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Abstract—Federated Learning (FL) is a distributed learning
paradigm that can coordinate heterogeneous edge devices to
perform model training without sharing private raw data. Prior
works on the convergence analysis of FL have focused on
mini-batch size and aggregation frequency separately. However,
increasing the batch size and the number of local updates can
differently affect model performance and system overhead. This
paper proposes a novel model in quantifying the interplay of FL
mini-batch size and aggregation frequency to navigate the unique
trade-offs among convergence, completion time, and resource
cost. We obtain a new convergence bound for synchronous FL
with respect to these decision variables under heterogeneous
training datasets at different devices. Based on this bound, we
derive closed-form solutions for co-optimized mini-batch size
and aggregation frequency, uniformly among devices. We then
design an efficient exact algorithm to optimize heterogeneous
mini-batch configurations, further improving the model accuracy.
An adaptive control algorithm is also proposed to dynamically
adjust the batch sizes and the number of local updates per round.
Extensive experiments demonstrate the superiority of our offline
optimized solutions and online adaptive algorithm.

I. INTRODUCTION

Federated Learning (FL) [1]–[3] has gained much atten-
tion as it enables distributed model training through multiple
collaborative devices without exposing their raw data. In the
meanwhile, with the increasing amount of data generated from
different geographical locations and the proliferation of edge
computing technologies [4], [5], deploying FL at edge devices
has become a promising computation paradigm to facilitate
data-driven applications while preserving data privacy. Unlike
traditional distributed machine learning (DML) [6], [7], FL
allows each training device (a.k.a. worker) to perform multiple
local updates before uploading their model parameters to the
central server in each aggregation round and does not require
partitioning a central pool of data across distributed workers.

Despite its advantages, FL still faces two major challenges:
1) skewed distributions and unbalanced sizes of training data at
different devices (statistical challenge), and 2) heterogeneous
and limited edge resources (system challenge). The former is
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Fig. 1. Left: Interplay of mini-batch size and aggregation fre-
quency; Right: Heterogeneous mini-batch sizes among clients

also referred to as non-independent-and-identical (non-i.i.d.)
data, which has been analyzed for representative FL algo-
rithms, especially FedAvg [3]. Studies to address the system
challenge have mainly focused on mitigating the impact of
slow “straggler” devices on the wall-clock training time [5],
[8]. Besides, the cost due to either the energy consumption
[9] or operational cost paid to incentivize participating clients
[10], [11] can be prohibitive for FL at the edge. Thus, taking
both time and cost into consideration is of vital importance
for performing FL on heterogeneous devices. Recent works
have analyzed the model convergence when varying different
controls, e.g., balancing the number of local updates and
aggregation rounds [8], or adjusting workers’ mini-batch sizes
under a time budget [5], but these metrics are generally
considered separately. To address these challenges simultane-
ously, we call for a full-fledged FL algorithm that can capture
the three-way trade-off between convergence, training time,
and cost expenditure. We then aim to jointly optimize the
aggregation frequency and mini-batch sizes, as they are the
hyperparameters that determine the amount of data processed
per round and thus most affect these performance metrics.

Further, we have the following intuitions. As illustrated in
Figure 1-Left, increasing either the mini-batch size or the
number of local updates can lead to more training samples
processed and thus improve the local model accuracy. How-
ever, doing so can also increase the consumed cost and training
time. Moreover, a larger number of local updates (lower



aggregation frequency) may result in a larger gap between the
local and global models [3], though this effect may depend
on the batch size of each device. Therefore, we ask: what is
the best way to improve the FL model training when we can
control both of these variables? To the best of our knowledge,
this is the first work that co-optimizes batch size and global
aggregation frequency, considering performance metrics of
model accuracy, training time, and resource cost.

This work also reveals that strategically choosing different
mini-batch sizes among clients is crucial to improve model
performance and system overhead. As illustrated in Figure 1-
Right, in this scenario, the generally accepted “no-straggler”
principle [5], which assigns the batch sizes of different FL
devices for ensuring a uniform time per aggregation round
[5], [12], is not always effective. Specifically, the laptop with
high training speed but relatively few data samples will have
a large mini-batch while other data-rich devices such as the
smartphone can only have a small mini-batch due to the
relatively slow training speed. This could severely impede the
convergence rate, as a small mini-batch size could introduce a
high variance to the stochastic gradients [13]. On the other
hand, if we neglect the clients’ heterogeneous computing
capacities by simply setting a uniform batch size, the straggler
effects can be severe. Batch sizes, however, cannot help to
limit battery usage and communication latency during model
synchronization. Therefore, jointly choosing the aggregation
frequency in the meanwhile is also important for balancing
the energy cost, training time, and model accuracy. To achieve
this, we make the following technical contributions:
1) New convergence bound with respect to batch size and
global aggregation frequency (Section IV). We extend Fe-
dAvg [3] by allowing clients to use different batch sizes.
We derive a novel convergence upper bound for the global
model training under non-i.i.d. datasets, with respect to the
aggregation frequency and batch sizes. Prior theoretical works
usually assume a full-batch training setting to achieve bounded
convergence rates, but practical FL deployments generally
adopt the mini-batch approach. Our error bound can help
bridge this inconsistency by quantifying the impacts of batch
sizes considering clients’ heterogeneous data characteristics.
2) Novel closed-form results and co-optimization algorithm
(Section V). We propose an optimization model to capture the
complex trade-offs among accuracy, completion time, and cost.
Driven by our derived convergence bound, we provide closed-
form solutions that co-optimize the batch size and aggregation
frequency uniformly across clients. These results capture the
interplay between these two control variables and can be
easily adopted by FL developers. An efficient algorithm is also
designed to optimize heterogeneous batch sizes for different
clients, which further increases the model accuracy.
3) Online adaptive joint optimization algorithm (Sections V-C
and VI). We adapt our offline algorithm to the online setting by
dynamically choosing the number of local updates and hetero-
geneous batch sizes among clients, accommodating the online
estimates of the computation and communication capabilities
in the edge network. Extensive experiments under different

testbed settings demonstrate the superiority of our algorithms
in terms of the accuracy, cost, and training time.

II. RELATED WORK

Improving the FL Efficiency has been studied in several
directions, such as gradient compression [7], [14] and hyper-
parameter selection [5], [8], [15]. This work is orthogonal
to the former and falls in the latter regime. To optimize
the learning speed, most studies choose hyperparameters to
mitigate the effect of ”straggler” devices. Prior works have
proposed various methods to address the straggler problem,
like device sampling [16]–[18], client selection [10], [11] or
staleness control [4], [19]. Alternatively, recent works [5],
[12], [20] also jointly optimize batch sizes and local epochs to
improve FL efficiency by equalizing the epoch time for each
device. However, their works either lack theoretical analysis
or neglect data heterogeneity and resource constraints across
clients, which are important characteristics in edge systems.

Controlling FL under resource constraints has risen as
the main challenge for edge-enabled FL training. Many studies
have been proposed to improve FL accuracy under resource
budgets, accounting for either completion time [21]–[23] or
operational cost [9], [24]. Luo et al. [25] propose a cost-
effective FL design to choose the number of participants
and local updates for total training cost minimization. Wang
et al. [8] derive a tractable convergence bound with an
arbitrary number of local updates and design an algorithm
for dynamically adjusting the aggregation frequency. A few
recent works also consider optimizing the mini-batch size.
E.g, Zhao et al. [13] jointly optimize the batch size and
client selection to minimize training cost, and Liu et al. [14]
jointly optimize the batch size, gradient compression ratio, and
spectrum allocation for wireless FL. However, our work not
only additionally analyzes the joint effect of mini-batch size
on both convergence, time, and cost metrics, but also provides
both closed-form optimal solutions and efficient algorithm for
jointly selecting the aggregation frequency and batch sizes.

III. PRELIMINARIES AND PROBLEM FORMULATION

A. FL with arbitrary batch size and local update steps
We first consider a parameter-server (PS) architecture,

which consists of a set (defined as N ) of clients with N
distributed edge devices (clients) and a centralized PS for
global aggregation. Each device i ∈ N has a local data set
Di with Di data samples xi = [xi,1,xi,2, ...,xi,Di

], and Di is
non-i.i.d. across i. We define the loss function for each sample
xi,j as f(w,xi,j) and the local loss function of device i as:

Fi(w) =
1

Di

∑
j∈Di

f(w,xi,j). (1)

The ultimate goal is to train a shared (global) model w that
minimizes the global loss function, defined as:

F (w) =
∑
i∈N

Di

D
Fi(w), (2)

where D is defined as D =
∑

i∈N Di.
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To capture different batch sizes across clients, we define the
loss function Fi,Si(w) under a mini-batch for each device i:

Fi,Si(w) =
1

si

∑
j∈Si

f(w,xi,j), (3)

where Si denotes a mini-batch randomly selected from Di and
si represents the size of Si. With a learning rate η > 0, the
local update rule can be expressed as:

wi(t) = wi(t− 1)− ηgi(wi(t− 1)), (4)

where the batch gradient is gi(wi(t−1)) ≜ ∇Fi,Si
(wi(t−1)).

The model update at each global aggregation step is:

w(t) =

∑N
i=1 Diwi(t)

D
, t = kτ, (5)

where τ is the number of local updates in each aggregation
round, meaning that the PS only performs (5) and sends the
global model w(t) to the clients at t = kτ, k = 1, 2, ...,K .

B. Accuracy-time-and-cost joint optimization model

Compared to data centers, edge devices usually bear high
bandwidth costs and have limited computing resources. It
is therefore necessary to consider both computation and
communication costs. Formally, we suppose that a units of
computation cost are incurred for processing a single sample,
and b units of bandwidth cost are consumed in each global
aggregation step. Let stot =

∑
i∈N si represent the sum of

batch sizes per iteration over all clients. We consider that the
total cost incurred by the entire training process cannot exceed
R, i.e., K(aτstot+b) ≤ R, which conforms to the definition of
model training cost in [26]. Besides, different edge devices can
have heterogeneous computation and communication capaci-
ties, and the training time in each round is determined by the
slowest device. Let pi denote the computation speed of device
i. We then define tci as the computation time of i for a single
local update and assume that it is proportional to the batch
size, i.e., tci = si/pi. Further, tui is the communication time
of each device i incurred by synchronizing her local model
with the PS. These definitions are consistent with practical
system modelings for FL training [5], [11], [12]. Suppose
that the FL task owner has an expected completion time
θ, and thus we have the constraint on the completion time,
max
i∈N

K(τtci + tui) ≤ θ. Our goal is to find the optimal

batch sizes s∗ = [s1, s2, ..., sN ] and the number of local
update steps τ∗ to minimize the gap between the expected
global loss function E[F (w(Kτ))] and the optimum F ∗ after
performing K communication rounds, while satisfying the cost
and completion time constraints. We define [X] ≜ {1, · · · , X}
and formulate the optimization problem as follows:

Minimize
s,τ

E[F (w(Kτ))]− F ∗ (Training error) (6)

s.t. max
i∈N

K(τtci + tui) ≤ θ (Completion time) (7)

K(aτstot + b) ≤ R (Cost) (8)
si ∈ [Di], ∀i, τ ∈ [τmax] (Feasibility) (9)

To solve the above optimization problem, we need to first
navigate the complex trade-offs among the expected error,
completion time, and total cost incurred by the training pro-
cess, via controlling our decision variables s (mini-batch size)
and τ (the number of local updates). Our first challenge is
then to simultaneously quantify the effects of s and τ in the
training error, formalized in our next section.

IV. TRAINING ERROR BOUND ANALYSIS

In this section, we derive a new convergence bound to
approximate (6), considering the effects of mini-batch sizes
si and the number of local updates τ .

Assumption 1. ρ-quadratic-continuous: For each
client i ∈ N , the batch loss function Fi,Si

satisfies:
∥Fi,Si(w1)− Fi,Si(w2)∥ ≤ ρ ∥w1 −w2∥22 for all w1,w2.

Assumption 2. (First and Second Moment Limits) For some
scalars µG ≥ µ > 0 and Mi > 0, under any given model w
and batch of data samples ξt randomly selected from ∪iDi,
the global batch-gradient g(w, ξt) and global gradient under
any single data s ∈ ξt, denoted as gs(v[k](t)), satisfy:

∇F (w)TEξt [g(w, ξt)] ≥µ ∥∇F (w)∥22 ,
∥Eξt [g(w, ξt)∥2 ≤µG ∥∇F (w)∥2 ,

V [gs(w, ξt)] ≤Mi, ∀i ∈ N .

Theorem 1 (Error bound with heterogeneous batch sizes si).
Suppose that Fi,Si is c-strongly convex and β-smooth [3] and
satisfies Assumptions 1-2 . Assuming F ∗ ≥ 0, given a fixed
learning rate 0 ≤ η ≤ µ

βµ2
G

and the initial global parameter
w(0), the expected error after K aggregation rounds with τ
local updates per round is:

E[F (w(Kτ))]− F ∗ ≤ qKτ [F (w(0))− F ∗] +

1− qK

1− q

(
βη2(1− qτ )

2D2(1− q)

∑
i∈N

MiD
2
i

si
+ ρh(τ)2

)
,

(10)

where q = 1−ηcµ, h(τ) = δ
β ((ηβ + 1)τ − 1)−ηδτ and δ =∑

i∈N
Diδi
D . δi upper bounds the gradient divergence between

global data ∪iDi and local data Di , i.e. ∥gi(w)− g(w)∥,
describing the non-iid degree of the data in client i.

All the proofs in this paper are provided in our online
technical report [27] due to space limitation.

Our bound (10) has a richer structure than those in [5], [8],
[14] to show the effects of si, τ , and data distributions. The
first term is determined by the initial global loss which con-
tinuously decreases during the training. The term associated
with Mi can be interpreted as the “gradient variance loss”
resulting from the error of using a randomly selected batch to
estimate the loss gradient under the entire local dataset. The
last term ρh(τ)2 can be regarded as the “local bias” which
monotonically increases with τ , since a larger τ means less
frequent communications between clients and the server and
thus a larger gap between the global and local models.
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V. CO-OPTIMIZATION: THEORY AND ALGORITHM

In this section, we first provide optimal solutions and
an efficient algorithm for co-optimized batch sizes and the
number of local updates in two offline settings (Sections V-A
and V-B), where the parameters related to the model (in
(10)) and the system (in the optimization constraints) are pre-
obtained. We then adapt the solutions to the online setting with
parameters estimated online in Section V-C.

A. Case 1: Co-optimizing τ and uniform s

We first consider the most common scenario used by FL
developers in practice [1], [2] where every device has the same
batch size s and number of local updates per round τ . Based
on our bound (10), we derive closed-form solutions of s and
τ in Theorem 2, by solving (6)–(9) with si = si′ , ∀i ̸= i′.

Theorem 2 (Interplay of uniform s and τ ). Given the number
of aggregation rounds K, and a feasible deadline (θ > Ktui)
and cost budget (R > Kb), the optimal uniform batch size s∗

and number of local updates τ∗ satisfy:

s∗(τ) = min

{
R−Kb

aτn
,min
i∈N

{
pi(θ −Ktui)

Kτ

}}
, (11)

τ1 = ⌊τ̂⌋, τ2 = ⌈τ̂⌉, ∂f(τ̂)
∂τ

= 0, (12)

τ∗ = argmin
τ∈{τ1,τ2}

f(τ), s∗ = ⌊s∗(τ∗)⌋, (13)

where h(τ) is defined in (10), f(τ) = qKτ [F (w(0))− F ∗]+

1−qK

1−q

(
βη2(1−qτ )
2D2(1−q)

∑
i∈N

MiD
2
i

s∗(τ) + ρh(τ)2
)

.

B. Case 2: Co-optimizing τ and heterogeneous si (offline)

In this case, we generalize Case 1 by enabling different
batch sizes assigned for different clients since edge devices
can have different computation and communication capacities.
However, directly applying integer programming optimizers
[28] or using a brute force algorithm to solve (6)–(9) may
incur a high time complexity with at least O(κNτmax), where
κ = stot

N >> 1. Instead, we design an efficient exact algorithm
CoOptFL with at most O(N2τmax) time complexity, as we
state in Algorithm 1 and the proof provided in tech report [27].

Other batch size assignment schemes (e.g., [5], [12]), fo-
cus on eliminating straggler effects brought by the system
heterogeneity. They choose clients’ batch sizes according to
their computational capacity in order to minimize the average
waiting time. However, these strategies are sub-optimal since
they neglect data heterogeneity and cost constraints, and
clients with higher computation capacities but low data value,
i.e. a smaller Di

√
Mi, will have more training resources,

which could significantly undermine the model accuracy. Our
Algorithm 1 instead captures both the data heterogeneity
and system heterogeneity, as well as navigating the trade-off
between the completion time and resource consumption.

C. Case 3: Co-optimizing τ and heterogeneous si (online)

Case 2 provides optimal solutions of batch sizes and the
number of local updates, but does not consider how to adapt

Algorithm 1: An exact offline algorithm to Co-
Optimize batch sizes and the number of local updates
for FL training (CoOptFL)
Input : G,Mi, Di,K, τmax, a, b, R, θ, pi, tui, ∀i
Output: τ∗, s∗ = [s1, s2, ..., sN ]

1 foreach τ ∈ [1, τmax] do
2 Set C = N , stot = R−Kb

aτ , sr = stot;
3 foreach node i ∈ N do
4 si(θ) = ⌊pi

(
θ

Kτ − tui

τ

)
⌋

5 repeat
6 flag = 0;
7 foreach node i ∈ C do
8 si = ⌊ sr

√
MiDi∑

i∈C

√
MiDi

⌋;

9 if si ≥ si(θ) then
10 si = si(θ), sr = sr − si(θ);
11 Remove node i from set C, flag = 1;

12 until flag = 0 or C = ∅;
13 repeat
14 Find i

′
= argmaxi∈C

D2
i

si(si+1) , si′ = si′ + 1;
15 if si′ = si′ (θ) then
16 Remove node i from set C;

17 until
∑

i∈N si = stot or C = ∅;

18 Find the optimum (τ∗, s∗) = argmin(τ,s)G;
/* Offline:G ≜ (10) Online:G ≜ (16) */

them online with unknown parameters to be estimated such
as the computation speed ci, communication time tui, and the
parameters associated with the model. Thus, in this case, we
present a marginal error bound to adjust s and τ based on
our online parameter estimation, realizing a more practical
online FL training at the edge under fluctuating network
characteristics.

1) Marginal Error bound: Revisiting our offline optimiza-
tion problem (6)–(9), the objective function derived in (10)
with static parameters and decision variables is no longer
suitable for our online setting. Instead, we propose a marginal
upper bound, which is defined as the gap between the optimum
F ∗ and E[F (w(k))] that denotes the expected loss under the
model that will be updated in aggregation round k. We derive
this in Lemma 1.

Lemma 1 (Marginal bound with heterogeneous batch size si).
With the same assumptions in Theorem 1, for a fixed learning
rate 0 ≤ η ≤ µ

βµ2
G

, the expected loss after k global rounds
with the number of updates τk and batch sizes sik for round
k, defined as E[F (w(k))]− F ∗, is at most

qτk [E[F (w(k−1))]−F ∗]+
βη2(1− qτk)

2D2(1− q)

∑
i∈N

MiD
2
i

sik
+ρh(τk)

2,

(14)
where q = 1 − ηcµ, h(τk) = δ

β ((ηβ + 1)τk − 1) − ηδτk,
F (w(k−1)) ≜ F (w(

∑k−1
i=1 τi)).
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Compared to Theorem 1, Lemma 1 is defined for the setting
where we can obtain better estimates of the unknown model
and system parameters in each new aggregation round. Our
optimization problem (6)–(9) can be adapted to the following
to solve for τk and sk = [s1k, s2k, ..., sNk] used for each
aggregation round k ∈ [K].

Minimize
sk,τk

E[F (w(k))]− F ∗ (Approximated by (14))

S.t. max
i∈N

K∑
k=1

(τktci + tui) ≤ θ, tci = sik/pi (15)

K∑
k=1

(aτk
∑
i∈N

sik + b) ≤ R, sik ≤ Di, τ > 0

To solve (15), the remaining thing is to estimate the unknown
parameters in (14), as elaborated in the next section.

2) Online Parameter Estimation: To simplify the problem
(15), we first set F ∗ = 0 as it is impossible to accurately eval-
uate it for model training. We approximate the expected global
loss E[F (w(k−1))] ≈

∑N
i=1 DiFi,Si

(w(k−1))

D ≜ F̂ (w(k−1)) by
replacing the local loss Fi(·) with the batch loss Fi,Si(·), since
it can be quite time-consuming to calculate the exact value of
Fi(w

(k)), especially for large number of data samples.
For ρ, β, c, and δ, we evaluate them in two steps. First, each

client estimates these parameters ρi, βi, ci, and gi(w(t)) using
the global model w(t) just received at the beginning of every
round k before synchronizing their local model wi(t) with
the global model. Then they will send these results back to
the PS to calculate ρ, β, c, and δ as a weighted average of
ρi, βi, ci, and δi. Finally our objective function (14), can be
approximated by the following error bound:

qτk F̂ (w(k−1)) +
βη2(1− qτk)

2D2(1− q)

∑
i∈N

MiD
2
i

sik
+ ρh(τk)

2. (16)

We can leverage the above marginal error bound and online
parameter estimation by integrating them into CoOptFL to
solve our refined co-optimization problem shown in (15).
Complete pseudo codes of CoOptFL in online setting will
be refined and provided in our future work.

VI. EXPERIMENTAL VALIDATION

In this section, we validate our theories and the performance
of CoOptFL (Algorithm 1) in: 1) Optimal batch size assign-
ment; 2) Co-optimization of heterogeneous batch sizes and
aggregation frequency presented in Sections V-B and V-C.

A. Experiment setup

1) Testbed: To simulate the system heterogeneity, we first
conduct our experiments in a small-scale testbed with 1 laptop
PC, 1 desktop PC, and 3 docker containers launched from a
workstation. We manually assign different numbers of CPU
cores (3, 6, 12) to each container. We further conduct two
larger scale experiments: 1) 100 clients simulated in a lab
server cluster; and 2) 20 clients deployed at 20 geo-distributed
cloud VM instances from Hetzner [29], including six 1-
vCPU instances (2GB RAM), seven 2-vCPU instances (4GB
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Fig. 2. Our batch size assignment in algorithm CoOptFL
achieves the highest accuracy for both datasets

RAM), and seven 4-vCPU instances (8GB RAM) to simulate
computational heterogeneity among clients. The PS instance
is always deployed on the device with the most CPU cores.

2) Models and datasets: We use MNIST and CIFAR-10
datasets to train a convex SVM model and a non-convex CNN
model. We adopt a similar non-i.i.d. data distribution setting
in [8] to simulate data heterogeneity among clients.

3) Baselines: To demonstrate the effectiveness of our care-
ful batch size configuration across different clients using
CoOptFL, we compare with Uniform, a widely-adopted
method with uniform batch size [8], and with No-straggler,
a time-efficient batch size distribution proposed in [5]. To
evaluate the co-optimization performance of CoOptFL in the
online setting, we compare with FedAvg, which maintains τ
and batch size unchanged after their initialization, an adaptive
algorithm Dynamic-τ proposed by [8], and the No-straggler
algorithm in [5]. Parameters and settings are provided in the
technical report [27].

B. Experimental results and interpretation

1) Optimal heterogeneous batch sizes s across clients:
We compare our offline algorithm CoOptFL to No-straggler
[5] and Uniform. Fig. 2 shows that CoOptFL can converge
faster and achieve better final testing accuracy compared to
the two baselines in both 5-client and 20-client settings. Note
that No-straggler always tends to assign bigger batch sizes to
devices with higher computing capacities regardless of their
non-i.i.d. data properties, which leads to a lower resource
utilization than Uniform, especially when devices with higher
computing capacity have less and similar data samples.

2) Co-optimization of heterogeneous batch sizes and
aggregation frequency: We further compare our CoOptFL
with three benchmarks for CIFAR-10 FL training: FedAvg [3],
No-straggler [5] and Dynamic-τ [8] in the online setting.
We compare the strategies in two different scenarios of our
optimization problem, where the cost constraint (R) and time
constraint (θ) dominates, respectively. We set different values
of R and θ to simulate these two different scenarios. Fig.3
shows that CoOptFL can outperform the baselines in both
scenarios under different settings. CoOptFL can achieve a
2.7%–7.9% higher final test accuracy than FedAvg while
reducing the cost by 37.6%–58% with the same accuracy in
the cost-dominant scenario; and a 3.8%–8.4% higher final test

5



0    10000 20000 30000 40000

Training Cost

0.3

0.4

0.5

0.6
T

e
s
t 

a
c
c
u

ra
c
y
 (

%
)

CoOptFL

Dynamic-

No-straggler

FedAvg

(a) Cost-dominant
R = 40k, θ = 5000s

0 200 400 600 800 1000

Training time(s)

0.3

0.4

0.5

0.6

T
e

s
t 

a
c
c
u

ra
c
y
 (

%
)

CoOptFL

Dynamic-

No-straggler

FedAvg

(b) Time-dominant
R = 80k, θ = 1000s

20-client (60%) 100-client (55%)

Setting (Target accuracy)

0    

10000

20000

30000

40000

T
ra

in
in

g
 c

o
s
t

CoOptFL

Dynamic-

No-straggler

FedAvg

(c) Cost-dominant scenario

20-client (60%) 100-client (55%)

Setting (Target accuracy)

0

500

1000

1500

2000

2500

T
ra

in
in

g
 t

im
e

(s
)

CoOptFL

Dynamic-

No-straggler

FedAvg

(d) Time-dominant scenario

Fig. 3. CoOptFL achieves the highest final model accuracy
and consumes minimal cost and time to achieve the target
accuracy under CIFAR-10 in both cost-dominant and time-
dominant scenarios

accuracy with 45.4%–59.6% less completion time to achieve
the same accuracy in the time-dominant scenario, showing the
great adaptability of CoOptFL.

VII. CONCLUSION

This work proposes a novel framework to quantify and
optimize the interplay of aggregation frequency and hetero-
geneous batch sizes across clients for synchronous federated
learning performed at distributed edge devices. Technically, we
derive a novel convergence bound with respect to those control
variables and analyze the performance metrics of training cost
expenditure and completion time. We then provide closed-
form solutions for our joint optimization , handling both
heterogeneous system characteristics and non-i.i.d. data. We
finally verify the advantages of our solutions in extensive
experiments with several performance metrics considered.
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