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This paper considers the control of fluid on a solid vertical fiber, where the fiber radius is larger than the film
thickness. The fluid dynamics is governed by a fourth-order partial differential equation (PDE) that models this
flow regime. Fiber coating is affected by the Rayleigh-Plateau instability that leads to breakup into moving
droplets. In this work, we show that control of the film profile can be achieved by dynamically altering the
input flux to the fluid system that appears as a boundary condition of the PDE. We use the optimal control
methodology to compute the control function. This method entails solving a minimization of a given cost
function over a time horizon. We formally derive the optimal control conditions, and numerically verify that
subject to the domain length constraint, the thin film equation can be controlled to generate a desired film
profile with a single point of actuation. Specifically, we show that the system can be driven to both constant

film profiles and traveling waves of certain speeds.

1. Introduction

Thin viscous liquid films flowing down vertical cylindrical fibers
exhibit complex and interesting interfacial dynamics. Driven by the
Rayleigh-Plateau instability, the liquid films form droplets or pulses
that flow down along the fiber. The flow dynamics depend on the
flow rate, fiber radius, liquid properties, and inlet conditions [1]. These
factors can lead to stable trains of droplets that behave like a traveling
wave, droplet coalescence, and isolated moving droplets separated by
small amplitude waves [2,3]. For applications of such coating flows
in particle capture [4], desalination [5,6], and other mass and heat
exchangers [7,8], it is crucial to maintain a stable film profile with
desired characteristics.

Classical lubrication theory is widely studied for thin liquid films
flowing down vertical fibers at small flow rates. In the thin film limit
where the characteristic liquid film thickness is significantly smaller
than the fiber radius, the leading-order evolution equation for the film
thickness h, derived by Trifonov [9] and Frenkel [10], and further
studied by [11,12], is given by

et (617 (e + o) + 207 =0, o)
~ X

* Corresponding author.

Here, 6§ = Zlfho/(3R3) measures the ratio of curvature-driven flow to
the gravity driven mean flow, where I, = (¢/pg)'/? is the capillary
wave length, p is the fluid density, g is the gravitational acceleration, ¢
is the surface tension, and h, is the thickness of the initial flat film
that is taken to be the characteristic film height. The higher-order
term h,,, corresponds to the stabilizing streamwise surface tension,
h, represents the destabilizing azimuthal curvature, and the last term
§h3 represents gravity. We note that Eq. (1) is a simplified fiber
coating model that contains linearized curvatures terms and neglects
the geometric contribution of the substrate. More classical models for
fiber coating dynamics that incorporate substrate geometry, slip length,
moderate inertia and fully-nonlinear curvatures have been developed
and investigated in [1,2,13-16].

Introducing a change of scaling + — /6 to Eq. (1) leads to an
equivalent model for the film thickness A(#, x) over a domain 0 < x < L,

b+ [ (G +he+ Ry, )], =0, )

where the Bond number G = 2/(356) = (pgR>)/(chy). This is a non-
linear fourth-order parabolic type partial differential equation, where
h® represents the mobility function, and the Bond number G plays
a significant role in the solution dynamics. Based on the analysis
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in [11,12], given the (initial) average film thickness h, = 1, traveling
pulses that move steadily at constant speeds exist for G smaller than a
critical G, ~ 0.6. More recently, Halpern and Wei also investigated
slip-enhanced drop formation [17] using a variant of Eq. (2) that
incorporates the Navier-slip condition.

In this paper, we aim to control the coating film solution profiles in
(2) by controlling the inlet flux at x = 0, g(z,0), where the flux is given
by,

qt.x)=h (G +h +h,). 3)

This is motivated by recent experimental and analytical studies [1,18]
that reveal the importance of the inlet geometry and flow rate to the
downstream droplet dynamics. Interesting experimental work for the
nonlinear response of the fiber coating dynamics to periodic forcing at
the inlet has also been presented in [19]. The authors showed that the
spatial response of the downstream dynamics strongly depends on the
ratio of the forcing frequency to a critical frequency corresponding to
the maximum linear growth rate. Following the work in [1,20], we im-
pose the following Dirichlet boundary conditions A(t,0) = h;,, q(t,0) =
u(t) at the inlet, where the inlet flux ¢q(z,0) appears as a boundary
condition of the PDE that governs the evolution of the film thickness.
At the outlet x = L, we impose the Neumann boundary conditions
h,(t, L) = h,.(t, L) = 0. We show via numerical studies that Eq. (2) can
be controlled to maintain nearly-constant film thickness and desired
traveling waves, subject to constraints.

Expanding Eq. (2) around a flat film state, A(t,x) ~ 1+ A(t, x), where
h(1,x) < 1, we obtain a weakly nonlinear equation,

hy +3Gh, + 6Ghh, + hyy + hyy = 0.

Using the rescaling 7 — (6G)~'h and a change of coordinates x —
x—3Gt in the moving reference frame, this equation can be transformed
to the classical Kuramoto-Sivashinsky (KS) equation [12],

h+hh +h  +h. . =0. &)

A significant amount of research exists on the control of the KS equa-
tion (4). A well-studied approach to controlling this PDE is to obtain
a finite-dimensional approximation a reduced-order-model (ROM) that
captures the dominant dynamics of the PDE, and then apply standard
control methodologies to this ROM. For example, some earlier works
proposed a distributed control (one that acts on the whole domain) for
the KS equation under periodic boundary conditions [21-23]. Another
approach to controlling the KS equation is through its boundary term,
either the Neumann boundary condition, or the Dirichlet boundary
condition. For example, in [24] the linear KS equation is reduced
to an equivalent finite dimensional system using the Sturm-Liouville
decomposition, and then controlled through its boundary. However,
unlike ordinary differential equations, in the case of PDEs, local linear
stability may not necessarily imply local nonlinear stability. In the case
of KS equation, conditions that guarantee this implication are provided
in [25]. A few researchers [26-28] have also shown boundary control
of nonlinear KS equation which does not rely on discretization of the
PDE is possible. Optimal control of the KS equation is studied in [29].
The literature on control of the full nonlinear thin-film equation, of the
type that we consider in this paper, is very limited. In [30], the authors
consider an optimal control of a thin-film type equation that only
contains the fourth-order derivative. In [31], for a thin film evolving on
a plane without any gravitational effect, a linear proportional control
for the suppression of the Marangoni instability has been explored. To
the best of our knowledge, control of the thin film equation (2) that we
consider in this paper has not been studied.

The paper is organized as follows. In Section 2 we formulate the
optimal control problem. The details of the derivation are provided in
Appendix. We verify the algorithm via numerical simulations presented
in Section 3. Section 4 shows concluding remarks of this paper.
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2. Optimal control formulation

In this section we introduce and formulate the optimal control
problem. We begin by defining the notations, and restating the thin-film
equation (2) with its imposed boundary conditions.

We denote the non-dimensional fiber length by L. The state space
is denoted by 2 = [0, L]. The symbol 002 stands for the boundary of
Q. At any given time 7 and x € €, we let h(r,x) denote the fluid
thickness across the fiber length. The flux, denoted by g¢, is given by
(3). In this paper, we set the input flux ¢(z,0) to be the time-dependent
scalar-valued control parameter u(r).

Consider the one-dimensional PDE (2) again now with its boundary
and initial conditions. The system evolves on [0, 7] X Q.

b+ (PG +h+hy)) =0

4(.0) = (R(G +h +h ) | = ulo, ©)
h(t,0)= hy,,  h(t,L)=0, A (t,L)=0 (6)
h(0,x) = hy @]

Here, h;, > 0 is a fixed scalar.

Our goal is to design a u(f) such that the film profile A(z, x) is close
to a desired fluid profile A¢(t,x) in the L*([0,T],£2) sense, in a given
finite time T' € (0, o). Because we have chosen a finite time horizon,
this choice of control methodology is called the finite-horizon optimal
control problem. In this work, we consider 29 to be both a film of
constant thickness and a traveling wave. In the case of traveling wave
profiles h¢, we use the periodic boundary condition as opposed to the
one outlined above in (5)—(6), the details are provided in Section 3.2.
Furthermore, we require that the (L2([0,7])) norm of control u(z) to be
bounded. Therefore, we consider the following objective function,

T
nmm=%/ 1At x) — K, )|
0

A 2
12+ S U@l (8

L2 (0,1’

Here, 1 > 0 is a weighting parameter of choice.

The optimal control problem is posed as a constrained minimization
problem of the cost function (8) over a set of controls U = {u(?) : 0 <
u(t) < u,}, subject to the PDE (2) and its boundary conditions defined
by Equations (6). Here, u, is an upper bound on the control. The lower
bound is zero, since the control function is the input flux, which is
necessarily non-negative. Therefore, the optimal control problem can
be stated as follows:

Problem 2.1.

T
min J(h, 1) = l/ 1At x) — k(2 )12
uelU 2 0

A 2
2@t 5 Ol )]

L2([0,T])
subject to,

hy 4+ (B3 (G + hy + ), = 0in [0,T] x 2

(B3(G + hy + b))

xe0) u(?) =0,
h(,0) = h;, =0, h.(, L)=0,

h(0,x) = hy

he (t, L)=0

and
0 <ut) <u, for ae. .

We will use gradient descent to find a solution to the optimization
problem. However, we note that the cost function (8) is a function of
two variables h and u. However, algorithmically, gradient descent is
difficult to implement for this optimization problem due to the PDE
constraints. To get around this problem, it is standard in the optimal
control literature to treat /4 as a variable dependent on u via the PDE
constraint (5). This will enable us to perform gradient descent on the
variable u rather than both 4 and u. Towards this goal, we define the
reduced objective functional f : U — R by f(u) = J(h(u),u) for all u € U,
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where A(u) is the solution of the Egs. (2)—(7) for a given u. In terms of
the reduced objective functional, the optimal control Problem 2.1 can
alternatively expressed as

Problem 2.2.
iof 1

While one can compute the gradient of the function f(u), with
respect to u, using the finite difference method, this approach is not
numerically tractable since u(f) is a function. Alternatively, one can
compute the gradient of f(u) using the formal Lagrange method [32] or
the method of Lagrange multipliers to the optimization Problem 2.1.
This method leads to a numerically tractable expression for this gradi-
ent using the so called adjoint equation. While the method leads to the
formulation of the correct expression for the gradient, the derivation of
the conditions is not mathematically rigorous. This is because applying
this method to optimization problems with PDE constraints requires
addressing additional technicalities, such as the existence of solutions
and the differentiability of the objective functional. These technicalities
are outside the scope of this paper. We will use the method formally
to derive the first order necessary conditions of optimality and provide
numerical evidence that this thin film equation can be controlled for
certain short lengths using an optimal control approach.

We will now eliminate the constraints by means of Lagrange multi-
pliers, p,(t,x), po(1), p3(t), p4(t), ps(t). The multipliers are grouped into
a vector p = [py, p,. P3.P4- P5]. The Lagrangian function is defined as
follows

T
L(h,u,p) = J(h,u) —/ / pi(t.x) (b + (WG +h, + ) ) dx dt
0 Q
T
- /0 Po(®) ((BP(G + by + By ) om0y — u(D)) dt
T T
- / p3((h(t,0) = hy,)dt — / p4(Dh (1, L)dt
0 0

T
—/ Dps(®h, (t, L)dt.
0

Let A, denote the optimal values of A(t, x) and u(f) respectively. More-
over, we will assume that £ is strictly positive on [0, L]; as will be seen
later in the Appendix, this assumption will prove to be vital in deriving
the optimality conditions. First-order necessary condition requires that
the derivative of £ with respect to » must vanish at the optimal point
(h, @), that is,

D, L(h,d,p)v =0, Vv s.t. v(0,x) =0. (10)

The condition v(0,x) = 0 imposed on the perturbation v ensures that
the initial condition (7) is fixed. This necessary condition yields the
following adjoint equation and the corresponding boundary conditions.
Details of the derivation have been provided in the Appendix.

= (1) = (= h) + (p), GBI (G + by + b)) = (1)),

- (G0 m2 A
(P1)(1,0) =0, (12
(P11,0) = 0 (13)
(P, L) =0 a4
=P L)+ (P (1. L) = 0 (as)
(T, x)=0 (16)

The adjoint equation is solved backward in time, therefore the final-
time condition (16) is the initial condition for the adjoint equation. The
initial condition set to zero here as per Eq. (33) (in Appendix).

The gradient of the reduced objective functional f(u) with respect
to u can be computed using the gradient of the Lagrangian [32] as

Juw) = D, L(h,u,p). a7
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From the constraints on u, we deduce that the optimal control # must
satisfy the following variational inequality,

T
D, L(h,a,p)(u—i)= / (il + pp)u—a) >0, Vue U 18)
0

To find (h, @), we perform gradient descent on the optimization
problem using the expression for the gradient in (17). The system
(2)-(6) is solved forward in time ¢ € [0,T], hence it is called the
forward equation. As previously mentioned, the adjoint Eq. (11)—(15)
is solved backward in time ¢ = T —t € [0,T], hence it is referred
to as the backward equation. The search for an optimal control entails
performing a gradient descent on u. The algorithm is presented in
Algorithm 1. Statements 9-11 in Algorithm 1 implement the projected
gradient method [33]. This ensures that the obtained u is strictly non-
negative. Moreover, we let u(f) be unbounded as this choice does not
lead to any convergence issues.

Algorithm 1 Gradient Descent

—_

: Input: h%(t,x), A, A,n,T > A:= Step size, n:= Number of iterations
: Initialize A(r = 0,x), p;(t = T, x), ug(t) > uy(t):=Initial guess for the
control law
: Solve for A(r, x) in (2)-(7), with (5) set to uy(?).
: Compute the initial cost L, (8) with A(t, x), uy(1)
fori=1:ndo
Solve for p, in (11)-(15), with A, x) set to A(t, x).
Set p,(t) = p,(t, x = 0) (see (32))
Compute u,(t) = u;_(t) — A(Au;_1 (1) + p,(1)).
if u(t;) <0 for some t; €10,7] then
10: Set uc(tj) =0
11: end if
12: Solve for h,(t,x) in (2)-(6), with (5) set to u (1)
13: Compute cost L; with a.(t, x), u,(t)
14: if L; < L,_; then

N

© ® NI Aw

> Projected Gradient

15: u;(t) = u.(t)

16: h(t,x) = h.(t,x)
17: else

18: Set A= 4/2

19: end if

20: end for

3. Numerical studies

To simulate the thin-film equation (2) and its adjoint equation (11)
with their respective boundary conditions, (5)-(6), (12)-(15), we use
finite-difference method for space discretization. In particular, we
choose a uniform grid and finite-difference of second-order of accuracy.
This results in a N-dimension ordinary differential equation (ODE)
in time. The ODE obtained is simulated in Matlab, using the odel5s
solver, a variable-step, variable-order solver based on the numerical
differentiation formulas (NDFs) of orders 1 to 5. The necessity of this
solver arises due to the stiffness of the system.

We test the optimal control design in two settings: in Section 3.1,
the desired profile h? is set to be a constant function, and in Section 3.2,
h is set to be a traveling wave of given speed. In the examples
presented next, we make the following choices of initial conditions and
parameters. The initial condition for the forward Eq. (2) is set to be a
near constant function A such that the integral of h, over [0, L] is close
to the integral of h“. If the initial condition A, is not chosen in this
way, the optimization algorithm may fail to converge to a solution. This
may be due to the infeasibility of the resulting optimization problem
when the initial condition of the PDE is far away from the desired
configuration. In such a situation, we say that the control system is not
globally controllable. The control is initialized to be a strictly positive
constant function u,. The weighting parameter A in (8) is set to be 1.
We choose the values of u, final time T, and step size 4 specific to the
example, and presented within each case.
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3.1. Spatially-uniform solutions

We begin by discussing the stability of spatially-uniform profiles
for (2) under periodic boundary conditions. Although these results do
not apply to the boundary conditions that we consider (5)-(6), we
expect them to hold for the subdomain away from the inlet and outlet
boundaries at x = 0, L. Consider a spatially-uniform film A(t,x) = h,
over a periodic domain [0,/], perturbed by an infinitesimal Fourier
mode,

h=h+ ed=49, (19)

Here, k = 27k /1 is the wave number, k=1,2,... represents the number
of waves in the perturbation, A is the wave frequency, and £ < 1 is the
initial amplitude. Substituting this expression into (2) and linearizing
around the base state & yields the dispersion relation,

A =3Ghk + iR k> (1 - k), (20)

where ¢ = 3Gh is the speed of linear kinematic wave solutions of (2)
for small wave numbers. The form (20) indicates that the second-order
azimuthal curvature term (h*h,), is destabilizing, and the fourth-order
streamwise surface tension (A3h,,.), term is stabilizing. When the
effective growth rate Im(A) is greater than 0, the spatial perturbation
grows in time and the flat film 7 becomes long-wave unstable with
respect to any wave number 0 < k < 1. Alternatively, choosing k = 1
in (20) shows that the flat film is linearly unstable for any domain size
1>2nr.

Next, we consider the steady state solution A(x) of the model (2)
subject to the inlet and outlet boundary conditions (5)-(6). By setting
the time derivative term 4, = 0 in (2) and integrating once, we obtain
the third-order ODE for the steady state solution A(x),
dh  dh _u
m + E = 71—3 -G, (21)
subject to the boundary conditions

h©0) = h;,, Ay (L) = hy (L) =0. (22)

In the absence of active control, we assume that the boundary control is
constant in time, u(r) = u,. This ODE is similar to the one studied in [34]
that models the meniscus structure of a surface-tension driven liquid
films. Since A(x) satisfies the boundary conditions %, (L) = A, (L) = 0,
(21) yields the relation A(L) = (uy/G)'/3. Therefore, the steady-state
flat film solution & = h;, of (2) only exists if the control u, satisfies
uy = hfnG. A non-trivial steady state solution for the boundary value
problem (21)-(22) is determined by the Bond number G, the inlet
film thickness 4;,, and the flux u,. By setting the derivative terms
d3h/dx*> = dh/dx = 0 in (21), the asymptotic behavior of a typical
nontrivial steady state satisfies

h— (u()/G)l/3 for x - L. 23)

Alternatively, to obtain a steady state solution of a desired flat film
thickness 4 — h? away from the inlet, the boundary flux control u,
should satisfy

Uy ~ G(h®)3. 24

3.1.1. Example 1

In view of the discussion above, we consider the optimal control
Problem 2.1 with a spatially constant desired profile on a domain of
length L > 2. Specifically, we consider a desired profile h4(z,x) = 0.5
on a domain of size L = 50 with the Bond number G = 0.5. The
Rayleigh—Plateau instability dominates the system due to the input flux,
the relatively long domain, and low Bond number, causing the uniform
film to break into ripples. This spatial instability is numerically shown
in the simulation of the uncontrolled system (2) in Fig. 1(a). Starting
from a spatially-uniform initial condition h, = 0.5 in (7), the sequential
plots of h(t,x) in Fig. 1(a) show the evolution of the PDE solution
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to the uncontrolled system (2), where the input flux (5) is set to a
(time-invariant) constant function u = u, = 0.5. Driven by the Rayleigh—
Plateau instability, the solution develops a wavy pattern away from the
inlet.

We apply the optimal control Algorithm 1 to this example for final
time T = 500. Identical initial condition A, = 0.5 is used for the
forward equation similar to the uncontrolled case. Fig. 1(b) shows the
simulation of the forward Eq. (2) under the boundary control u(r) (5)
obtained from the algorithm. The control « in time is shown in Fig. 1(c).
We observe that the controlled system does not break into ripples
and converges to approximately 4 ~ 0.47 away from the inlet, close
to the desired flat film A¢ = 0.5. Numerical simulation suggests that
the observed trend of A, which forms a meniscus like profile starting
from 0.5 and converges to 0.47, is locally stable. The optimal control
algorithm appears to converge to this nontrivial equilibrium. Moreover,
we observe that the average value of u is 0.05, which is close to u; ~
0.0625 predicted by the formula (24) for G = 0.5 and h¢ = 0.5. The
Rayleigh—Plateau instability is not expected to dominate under this low
average value of input flux u, ~ 0.05. However, this example shows that
the optimal control algorithm produces an output that can be verified
against the analytical result obtained in (24). Moreover, the need to
design such control laws will be better appreciated in the upcoming
sections, where we will consider traveling waves as the desired film
profile.

3.2. Traveling wave solutions

In this section, we choose i to be a traveling wave of desired
characteristics. We generate these traveling waves by considering (2)
over a periodic domain x € [0, L] with boundary conditions h?(t, x) =
hd(t,x + L). The PDE has traveling wave solutions that take the form,

i@, x) = HE), E=x—ct, (25)

where c is the speed of the traveling wave. Substituting the ansatz (25)
into (2) yields a fourth-order nonlinear ordinary differential equation
for H(¢),

—cH; + [H? (G + Hy + Heg )], = 0. (26)

This is a nonlinear eigenvalue problem for the traveling wave profile H
and the speed c¢. We apply Newton’s method to solve Eq. (26), where ¢
is treated as an unknown. Following the numerical method used in [2],
we impose a constraint on mass conservation as follows. To achieve
local uniqueness of the solution, define

L
M =/0 H(¢) dé, 27)

and set H(§)) = H,, for some 0 < §, < L. Applying the numerical
continuation method to the system yields a family of traveling wave solu-
tions H(&; M, L) of (26) and (27), parameterized by paired parameters
(My, L).

We note that the traveling waves H (&) do not necessarily satisfy the
boundary conditions (5)-(6). In fact, for liquid flowing down a vertical
cylindrical fibers, the dynamics of the flow near the inlet and outlet
strongly depend on the boundary conditions [1]. For droplet dynamics
in the Rayleigh—Plateau regime where a steady train of droplets travel
down the fiber with nearly constant speed and spacing, one may
approximate the flow dynamics away from the inlet and outlet by
traveling waves [2]. In this work, we will use traveling wave solutions
H (&) associated with periodic boundary conditions as desired solution
profiles in the control problem.



S. Biswal et al. Physica D: Nonlinear Phenomena 457 (2024) 133942

(a) Simulation of uncontrolled h(t,x), with ug = 0.5
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(b) Simulation of controlled h(t, ) against the desired traveling wave profile h? = 0.5
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Fig. 1. Simulation from Example 1 on a domain size L =50, with G = 0.5 and h, = 0.5.
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(a) Simulation of controlled h(t,z) against the desired traveling wave profile h%(t, z).
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(b) Corresponding u(t) obtained from the optimal control algorithm.

Fig. 2. Simulation from Example 2 on domain size L =10, with G =0.5 and M, = 3.622.

3.2.1. Example 2: Slow traveling waves numerically that the one-period traveling wave H(¢) is stable over the
As a first example, we numerically generate a relatively ‘slow’ domain 0 < & < L with respect to perturbations of the same period. A

traveling wave H (&) over a periodic domain of size L = 10 by solving detailed stability analysis of traveling waves in similar thin film models

the traveling wave ODE (26) subject to the constraint (27) with mass can be found in [2].

M, = 3.622 and Bond number G = 0.5. The generated traveling wave We choose the initial condition for the forward Eq. (2) to be the

is associated with a relatively slow speed ¢ = 0.2, and its evolution in constant function s, = 0.4. The optimal control algorithm was run

time h¢(t,x) = H(x — ct) is shown in orange in Fig. 2(a). We verify for T = 200, which corresponds to 4 cycles of the wave traveling
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Fig. 3. Logarithm of the cost function (8), with A = 0, evaluated in Example 2,
corresponding to Fig. 2(a), against iterations.

over the domain [0, L]. The boundary control function u(f) obtained
from the algorithm is presented in Fig. 2(b). As expected, we observe
that the control u shows periodicity; moreover, it appears to achieve
a steady state type of behavior away from ¢ = T. We simulate the
solution of (2) after substituting the u obtained from the algorithm in
(5). Fig. 2(a) shows the snapshots of time and spatial evolution of the
solution h(t, x). Fig. 3 shows the L2([0,T],£2) error between h and h¢
against the number of iterations. We observe that the film thickness A
indeed converges approximately to h¢. In general, on short domains,
the fluid film converges to a uniform film, but this example shows that
active control can be used to make the fluid film break into ripples.
To test our algorithm on long domains, we duplicate the desired
traveling wave h¢ (shown in Fig. 2(a)) over multiples of L = 10. For
example, duplicating over L = 40 produces a train of 4 droplets, while
duplicating over L = 50 produces a train of 5 droplets. Both are shown
in red at an arbitrary time instant 7 in Figs. 4(a) and 4(b), respectively.
Our numerical study shows that these periodic multi-pulse traveling
waves are unstable under periodic boundary conditions. Perturbing
these multi-pulse traveling waves over the periodic domain 0 < x < L
leads the dynamic solution to the PDE (2) produce irregular wavy
patterns in long-time simulations. However, using the optimal control
algorithm, we are able to design a boundary control that generates
consistent PDE solutions that resemble the desired traveling waves. In

0.5
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the former case, i.e. L = 40, the algorithm was run for T = 200. In the
latter case, L = 50, the final time was set at T = 300. In both cases, the
initial condition of the forward equation is set at h, = 0.4. Figs. 4(a)
and 4(b) show snapshots of the space evolution of the controlled 4 at
t = 180 and ¢ = 260, respectively. We observe that in both these cases,
the optimal control algorithm is able to find a « that drives the system
(2) close to the desired wave profile h?, away from the boundary.

3.2.2. Example 3: Fast traveling waves

For this example, we generate a ‘fast’ traveling wave on L = 10 by
solving (26) over a periodic domain with M, = 10.088 and G = 0.5.
The traveling wave obtained has a speed ¢ = 1.652, and its evolution in
time is shown in orange in Fig. 5(a). The initial condition of the forward
Eq. (7) is set at h, = 0.6. The optimal control u(r) generated in this case,
obtained for T = 200, is presented in 5(b).

Fig. 6 shows the L2([0,T], ) error between h(z, x) and h‘(t, x). Here
we observe that the error is significantly higher than in Example 2. This
can also be noted from the h simulation in Fig. 5(a), we observe that
although the controlled 4 is able to match 4¢ in frequency, it fails to do
so in amplitude. We believe that this is because in Example 2 the wave
speed, ¢ = 0.2, is slower than this example’s wave speed, ¢ = 1.652.
There appears to be a limitation on the speed of the traveling wave that
prohibits reaching this solution h? exactly. This indicates that the set
of reachable states from a given initial condition does not necessarily
include all film profiles.

Furthermore, we extend the domain from L = 10 to 40 and duplicate
the h¢ profile from Fig. 5(a) to obtain a train of 4 pulses. Similar to
Example 2 discussed in Section 3.2, the single pulse traveling wave
h4(&) considered in this example is stable over a periodic domain, while
the 4-pulse traveling wave is unstable. The simulated controlled A(t, x)
is shown in Fig. 7 at time instant + = 54. However, in this case, we
observe that the algorithm is not able to find a control u that makes the
system converge to h?. This is unlike in Example 2 where an optimal
control is found for longer domains. This could be attributed to the
higher speed of the traveling wave. Without a controllability analysis,
it appears that the algorithm works better for slow traveling waves or
over shorter domains.

0.45

0.4

(tx)

<0.35

0.3

—h(t,x)
—h9(t,x)

0 5 10 15

20 25 30 35 40

(a) Snapshot at ¢ = 180, over L = 40

25 30 35 40 45 50

(b) Snapshot at ¢ = 260, over L = 50

Fig. 4. Simulation of the controlled h(z, x) against the desired traveling wave profile h?(,x) at specific time instants ¢, over different domain sizes L, with G = 0.5. The profile h“
in each case is obtained by replicating the h? from Example 2 (shown in Fig. 2(a)) over L.
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(a) Simulation of controlled h(t,r) against the desired traveling wave profile h¢(t, ).
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(b) Corresponding u(t) obtained from the optimal control algorithm.

Fig. 5. Simulation from Example 3 on domain size L = 10, with G = 0.5 and M, = 10.088.
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Fig. 6. Logarithm of the cost function (8), with A = 0, evaluated in Example 3
corresponding to 5(a), against iterations.

3.2.3. Example 4: Isolated pulse with large inter-pulse spacing

As our final example, we generate a traveling wave h?(t, x) that has
a higher speed on a long domain, as compared to Example 3. Similar
to the previous cases, we generate h’ by solving the traveling wave
ODE (26) under periodic boundary conditions on L = 30 with M, =22
and Bond number G = 1. This results in an unstable traveling wave of
speed ¢ = 2.13. PDE simulation of Eq. (2) starting from this isolated
pulse with a small perturbation yields a transition into a train of two-
pulse traveling wave over the periodic domain. Snapshots of the spatial
evolution of desired wave profile are shown in orange in Fig. 8(a). The
optimal control found in this case is presented in Fig. 8(b). Snapshots of
the corresponding solution A(t, x) are presented in Fig. 8(a). Although

we expect that under this large Bond number G = 1 and over a
relatively short domain of size L = 30, the fluid film will converge to
a uniform film away from the inlet, with active control, the system is
able to track the desired traveling wave closely.

Similar to the previous cases, we duplicated h?, presented in 8(a),
to obtain two pulses over L = 60. Fig. 9 shows the simulation of the
controlled 4 at a time step t = 170. We observe that, despite the much
higher speed in this case, the system is able to track h? very closely,
unlike in the case shown in Fig. 7. We believe this could be attributed to
the fact that in this case, the frequency of 49, due to higher inter-pulse
spacing, is smaller than the case in 7.

4. Conclusion

Our goal in this work is to present a proof-of-concept that the
nonlinear thin-film equation, considered in this paper, can be controlled
to both constant and traveling wave profiles of small wave speeds,
over short domain sizes. Specifically, with respect to the uniform film
profile case, we are able to design (time-dependent) control laws such
that the controlled system converges to a uniform film on a domain
size where the Rayleigh-Plateau instability is not very significant. With
regards to general traveling waves, the controlled system is able to
converge to a slow traveling wave on relatively long domain of size up
to L = 50. For relatively fast traveling waves of high frequency on short
domains, the optimal control algorithm generates a control function
that matches the traveling wave in frequency, and not in amplitude.
However, the algorithm does generate a control law that is able to
track fast traveling waves of low frequency on long domains closely.
In conclusion, the numerical experiments seem to indicate that the

h(t,x)

0.5 |

—h(tx)
—h9(t,x)

0 5 10 15

20 25 30 35 40

Fig. 7. Simulation of the controlled A(t,x) against the desired traveling wave profile h9(z, x) at specific time instant ¢t = 54, over L = 40, with G = 0.5. The profile ¢ in is obtained

by replicating the A¢ from Example 3 (shown in Fig. 5(a)) over L.
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(a) Simulation of controlled h(t,x) against the desired traveling wave profile h¢(t, ).
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(b) Corresponding u(t) obtained from the optimal control algorithm.
Fig. 8. Simulation from Example 4 on domain size L =30, with G =1 and M, = 22.
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Fig. 9. Simulation of the controlled h(z, x) against the desired traveling wave profile h(z, x) at specific time instant ¢ = 170, over L = 60, with G = 1. The profile h¢ in is obtained
by replicating the h¢ from Example 3 (shown in Fig. 8(a)) over L.
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Since D,L(h,i,p;)v = 0 for all perturbations v, choose a subset of
vsuch that v = v, = vy, = Uy = Uy =0 at x =0,L, and v = 0 at
t=0,T. Then D,L(h, i, p)v = 0 implies:
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Rearranging the terms gives us:

0Q

1)+ (= h) +3(p)) A +3(p)), AR, — ((p), 1)
+ 3(pl)x}_12hxxx - ((pl)xh3)xxx =0.

P

The equation above can be rewritten to obtain the adjoint Eq. (11).
Next, choose v such that v, = v, =v,,, = v, =0at x =0, and
v=0atr=0,T and x = L, then D,L(h,a, p;)v =0 implies that,

T . T e T .
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This further implies that,
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Proceeding similarly, choose v such that v, = v, = U, = Uyyyy =0 at
x=L,andv=0att=0,T and x = 0, then D,L(h,&, p;)v = 0 implies
that,

(=p1 BRI + Ay + By ) + (0 B + ()2 7)s) =0. (29)

x=L
Continuing, choose v such that v = v, = U, = Uy = 0 at x =0,
v,=0atx=L,and v=0att=0,T. Then D,L(h,i,p;)v =0 yields,

P B = (@B =P _ =0, 30)

Choose v such that v = v, = v, = vxxxx =0atx =L, v, =0 at
x=0,and v =0at¢=0,T. Then D,L(h,i, p;)v =0 yields,

(=p1® = (p)x By

g = Pa (31)

Choose v such that v=v, = v, =V, =0atx=0,v,, =0atx =1L,
and v=0att=0,T. Then D,L(h,i, p;)v = 0 yields,
. :
Since we have assumed that 7 > 0, the above equation implies that
(P1)y = 0; this gives us the first boundary condition (12) for p, at
x=
x = 0. Choose v such that v = v, = v, = v, =0atx =1L, vxx=0
atx=0,and v=0at ¢ =0,T. Then, D,L(h, &, p;)v = 0 implies,

po. B[ =0
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Since we have assumed that & > 0, the above equation further implies
that (p),(@, x)| = 0, which gives us the third boundary condi-
tion (14) for p; at x = L. Choose v such that v = v, = v, = vy = 0
atx=0,v,,=0atx=L,and v=0att=0,T. Then D,L(h,i,p;)v =0
implies,

(=p,* —PzilS)L=0 =0.
This equation further implies
po() = —p(0,1). (32)

Choose v such that v=v, =v,, =v,  =0atx=L, v, =0atx=0,
and v =0 at t = 0,T. Then D,L(h,i, p;)v = 0 yields an expression for
the Lagrange multiplier ps(¢),

Ds = (—P1713)’x=L~
Finally, choosing v such that v =0 at t = 0 yields,
o) _, =0 (33)

which yields the initial condition for the adjoint Eq. (16) p;(T,x) = 0.

Substituting (6), (14) in (29), we get the second boundary condi-
tion (15) for the adjoint equation at x = L, (—p; + (P))xxx) ‘xi =
0. Similarly, substituting (32) and (12) in (30), gives us the second
boundary condition (13) at x = 0, (pl)ﬂ‘ﬁo = 0. Substituting (14) in

(31), we get an expression for the multiplier p,(7),
Py = (Pli'3 - (pl)xxh3) |

And finally, the expression for the Lagrange multiplier p;(r) can be
obtained from (28); the expression can be simplified by substituting
the boundary conditions (12)—(13).

x=L"
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