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A B S T R A C T

This paper considers the control of fluid on a solid vertical fiber, where the fiber radius is larger than the film
thickness. The fluid dynamics is governed by a fourth-order partial differential equation (PDE) that models this
flow regime. Fiber coating is affected by the Rayleigh–Plateau instability that leads to breakup into moving
droplets. In this work, we show that control of the film profile can be achieved by dynamically altering the
input flux to the fluid system that appears as a boundary condition of the PDE. We use the optimal control
methodology to compute the control function. This method entails solving a minimization of a given cost
function over a time horizon. We formally derive the optimal control conditions, and numerically verify that
subject to the domain length constraint, the thin film equation can be controlled to generate a desired film
profile with a single point of actuation. Specifically, we show that the system can be driven to both constant
film profiles and traveling waves of certain speeds.
1. Introduction

Thin viscous liquid films flowing down vertical cylindrical fibers
exhibit complex and interesting interfacial dynamics. Driven by the
Rayleigh–Plateau instability, the liquid films form droplets or pulses
that flow down along the fiber. The flow dynamics depend on the
flow rate, fiber radius, liquid properties, and inlet conditions [1]. These
factors can lead to stable trains of droplets that behave like a traveling
wave, droplet coalescence, and isolated moving droplets separated by
small amplitude waves [2,3]. For applications of such coating flows
n particle capture [4], desalination [5,6], and other mass and heat
xchangers [7,8], it is crucial to maintain a stable film profile with
esired characteristics.
Classical lubrication theory is widely studied for thin liquid films

lowing down vertical fibers at small flow rates. In the thin film limit
here the characteristic liquid film thickness is significantly smaller
han the fiber radius, the leading-order evolution equation for the film
hickness ℎ, derived by Trifonov [9] and Frenkel [10], and further
studied by [11,12], is given by

ℎ𝑡 +
[

𝛿ℎ3
(

ℎ𝑥 + ℎ𝑥𝑥𝑥
)

+ 2
3ℎ

3
]

𝑥
= 0. (1)
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Here, 𝛿 = 2𝑙2𝑐ℎ0∕(3𝑅
3) measures the ratio of curvature-driven flow to

the gravity driven mean flow, where 𝑙𝑐 = (𝜎∕𝜌𝑔)1∕2 is the capillary
wave length, 𝜌 is the fluid density, 𝑔 is the gravitational acceleration, 𝜎
is the surface tension, and ℎ0 is the thickness of the initial flat film
that is taken to be the characteristic film height. The higher-order
term ℎ𝑥𝑥𝑥 corresponds to the stabilizing streamwise surface tension,
ℎ𝑥 represents the destabilizing azimuthal curvature, and the last term
2
3ℎ

3 represents gravity. We note that Eq. (1) is a simplified fiber
coating model that contains linearized curvatures terms and neglects
the geometric contribution of the substrate. More classical models for
fiber coating dynamics that incorporate substrate geometry, slip length,
moderate inertia and fully-nonlinear curvatures have been developed
and investigated in [1,2,13–16].

Introducing a change of scaling 𝑡 → 𝑡∕𝛿 to Eq. (1) leads to an
equivalent model for the film thickness ℎ(𝑡, 𝑥) over a domain 0 ≤ 𝑥 ≤ 𝐿,

ℎ𝑡 +
[

ℎ3
(

𝐺 + ℎ𝑥 + ℎ𝑥𝑥𝑥
)]

𝑥 = 0, (2)

where the Bond number 𝐺 = 2∕(3𝛿) = (𝜌𝑔𝑅3)∕(𝜎ℎ0). This is a non-
linear fourth-order parabolic type partial differential equation, where
ℎ3 represents the mobility function, and the Bond number 𝐺 plays
a significant role in the solution dynamics. Based on the analysis
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in [11,12], given the (initial) average film thickness ℎ0 = 1, traveling
pulses that move steadily at constant speeds exist for 𝐺 smaller than a
critical 𝐺∗ ≈ 0.6. More recently, Halpern and Wei also investigated
slip-enhanced drop formation [17] using a variant of Eq. (2) that
incorporates the Navier-slip condition.

In this paper, we aim to control the coating film solution profiles in
(2) by controlling the inlet flux at 𝑥 = 0, 𝑞(𝑡, 0), where the flux is given
by,

𝑞(𝑡, 𝑥) = ℎ3(𝐺 + ℎ𝑥 + ℎ𝑥𝑥𝑥). (3)

This is motivated by recent experimental and analytical studies [1,18]
that reveal the importance of the inlet geometry and flow rate to the
downstream droplet dynamics. Interesting experimental work for the
nonlinear response of the fiber coating dynamics to periodic forcing at
the inlet has also been presented in [19]. The authors showed that the
spatial response of the downstream dynamics strongly depends on the
ratio of the forcing frequency to a critical frequency corresponding to
the maximum linear growth rate. Following the work in [1,20], we im-
pose the following Dirichlet boundary conditions ℎ(𝑡, 0) = ℎ𝑖𝑛, 𝑞(𝑡, 0) =
(𝑡) at the inlet, where the inlet flux 𝑞(𝑡, 0) appears as a boundary
ondition of the PDE that governs the evolution of the film thickness.
t the outlet 𝑥 = 𝐿, we impose the Neumann boundary conditions
𝑥(𝑡, 𝐿) = ℎ𝑥𝑥𝑥(𝑡, 𝐿) = 0. We show via numerical studies that Eq. (2) can
e controlled to maintain nearly-constant film thickness and desired
raveling waves, subject to constraints.
Expanding Eq. (2) around a flat film state, ℎ(𝑡, 𝑥) ∼ 1+ ℎ̂(𝑡, 𝑥), where

̂ (𝑡, 𝑥) ≪ 1, we obtain a weakly nonlinear equation,

̂ 𝑡 + 3𝐺ℎ̂𝑥 + 6𝐺ℎ̂ℎ̂𝑥 + ℎ̂𝑥𝑥 + ℎ̂𝑥𝑥𝑥𝑥 = 0.

sing the rescaling ℎ̂ → (6𝐺)−1ℎ̂ and a change of coordinates 𝑥 →

−3𝐺𝑡 in the moving reference frame, this equation can be transformed
o the classical Kuramoto–Sivashinsky (KS) equation [12],

̂ 𝑡 + ℎ̂ℎ̂𝑥 + ℎ̂𝑥𝑥 + ℎ̂𝑥𝑥𝑥𝑥 = 0. (4)

significant amount of research exists on the control of the KS equa-
ion (4). A well-studied approach to controlling this PDE is to obtain
finite-dimensional approximation a reduced-order-model (ROM) that
aptures the dominant dynamics of the PDE, and then apply standard
ontrol methodologies to this ROM. For example, some earlier works
roposed a distributed control (one that acts on the whole domain) for
he KS equation under periodic boundary conditions [21–23]. Another
pproach to controlling the KS equation is through its boundary term,
ither the Neumann boundary condition, or the Dirichlet boundary
ondition. For example, in [24] the linear KS equation is reduced
o an equivalent finite dimensional system using the Sturm–Liouville
ecomposition, and then controlled through its boundary. However,
nlike ordinary differential equations, in the case of PDEs, local linear
tability may not necessarily imply local nonlinear stability. In the case
f KS equation, conditions that guarantee this implication are provided
n [25]. A few researchers [26–28] have also shown boundary control
f nonlinear KS equation which does not rely on discretization of the
DE is possible. Optimal control of the KS equation is studied in [29].
he literature on control of the full nonlinear thin-film equation, of the
ype that we consider in this paper, is very limited. In [30], the authors
onsider an optimal control of a thin-film type equation that only
ontains the fourth-order derivative. In [31], for a thin film evolving on
plane without any gravitational effect, a linear proportional control
or the suppression of the Marangoni instability has been explored. To
he best of our knowledge, control of the thin film equation (2) that we
onsider in this paper has not been studied.
The paper is organized as follows. In Section 2 we formulate the

ptimal control problem. The details of the derivation are provided in
ppendix. We verify the algorithm via numerical simulations presented
2

n Section 3. Section 4 shows concluding remarks of this paper.
. Optimal control formulation

In this section we introduce and formulate the optimal control
roblem. We begin by defining the notations, and restating the thin-film
quation (2) with its imposed boundary conditions.
We denote the non-dimensional fiber length by 𝐿. The state space

s denoted by 𝛺 = [0, 𝐿]. The symbol 𝜕𝛺 stands for the boundary of
. At any given time 𝑡 and 𝑥 ∈ 𝛺, we let ℎ(𝑡, 𝑥) denote the fluid
hickness across the fiber length. The flux, denoted by 𝑞, is given by
3). In this paper, we set the input flux 𝑞(𝑡, 0) to be the time-dependent
calar-valued control parameter 𝑢(𝑡).
Consider the one-dimensional PDE (2) again now with its boundary

nd initial conditions. The system evolves on [0, 𝑇 ] ×𝛺.

𝑡 +
(

ℎ3(𝐺 + ℎ𝑥 + ℎ𝑥𝑥𝑥)
)

𝑥 = 0

(𝑡, 0) =
(

ℎ3(𝐺 + ℎ𝑥 + ℎ𝑥𝑥𝑥)
)

|

|

|(𝑥=0)
= 𝑢(𝑡), (5)

(𝑡, 0) = ℎ𝑖𝑛, ℎ𝑥(𝑡, 𝐿) = 0, ℎ𝑥𝑥𝑥(𝑡, 𝐿) = 0 (6)

(0, 𝑥) = ℎ0 (7)

ere, ℎ𝑖𝑛 > 0 is a fixed scalar.
Our goal is to design a 𝑢(𝑡) such that the film profile ℎ(𝑡, 𝑥) is close

o a desired fluid profile ℎ𝑑 (𝑡, 𝑥) in the 𝐿2([0, 𝑇 ], 𝛺) sense, in a given
inite time 𝑇 ∈ (0,∞). Because we have chosen a finite time horizon,
his choice of control methodology is called the finite-horizon optimal
ontrol problem. In this work, we consider ℎ𝑑 to be both a film of
onstant thickness and a traveling wave. In the case of traveling wave
rofiles ℎ𝑑 , we use the periodic boundary condition as opposed to the
ne outlined above in (5)–(6), the details are provided in Section 3.2.
urthermore, we require that the (𝐿2([0, 𝑇 ])) norm of control 𝑢(𝑡) to be
ounded. Therefore, we consider the following objective function,

(ℎ, 𝑢) = 1
2 ∫

𝑇

0
‖ℎ(𝑡, 𝑥) − ℎ𝑑 (𝑡, 𝑥)‖2

𝐿2(𝛺)
𝑑𝑡 + 𝜆

2
‖𝑢(𝑡)‖2

𝐿2([0,𝑇 ])
. (8)

Here, 𝜆 > 0 is a weighting parameter of choice.
The optimal control problem is posed as a constrained minimization

problem of the cost function (8) over a set of controls 𝑈 = {𝑢(𝑡) ∶ 0 ≤
𝑢(𝑡) ≤ 𝑢𝑝}, subject to the PDE (2) and its boundary conditions defined
by Equations (6). Here, 𝑢𝑝 is an upper bound on the control. The lower
bound is zero, since the control function is the input flux, which is
necessarily non-negative. Therefore, the optimal control problem can
be stated as follows:

Problem 2.1.

min
𝑢∈𝑈

𝐽 (ℎ, 𝑢) = 1
2 ∫

𝑇

0
‖ℎ(𝑡, 𝑥) − ℎ𝑑 (𝑡, 𝑥)‖2

𝐿2(𝛺)
𝑑𝑡 + 𝜆

2
‖𝑢(𝑡)‖2

𝐿2([0,𝑇 ])
(9)

subject to,

ℎ𝑡 + (ℎ3(𝐺 + ℎ𝑥 + ℎ𝑥𝑥𝑥))𝑥 = 0 in [0, 𝑇 ] ×𝛺

(ℎ3(𝐺 + ℎ𝑥 + ℎ𝑥𝑥𝑥))
|

|

|(𝑥=0)
− 𝑢(𝑡) = 0,

ℎ(𝑡, 0) − ℎ𝑖𝑛 = 0, ℎ𝑥(𝑡, 𝐿) = 0, ℎ𝑥𝑥𝑥(𝑡, 𝐿) = 0

ℎ(0, 𝑥) = ℎ0

and

0 ≤ 𝑢(𝑡) ≤ 𝑢𝑝 for a.e. 𝑡.

We will use gradient descent to find a solution to the optimization
problem. However, we note that the cost function (8) is a function of
two variables ℎ and 𝑢. However, algorithmically, gradient descent is
difficult to implement for this optimization problem due to the PDE
constraints. To get around this problem, it is standard in the optimal
control literature to treat ℎ as a variable dependent on 𝑢 via the PDE
constraint (5). This will enable us to perform gradient descent on the
variable 𝑢 rather than both ℎ and 𝑢. Towards this goal, we define the

reduced objective functional 𝑓 ∶ 𝑈 → R by 𝑓 (𝑢) = 𝐽 (ℎ(𝑢), 𝑢) for all 𝑢 ∈ 𝑈 ,
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where ℎ(𝑢) is the solution of the Eqs. (2)–(7) for a given 𝑢. In terms of
he reduced objective functional, the optimal control Problem 2.1 can
lternatively expressed as

roblem 2.2.

inf
∈𝑈

𝑓 (𝑢)

While one can compute the gradient of the function 𝑓 (𝑢), with
espect to 𝑢, using the finite difference method, this approach is not
umerically tractable since 𝑢(𝑡) is a function. Alternatively, one can
ompute the gradient of 𝑓 (𝑢) using the formal Lagrange method [32] or
he method of Lagrange multipliers to the optimization Problem 2.1.
his method leads to a numerically tractable expression for this gradi-
nt using the so called adjoint equation. While the method leads to the
ormulation of the correct expression for the gradient, the derivation of
he conditions is not mathematically rigorous. This is because applying
his method to optimization problems with PDE constraints requires
ddressing additional technicalities, such as the existence of solutions
nd the differentiability of the objective functional. These technicalities
re outside the scope of this paper. We will use the method formally
o derive the first order necessary conditions of optimality and provide
umerical evidence that this thin film equation can be controlled for
ertain short lengths using an optimal control approach.
We will now eliminate the constraints by means of Lagrange multi-

liers, 𝑝1(𝑡, 𝑥), 𝑝2(𝑡), 𝑝3(𝑡), 𝑝4(𝑡), 𝑝5(𝑡). The multipliers are grouped into
vector 𝑝 = [𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5]. The Lagrangian function is defined as
ollows

(ℎ, 𝑢, 𝑝) = 𝐽 (ℎ, 𝑢) − ∫

𝑇

0 ∫𝛺
𝑝1(𝑡, 𝑥)

(

ℎ𝑡 +
(

ℎ3(𝐺 + ℎ𝑥 + ℎ𝑥𝑥𝑥)
)

𝑥
)

𝑑𝑥 𝑑𝑡

− ∫

𝑇

0
𝑝2(𝑡)

(

(ℎ3(𝐺 + ℎ𝑥 + ℎ𝑥𝑥𝑥))|(𝑥=0) − 𝑢(𝑡)
)

𝑑𝑡

− ∫

𝑇

0
𝑝3(𝑡)(ℎ(𝑡, 0) − ℎ𝑖𝑛)𝑑𝑡 − ∫

𝑇

0
𝑝4(𝑡)ℎ𝑥(𝑡, 𝐿)𝑑𝑡

− ∫

𝑇

0
𝑝5(𝑡)ℎ𝑥𝑥𝑥(𝑡, 𝐿)𝑑𝑡.

Let ℎ̄, 𝑢̄ denote the optimal values of ℎ(𝑡, 𝑥) and 𝑢(𝑡) respectively. More-
over, we will assume that ℎ̄ is strictly positive on [0, 𝐿]; as will be seen
later in the Appendix, this assumption will prove to be vital in deriving
the optimality conditions. First-order necessary condition requires that
the derivative of  with respect to ℎ must vanish at the optimal point
(ℎ̄, 𝑢̄), that is,

𝐷ℎ(ℎ̄, 𝑢̄, 𝑝)𝑣 = 0, ∀𝑣 s.t. 𝑣(0, 𝑥) = 0. (10)

The condition 𝑣(0, 𝑥) = 0 imposed on the perturbation 𝑣 ensures that
the initial condition (7) is fixed. This necessary condition yields the
following adjoint equation and the corresponding boundary conditions.
Details of the derivation have been provided in the Appendix.

− (𝑝1)𝑡 = (ℎ̄ − ℎ𝑑 ) + (𝑝1)𝑥(3ℎ̄2(𝐺 + ℎ̄𝑥 + ℎ̄𝑥𝑥𝑥)) −
(

(𝑝1)𝑥ℎ̄3
)

𝑥

−
(

(𝑝1)𝑥ℎ̄3
)

𝑥𝑥𝑥 in 𝛺 (11)

(𝑝1)𝑥(𝑡, 0) = 0, (12)

(𝑝1)𝑥𝑥(𝑡, 0) = 0 (13)

(𝑝1)𝑥(𝑡, 𝐿) = 0 (14)

− 𝑝1(𝑡, 𝐿) + (𝑝1)𝑥𝑥𝑥(𝑡, 𝐿) = 0 (15)

𝑝1(𝑇 , 𝑥) = 0 (16)

The adjoint equation is solved backward in time, therefore the final-
time condition (16) is the initial condition for the adjoint equation. The
initial condition set to zero here as per Eq. (33) (in Appendix).

The gradient of the reduced objective functional 𝑓 (𝑢) with respect
to 𝑢 can be computed using the gradient of the Lagrangian [32] as

𝑓 (𝑢) = 𝐷 (ℎ, 𝑢, 𝑝). (17)
3

𝑢 𝑢 e
From the constraints on 𝑢, we deduce that the optimal control 𝑢̄ must
satisfy the following variational inequality,

𝐷𝑢(ℎ̄, 𝑢̄, 𝑝)(𝑢 − 𝑢̄) = ∫

𝑇

0
(𝜆𝑢̄ + 𝑝2)(𝑢 − 𝑢̄) ≥ 0, ∀𝑢 ∈ 𝑈 (18)

To find (ℎ̄, 𝑢̄), we perform gradient descent on the optimization
problem using the expression for the gradient in (17). The system
(2)–(6) is solved forward in time 𝑡 ∈ [0, 𝑇 ], hence it is called the
forward equation. As previously mentioned, the adjoint Eq. (11)–(15)
is solved backward in time 𝜏 = 𝑇 − 𝑡 ∈ [0, 𝑇 ], hence it is referred
to as the backward equation. The search for an optimal control entails
performing a gradient descent on 𝑢. The algorithm is presented in
Algorithm 1. Statements 9–11 in Algorithm 1 implement the projected
gradient method [33]. This ensures that the obtained 𝑢 is strictly non-
negative. Moreover, we let 𝑢(𝑡) be unbounded as this choice does not
lead to any convergence issues.

Algorithm 1 Gradient Descent

1: Input: ℎ𝑑 (𝑡, 𝑥), 𝜆, 𝛥, 𝑛, 𝑇 ⊳ 𝛥:= Step size, 𝑛:= Number of iterations
2: Initialize ℎ(𝑡 = 0, 𝑥), 𝑝1(𝑡 = 𝑇 , 𝑥), 𝑢0(𝑡) ⊳ 𝑢0(𝑡):=Initial guess for the
control law

3: Solve for ℎ(𝑡, 𝑥) in (2)-(7), with (5) set to 𝑢0(𝑡).
4: Compute the initial cost 𝐿0 (8) with ℎ(𝑡, 𝑥), 𝑢0(𝑡)
5: for 𝑖 = 1 ∶ 𝑛 do
6: Solve for 𝑝1 in (11)-(15), with ℎ̄(𝑡, 𝑥) set to ℎ(𝑡, 𝑥).
7: Set 𝑝2(𝑡) = 𝑝1(𝑡, 𝑥 = 0) (see (32))
8: Compute 𝑢𝑐 (𝑡) = 𝑢𝑖−1(𝑡) − 𝛥(𝜆𝑢𝑖−1(𝑡) + 𝑝2(𝑡)).
9: if 𝑢𝑐 (𝑡𝑗 ) < 0 for some 𝑡𝑗 ∈ [0, 𝑇 ] then ⊳ Projected Gradient
10: Set 𝑢𝑐 (𝑡𝑗 ) = 0
11: end if
12: Solve for ℎ𝑐 (𝑡, 𝑥) in (2)-(6), with (5) set to 𝑢𝑐 (𝑡)
13: Compute cost 𝐿𝑖 with ℎ𝑐 (𝑡, 𝑥), 𝑢𝑐 (𝑡)
14: if 𝐿𝑖 < 𝐿𝑖−1 then
15: 𝑢𝑖(𝑡) = 𝑢𝑐 (𝑡)
16: ℎ(𝑡, 𝑥) = ℎ𝑐 (𝑡, 𝑥)
17: else
18: Set 𝛥 = 𝛥∕2
19: end if
20: end for

3. Numerical studies

To simulate the thin-film equation (2) and its adjoint equation (11)
ith their respective boundary conditions, (5)–(6), (12)–(15), we use
inite-difference method for space discretization. In particular, we
hoose a uniform grid and finite-difference of second-order of accuracy.
his results in a 𝑁-dimension ordinary differential equation (ODE)
n time. The ODE obtained is simulated in Matlab, using the ode15s
olver, a variable-step, variable-order solver based on the numerical
ifferentiation formulas (NDFs) of orders 1 to 5. The necessity of this
olver arises due to the stiffness of the system.
We test the optimal control design in two settings: in Section 3.1,

he desired profile ℎ𝑑 is set to be a constant function, and in Section 3.2,
𝑑 is set to be a traveling wave of given speed. In the examples
resented next, we make the following choices of initial conditions and
arameters. The initial condition for the forward Eq. (2) is set to be a
ear constant function ℎ0 such that the integral of ℎ0 over [0, 𝐿] is close
o the integral of ℎ𝑑 . If the initial condition ℎ0 is not chosen in this
ay, the optimization algorithm may fail to converge to a solution. This
ay be due to the infeasibility of the resulting optimization problem
hen the initial condition of the PDE is far away from the desired
onfiguration. In such a situation, we say that the control system is not
lobally controllable. The control is initialized to be a strictly positive
onstant function 𝑢0. The weighting parameter 𝜆 in (8) is set to be 1.
e choose the values of 𝑢0, final time 𝑇 , and step size 𝛥 specific to the
xample, and presented within each case.
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3.1. Spatially-uniform solutions

We begin by discussing the stability of spatially-uniform profiles
for (2) under periodic boundary conditions. Although these results do
not apply to the boundary conditions that we consider (5)–(6), we
expect them to hold for the subdomain away from the inlet and outlet
boundaries at 𝑥 = 0, 𝐿. Consider a spatially-uniform film ℎ(𝑡, 𝑥) = ℎ̄,
over a periodic domain [0, 𝑙], perturbed by an infinitesimal Fourier
mode,

ℎ = ℎ̃ + 𝜀𝑒i(𝑘𝑥−𝛬𝑡). (19)

Here, 𝑘 = 2𝜋𝑘̂∕𝑙 is the wave number, 𝑘̂ = 1, 2,… represents the number
of waves in the perturbation, 𝛬 is the wave frequency, and 𝜀 ≪ 1 is the
initial amplitude. Substituting this expression into (2) and linearizing
around the base state ℎ̃ yields the dispersion relation,

𝛬 = 3𝐺ℎ̃𝑘 + iℎ̃3𝑘2(1 − 𝑘2), (20)

where 𝑐 = 3𝐺ℎ̃ is the speed of linear kinematic wave solutions of (2)
for small wave numbers. The form (20) indicates that the second-order
azimuthal curvature term (ℎ3ℎ𝑥)𝑥 is destabilizing, and the fourth-order
streamwise surface tension (ℎ3ℎ𝑥𝑥𝑥)𝑥 term is stabilizing. When the
effective growth rate Im(𝛬) is greater than 0, the spatial perturbation
grows in time and the flat film ℎ̃ becomes long-wave unstable with
respect to any wave number 0 < 𝑘 < 1. Alternatively, choosing 𝑘̂ = 1
in (20) shows that the flat film is linearly unstable for any domain size
𝑙 > 2𝜋.

Next, we consider the steady state solution ℎ̃(𝑥) of the model (2)
subject to the inlet and outlet boundary conditions (5)–(6). By setting
the time derivative term ℎ𝑡 = 0 in (2) and integrating once, we obtain
the third-order ODE for the steady state solution ℎ̃(𝑥),

𝑑3ℎ̃
𝑑𝑥3

+ 𝑑ℎ̃
𝑑𝑥

= 𝑢
ℎ̃3

− 𝐺, (21)

ubject to the boundary conditions

̃ (0) = ℎ𝑖𝑛, ℎ̃𝑥(𝐿) = ℎ̃𝑥𝑥𝑥(𝐿) = 0. (22)

n the absence of active control, we assume that the boundary control is
onstant in time, 𝑢(𝑡) ≡ 𝑢0. This ODE is similar to the one studied in [34]
hat models the meniscus structure of a surface-tension driven liquid
ilms. Since ℎ̃(𝑥) satisfies the boundary conditions ℎ̃𝑥(𝐿) = ℎ̃𝑥𝑥𝑥(𝐿) = 0,
21) yields the relation ℎ̃(𝐿) = (𝑢0∕𝐺)1∕3. Therefore, the steady-state
lat film solution ℎ̃ ≡ ℎ𝑖𝑛 of (2) only exists if the control 𝑢0 satisfies
0 = ℎ3𝑖𝑛𝐺. A non-trivial steady state solution for the boundary value
roblem (21)–(22) is determined by the Bond number 𝐺, the inlet
ilm thickness ℎ𝑖𝑛, and the flux 𝑢0. By setting the derivative terms
3ℎ̃∕𝑑𝑥3 = 𝑑ℎ̃∕𝑑𝑥 = 0 in (21), the asymptotic behavior of a typical
ontrivial steady state satisfies

̃ → (𝑢0∕𝐺)1∕3 for 𝑥 → 𝐿. (23)

lternatively, to obtain a steady state solution of a desired flat film
hickness ℎ → ℎ𝑑 away from the inlet, the boundary flux control 𝑢0
hould satisfy

0 ∼ 𝐺(ℎ𝑑 )3. (24)

.1.1. Example 1
In view of the discussion above, we consider the optimal control

roblem 2.1 with a spatially constant desired profile on a domain of
ength 𝐿 > 2𝜋. Specifically, we consider a desired profile ℎ𝑑 (𝑡, 𝑥) = 0.5
n a domain of size 𝐿 = 50 with the Bond number 𝐺 = 0.5. The
ayleigh–Plateau instability dominates the system due to the input flux,
he relatively long domain, and low Bond number, causing the uniform
ilm to break into ripples. This spatial instability is numerically shown
n the simulation of the uncontrolled system (2) in Fig. 1(a). Starting
rom a spatially-uniform initial condition ℎ0 = 0.5 in (7), the sequential
4

lots of ℎ(𝑡, 𝑥) in Fig. 1(a) show the evolution of the PDE solution p
o the uncontrolled system (2), where the input flux (5) is set to a
time-invariant) constant function 𝑢 = 𝑢0 ≡ 0.5. Driven by the Rayleigh–
lateau instability, the solution develops a wavy pattern away from the
nlet.
We apply the optimal control Algorithm 1 to this example for final

ime 𝑇 = 500. Identical initial condition ℎ0 = 0.5 is used for the
orward equation similar to the uncontrolled case. Fig. 1(b) shows the
imulation of the forward Eq. (2) under the boundary control 𝑢(𝑡) (5)
btained from the algorithm. The control 𝑢 in time is shown in Fig. 1(c).
e observe that the controlled system does not break into ripples
nd converges to approximately ℎ ≈ 0.47 away from the inlet, close
o the desired flat film ℎ𝑑 = 0.5. Numerical simulation suggests that
he observed trend of ℎ, which forms a meniscus like profile starting
rom 0.5 and converges to 0.47, is locally stable. The optimal control
lgorithm appears to converge to this nontrivial equilibrium. Moreover,
e observe that the average value of 𝑢 is 0.05, which is close to 𝑢0 ∼
.0625 predicted by the formula (24) for 𝐺 = 0.5 and ℎ𝑑 ≡ 0.5. The
ayleigh–Plateau instability is not expected to dominate under this low
verage value of input flux 𝑢0 ∼ 0.05. However, this example shows that
he optimal control algorithm produces an output that can be verified
gainst the analytical result obtained in (24). Moreover, the need to
esign such control laws will be better appreciated in the upcoming
ections, where we will consider traveling waves as the desired film
rofile.

.2. Traveling wave solutions

In this section, we choose ℎ𝑑 to be a traveling wave of desired
haracteristics. We generate these traveling waves by considering (2)
ver a periodic domain 𝑥 ∈ [0, 𝐿] with boundary conditions ℎ𝑑 (𝑡, 𝑥) =
𝑑 (𝑡, 𝑥 + 𝐿). The PDE has traveling wave solutions that take the form,

𝑑 (𝑡, 𝑥) = 𝐻(𝜉), 𝜉 = 𝑥 − 𝑐𝑡, (25)

here 𝑐 is the speed of the traveling wave. Substituting the ansatz (25)
nto (2) yields a fourth-order nonlinear ordinary differential equation
or 𝐻(𝜉),

𝑐𝐻𝜉 +
[

𝐻3 (𝐺 +𝐻𝜉 +𝐻𝜉𝜉𝜉
)]

𝜉 = 0. (26)

his is a nonlinear eigenvalue problem for the traveling wave profile 𝐻
nd the speed 𝑐. We apply Newton’s method to solve Eq. (26), where 𝑐
s treated as an unknown. Following the numerical method used in [2],
e impose a constraint on mass conservation as follows. To achieve
ocal uniqueness of the solution, define

0 = ∫

𝐿

0
𝐻(𝜉) 𝑑𝜉, (27)

nd set 𝐻(𝜉0) = 𝐻0, for some 0 ≤ 𝜉0 ≤ 𝐿. Applying the numerical
ontinuation method to the system yields a family of traveling wave solu-
ions 𝐻(𝜉;𝑀0, 𝐿) of (26) and (27), parameterized by paired parameters
𝑀0, 𝐿).
We note that the traveling waves 𝐻(𝜉) do not necessarily satisfy the

oundary conditions (5)–(6). In fact, for liquid flowing down a vertical
ylindrical fibers, the dynamics of the flow near the inlet and outlet
trongly depend on the boundary conditions [1]. For droplet dynamics
n the Rayleigh–Plateau regime where a steady train of droplets travel
own the fiber with nearly constant speed and spacing, one may
pproximate the flow dynamics away from the inlet and outlet by
raveling waves [2]. In this work, we will use traveling wave solutions
(𝜉) associated with periodic boundary conditions as desired solution

rofiles in the control problem.
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Fig. 1. Simulation from Example 1 on a domain size 𝐿 = 50, with 𝐺 = 0.5 and ℎ0 = 0.5.
Fig. 2. Simulation from Example 2 on domain size 𝐿 = 10, with 𝐺 = 0.5 and 𝑀0 = 3.622.
3.2.1. Example 2: Slow traveling waves
As a first example, we numerically generate a relatively ‘slow’

traveling wave 𝐻(𝜉) over a periodic domain of size 𝐿 = 10 by solving
he traveling wave ODE (26) subject to the constraint (27) with mass
0 = 3.622 and Bond number 𝐺 = 0.5. The generated traveling wave

s associated with a relatively slow speed 𝑐 = 0.2, and its evolution in
ime ℎ𝑑 (𝑡, 𝑥) = 𝐻(𝑥 − 𝑐𝑡) is shown in orange in Fig. 2(a). We verify
5

numerically that the one-period traveling wave 𝐻(𝜉) is stable over the
domain 0 ≤ 𝜉 ≤ 𝐿 with respect to perturbations of the same period. A
detailed stability analysis of traveling waves in similar thin film models
can be found in [2].

We choose the initial condition for the forward Eq. (2) to be the
constant function ℎ0 = 0.4. The optimal control algorithm was run
for 𝑇 = 200, which corresponds to 4 cycles of the wave traveling
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Fig. 3. Logarithm of the cost function (8), with 𝜆 = 0, evaluated in Example 2,
orresponding to Fig. 2(a), against iterations.

ver the domain [0, 𝐿]. The boundary control function 𝑢(𝑡) obtained
rom the algorithm is presented in Fig. 2(b). As expected, we observe
hat the control 𝑢 shows periodicity; moreover, it appears to achieve
steady state type of behavior away from 𝑡 = 𝑇 . We simulate the
olution of (2) after substituting the 𝑢 obtained from the algorithm in
5). Fig. 2(a) shows the snapshots of time and spatial evolution of the
olution ℎ(𝑡, 𝑥). Fig. 3 shows the 𝐿2([0, 𝑇 ], 𝛺) error between ℎ and ℎ𝑑

gainst the number of iterations. We observe that the film thickness ℎ
ndeed converges approximately to ℎ𝑑 . In general, on short domains,
he fluid film converges to a uniform film, but this example shows that
ctive control can be used to make the fluid film break into ripples.
To test our algorithm on long domains, we duplicate the desired

raveling wave ℎ𝑑 (shown in Fig. 2(a)) over multiples of 𝐿 = 10. For
xample, duplicating over 𝐿 = 40 produces a train of 4 droplets, while
uplicating over 𝐿 = 50 produces a train of 5 droplets. Both are shown
n red at an arbitrary time instant 𝑡 in Figs. 4(a) and 4(b), respectively.
ur numerical study shows that these periodic multi-pulse traveling
aves are unstable under periodic boundary conditions. Perturbing
hese multi-pulse traveling waves over the periodic domain 0 ≤ 𝑥 ≤ 𝐿
leads the dynamic solution to the PDE (2) produce irregular wavy
patterns in long-time simulations. However, using the optimal control
algorithm, we are able to design a boundary control that generates
consistent PDE solutions that resemble the desired traveling waves. In
6

o

the former case, i.e. 𝐿 = 40, the algorithm was run for 𝑇 = 200. In the
latter case, 𝐿 = 50, the final time was set at 𝑇 = 300. In both cases, the
initial condition of the forward equation is set at ℎ0 = 0.4. Figs. 4(a)
and 4(b) show snapshots of the space evolution of the controlled ℎ at
= 180 and 𝑡 = 260, respectively. We observe that in both these cases,
he optimal control algorithm is able to find a 𝑢 that drives the system
2) close to the desired wave profile ℎ𝑑 , away from the boundary.

.2.2. Example 3: Fast traveling waves
For this example, we generate a ‘fast’ traveling wave on 𝐿 = 10 by

olving (26) over a periodic domain with 𝑀0 = 10.088 and 𝐺 = 0.5.
he traveling wave obtained has a speed 𝑐 = 1.652, and its evolution in
ime is shown in orange in Fig. 5(a). The initial condition of the forward
q. (7) is set at ℎ0 = 0.6. The optimal control 𝑢(𝑡) generated in this case,
btained for 𝑇 = 200, is presented in 5(b).
Fig. 6 shows the 𝐿2([0, 𝑇 ], 𝛺) error between ℎ(𝑡, 𝑥) and ℎ𝑑 (𝑡, 𝑥). Here

e observe that the error is significantly higher than in Example 2. This
an also be noted from the ℎ simulation in Fig. 5(a), we observe that
lthough the controlled ℎ is able to match ℎ𝑑 in frequency, it fails to do
o in amplitude. We believe that this is because in Example 2 the wave
peed, 𝑐 = 0.2, is slower than this example’s wave speed, 𝑐 = 1.652.
here appears to be a limitation on the speed of the traveling wave that
rohibits reaching this solution ℎ𝑑 exactly. This indicates that the set
f reachable states from a given initial condition does not necessarily
nclude all film profiles.
Furthermore, we extend the domain from 𝐿 = 10 to 40 and duplicate

he ℎ𝑑 profile from Fig. 5(a) to obtain a train of 4 pulses. Similar to
xample 2 discussed in Section 3.2, the single pulse traveling wave
𝑑 (𝜉) considered in this example is stable over a periodic domain, while
he 4-pulse traveling wave is unstable. The simulated controlled ℎ(𝑡, 𝑥)
s shown in Fig. 7 at time instant 𝑡 = 54. However, in this case, we
bserve that the algorithm is not able to find a control 𝑢 that makes the
ystem converge to ℎ𝑑 . This is unlike in Example 2 where an optimal
ontrol is found for longer domains. This could be attributed to the
igher speed of the traveling wave. Without a controllability analysis,
t appears that the algorithm works better for slow traveling waves or

ver shorter domains.
Fig. 4. Simulation of the controlled ℎ(𝑡, 𝑥) against the desired traveling wave profile ℎ𝑑 (𝑡, 𝑥) at specific time instants 𝑡, over different domain sizes 𝐿, with 𝐺 = 0.5. The profile ℎ𝑑

in each case is obtained by replicating the ℎ𝑑 from Example 2 (shown in Fig. 2(a)) over 𝐿.
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Fig. 6. Logarithm of the cost function (8), with 𝜆 = 0, evaluated in Example 3
corresponding to 5(a), against iterations.

3.2.3. Example 4: Isolated pulse with large inter-pulse spacing
As our final example, we generate a traveling wave ℎ𝑑 (𝑡, 𝑥) that has
higher speed on a long domain, as compared to Example 3. Similar
o the previous cases, we generate ℎ𝑑 by solving the traveling wave
DE (26) under periodic boundary conditions on 𝐿 = 30 with 𝑀0 = 22
nd Bond number 𝐺 = 1. This results in an unstable traveling wave of
peed 𝑐 = 2.13. PDE simulation of Eq. (2) starting from this isolated
ulse with a small perturbation yields a transition into a train of two-
ulse traveling wave over the periodic domain. Snapshots of the spatial
volution of desired wave profile are shown in orange in Fig. 8(a). The
ptimal control found in this case is presented in Fig. 8(b). Snapshots of
he corresponding solution ℎ(𝑡, 𝑥) are presented in Fig. 8(a). Although
7

I

e expect that under this large Bond number 𝐺 = 1 and over a
elatively short domain of size 𝐿 = 30, the fluid film will converge to
uniform film away from the inlet, with active control, the system is
ble to track the desired traveling wave closely.
Similar to the previous cases, we duplicated ℎ𝑑 , presented in 8(a),

o obtain two pulses over 𝐿 = 60. Fig. 9 shows the simulation of the
ontrolled ℎ at a time step 𝑡 = 170. We observe that, despite the much
igher speed in this case, the system is able to track ℎ𝑑 very closely,
nlike in the case shown in Fig. 7. We believe this could be attributed to
he fact that in this case, the frequency of ℎ𝑑 , due to higher inter-pulse
pacing, is smaller than the case in 7.

. Conclusion

Our goal in this work is to present a proof-of-concept that the
onlinear thin-film equation, considered in this paper, can be controlled
o both constant and traveling wave profiles of small wave speeds,
ver short domain sizes. Specifically, with respect to the uniform film
rofile case, we are able to design (time-dependent) control laws such
hat the controlled system converges to a uniform film on a domain
ize where the Rayleigh–Plateau instability is not very significant. With
egards to general traveling waves, the controlled system is able to
onverge to a slow traveling wave on relatively long domain of size up
o 𝐿 = 50. For relatively fast traveling waves of high frequency on short
omains, the optimal control algorithm generates a control function
hat matches the traveling wave in frequency, and not in amplitude.
owever, the algorithm does generate a control law that is able to
rack fast traveling waves of low frequency on long domains closely.

n conclusion, the numerical experiments seem to indicate that the
Fig. 7. Simulation of the controlled ℎ(𝑡, 𝑥) against the desired traveling wave profile ℎ𝑑 (𝑡, 𝑥) at specific time instant 𝑡 = 54, over 𝐿 = 40, with 𝐺 = 0.5. The profile ℎ𝑑 in is obtained
by replicating the ℎ𝑑 from Example 3 (shown in Fig. 5(a)) over 𝐿.
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Fig. 8. Simulation from Example 4 on domain size 𝐿 = 30, with 𝐺 = 1 and 𝑀0 = 22.
Fig. 9. Simulation of the controlled ℎ(𝑡, 𝑥) against the desired traveling wave profile ℎ𝑑 (𝑡, 𝑥) at specific time instant 𝑡 = 170, over 𝐿 = 60, with 𝐺 = 1. The profile ℎ𝑑 in is obtained
y replicating the ℎ𝑑 from Example 3 (shown in Fig. 8(a)) over 𝐿.
hin-film equation under the given boundary conditions is controllable
or certain domain sizes, and for initial conditions ℎ𝑖𝑛, that are close
o ℎ𝑑 in the 𝐿2(⋅) sense. Our study also highlights the limitations
f boundary control. Future work will investigate the possibility of
umerically characterizing the controllability properties of the system
nd designing stabilizing feedback controllers. A stabilizing control
aw can potentially render a desired film profile locally asymptotically
table.
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ppendix

We provide the derivation of the adjoint equation in this section.
xpanding the LHS of (10), we obtain the following

ℎ(ℎ̄, 𝑢̄, 𝑝𝑖)𝑣 = ∫

𝑇

0 ∫𝛺
(ℎ̄ − ℎ𝑑 )𝑣

−
𝑇

𝑝1
{

𝑣𝑡 +
(

3ℎ̄2𝑣 + (3ℎ̄2ℎ̄𝑥𝑣 + ℎ̄3𝑣𝑥) + (3ℎ̄2ℎ̄𝑥𝑥𝑥𝑣 + ℎ̄3𝑣𝑥𝑥𝑥)
) }
8

∫0 ∫𝛺 𝑥
− ∫

𝑇

0
𝑝2{

(

3ℎ̄2𝑣 + (3ℎ̄2ℎ̄𝑥𝑣 + ℎ̄3𝑣𝑥) + (3ℎ̄2ℎ̄𝑥𝑥𝑥𝑣 + ℎ̄3𝑣𝑥𝑥𝑥)
)

|

|

|𝑥=0
− 𝑢}

− ∫

𝑇

0
𝑝3𝑣(0, 𝑡) − ∫

𝑇

0
𝑝4𝑣𝑥(𝐿, 𝑡) − ∫

𝑇

0
𝑝5𝑣𝑥𝑥𝑥(𝐿, 𝑡)

Applying integration by parts yields:

𝐷ℎ(ℎ̄, 𝑢̄, 𝑝𝑖)𝑣 = ∫

𝑇

0 ∫𝛺
(ℎ̄ − ℎ𝑑 )𝑣 − ∫𝛺

(𝑝1𝑣)
|

|

|

𝑇

0
+ ∫

𝑇

0 ∫𝛺
(𝑝1)𝑡𝑣

− ∫

𝑇

0
(𝑝13ℎ̄2𝑣)

|

|

|𝜕𝛺
+ ∫

𝑇

0 ∫𝛺
(𝑝1)𝑥(3ℎ̄2𝑣)

− ∫

𝑇

0
(𝑝1(3ℎ̄2ℎ̄𝑥𝑣 + ℎ̄3𝑣𝑥))

|

|

|𝜕𝛺
+ ∫

𝑇

0 ∫𝛺
(𝑝1)𝑥(3ℎ̄2ℎ̄𝑥𝑣 + ℎ̄3𝑣𝑥)

− ∫

𝑇

0
(𝑝1(3ℎ̄2ℎ̄𝑥𝑥𝑥𝑣 + ℎ̄3𝑣𝑥𝑥𝑥))

|

|

|𝜕𝛺
+ ∫

𝑇

0 ∫𝛺
(𝑝1)𝑥(3ℎ̄2ℎ̄𝑥𝑥𝑥𝑣 + ℎ̄3𝑣𝑥𝑥𝑥)

− ∫

𝑇

0
𝑝2{

(

3ℎ̄2𝑣 + (3ℎ̄2ℎ̄𝑥𝑣 + ℎ̄3𝑣𝑥) + (3ℎ̄2ℎ̄𝑥𝑥𝑥𝑣 + ℎ̄3𝑣𝑥𝑥𝑥)
)

|

|

|𝑥=0
− 𝑢}

− ∫

𝑇

0
𝑝3𝑣(0, 𝑡) − ∫

𝑇

0
𝑝4𝑣𝑥(𝐿, 𝑡) − ∫

𝑇

0
𝑝5𝑣𝑥𝑥𝑥(𝐿, 𝑡).

Applying integration by parts once more yields:

𝐷ℎ(ℎ̄, 𝑢̄, 𝑝𝑖)𝑣 = ∫

𝑇

0 ∫𝛺
(ℎ̄ − ℎ𝑑 )𝑣 − ∫𝛺

(𝑝1𝑣)
|

|

|

𝑇

0
+ ∫

𝑇

0 ∫𝛺
(𝑝1)𝑡𝑣

− ∫

𝑇

0
𝑝1(3ℎ̄2𝑣)

|

|

|𝜕𝛺
+ ∫

𝑇

0 ∫𝛺
(𝑝1)𝑥(3ℎ̄2𝑣) − ∫

𝑇

0
(𝑝1(3ℎ̄2ℎ̄𝑥𝑣 + ℎ̄3𝑣𝑥))

|

|

|𝜕𝛺

+ ∫

𝑇

0 ∫𝛺
(𝑝1)𝑥(3ℎ̄2ℎ̄𝑥𝑣) + ∫

𝑇

0
((𝑝1)𝑥ℎ̄3𝑣)

|

|

|𝜕𝛺
− ∫

𝑇

0 ∫𝛺

(

(𝑝1)𝑥ℎ̄3
)

𝑥 𝑣

−
𝑇
(𝑝1(3ℎ̄2ℎ̄𝑥𝑥𝑥𝑣 + ℎ̄3𝑣𝑥𝑥𝑥))

|

| +
𝑇

(𝑝1)𝑥(3ℎ̄2ℎ̄𝑥𝑥𝑥𝑣)
∫0 |𝜕𝛺 ∫0 ∫𝛺

https://github.com/ShibaBiswal/Optimal-Boundary-Control-for-Thin-Film-Equation-
https://github.com/ShibaBiswal/Optimal-Boundary-Control-for-Thin-Film-Equation-
https://github.com/ShibaBiswal/Optimal-Boundary-Control-for-Thin-Film-Equation-
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+ ∫

𝑇

0

(

(𝑝1)𝑥ℎ̄3𝑣𝑥𝑥
)

|

|

|𝜕𝛺
− ∫

𝑇

0

((

(𝑝1)𝑥ℎ̄3
)

𝑥 𝑣𝑥
)

|

|

|𝜕𝛺

+ ∫

𝑇

0

((

(𝑝1)𝑥ℎ̄3
)

𝑥𝑥 𝑣
)

|

|

|𝜕𝛺

− ∫

𝑇

0 ∫𝛺

(

(𝑝1)𝑥ℎ̄3
)

𝑥𝑥𝑥 𝑣

− ∫

𝑇

0
𝑝2(𝑡){

(

3ℎ̄2𝑣 + (3ℎ̄2ℎ̄𝑥𝑣 + ℎ̄3𝑣𝑥) + (3ℎ̄2ℎ̄𝑥𝑥𝑥𝑣 + ℎ̄3𝑣𝑥𝑥𝑥)
)

|

|

|𝑥=0
− 𝑢}

− ∫

𝑇

0
𝑝3(𝑡)𝑣(0, 𝑡) − ∫

𝑇

0
𝑝4(𝑡)𝑣𝑥(𝐿, 𝑡) − ∫

𝑇

0
𝑝5(𝑡)𝑣𝑥𝑥𝑥(𝐿, 𝑡).

Since 𝐷ℎ(ℎ̄, 𝑢̄, 𝑝𝑖)𝑣 = 0 for all perturbations 𝑣, choose a subset of
𝑣 such that 𝑣 = 𝑣𝑥 = 𝑣𝑥𝑥 = 𝑣𝑥𝑥𝑥 = 𝑣𝑥𝑥𝑥𝑥 = 0 at 𝑥 = 0, 𝐿, and 𝑣 = 0 at
𝑡 = 0, 𝑇 . Then 𝐷ℎ(ℎ̄, 𝑢̄, 𝑝)𝑣 = 0 implies:

𝐷ℎ(ℎ̄, 𝑢̄, 𝑝)𝑣 = ∫

𝑇

0 ∫𝛺
(ℎ̄ − ℎ𝑑 )𝑣 + ∫

𝑇

0 ∫𝛺
(𝑝1)𝑡𝑣 + ∫

𝑇

0 ∫𝛺
(𝑝1)𝑥(3ℎ̄2𝑣)

+ ∫

𝑇

0 ∫𝛺
(𝑝1)𝑥(3ℎ̄2ℎ̄𝑥𝑣) − ∫

𝑇

0 ∫𝛺

(

(𝑝1)𝑥ℎ̄3
)

𝑥 𝑣

+ ∫

𝑇

0 ∫𝛺
(𝑝1)𝑥(3ℎ̄2ℎ̄𝑥𝑥𝑥𝑣) − ∫

𝑇

0 ∫𝛺

(

(𝑝1)𝑥ℎ̄3
)

𝑥𝑥𝑥 𝑣 = 0.

Rearranging the terms gives us:

(𝑝1)𝑡 + (ℎ̄ − ℎ𝑑 ) + 3(𝑝1)𝑥ℎ̄2 + 3(𝑝1)𝑥ℎ̄2ℎ̄𝑥 −
(

(𝑝1)𝑥ℎ̄3
)

𝑥

+ 3(𝑝1)𝑥ℎ̄2ℎ̄𝑥𝑥𝑥 −
(

(𝑝1)𝑥ℎ̄3
)

𝑥𝑥𝑥 = 0.

The equation above can be rewritten to obtain the adjoint Eq. (11).
Next, choose 𝑣 such that 𝑣𝑥 = 𝑣𝑥𝑥 = 𝑣𝑥𝑥𝑥 = 𝑣𝑥𝑥𝑥𝑥 = 0 at 𝑥 = 0, and

𝑣 = 0 at 𝑡 = 0, 𝑇 and 𝑥 = 𝐿, then 𝐷ℎ(ℎ̄, 𝑢̄, 𝑝𝑖)𝑣 = 0 implies that,

− ∫

𝑇

0
𝑝13ℎ̄2𝑣

|

|

|𝑥=0
− ∫

𝑇

0
(𝑝13ℎ̄2ℎ̄𝑥𝑣)

|

|

|𝑥=0
+ ∫

𝑇

0
((𝑝1)𝑥ℎ̄3𝑣)

|

|

|𝑥=0

− ∫

𝑇

0
(𝑝13ℎ̄2ℎ̄𝑥𝑥𝑥𝑣)

|

|

|𝑥=0
+ ∫

𝑇

0

((

(𝑝1)𝑥ℎ̄3
)

𝑥𝑥 𝑣
)

|

|

|𝑥=0

− ∫

𝑇

0
𝑝2(𝑡)

(

3ℎ̄2𝑣 + 3ℎ̄2ℎ̄𝑥𝑣 + 3ℎ̄2ℎ̄𝑥𝑥𝑥𝑣
)

|

|

|𝑥=0
− ∫

𝑇

0
𝑝3𝑣(0, 𝑡) = 0.

This further implies that,
(

−𝑝1(3ℎ̄2)(1 + ℎ̄𝑥 + ℎ̄𝑥𝑥𝑥) + (𝑝1)𝑥ℎ̄3 + ((𝑝1)𝑥ℎ̄3)𝑥𝑥

− 𝑝2(3ℎ̄2)(1 + ℎ̄𝑥 + ℎ̄𝑥𝑥𝑥)
)

|

|

|𝑥=0
= 𝑝3. (28)

Proceeding similarly, choose 𝑣 such that 𝑣𝑥 = 𝑣𝑥𝑥 = 𝑣𝑥𝑥𝑥 = 𝑣𝑥𝑥𝑥𝑥 = 0 at
𝑥 = 𝐿, and 𝑣 = 0 at 𝑡 = 0, 𝑇 and 𝑥 = 0, then 𝐷ℎ(ℎ̄, 𝑢̄, 𝑝𝑖)𝑣 = 0 implies
that,
(

−𝑝1(3ℎ̄2)(1 + ℎ̄𝑥 + ℎ̄𝑥𝑥𝑥) + (𝑝1)𝑥 ℎ̄3 + ((𝑝1)𝑥ℎ̄3)𝑥𝑥
)

|

|

|𝑥=𝐿
= 0. (29)

Continuing, choose 𝑣 such that 𝑣 = 𝑣𝑥𝑥 = 𝑣𝑥𝑥𝑥 = 𝑣𝑥𝑥𝑥𝑥 = 0 at 𝑥 = 0,
𝑣𝑥 = 0 at 𝑥 = 𝐿, and 𝑣 = 0 at 𝑡 = 0, 𝑇 . Then 𝐷ℎ(ℎ̄, 𝑢̄, 𝑝𝑖)𝑣 = 0 yields,

(−𝑝1ℎ̄3 − ((𝑝1)𝑥ℎ̄3)𝑥 − 𝑝2ℎ̄
3)||
|𝑥=0

= 0. (30)

Choose 𝑣 such that 𝑣 = 𝑣𝑥𝑥 = 𝑣𝑥𝑥𝑥 = 𝑣𝑥𝑥𝑥𝑥 = 0 at 𝑥 = 𝐿, 𝑣𝑥 = 0 at
𝑥 = 0, and 𝑣 = 0 at 𝑡 = 0, 𝑇 . Then 𝐷ℎ(ℎ̄, 𝑢̄, 𝑝𝑖)𝑣 = 0 yields,

(−𝑝1ℎ̄3 − ((𝑝1)𝑥 ℎ̄3)𝑥)
|

|

|𝑥=𝐿
= 𝑝4. (31)

Choose 𝑣 such that 𝑣 = 𝑣𝑥 = 𝑣𝑥𝑥𝑥 = 𝑣𝑥𝑥𝑥𝑥 = 0 at 𝑥 = 0, 𝑣𝑥𝑥 = 0 at 𝑥 = 𝐿,
and 𝑣 = 0 at 𝑡 = 0, 𝑇 . Then 𝐷ℎ(ℎ̄, 𝑢̄, 𝑝𝑖)𝑣 = 0 yields,

(𝑝1)𝑥 ℎ̄3||
|𝑥=0

= 0.

Since we have assumed that ℎ̄ > 0, the above equation implies that
(𝑝1)𝑥

|

|

|(𝑥=0)
= 0; this gives us the first boundary condition (12) for 𝑝1 at

𝑥 = 0. Choose 𝑣 such that 𝑣 = 𝑣𝑥 = 𝑣𝑥𝑥𝑥 = 𝑣𝑥𝑥𝑥𝑥 = 0 at 𝑥 = 𝐿, 𝑣𝑥𝑥 = 0
at 𝑥 = 0, and 𝑣 = 0 at 𝑡 = 0, 𝑇 . Then, 𝐷ℎ(ℎ̄, 𝑢̄, 𝑝𝑖)𝑣 = 0 implies,

̄ 3|
9

(𝑝1)𝑥 ℎ |

|𝑥=𝐿
= 0.
Since we have assumed that ℎ̄ > 0, the above equation further implies
that (𝑝1)𝑥(𝑡, 𝑥)

|

|

|(𝑥=𝐿)
= 0, which gives us the third boundary condi-

tion (14) for 𝑝1 at 𝑥 = 𝐿. Choose 𝑣 such that 𝑣 = 𝑣𝑥 = 𝑣𝑥𝑥 = 𝑣𝑥𝑥𝑥𝑥 = 0
at 𝑥 = 0, 𝑣𝑥𝑥𝑥 = 0 at 𝑥 = 𝐿, and 𝑣 = 0 at 𝑡 = 0, 𝑇 . Then 𝐷ℎ(ℎ̄, 𝑢̄, 𝑝𝑖)𝑣 = 0
implies,

(−𝑝1ℎ̄3 − 𝑝2ℎ̄
3)||
|𝑥=0

= 0.

This equation further implies

𝑝2(𝑡) = −𝑝1(0, 𝑡). (32)

Choose 𝑣 such that 𝑣 = 𝑣𝑥 = 𝑣𝑥𝑥 = 𝑣𝑥𝑥𝑥𝑥 = 0 at 𝑥 = 𝐿, 𝑣𝑥𝑥𝑥 = 0 at 𝑥 = 0,
and 𝑣 = 0 at 𝑡 = 0, 𝑇 . Then 𝐷ℎ(ℎ̄, 𝑢̄, 𝑝𝑖)𝑣 = 0 yields an expression for
the Lagrange multiplier 𝑝5(𝑡),

𝑝5 = (−𝑝1ℎ̄3)
|

|

|𝑥=𝐿
.

Finally, choosing 𝑣 such that 𝑣 = 0 at 𝑡 = 0 yields,

(𝑝1𝑣)
|

|

|𝑡=𝑇
= 0 (33)

which yields the initial condition for the adjoint Eq. (16) 𝑝1(𝑇 , 𝑥) = 0.
Substituting (6), (14) in (29), we get the second boundary condi-

tion (15) for the adjoint equation at 𝑥 = 𝐿,
(

−𝑝1 + (𝑝1)𝑥𝑥𝑥
)

|

|

|𝑥=𝐿
=

0. Similarly, substituting (32) and (12) in (30), gives us the second
boundary condition (13) at 𝑥 = 0, (𝑝1)𝑥𝑥

|

|

|𝑥=0
= 0. Substituting (14) in

(31), we get an expression for the multiplier 𝑝4(𝑡),

𝑝4 =
(

𝑝1ℎ̄
3 − (𝑝1)𝑥𝑥ℎ̄3

)

|

|

|𝑥=𝐿
.

And finally, the expression for the Lagrange multiplier 𝑝3(𝑡) can be
obtained from (28); the expression can be simplified by substituting
the boundary conditions (12)–(13).
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