2
𝑑𝑏

𝑈
3/4
0

𝐷1/2𝐿3/4
𝑚 𝜈1/4

𝜈1/2

𝜈1/2 = 𝑆𝑐1/2𝑅𝑒3/4
𝑑𝑏

(
𝜆𝑑𝑏

𝐿𝑚

)3/4
(6)

Equation 6 leads to a similar functional form for 𝜔2 as empirically found for 𝜔1, but with an added term of 𝜆𝑑𝑏
𝐿𝑚

raised to327

the 3/4 power. We plot 𝜂𝜓−2/5 versus 𝜔2 in Figure 8 for all test case performed here along side a line of best fit in the328

form of Equation 5. We retain the scaling of 𝜓−2/5 as this find close to optimum in fitting. While the collapse of results329
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Fig. 7 Potential enhancement factor 𝜂 scaled by 𝜓
−2/5
𝑓

and plotted as a function of system Schmidt number (𝑆𝑐)
and Debye length Reynolds number (𝑅𝑒𝑑𝑏) for all data (blue circles). Data fitting is provided by Equation 5 and
is shown as the red solid line.

is not as strong as the empirically-tuned result with 𝜔1, examination of 𝜔2 supports the scaling 𝜂 = 𝜓𝛼
𝑓
𝑓 (𝑅𝑒𝛽

𝑑𝑏
𝑆𝑐𝛾),330

and further suggests how results may be affected by adjusting the membrane length. Results would additionally be331

influenced by changes in ion partition coefficients for cationic and anionic species, as well as by utilizing unequal332

diffusion coefficients for species or unequal electrical permittivities for the fluid and membrane. For this reason, the333

solutions presented here cannot be considered universal, with additional simulations required to capture the influences334

of changing geometry,changing ion properties, and changing fluid and membrane electrical properties.335

IV. Conclusion336

We developed a code by modifying the open source library OpenFOAM to solve the Navier-Stokes-Nernst-Planck-337

Poisson set of equations to examine coupled mass transfer, fluid flow, and electrostatic potentials for non-equal338

partitioning ions at membrane-water interface. This code was used specifically to explore the effects of external viscous339

flow on the diffuse ionic double layers at the interface of an ISE membrane and aqueous sample and associated changes340

in phase boundary potential. Framing the problem in a manner similar to mass transfer in a developing boundary layer341

and utilizing an associated dimensionless framework revealed that the dimensionless numbers 𝜔1 = 𝑅𝑒
4/5
𝑑𝑏

𝑆𝑐1/3 or342

𝜔2 = 𝑅𝑒
3/4
𝑑𝑏

𝑆𝑐1/2
(
𝜆𝑑𝑏
𝐿𝑚

)3/4
, which are functions of the Debye-length Reynolds Number and the Schmidt number, not343
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Fig. 8 Potential enhancement factor 𝜂 scaled by 𝜓
−2/5
𝑓

and plotted as a function of system Schmidt number (𝑆𝑐)
and Debye length Reynolds number (𝑅𝑒𝑑𝑏) for all data (blue circles) using the fluid scaling parameter 𝜔2 as
defined in Equation 6. The red solid line represents data fitting by Equation 5 with coefficients 𝑎1 = 6.14 · 10−3,
𝑎2 = 9.80 · 10−2, 𝑎3 = 2.12, 𝑎4 = 1.76 · 10−1, 𝑎5 = −1.11 and 𝑎6 = 6.98 · 10−1.

only are appropriate metrics (switches) to determine if hydrodynamic forces affect the formation of the diffuse ionic344

double layers, but also can be used to quantitatively predict the extent to which fluid flow affects the phase boundary345

potential. Although this study focused on a sole geometry and set of partition concentrations, the results show the346

applicability of traditional heat and mass transfer analysis to describe ion transport at ISE membrane and aqueous sample347

interfaces in electrohydrodynamic flows, as it is relevant to ISEs and other system where phase boundary potential348

modeling is of interest.349

V. Supplemental350
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Determination of Forced Convection Effects on the Response of1

Membrane-Based Ion-Selective Electrodes via Numerical2

Solution to the Navier-Stokes-Nernst-Plank-Poisson Equations3

Austin J. Andrews∗,Philippe Bühlmann † and Christopher J. Hogan ‡
4

Ion selective electrodes (ISEs) enable measurements via the build-up of a phase boundary5

potential at the surface of a sensing membrane. While a framework exists to understand6

the performance of ISEs in stagnant samples, the influences of fluid flow on ISEs is less7

studied. We model the transport of charged ions in solution occurring near interfaces between8

ISE membranes and aqueous samples when subject to an external flow. We developed a9

numerical model extending the Pressure-Implicit with Splitting of Operators (PISO) algorithm10

to incorporate the Navier-Stokes-Nernst-Plank-Poisson system of equations. We find that11

external flow distorts the aqueous side of the formed double layer at the ISE membrane and12

aqueous sample interface, leading to an increase in the phase boundary potential. The change13

in potential is shown to be a function of a novel set of dimensionless numbers, most notably the14

Debye Length Reynolds number, i.e., the Reynolds number with the Debye Length as the system15

dimension.16

I. Introduction17

The transport of dilute, charged species via both hydrodynamic and electrostatic forces governs a variety of18

engineered systems, including but not limited to charged particle transport in aerosols[1] and their collection in19

electrostatic precipitators [2], flow batteries [3], desalination processes [4], and ion-selective electrodes (ISEs) [5]. In20

many of these instances, in particular the latter, charged species transport is not only affected by external and internal21

electric fields, but also through the unequal partitioning of charged species (solutes) at phase boundaries. Unequal22

partitioning leads to charge separation at the interface and formation of an electric double layer; this ultimately leads to23

a measurable potential difference. For ISEs, the potential difference arises at the interface of the ISE membrane and an24

aqueous solution that contains the analyte ion of interest. Formation of this phase boundary potential allows for the25

measurement of the concentration of this analyte ion. Considerable effort has been dedicated to the design of specific26

membrane materials to obtain selectivity for various different target ions [6]. In general, ISE membranes comprise27

(i) a polymeric membrane matrix that provides the membrane with mechanical robustness, (ii) the analyte ion either28
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in a free form or in the form of a complex with an ion-selective receptor (usually referred to as ionophore), as well29

as a (iii) counter ion (referred to as ionic site) that is either covalently attached to the matrix polymer or has such a30

high hydrophobicity that leaching into aqueous samples is negligible. A phase boundary potential forms because the31

analyte ion and counterions differ in their free energies of transfer from the sample into the membrane phase [7]. While32

ISE theory typically assumes local equilibrium at the interface of the sample and membrane phase, the transport of33

ions between the two phases both by diffusion and convection may influence the magnitude of the phase boundary34

potential. A well-known illustration for this are the zero-current transmembrane ion fluxes that often determine the35

lower detection limits of ISEs [8]. Also, through experimental measurements of membrane resistance, Dlugolecki et36

al. found that external fluid flow may influence the electric double layer particularly for low solution concentrations37

[9]. However, the effect of fluid flow on phase boundary potentials has only been qualitatively explored in prior work,38

mainly because explicit computation of ion transport accounting for fluid flow requires numerical solution to the39

Navier-Stokes-Nernst-Plank-Poisson (NS-NPP) set of equations, which combine conservation of mass and momentum40

for fluid flow with mass conservation of each charged species, with Poisson’s equation for the electric potential. This is41

a complex set of equations with extensive coupling, and is a stiff system of equations.42

Modeling of ISEs presents unique challenges due to the need to account for ion exchange at the ISE membrane43

and aqueous sample interface. Ions differentially transport across membrane interfaces primarily due to differences in44

affinity for the sample and the membrane phase and may be further altered by binding of the analyte ion to ion receptors45

in the membrane phase [10]. Prior work conducted for modeling ISE systems has hence more frequently examined46

numerical solutions to the NPP equations, i.e. the Nernst-Planck-Poisson (NPP) equations, which do not consider47

fluid flow [11–15]. In these studies, there has been two primarily employed methods to handle the phase boundary48

interface. First, coupling between phases has been accomplished using two separate simulation domains, with the49

Chang-Jaffe boundary condition [13, 16] at the interface, which relates the flux across the ISE membrane and aqueous50

sample interface to a reversible 1st order reaction. Second, interface mass transfer has been modeled by generalizing ion51

transport to include gradients in ion activity [14], allowing for a singular domain, keeping track of spatial variations in52

the affinity of ions for the two contacting phases.53

There have been studies exploring the effects of fluid flow on ion motion within flow-through ion exchange54

membranes that are used for electrodialysis (ED)[17–22]. In these studies, the NS-NPP equations were applied, but55

their their use was limited to the aqueous phase, focusing on electroconvection and instabilities occurring from an56

applied external voltage. The ion concentrations at the phase boundaries were determined by boundary conditions such57

as specifying a fixed ion concentration[18] or modeling by Butler-Volmer kinetics[19]. In contrast to electrodialysis58

systems, ISE sensing devices are rarely operated with an applied external potential and hence ion currents in ISEs are59

usually near zero. Instabilities that lead to electroconvection generally occur when the ion currents are beyond the ohmic60

region [23]. Therefore, it is expected that fluid instabilities arising in ED cells are absent from the problems considered61
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in this study, where no external potential is applied.62

As understanding the potential response is critical to the design and implementation of ISEs as sensing devices,63

it is important to know if and when external flow affects the response of such devices, and to probe fundamental64

behavior of systems with coupled ion mass transfer, fluid flow, and electrostatics at interfaces. In addition to applications65

in electrodialysis, the NS-NPP equations have been solved to predict the behavior of nanopore sensors [24], model66

electrostatic precipitators [25], and examine EHD-assisted droplet formation (i.e. electrosprays) [26], among others.67

As alluded to above, numerical solutions of these sets of equations has been particularly difficult, and the choice of68

numerical schemes is crucial to ensure accuracy and convergence [27]. As the aforementioned works utilize different69

numerical schemes, we believe there is still a need to advance NS-NPP solution schemes and to examine fundamental70

NS-NPP transport solutions near phase boundaries. Towards this end, here we develop an NS-NPP solution scheme to71

model ion transport and the evolution of the phase boundary potential in systems that approximate ISEs and which also72

resemble classical laminar flow boundary layers. Described in the subsequent section, the numerical solution scheme73

developed utilizes the finite volume method for spatial discretization and extends Issa’s Pressure-Implicit with Splitting74

of Operators (PISO) [28] solution algorithm for incompressible flows to include coupling between the NS and NPP75

equations. The NPP equations are solved using Hagelaar’s method [29]. A high order embedded Runge-Kutta(RK)76

method with variable step size is used for time discretization. Development of this method was conducted using the77

open source package OpenFOAM [30]. Algorithm validation is performed via comparison to a series of analytical78

solutions, classical solutions, and prior experiments. Subsequently, the algorithm is applied to examine the phase79

boundary potential developed across a membrane while simultaneously a laminar boundary layer develops (i.e., the80

Blasius solution augmented by mass transfer of charged species). We show that the dimensionless phase boundary81

potential is positively correlated to increased fluid flow and decreased ion diffusion rates.82

II. Theory and Solution Scheme83

A. Governing Equations84

To model the effects of fluid flow on ion transport in ISE systems, with the assumptions of incompressible (assuming

low fluid Mach number), laminar (low fluid Reynolds number) and isothermal flow, the Navier-Stokes equations

(Equation 1a and Equation 1n), Nernst-Planck equation (Equation 1d), and Poisson equation (Equation 1c) are employed

3



and are defined as:

∇ · ®𝑈 = 0 (1a)

𝜕 ®𝑈
𝜕𝑡
+ ®𝑈∇ · ®𝑈 = −∇ 𝑃

𝜌 𝑓
+ 𝜈∇2 ®𝑈 + ∇ · 𝜈[(∇ ®𝑈)𝑇 − 2

3
(∇ ®𝑈)] + 𝑓𝑒

𝜌 𝑓
(1b)

∇ · 𝜖∇𝜙 =

𝑖=𝑛∑︁
𝑖=1

𝐹𝑐𝑖𝑧𝑖∇𝜙 (1c)

𝜕𝑐𝑖

𝜕𝑡
+ ∇ · (𝑐𝑖 [ ®𝑈 + 𝑧𝑖

𝐹𝐷𝑖

𝑅𝑇
∇𝜙 + Θ]) = ∇ · 𝐷𝑖∇𝑐𝑖 (1d)

Θ =
𝐷𝑖 (1 − 𝑘𝑖)

𝛼 + 𝑘𝑖 (1 − 𝛼)
∇𝛼 (1e)

where ®𝑈 is the fluid velocity, 𝑃 is the hydrodynamic pressure, 𝜌 𝑓 is the fluid density, 𝜈 is the fluid kinematic viscosity, 𝜙85

is the electrostatic potential, 𝑓𝑒 is the electrostatic body force, 𝜖 is the permittivity, 𝐹 the Faraday constant, 𝑐𝑖 the molar86

concentration of ion species 𝑖, 𝑧𝑖 the charge of species 𝑖, 𝐷𝑖 the ion diffusion coefficient, 𝑅 the universal gas constant,87

𝑇 the temperature of the surrounding medium, 𝑘𝑖 is the single ion partition coefficients, and 𝛼 the membrane mass88

fraction, differentiating between the membrane phase (𝛼 = 1) and aqueous (𝛼 = 0). The third term on the right hand89

side of Equation 1b is equal to zero when the flow is incompressible, i.e. Equation 1a is satisfied, and is added for90

numerical stability [31]. The body force term 𝑓𝑒 represents the drag force imparted onto the fluid from the movement of91

charged particles and is defined as 𝑓𝑒 =
∑𝑖=𝑛
𝑖=1 𝐹𝑐𝑖𝑧𝑖∇𝜙 . This body force is a simplification of the more general Lorenz92

force [32] by disregarding effects from magnetic fields, which is commonly done for ions in solution. To improve93

stability of the numerical solution and coupling between the membrane and water phase, the simulation domain is94

monothetic with ion selectivity modeled through single ion partition coefficients and the mass transfer model from95

Haroun et al. represented by Θ in Equation 1e [33]. Originally formulated to enforce non equal partitioning of gases96

(Henry’s law), Haroun’s mass transfer model ensures mass conservation at phase boundaries and enforces the jump97

condition that occurs with non-equal partitioning of ions, i.e., the ratio of ions present in the water (𝑐𝑎𝑞) and membrane98

phases (𝑐𝑚𝑒𝑚) are non unity 𝑐𝑎𝑞
𝑐𝑚𝑒𝑚

= 𝑘 ≠ 1 [33]. The additional flux (Θ), referred to as the "solubility flux", acts to99

counteract the nonphysical diffusive flux that would arise from a concentration jump at interfaces, where ∇𝛼 ≠ 0. At100

thermodynamic equilibrium, when 𝑐𝑎𝑞 = 𝑘𝑐𝑚𝑒𝑚, the solubility flux (Θ) is equal in magnitude to the diffusive flux at the101

interface when central discretization schemes are used regardless of the mesh size near the interface [33]. This interface102

model is similar to the traditionally used Chang-Jaffe boundary conditions assuming diffusion limited surface reactions,103

but with the added benefit of a singular domain to describe the NPP equations. To our knowledge, this approach, which104

has been successfully employed in gas partitioning into liquids [34, 35], has not employed in conjunction with the105

NS-NPP equations previously, and has not been employed in examining ion selectivity across phase boundaries. We106

also note that here binary values of 𝛼 are employed, but more general 𝛼 can be treated as a phase fraction and the107
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Table 1 Mathematical description of the boundary conditions as labeled in 1a with 𝑛 representing the face
normal direction and 𝐼 the identity matrix. The subscripts 𝑓 and 𝑝 signify the value at the boundary face and
neighboring cell, respectively.

Boundary Ions (𝑐𝑖) Potential (𝜙) Velocity ( ®𝑈) Pressure (𝑃)
1 𝜕𝑐𝑖

𝜕𝑛 𝑓
= 0 𝜕𝜙

𝜕𝑛 𝑓
= 0 ®𝑈 𝑓 = (1, 0, 0) 𝜕𝑃

𝜕𝑛 𝑓
= 0

2 𝜕𝑐𝑖
𝜕𝑛 𝑓

= 0 𝜕𝜙

𝜕𝑛 𝑓
= 0 𝜕 ®𝑈

𝜕𝑛 𝑓
= 0 𝜕𝑃

𝜕𝑛 𝑓
= 0

3 𝜕𝑐𝑖
𝜕𝑛 𝑓

= 0 𝜕𝜙

𝜕𝑛 𝑓
= 0 𝜕 ®𝑈

𝜕𝑛 𝑓
= 0 𝑃 𝑓 = 0

4 𝜕𝑐𝑖
𝜕𝑛 𝑓

= 0 𝜕𝜙

𝜕𝑛 𝑓
= 0 ®𝑈 𝑓 =

1
2 ( ®𝑈 𝑝 + (𝐼 − 2𝑛𝑛𝑇 ) ®𝑈 𝑝) ∗ 𝜕𝑃

𝜕𝑛 𝑓
= 0

5 𝜕𝑐𝑖
𝜕𝑛 𝑓

= 0 𝜕𝜙

𝜕𝑛 𝑓
= 0 ®𝑈 𝑓 = (0, 0, 0) 𝜕𝑃

𝜕𝑛 𝑓
= 0

6 𝜕𝑐𝑖
𝜕𝑛 𝑓

= 0 𝜕𝜙

𝜕𝑛 𝑓
= 0 – –

Membrane-Water Interface – – ®𝑈 𝑓 = (0, 0, 0) 𝜕𝑃
𝜕𝑛 𝑓

= 0

approach applied here can be extended to mixtures unlike the Chang-Jaffe boundary condition.108

B. Domain and Boundary Conditions109

In lieu of modeling a complete ISE sensor geometry, we base our model off of classical boundary layers with a110

leading edge, as the fluid flow and shear stress in the absence of ion migration and electrostatic body forces are well111

known in this scenario. The specific computational domain employed is a 2D representation of flow over a flat membrane112

and is shown in Figure 1. Here the numerical solution of the NS equations (𝑈 and 𝑃) is restricted to only the white113

region labeled "Water" in 1a. The electric potential (𝜙), a continuous variable, is solved for in both the aqueous phase114

and the membrane phase (shaded gray in 1b) without distinction between phases, as we modeled both phases with the115

same electrical permittivity. The species concentration (𝑐𝑖) is also solved for in both the aqueous phase and membrane116

phase, but accounting for partitioning at the water-membrane interface via Haroun’s solubility flux approach [33]. The117

same computational mesh was used for both the global domain, comprising of the aqueous and membrane phase, as well118

as the aqueous phase. Therefore, the fluid properties solved within the separate water subdomain are easily mapped to119

the global domain for solution of Equation 1d. In Figure 1a, each boundary is labeled and the corresponding boundary120

conditions may be found in Table 1. The domain was made sufficiently large such that the effect of boundary conditions,121

namely the zero gradient condition on the potential, would not affect the results near the ISE membrane and aqueous122

sample interface. The computational mesh was designed using hanging nodes and successive refinement to ensure high123

spatial resolution near the membrane and fluid interface without compromising the overall simulation cost, particularly124

as the unsteady nature of this simulation and highly coupled equations make computational cost high. The mesh selected125

had 4.3 · 105 hexahedral cells and is shown in Figure 1b.126

∗The boundary condition at Boundary 4 is commonly referred to as the symmetry condition. The implementation of this boundary condition for
multi-dimensional variables such as𝑈 is the mean of the adjacent cell and the mirror image produced by the Householder transformation. [36]
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Fig. 1 Schematic of the computational domain of a liquid flow over an immiscible membrane phase. (a)
Dimensions and labeled boundaries, with more details provided in Table 1. (b) Computational mesh used in
this study, with insets providing higher magnification of the ISE membrane and aqueous sample interface. All
units presented in this figure are dimensionless, with the dimensionless length scale defined as 𝑥∗ = 𝑥𝑈0

𝜈
. More

information about the non-dimensionalization procedure can be found in the Theory and Solution Scheme
section.

C. Numerical Solution Scheme127

A custom C++ program was developed to solve Equations 1a-e using the finite volume method and open source128

library OpenFOAM. This library abstracts many of the aspects of finite volume discretization and subsequent matrix129

construction and numerical solution. This allows developers to focus on higher level solution algorithms and add130

additional transport equations such as those present in the NS-NPP equations. To solve the coupled system of Equations131

1a-e for the dependant variables 𝑈, 𝑃, 𝜙, 𝑐0, 𝑐1, ... and 𝑐𝑖 , a modification to the PISO algorithm [28] to include the132

NPP equations along with an embedded singly-diagonal implicit Runge-Kutta(SDIRK) [37] time discretization is used.133

Time steps are varied using a PPID time step controller[38] with a desired normalized numerical solution error of134

1 · 10−6. More information on the specific implementation of time step control is included in the supporting information.135

Within the PISO algorithm, a sub loop for the Nernst-Planck equation coupling with the Poisson equation is solved136

using the semi-implicit algorithm from Hagelaar et al. [29]. The modified PISO algorithm implemented along with the137

implementation of Hagelaar’s method is shown in Algorithm 1.138

To explain the modifications to the PISO algorithm, the notation used is consistent to what is largely used by139

the OpenFOAM community and can be found in detail within Jasak’s PhD thesis [39]. For brief explanation of the140

notation, the 𝐻 operator includes all off diagonal components of the discretized momentum equation (Equation 1b) along141

with any explicit source terms arising from boundary conditions and time discretization methods. The 𝑎 coefficient142

represents the diagonal components of the discretized momentum equation. All iterative values, 𝑛, 𝑖, 𝑗 , 𝑘 in Algorithm143

1 use superscripts with parenthesis () to indicate iteration steps, and brackets [] to indicate the SDIRK stage. The144
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algorithm begins by calculating the fluid variables (𝑈 and 𝑝) with the standard PISO algorithm implementation as145

is done within OpenFOAM’s solver pisoFOAM with the addition of the electrostatic body force, which is calculated146

explicitly by values from previous iterations. Following the computation of 𝑈 and 𝑝, the electrostatic potential and147

species concentrations are solved using Hagelaar’s algorithm without update to fluid variables 𝑈 and 𝑝. The Algorithm148

ends with another iteration of the PISO algorithm, but this time with updated values for 𝜙 and 𝑐. The Algorithm was149

structured such that the variables with the strongest coupling, such as the pairs 𝑈 and 𝑝 and 𝜙 and 𝑐, have adequate150

convergence before incorporating the weaker, but still prevalent, body force term that couples the fluid variables to151

the species transport. The "stop" condition for each loop is based on convergence of the resulting linear systems152

for Equations 1a-e. The convergence is determined based on the 𝐿1 norm of the matrix residuals and is defined as153

𝑟 = 1∑( |𝐴𝑥−𝐴𝑥̄ |+|𝑏−𝐴𝑥̄ ) ∑ |𝑏 − 𝐴𝑥 | where 𝐴 and 𝑏 are the coefficient matrix and source term produced from the finite154

volume and time discretization of the variable 𝑥 with 𝑥 representing the average value of 𝑥. Convergence was determined155

when the 𝐿1 norm was at or bellow 1 · 10−6 before exiting the iteration loops presented in Algorithm 1.156

For the spatial discretization, built-in functionality of OpenFOAM’s matrix constructors were employed. For all157

transport equations, divergence operators were discretized using 1st order upwind methods, while gradient operators158

used Gaussian integration with 2nd order linear interpolation without non-orthogonal or skewness corrections. This159

solver uses a custom time discretization following the work of Dalessandro et al.[40] for incorporating SDIRK methods160

into OpenFOAM. The specific method used was a 3rd order 3 stage embeded SDIRK method with a 2nd order error161

estimator from Alexander[37]. For the special case of solving the Poisson equation with only Neumann boundary162

conditions (electric field equal to zero on all boundaries), the fixed point method [41] is applied. Here the compatibility163

condition and fixed point value are enforced by modifying the resulting matrix equation from the discretization of164

Equation 1c by solving the modified linear system 𝐴
′
𝑥 = 𝑏

′ − 𝑏′ where 𝐴′ = 𝐴 + 𝐴(𝑖, 𝑖) and 𝑏
′
= 𝑏 + 𝐴(𝑖, 𝑖)𝜙𝑟𝑒 𝑓 . Here165

𝑖 represents the cell location of the fixed value (𝜙𝑟𝑒 𝑓 ) and 𝑏
′ is the average of the matrix source term 𝑏

′ . For further166

details of implementation, the complete code is linked in the supporting information.167

The order of the numerical solution was inspired by Oliveira’s PISO extension for buoyancy driven flows [42] where168

similarly the NS equations are modified to include a body force derived from a scalar transport equation, in Oliveira’s169

case the heat equation and here the Poisson equation, which in turn is influenced by the ion transport equation. While170

the exact solution order may affect stability and convergence rates, the proposed algorithm was deemed suitable for the171

present study and has been validated with a series of analytical, experimental and prior numerical studies. The first172

comparison is to experimental measurements of the velocity profile in an electrostatic precipitator, where the velocity173

is influenced by the electrostatic body force [43] and hence its determination requires solution to the NS-NPP set of174

equations. The second is a comparison to Schönke’s [44] analytical solution for the NPP set of equations, testing our175

ability to recover solutions with coupled mass transfer and electrostatics. The third is recovery of the classical Blasius176

solution for boundary layers of a flat plate. In the absence of electrostatic effects, for the geometry tested here (Figure177
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Algorithm 1 Segregated solver for the numerical solution to the coupled NS-NPP equations.
𝑛← 1
while RK loop do

𝑖 ← 1
while 𝑈,𝑃,𝜙,𝑐0,𝑐1,...𝑐𝑖 are not converged do

𝑗 ← 1
while 𝑈,𝑃 are not converged do

𝑈 ( 𝑗+1) ← 𝜕𝑈
𝜕𝑡

[𝑛] +𝑈 ( 𝑗 )∇ ·𝑈 ( 𝑗+1) = −∇𝑃 ( 𝑗 ) + 𝜈∇2𝑈 ( 𝑗+1) + ∇ 𝜙
(𝑖)

𝜌

∑𝑆
𝑠=1 𝑒𝑧𝑠𝑐

(𝑖)
𝑠 ⊲ Solve Predictor step

𝑃 ( 𝑗+1) ← ∇ · 1
𝑎
∇𝑃 ( 𝑗+1) = ∇ · 𝐻 (𝑈

( 𝑗+1) ,𝜙 (𝑖) ,𝑐 (𝑖)
𝑖
)

𝑎
⊲ Solve Pressure Equation

𝑈 ( 𝑗+2) ← 𝐻 (𝑈 ( 𝑗+1) ,𝜙 (𝑖) ,𝑐 (𝑖)
𝑖
)

𝑎
− 1
𝑎
∇𝑃 ( 𝑗+1) ⊲ Corrector Step

𝑗 ← 𝑗 + 1
end while
𝑘 ← 1
while 𝜙,𝑐0,𝑐1,...𝑐𝑖 are not converged do

if j == 1 then
𝛽← 𝜖 +∑𝑆

𝑠=1 𝑧
2
𝑠𝛿𝑡𝑐

[𝑛]
𝑠

𝜙 (𝑘+1) ← ∇ · 𝛽∇𝜙 (𝑘+1) = ∑𝑆
𝑠=1 𝑧𝑠𝑐

[𝑛]
𝑠 𝐹 +∑𝑆

𝑠=1 𝐹𝑧𝑠𝛿𝑡 (
𝜕𝑐𝑠
𝜕𝑡

[𝑛] − 𝑧𝑠𝑐 [𝑛]𝑠 𝐹𝐷𝑠

𝑅𝑇
∇𝜙[𝑛]) ⊲ Voltage Predictor

else
𝜙 (𝑘+1) ← ∇ · 𝜖∇𝜙 (𝑘+1) = ∑𝑆

𝑠=1 𝑧𝑠𝑐
[𝑛]
𝑠 𝐹

end if
𝑐 (𝑘+1) ← 𝜕𝑐

𝜕𝑡

[𝑛] + ∇ · (𝑐 (𝑘+1)
𝑖
[𝑧𝑖 𝐹𝐷𝑅𝑇 ∇𝜙

(𝑘+1) +𝑈 [𝑛] + 𝐷𝑖 (1−𝑘𝑖 )
𝛼+𝑘𝑖 (1−𝛼)∇𝛼]]) = ∇ · 𝐷∇𝑐

(𝑘+1)
𝑖

𝑘 ← 𝑘 + 1
end while
𝑗 ← 1
while 𝑈,𝑃 are not converged do

𝑈 ( 𝑗+1) ← 𝜕𝑈
𝜕𝑡

[𝑛] +𝑈 ( 𝑗 )∇ ·𝑈 ( 𝑗+1) = −∇𝑃 ( 𝑗 ) + 𝜈∇2𝑈 ( 𝑗+1) + ∇ 𝜙
(𝑖+1)

𝜌

∑𝑆
𝑠=1 𝑒𝑧𝑠𝑐

(𝑖+1)
𝑠 ⊲ Solve Predictor step

𝑃 ( 𝑗+1) ← ∇ · 1
𝑎
∇𝑃 ( 𝑗+1) = ∇ · 𝐻 (𝑈

( 𝑗+1) ,𝜙 (𝑖+1) ,𝑐 (𝑖+1)
𝑖
)

𝑎
⊲ Solve Pressure Equation

𝑈 ( 𝑗+2) ← 𝐻 (𝑈 ( 𝑗+1) ,𝜙 (𝑖+1) ,𝑐 (𝑖+1)
𝑖
)

𝑎
− 1
𝑎
∇𝑃 ( 𝑗+1) ⊲ Corrector Step

𝑗 ← 𝑗 + 1
end while
𝑖 ← 𝑖 + 1

end while
𝑛← 𝑛 + 1

end while
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1), simulations recover the Blasius solution, showing that the flow modeled is a viscous boundary layer flow in the178

developing region. Validation results can be found in the supplemental material. Further validations more specific to179

ISEs are discussed in the Results and Discussion section [11]. Simulations were run on a Minnesota Supercomputing180

Institute (MSI) cluster utilizing 8 cores for each simulation and requiring roughly 120 hours of run time for each case181

noted in the subsequent section.182

D. Non-Dimensionalization and Test Cases183

To reduce the number of independent parameters affecting fluid flow and transport of charged ions in solution, we

adopt a non-dimensionalization conventionally utilized in studying boundary layer formation from external flow of a

viscous fluid over a surface [45]. We define the non-dimensional length scale as 𝑥∗ = 𝑥𝑈0
𝜈

where 𝑈0 is the bulk fluid

velocity and 𝑥 the spatial dimension, the non-dimensional time scale as 𝜏 = 𝑡𝜈

𝑈2
0

and the non-dimensional velocity as

𝑈∗ = 𝑈
𝑈0

. This variable transformation fixes fluid behavior to problem geometry (𝑥∗) and time scale (𝜏), allowing for

examination of other transport phenomena, such as ion motion within the formed fluid boundary layer, with fixed fluid

characteristics. We correspondingly define the non-dimensional potential as 𝜙∗ = 𝜙
𝐹𝑐0
𝜌 𝑓𝑈

2
0

where 𝑐0 is the reference ion

concentration and the non-dimensional concentration as 𝑐∗ = 𝑐
𝑐0

. This combination of fluid and electrochemical variable

transformations leads to the non-dimensionalization of Equations 1a-e as:

∇ · ®𝑈∗ = 0 (2a)

𝜕 ®𝑈∗
𝜕𝜏
+ ®𝑈∗∇ · ®𝑈∗ = −∇𝑃∗ + ∇2 ®𝑈∗ + ∇ · [(∇ ®𝑈∗)𝑇 − 2

3
(∇ ®𝑈∗)] +

𝑖=𝑛∑︁
𝑖=1

𝑐∗𝑖 𝑧𝑖∇𝜙∗ (2b)

∇2𝜙∗ =
1

𝑅𝑒2
𝑑𝑏
𝜓 𝑓

𝑖=𝑛∑︁
𝑖=1

𝑐∗𝑖 𝑧𝑖 (2c)

𝜕𝑐∗
𝑖

𝜕𝜏
+ ∇ · (𝑐∗𝑖 [ ®𝑈∗ + 𝑧𝑖

𝜓 𝑓

𝑆𝑐𝑖
∇𝜙∗ + Θ∗]) = 1

𝑆𝑐𝑖
∇2𝑐∗𝑖 (2d)

Θ∗ =
1
𝑆𝑐𝑖

(1 − 𝑘𝑖)
𝛼 + 𝑘𝑖 (1 − 𝛼)

∇𝛼 (2e)

(2f)

where the resulting dimensionless parameters are the fluid kinetic to chemical potential energy ratio 𝜓 𝑓 =
𝜌 𝑓𝑈

2
0

𝑐0𝑅𝑇
, the ion184

Schmidt number 𝑆𝑐 = 𝜈
𝐷

and the Debye-length Reynolds number 𝑅𝑒𝑑𝑏 =
𝑈0𝜆𝑑𝑏
𝜈

with the Debye length 𝜆𝑑𝑏 =

√︃
𝜖 𝑅𝑇

𝐹2𝑐𝑜
.185

The Debye-length Reynolds number determines the relative strength of the fluid flow inertia within one Debye length186

of the fluid-membrane interface. When 𝑅𝑒𝑑𝑏 is large (𝑅𝑒𝑑𝑏 >> 1), significant changes to ion transport rates, driven187

by fluid flow, occur in the region most sensitive to changes in electrostatic potential. Conversely, when 𝑅𝑒𝑑𝑏 is188

small (𝑅𝑒𝑑𝑏 << 1), electrostatic forces dominate ion transport, i.e., convection has little influence on transport at189

the membrane interface. As will be seen in later sections, this parameter will be paramount to exploring the effects190
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of fluid flow on partitioning of ions across the membrane-water interface. Dimensionless numbers associated with191

membrane and ion transport found in prior work [11] (i.e., when solving the NPP equations) can be defined from this192

set of non-dimensional parameters, including the dimensionless potential 𝜓 𝑓 𝜙∗ = 𝜙 𝐹
𝑅𝑇

, dimensionless length scale193

𝑥∗

𝑅𝑒𝑑𝑏
= 𝑥
𝜆𝑑𝑏

and dimensionless time scale 𝜏

𝑆𝑐𝑅𝑒2
𝑑𝑏

= 𝑡𝐷

𝜆2
𝑑𝑏

. These dimensionless ratios will be used in the subsequent194

sections for analyzing the mass transfer of ions and associated changes in the potential across the membrane-water195

phase boundary.196

A series of simulations where preformed varying 𝑆𝑐, 𝑅𝑒𝑑𝑏 and 𝜓 𝑓 for a binary salt solution. To accomplish this197

using the code developed for Equations 1a-e, variables 𝜈, 𝑐0, 𝑈 and 𝜌 𝑓 were set to 1 m2s-1, 1 mol m-3, 1 m s-1 and198

96485 kg m-3 (having the same magnitude as Faraday’s constant) respectively. The remaining three variables, i.e., 𝐷𝑖 , 𝜖199

and 𝑇 , were modulated to represent 𝑆𝑐, 𝑅𝑒𝑑𝑏 and 𝜓 𝑓 . For each case the non-dimensional ion concentration (𝑐∗) was200

initialized as a constant value of 1.0 in both the membrane and water phases for the cation (+1 charge) and anion (-1201

charge). Similarly, the non-dimensional velocity (𝑈∗) was set to a magnitude of 1 with a direction parallel to the plate.202

For a test of this model, it was assumed here that the ion diffusion coefficient varied neither in space or phase and that it203

was the same between the anion and cation. Permittivity (𝜖) was also held constant throughout the domain irrespective204

of phase. For all cases the single ion partition coefficients (𝑘𝑖) were held constant with a value of 2 (hydrophilic) for205

the cation and 0.5 (hydrophobic) for the anion, similar to parameters used by [11] in examining transport across an206

interface. To ensure accurate capture of the thin double layer, the mesh was designed to have a cell thickness at the207

phase boundary of no more than 0.02𝜆𝑑𝑏 when 𝑅𝑒𝑑𝑏 = 0.1, noting that the mesh and dimensions of the membrane are208

scaled based on fluid properties and not the Debye length. To test mesh quality, a secondary mesh with resolution of209

1.5 · 106 hexahedral cells and fa phase boundary cell thickness of no more than 0.01𝜆𝑑𝑏 was run for two selected cases210

(𝑅𝑒𝑑𝑏 = 1, 𝜓 𝑓 = 1, 𝑆𝑐 = 1000 and 𝑅𝑒𝑑𝑏 = 0.1, 𝜓 𝑓 = 1, 𝑆𝑐 = 1000). The potential between these two mesh resolutions211

varied no more than 1% when 𝜏

𝑆𝑐𝑅𝑒2
𝑑𝑏

> 1. Therefore, the first mesh with 4.3 · 105 cells depicted in Figure 1b was used212

for the remainder of the study.213

III. Results and discussion214

In the absence of external flow (i.e, when 𝑅𝑒𝑑𝑏 = 0) or when flow is negligible, a double layer is formed and the215

resulting potential arises from the non-equal partitioning of ions. This potential can be predicted at the 𝑡 →∞ limit by216

recognizing that, at equilibrium, the electrochemical potential of each ion is the same in both phases. For a binary217

electrolyte consisting of monovalent ions, this can be formulated to be a function of the single ion partition coefficients,218

and is defined as [11, 46]219

Δ(𝜓 𝑓 𝜙∗) =
1
2
𝑙𝑛

(
𝑘+
𝑘−

)
(3)
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where 𝑘+ and 𝑘− are the single ion partition coefficients of the cation and anion, respectively. Prior research has shown220

that Equation 3 accurately describes the phase boundary potential at the 𝑡 → ∞ limit when the diffusion potential,221

often referred to as the Henderson potential, is negligible, i.e., when the partitioning ions have the same diffusion222

coefficient [11, 47]. To demonstrate this and to provide code validation, we compare the temporal evolution of the223

phase boundary potential with the expected value obtained from Equation 3 for the case of no-flow. Figure 2a shows224

that when 𝑡𝐷/𝜆2
𝑑𝑏

> 1 the potential converges to the predicted value from Equation 3. We observe that the evolution225

of the phase boundary potential is clearly divided into a a dynamic phase for 𝑡𝐷/𝜆2
𝑑𝑏

< 1 and an effectively static226

phase at 𝑡𝐷/𝜆2
𝑑𝑏

> 1, suggesting that the use of 𝑡𝐷/𝜆2
𝑑𝑏

, which is equivalent to 𝜏

𝑆𝑐𝑅𝑒2
𝑑𝑏

, is a well-scaled dimensionless227

time for these systems and is henceforth used to present temporally-varying results. For additional validation, the ion228

concentration profiles near the ISE membrane and aqueous sample interface at 𝑡𝐷/𝜆2
𝑑𝑏

= 10 are compared with the229

results obtained from Zhurov et al. [11] in Figure 2b for the case where 𝑘+ = 2 and 𝑘− = 0.5. We apply these same230

partition coefficients here and throughout this study. However, specific to this validation, we employ 𝑆𝑐 = 3.98 for the231

cation and 𝑆𝑐 = 1 for the anion in order to match the conditions from Zhurov et al. The concentration profiles for both232

the cation and anion in Figure 2b show a high degree of symmetry as in the absence of flow, ion motion is dominated by233

near interface electric fields and concentration gradients, which are independent between phases for this problem set234

up. The strong agreement here, demonstrates simulations correctly capture ion diffusive and electrophoretic motion as235

well as the development of a space-charge induced electrostatic potential field. Additional validations are provided in236

the supporting information, including comparison to classical boundary layer results, comparison to analytical NPP237

equation solutions and comparison with experimental electrohydrodynamic flow velocity measurements.238
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Fig. 2 Results for the no-flow case (𝜓 𝑓 = 1, 𝑆𝑐 = 1000, 𝑅𝑒𝑑𝑏 = 0). (a) Temporal evolution of the phase boundary
potential (solid black line) compared to expected potential from Equation 3 (dashed black line). (b) Concentration
profiles of Cation (blue) and Anion (yellow) with comparison between the current study (solid) and results from
Zhurov et al. [11] (dashed). Quantities where taken from the midpoint location of membrane, 𝑥∗ = 5, with the
ISE membrane and aqueous sample interface at 𝑦∗ = 0 and at a time of 𝑡𝐷/𝜆2

𝑑𝑏
= 10. Information on the Domain

used refer to Figure 1.
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Adding external flow to this system, Figure (3) displays a series of cation and anion concentration maps for variable239

Debye Length Reynolds numbers, with fixed 𝜓 𝑓 , which is the dimensionless parameterization of ion mobility, and fixed240

𝑆𝑐, the dimensionless parameterization of ion diffusivity. The case shown in Figures (3a) (cation) and (3e) (anion), with241

a 𝑅𝑒𝑑𝑏 = 0.1, shows concentration profiles mostly unaffected by external flow; this case is similar to the validation case242

presentation in Figure 2b. The concentration boundary is confined to the narrow region close to the membrane with243

near-lateral symmetry. However, with increasing 𝑅𝑒𝑑𝑏, analogous to the boundary layer formed for similar problems244

of forced convection on surfaces, fluid flow increases ion concentration gradients near the fluid-membrane interface,245

particularly at the leading edge, as is evident in Figures (3b-d) and (3f-h), and leads to formation of a growing boundary246

layer. As 𝑅𝑒𝑑𝑏 tends to unity, fluid flow effects on the boundary are pronounced, with noticeable ion concentration247

variation at 𝑦∗-locations near 1.0, in comparison to the boundary layer in the absence of fluid flow of order 0.01 in248

thickness.249

Fig. 3 Spatial distribution of dimensionless ion concentration 𝑐∗
𝑖

near the ISE membrane and aqueous sample
interface at a time of 𝜏

𝑆𝑐𝑅𝑒2
𝑑𝑏

= 10 for the cations (a-d) and anions (e-h) with single ion partition coefficients of 2.0
(cation) and 0.5 (anion) as well as 𝜓 𝑓 = 1 and 𝑆𝑐 = 1000. From Left to right, varying 𝑅𝑒𝑑𝑏 with 𝑅𝑒𝑑𝑏 = 0.1 (a and
e),𝑅𝑒𝑑𝑏 = 0.3 (b and f),𝑅𝑒𝑑𝑏 = 0.8 (c and g) and 𝑅𝑒𝑑𝑏 = 1.0 (d and h). All spatial dimensions are non-dimensional
defined by Equation 2. The black dashed line represents the phase boundary.

The differences between the low flow velocity (𝑅𝑒𝑑𝑏 = 0.1) and high flow velocity cases (𝑅𝑒𝑑𝑏 = 1) are also250

demonstrated by profile data at 𝑥∗ = 5 as shown in Figure 4a. This 𝑥∗ location is selected intentionally to be close to251

the leading edge of the membrane, but sufficiently distal to avoid the influence of edge effects. We specifically plot252

ion concentration as a function of y-location normalized by the Debye length, which is the product of 𝑦∗ and 𝑅𝑒𝑑𝑏253

in the employed dimensionless framework. The low 𝑅𝑒𝑑𝑏 (dashed lines in Figure 4a) hence leads to concentration254

boundary layers of length near unity, i.e., similar in thickness to the Debye length. As 𝑅𝑒𝑑𝑏 increases to 1.0 (solid lines255

in Figure 4a) the encroachment of the fluid boundary layer within 1 Debye length of the interface leads to a small, but256
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noticeable decrease in the thickness of the charge separation layer in the fluid phase (when normalized by the Debye257

length). In in Figure 4b we plot the total charge density (dimensionless) as a function of 𝑦∗𝑅𝑒−1
𝑑𝑏

across the membrane258

and aqueous phase, as well as the dimensionless potential (𝜓 𝑓 𝜙∗) across the interface. This subtle asymmetry brought259

about by flow leads a pronounced increase in the potential at distance larger than the Debye length. Insets in Figure 4b260

nonetheless show that the potential reach a near constant value close the membrane interface (i.e. after several Debye261

lengths), hence the main effect is to increase the phase boundary potential.262
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Fig. 4 Quantities of interest at varying 𝑦∗, with the ISE membrane and aqueous sample interface occurring at
𝑦∗ = 0, taken from a location within the membrane, 𝑥∗ = 5, for 𝜓 𝑓 = 1, 𝑆𝑐 = 1000, 𝑅𝑒𝑑𝑏 = 0.1 (dashed lines) and
𝑅𝑒𝑑𝑏 = 1.0 (solid lines). (a) Dimensionless charge concentration (blue) and dimensionless electric potential 𝜙𝜓 𝑓
(yellow) varying over dimensionless length (scaled by Debye length). (b) Dimensionless concentration for cation
(blue) anion(yellow) and dimensionless velocity (𝑈∗ = 𝑈/𝑈0) varying over dimensionless length (scaled by Debye
length).

In Figure 5 we plot the temporal evolution (with 𝑡𝐷/𝜆2
𝑑𝑏

again as the dimensionless time) of the phase boundary263

potential for variable combinations of 𝜓 𝑓 and 𝑆𝑐 and 𝑅𝑒𝑑𝑏 varying from 0.1-1.0. In all cases, similar to zero flow264

condition, we observe dynamic and static regions, separated by 𝑡𝐷/𝜆2
𝑑𝑏

near unit value. Interestingly at small times,265

independent of 𝑅𝑒𝑑𝑏, 𝜓 𝑓 , and 𝑆𝑐. the phase boundary potential increases with 𝑡𝐷/𝜆2
𝑑𝑏

scaled to the power of 1,266

suggesting early time behavior is completely diffusion limited. With increasing 𝑅𝑒𝑑𝑏 in all cases we observe changes267

in both the dynamic regime and the static regime. In the dynamic regime, the phase boundary potential begins to268

increase more rapidly at higher 𝑅𝑒𝑑𝑏 for 𝑡𝐷/𝜆2
𝑑𝑏

beyond 10−1, with a scaling exponent approaching 1.6 for 𝑅𝑒𝑑𝑏 = 1.0,269

𝜓 𝑓 = 1.0 and 𝑆𝑐 = 1000, suggesting that fluid flow influences become significant as the system approaches the static270

regime. In the static regime, small values of 𝑅𝑒𝑑𝑏 have minimal effect on the phase boundary potential, but for the271

highest 𝑅𝑒𝑑𝑏 values examined we observe instances where the potential is than three times its expected value in the272

absence of flow (denoted via horizontal lines in Figure 5).273

The change in the phase boundary potential with 𝑅𝑒𝑑𝑏 is highly dependent upon the values of 𝜓 𝑓 and 𝑆𝑐 as is274

evident in Figure 6, where we plot the potential in the static limit. Specifically, results apply when 𝑡𝐷/𝜆2
𝑑𝑏

= 10. For275
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Fig. 5 Dimensionless potential temporal evolution with varying 𝑅𝑒𝑑𝑏 (Range of 0.1 to 1 in increments of 0.1
indicated by varying color saturation) with (a) 𝜓 𝑓 = 1 and 𝑆𝑐 = 1000 (b) 𝜓 𝑓 = 1 and 𝑆𝑐 = 100 (c) 𝜓 𝑓 = 0.1 and
𝑆𝑐 = 1000 (d) 𝜓 𝑓 = 0.1 and 𝑆𝑐 = 100. Results are plotted along side the potential predicted by Equation 3 (dashed
black line) and the no-flow case, 𝑅𝑒𝑑𝑏 = 0, from Figure 2 (solid black line).

the case of 𝜓 𝑓 = 0.1 and 𝑆𝑐 = 100, the effect of 𝑅𝑒𝑑𝑏 on the static potential is minimal, with the potential increasing276

from a value of 0.69 at 𝑅𝑒𝑑𝑏 = 0.1 to a value of 0.83 at 𝑅𝑒𝑑𝑏 = 1. For the case of 𝜓 𝑓 = 1 and 𝑆𝑐 = 1000, the effect of277

𝑅𝑒𝑑𝑏 on the static potential is more substantial, with the potential increasing to a value of 3.6 at 𝑅𝑒𝑑𝑏 = 1. Both 𝑆𝑐 and278

𝑅𝑒𝑑𝑏 parameterize the extent with which external flow affects the diffuse ionic double layers near the membrane-water279

interface; higher 𝑆𝑐 diminishes ion diffusion in comparison to flow, while higher 𝑅𝑒𝑑𝑏 diminishes space charge induced280

potential effects. 𝜓 𝑓 , the ratio of the fluid kinetic energy to system characteristic electrostatic energy, serves as an281

amplification factor, increasing the extent that flow-ion interaction has on the phase boundary potential. To more clearly282

discern fluid flow effects and better define the influence of each dimensionless ratio, we introduce the enhancement283

coefficient 𝜂, which compares the static portion of the potential ( 𝜏

𝑆𝑐𝑅𝑒2
𝑑𝑏

>> 1) to the expected potential in the case of284

no-flow from Equation 3:285

𝜂 =
2𝜙∗𝜓 𝑓
𝑙𝑛
𝐾+
𝐾𝑖

− 1; (4)
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An 𝜂 of zero indicates no change in phase boundary potential from its zero-flow limit. The enhancement coefficient may286

be modeled as a function of the previously defined system parameters, namely 𝑅𝑒𝑑𝑏, 𝜓 𝑓 and 𝑆𝑐, alongside dimensionless287

numbers parameterizing system length ratios and the properties of the fluid, membrane, and ions. We attempted to288

develop this function through two methods. First, following a trial-and-error route, we anticipate that the correlation289

for the enhancement coefficient will be functionally similar to heat and mass transfer coefficients, i.e., in the form of290

𝜂 = 𝜓𝛼
𝑓
𝑓 (𝑅𝑒𝛽

𝑑𝑏
𝑆𝑐𝛾), where 𝑓 is some function of 𝑅𝑒𝛽

𝑑𝑏
𝑆𝑐𝛾 and 𝛼, 𝛽 and 𝛾 are unknown fitting parameters. Fitting291

𝛼 = 2
5 , 𝛽 = 4

5 and 𝛾 = 1
3 , we plot all results obtained in this study in Figure 7 with the ratio of 𝜂/𝜓𝛼

𝑓
on the y-axis and292

𝑅𝑒
𝛽

𝑑𝑏
𝑆𝑐𝛾 on x-axis. Plotted results are also provided in a table in the supporting information. To further determine293

the functional dependence of 𝜂 on 𝑅𝑒𝑑𝑏 and 𝑆𝑐, we define the fluid scaling parameter 𝜔1 = 𝑅𝑒
𝛽

𝑑𝑏
𝑆𝑐𝛾 . When 𝜔1 is294

small, the transport of ions is dominated by diffusion having little influence from the fluid flow. Conversely, when 𝜔1 is295

large, ion transport is dominated by convective effects. Plotting 𝜂𝜓−𝛼
𝑓

as a function of 𝜔1 in Figure 7, we find excellent296

collapse for all simulated conditions. We subsequently fit the collapsed result using the ratio of two power series in the297

form of 𝜂𝜓−2/5
𝑓

=

∑𝑁
𝑖=0 𝑎𝑖𝜔

𝑖
1∑𝑁−𝑙

𝑗=0 𝑎 𝑗𝜔
𝑗

1
where 𝑎𝑖 are unknown coefficients and 𝑙 determines the fitting behavior when 𝜔→∞; for298

example when 𝑙 = 1, the fit equation reduces to a first order polynomial with a slope of 𝑎𝑁

𝑎𝑁−1 . We elect to use a value of299

𝑁 = 4 and 𝑙 = 1 resulting in the following function300

𝜂 = 𝜓
2/5
𝑓

𝑎1𝜔
2
1 + 𝑎2𝜔

3
1 + 𝑎3𝑎4𝜔

4
1

1 + 𝑎5𝜔1 + 𝑎6𝜔
2
1 + 𝑎4𝜔

3
1

(5)

where 𝑎1 = 1.92 · 10−2, 𝑎2 = −1.47 · 10−2, 𝑎3 = 0.68, 𝑎4 = 4.3 · 10−3, 𝑎5 = −0.212 and 𝑎6 = 7.06 · 10−3. Coefficients301

were obtained by the Curve Fitting Toolbox in MATLAB [48], and were selected because all values of 𝜔1 > 0 produce302

a strictly positive enhancement 𝜂 > 0, and they by definition lead to 𝜔1 → 0 as 𝜂→ 0 and also to 𝜂 ∝ 0.68𝜔1𝜓
2/5
𝑓

as303

𝜔1 →∞. Examining the data in Figure 7, we see a transition near 𝜔1 = 3 where the effective enhancement (𝜂𝜓−2/5)304

departs from a value near 0 to a near-linear scaling of 0.7 in the range of 5 < 𝜔1 < 10. Although some values of 𝜂 are305

negative at small 𝜔1, we believe these to be caused by small numerical errors, and since their relative magnitude is close306

to 0, will treat such values as effectively zero. The existence of a transition between no enhancement (𝜔1 < 3) and307

linear scaling (𝜔1 > 3) suggests that there is a critical degree of ion advection, as characterized by 𝜔1, that must occur308

before the effect of external flow is to increase the phase boundary potential.309

Membrane based ion-selective electrodes tend to have lower detection limits in the range of 1 · 10−7 to 1 · 10−6
310

M [49]. To put the above analysis of 𝜔1 into context we estimate that an external flow velocity of at least 16 cm s-1
311

is needed for 𝜔1 > 3, assuming a 1 · 10−7 M solution at room temperature (300K) and an ion diffusion coefficient312

of 1 · 10−9 m2 s-1. This fluid velocity is well above the velocities encountered for such sensors in the majority of313

applications, which suggests that changes in phase boundary potential from external flow will only occur for very dilute314

systems and in the absence of a background electrolyte. The effects of varying single ion partition coefficients, variable315
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Fig. 6 Values at 𝜏
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= 10 plotted for 𝜓 𝑓 = 1 and 𝑆𝑐 = 1000 (blue triangle), 𝜓 𝑓 = 1 and 𝑆𝑐 = 100 (purple
square), 𝜓 𝑓 = 0.1 and 𝑆𝑐 = 1000 (red circle) and 𝜓 𝑓 = 0.1 and 𝑆𝑐 = 100 (orange diamond)

ion diffusion coefficients and variable ion concentrations in solution was not explored in this study, which may affect the316

exact limit at which external flow (𝜔1) affects the phase boundary potential. Regardless, our results indicate that effects317

of external flow on membrane systems are more pronounced in the low concentration limit. This result is consistent318

with previous studies on reversed electrolysis cells were the greatest effect of flow on ion transport occurred for the319

smallest ion concentrations [9].320

As a second approach to collapse results, we note that results do apply for the membrane which is of a specific321

length 𝐿∗𝑚 = 20.0 (non-dimensionalized by 𝜈
𝑈0

). To examine the interplay between different length scales affecting the322

problem, we define a dimensionless ratio 𝜔2 =
𝜆𝑑𝑏
𝛿𝑚

, where 𝛿𝑚 is a characteristic mass transfer layer thickness for the323

fluid after traveling a distance 𝐿𝑚 (dimensional) along the membrane. 𝛿𝑚 can be defined as 𝛿𝑚 =

(
𝐷𝐿𝑚
𝜆𝑑𝑏𝛾𝑠

)1/2
, where 𝛾𝑠324

is the characteristic shear rate. The shear rate, in turn, scales as 𝛾𝑠 = 𝑈0
𝛿𝑚𝑜𝑚

, with 𝛿𝑚𝑜𝑚 =

(
𝐿𝑚𝜈

𝑈0

)1/2
. Combining these325

definitions yields:326

𝜔2 =
𝜆

3/2
𝑑𝑏

𝑈
3/4
0

𝐷1/2𝐿3/4
𝑚 𝜈1/4

𝜈1/2

𝜈1/2 = 𝑆𝑐1/2𝑅𝑒3/4
𝑑𝑏

(
𝜆𝑑𝑏

𝐿𝑚

)3/4
(6)

Equation 6 leads to a similar functional form for 𝜔2 as empirically found for 𝜔1, but with an added term of 𝜆𝑑𝑏
𝐿𝑚

raised to327

the 3/4 power. We plot 𝜂𝜓−2/5 versus 𝜔2 in Figure 8 for all test case performed here along side a line of best fit in the328

form of Equation 5. We retain the scaling of 𝜓−2/5 as this find close to optimum in fitting. While the collapse of results329
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Fig. 7 Potential enhancement factor 𝜂 scaled by 𝜓
−2/5
𝑓

and plotted as a function of system Schmidt number (𝑆𝑐)
and Debye length Reynolds number (𝑅𝑒𝑑𝑏) for all data (blue circles). Data fitting is provided by Equation 5 and
is shown as the red solid line.

is not as strong as the empirically-tuned result with 𝜔1, examination of 𝜔2 supports the scaling 𝜂 = 𝜓𝛼
𝑓
𝑓 (𝑅𝑒𝛽

𝑑𝑏
𝑆𝑐𝛾),330

and further suggests how results may be affected by adjusting the membrane length. Results would additionally be331

influenced by changes in ion partition coefficients for cationic and anionic species, as well as by utilizing unequal332

diffusion coefficients for species or unequal electrical permittivities for the fluid and membrane. For this reason, the333

solutions presented here cannot be considered universal, with additional simulations required to capture the influences334

of changing geometry,changing ion properties, and changing fluid and membrane electrical properties.335

IV. Conclusion336

We developed a code by modifying the open source library OpenFOAM to solve the Navier-Stokes-Nernst-Planck-337

Poisson set of equations to examine coupled mass transfer, fluid flow, and electrostatic potentials for non-equal338

partitioning ions at membrane-water interface. This code was used specifically to explore the effects of external viscous339

flow on the diffuse ionic double layers at the interface of an ISE membrane and aqueous sample and associated changes340

in phase boundary potential. Framing the problem in a manner similar to mass transfer in a developing boundary layer341

and utilizing an associated dimensionless framework revealed that the dimensionless numbers 𝜔1 = 𝑅𝑒
4/5
𝑑𝑏

𝑆𝑐1/3 or342

𝜔2 = 𝑅𝑒
3/4
𝑑𝑏

𝑆𝑐1/2
(
𝜆𝑑𝑏
𝐿𝑚

)3/4
, which are functions of the Debye-length Reynolds Number and the Schmidt number, not343
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Fig. 8 Potential enhancement factor 𝜂 scaled by 𝜓
−2/5
𝑓

and plotted as a function of system Schmidt number (𝑆𝑐)
and Debye length Reynolds number (𝑅𝑒𝑑𝑏) for all data (blue circles) using the fluid scaling parameter 𝜔2 as
defined in Equation 6. The red solid line represents data fitting by Equation 5 with coefficients 𝑎1 = 6.14 · 10−3,
𝑎2 = 9.80 · 10−2, 𝑎3 = 2.12, 𝑎4 = 1.76 · 10−1, 𝑎5 = −1.11 and 𝑎6 = 6.98 · 10−1.

only are appropriate metrics (switches) to determine if hydrodynamic forces affect the formation of the diffuse ionic344

double layers, but also can be used to quantitatively predict the extent to which fluid flow affects the phase boundary345

potential. Although this study focused on a sole geometry and set of partition concentrations, the results show the346

applicability of traditional heat and mass transfer analysis to describe ion transport at ISE membrane and aqueous sample347

interfaces in electrohydrodynamic flows, as it is relevant to ISEs and other system where phase boundary potential348

modeling is of interest.349
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