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When a thin liquid film flows down on a vertical fiber, one can observe the complex and 
captivating interfacial dynamics of an unsteady flow. Such dynamics are applicable in various 
fluid experiments due to their high surface area-to-volume ratio. Recent studies verified that when 
the flow undergoes regime transitions, the magnitude of the film thickness changes dramatically, 
making numerical simulations challenging. In this paper, we present a computationally efficient 
numerical method that can maintain the positivity of the film thickness as well as conserve 
the volume of the fluid under the coarse mesh setting. A series of comparisons to laboratory 
experiments and previously proposed numerical methods supports the validity of our numerical 
method. We also prove that our method is second-order consistent in space and satisfies the 
entropy estimate.

 Introduction

Thin-film flows over fibers exhibit complex dynamical properties due to interplay among various forces, such as the surface 
nsion, viscous force, gravity, and inertia force. In the Rayleigh instability regime, an initially uniform flow quickly breaks up into 
gularly spaced beads, and forms traveling waves in the presence of gravity along the fiber direction [1,2]. The beaded morphology 
eates an array of localized high-curvature regions that act as radial sinks, making it attractive for devices for heat and mass transfer 
ong the liquid-gas interfaces [3,4].
These thin-film flows have applications in gas absorption [5–7], heat exchange [8,9], microfluidics [10], desalination [3], and 
hers. The wide variety of potential applications attracted theoretical studies over the last few decades [1,2,11–16]. The fundamental 
mponent determining the profile of the thin liquid film on a vertical fiber is surface tension, which has a stabilizing effect on the 
ial curvatures, and destabilizing effect on the azimuthal curvatures of the interface [17]. In addition, other factors increasing the 
w’s complexity are the cylindrical geometry of the fiber and the gravitational force. Experimentally, interfacial instabilities of the 
w have been studied over decades [1,16]. Kliakhandler et al. experimentally characterized the three distinct regimes of interfacial 
tterns (𝑎)-(𝑐) [17]. In this paper, we use the convention by Ji et al. [18] and call (𝑎)-(𝑐) regimes convective, Rayleigh-Plateau, 
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. 1. Illustration of a thin liquid film flowing down a vertical fiber. 𝑅∗ represents the radius of a vertical cylinder, ℎ∗ represents the thickness of the liquid film, 
epresents the gravitational constant, and 𝑢∗ , 𝑣∗ represent velocity components in the axial and radial direction. Dimensional variables are indicated with ∗ while 
 drop ∗ to represent corresponding dimensionless variables (see equation (1)). Ji et al., Dynamics of thin liquid films on vertical cylindrical fibres, Journal of Fluid 
chanics (2019), vol. 865, 303-327, reproduced with permission.

d isolated droplet regimes. The convective regime, observed when the flow rate is high, corresponds to the flow profile where 
egular droplets collide with each other. The Rayleigh-Plateau regime corresponds to the flow profile, where beaded traveling 
aves propagate nearly constantly. The isolated droplet regime, observed when the flow rate is low, corresponds to the flow profile 
here small wavy patterns follow well-separated large droplets. The distinct dynamics of each regime and its transition is extensively 
died, both theoretically and experimentally [2,16,18–21].
In this paper, we consider reduced-order models of the Navier-Stokes equations incorporating linear and nonlinear effects of the 
w. Li & Chao [22] summarize a few notable methods: the gradient expansion method [18,23–25], the integral method [26,27], 
e weighted residual method [13,14,20], and the energy integral method [28]. The models are often classified according to the size 
 the Reynolds number. For the low Reynolds number cases, the flow profile is approximated by the Stokes equations combined 
ith the lubrication approximation [18,24]. For moderate Reynolds number cases, one incorporates inertial terms in the governing 
uation using the weighted residual boundary integral method [13,14]. Many of the models are verified against the experimental 
ta [13,14]. For example, a recent study by Ji et al. shows a good agreement with experimental data by correctly predicting bead 
locities, flow profiles, and regime transition bifurcation [18].
A major challenge is that fiber coating equations are extremely difficult to solve both numerically and analytically. They are 
pically fourth-order degenerate nonlinear parabolic equations due to the surface tension in the dynamics. We consider the following 
odel from [18] (Fig. 1):

𝜕

𝜕𝑡

(
ℎ+ 𝛼

2
ℎ2
)
+ 𝜕

𝜕𝑥
(ℎ) + 𝜕

𝜕𝑥

[
(ℎ) 𝜕𝑝

𝜕𝑥

]
= 0,

(ℎ) =𝑂(ℎ𝑛), 𝑝 = 𝜕2ℎ

𝜕𝑥2
−(ℎ).

(1)

Equation (1) is an evolution equation of dimensionless film thickness ℎ(𝑥, 𝑡). From left to right,

𝜕

𝜕𝑡
(ℎ + 𝛼

2ℎ
2) denotes the mass change over time where 𝛼 =∕𝑅∗ ≥ 0 is the aspect ratio between the characteristic radial length 

scale of film thickness  to the fiber radius 𝑅∗.

(ℎ) is often referred to as the mobility function that describes the hydrodynamic interactions of the transverse waves. Many 
times, (ℎ) = 𝑂(ℎ𝑛). For example, setting (ℎ) = ℎ3 corresponds to the no-slip boundary condition, and setting (ℎ) = ℎ3 +
𝛽ℎ𝑛 for 𝑛 ∈ (0, 3) corresponds to various Navier-slip conditions (cf. [29]). The smoothness of (ℎ) near ℎ = 0 determines the 
qualitative behavior of solutions at zero [30].
The pressure 𝑝 consists of two terms - the linearized curvature 𝜕

2ℎ
𝜕𝑥2
, representing the streamwise surface tension, and the (ℎ), rep-

resenting other nonlinear pressure effects. (ℎ) often contains a destabilizing surface tension term that arises from the azimuthal 
curvature but can also include other terms.

Equation (1) is considered state of the art for this problem because it quantitatively agrees with bead velocities, flow profiles, 
2

d regime transition bifurcations as compared to experiments. Previously, the model by Kliakhandler et al. [17] incorporated fully 
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nlinear curvature to capture the qualitative behavior of the Rayleigh-Plateau and isolated droplet regime. Nevertheless, this model 
erestimated the beads’ velocity by 40%. Craster & Matar [24] revisited this idea and presented an asymptotic model describing 
yleigh-Plateau and isolated droplet regime but again overestimated the bead velocity. Their model also identified the Rayleigh-
ateau regime to be transient rather than a stationary state. Duprat et al. [31], and Smolka et al. [32] further studied regime 
nsitions but predicting the regime transitions remained challenging. Ji et al.’s film stabilization model (FSM) [18] improved the 
eceding models by incorporating a film stabilization term among generalized pressure terms. This stabilization term was inspired 
 the attractive part of the long-range apolar van der Waals forces, which are carefully studied for the well-wetting liquids [33,34]. 
e can see that simulating such complex models is a delicate procedure. Thus, it is vital to have a robust numerical method for 
ulating complex spatiotemporal dynamics to predict flow profiles and regime transitions.
The degeneracy of the mobility function (ℎ) and the complex nonlinear pressure terms (ℎ) are two hurdles one needs to clear 

 construct a robust numerical method. First, the degeneracy of the mobility function presents a substantial challenge in numerically 
lving equation (1) since the solution may lose regularity as ℎ → 0. Second, the nonlinear term (ℎ) in pressure 𝑝 complicates the 
oblem further since it is often relatively large in magnitude as ℎ → 0. As a result, the numerical method can suffer from instabilities 
 ℎ → 0. Therefore, keeping ℎ positive is not only crucial for the solution to be physically meaningful but also important for the 
lution to be accurate. Fortunately, we found similarities between equation (1) and many lubrication-type equations and realized 
e could view equation (1) as a variant of a lubrication-type equation with generalized pressure [30,35,36].

𝜕ℎ

𝜕𝑡
+ 𝜕

𝜕𝑥

(
(ℎ) 𝜕𝑝

𝜕𝑥

)
= 0 𝑝 = 𝜕2ℎ

𝜕𝑥2
−(ℎ) where 𝑓 (ℎ) ∼ ℎ𝑛 as ℎ→ 0. (2)

One may see that setting 𝛼 = 0 and 𝜕

𝜕𝑥
(ℎ) = 0 in equation (1) results in equation (2). Setting 𝛼 = 0 would mean neglecting the 

ect of the fiber, and 𝜕

𝜕𝑥
(ℎ) = 0 would mean neglecting the advection effect by liquid traveling downward. Such experimental 

d theoretical settings are discussed in various studies devoted to the lubrication theory so that we can take advantage of them 
0,37–40,36]. We know the solution of (2) is smooth whenever the solution is positive but typically loses its regularity as the 
lution ℎ → 0 due to the degeneracy of the equation [41,42]. We also know that the nonlinear pressure terms often introduce a large 
merical instability as ℎ → 0, making it challenging to maintain the positive numerical solution [30,40]. Examples of fiber coating 
oblems include (ℎ) = −(𝛼∕𝜖)2ℎ in [43], assuming the thickness of the film is much smaller than the fiber radius ( ≪𝑅∗). Craster 
Matar [24] used (ℎ) = 𝛼

𝜂(1+𝛼ℎ) , assuming the film thickness comparable to the fiber radius (𝛼 = 𝑂(1)). Ji et al. [18] used that 
ℎ) = 𝛼

𝜂(1+𝛼ℎ) −
𝐴𝐻

ℎ3
. The parameters 𝐴𝐻 and 𝜂 are discussed in more detail in Section 5. In both the Craster & Matar’s model and Ji 

 al.’s model, we can expect numerical challenges when ℎ is small. Indeed, we show in Section 5.1 that the numerical method used 
 [18] can generate a false singularity as ℎ → 0 when the spatial grid size is underresolved. In other words, although the analytical 
lution of (1) is positive everywhere, the solution produced by a naive numerical method can produce negative values within 
me range of the solution when the grid size is underresolved. Such numerical methods can be quite difficult to extend to higher 
mensions where grid refinement is computationally expensive. We also show that the negativity further prevents calculating the 
lution after the singularity. Thus, it is desirable to have a positivity-preserving numerical method that can perform well at different 
id resolutions without spurious numerical singularities.
Constructing positivity-preserving methods for partial differential equations (PDEs) is addressed in a wealth of literature yet 
ost of them are limited to the first-order or second-order equations [44–47]. Equations above the second order have no maximum 
 comparison principles, and higher-order spatial derivatives make the numerical system extremely stiff. Numerical methods for 
urth-order or higher-order equations with positivity-preserving properties have received far less attention. Early works include 
0,48–50] and make use of entropy estimates to prove positivity. Some of the recent approaches use cut-off, or Lagrange multiplier 
ethods which have a limitation in conserving mass or maintaining smoothness [51,52]. Here we introduce a convex-splitting 
ethod that preserves physical quantities like energy, entropy, and mass [30,53–55] which treats the stabilizing terms implicitly 
d the destabilizing terms explicitly. A few methods are unconditionally stable [56,57] which include the scalar auxiliary variable 
ethod by Huang et al. [58]. The applications of these methods are to solve Cahn-Hilliard or Hele-Shaw cell-type equations.
This paper presents a positivity-preserving numerical scheme that works on a general family of lubrication-type equations on 
lindrical geometries. Positivity-preserving numerical methods have not been studied in the context of fiber coating, especially in 
e regime that is most relevant to physical experiments. The structure of the paper follows. In Section 2, we prove properties that the 
E (1) holds and discuss how the PDE imparts such properties to our numerical methods. In Section 3, we introduce our numerical 
ethod and the state of art method used in Ji et al. [18]. In Section 4, we present proof of the positivity and the consistency of 
r method. Section 5 contains numerical simulations of our methods. In particular, in Section 5.1, we compare simulations of our 
ethod with simulations of the state of the art method while in Section 5.2, we compare simulations of our method with laboratory 
perimental data. We also demonstrate how to employ adaptive time stepping to efficiently implement our method in Section 5.3. 
 example without any numerical singular behavior is presented in Section 5.3.1 whereas an example with a finite time numerical 
gular behavior is presented in Section 5.3.2. We also compare the CPU time of simulating our method and the state of the art 
ethod in Section 5.3.3. Finally, in Section 6, we conclude our paper with a few remarks and suggest future research directions.

 Properties of the partial differential equation

This section investigates two essential properties of the continuous fiber coating equation (1). We ensure that our numerical 
3

ethod preserves the discrete equivalent of the properties. We consider the following initial-boundary value problem:
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(𝑃 )

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜕

𝜕𝑡

(
ℎ+ 𝛼

2
ℎ2
)
+ 𝜕

𝜕𝑥

[
(ℎ)

(
1 + 𝜕𝑝

𝜕𝑥

)]
= 0 in 𝐿𝑇 = (0,𝐿) × (0, 𝑇 ) ⊂ℝ2,

𝑝 = 𝜕2ℎ

𝜕𝑥2
−+(ℎ) −−(ℎ),

[0,𝐿] − periodic boundary conditions,

ℎ(𝑥,0) = ℎ0(𝑥) > 0.

The main difference from previous equation (1) is that we split (ℎ) into two parts: +(ℎ) and −(ℎ), where ′
+(ℎ) ≥ 0 and 

−(ℎ) ≤ 0. Such splittings are not generally unique but useful in the design of stable numerical schemes. Examples of convex-
ncave splitting can be found in many numerical works of Cahn-Hilliard or thin-film equations [48,56,59]. An example is discussed 
 Section 5.1. We assume periodic boundary conditions for simplicity and a positive initial condition to match the physical setting.
Here we assume that a smooth positive solution exists to the problem (𝑃 ). The existence of a solution to problems such as (𝑃 )
s been studied in depth [21,60,61]. The general procedure is like this. First, one applies a regularization technique to problem 
) to overcome the degeneracy and make the problem uniformly parabolic. The boundary condition can be extended to the whole 
e using a proper continuation technique such as the one suggested in [62]. The well-known parabolic Schauder estimates [62–64]
arantee a unique solution in a small time interval say, 𝐿𝜎 = (0, 𝐿) × (0, 𝜎). In the end, the limit of the regularized solution results 
 a smooth, positive solution. We direct our readers to [21,61] for the full derivation. We believe a similar derivation is possible 
rough the canonical approach although continuation of solutions past the initial small time interval requires a priori bounds on 
rtain norms. A full discussion of this problem is beyond the scope of this paper.
The key idea of developing a positivity-preserving numerical method is to formulate an entropy estimate for the continuous 
oblem (P). Such an estimate guarantees the positivity of solutions in the continuous setting. Therefore, designing a numerical 
ethod that satisfies the discrete equivalent of the entropy estimate will result in a positivity-preserving numerical method. For our 
oblem (P), we define entropy 𝐺(ℎ) so that its derivative 𝐺′(ℎ) satisfies

𝐺′(ℎ) = (1 + 𝛼ℎ)

ℎ

∫
𝐴

1
(𝑠)

𝑑𝑠, for some fixed 𝐴> 0.

e point out that the positivity proof for a continuous solution in Section 2, the definition of numerical methods in Section 3, and 
e positivity proof for a discrete solution in Section 4 do not explicitly involve the constant 𝐴 > 0. In other words, 𝐴 is only involved 
 𝐺′(ℎ) to ensure that it is well-defined. We claim that solutions to the problem (P) satisfy conservation of mass and an entropy 
timate.

oposition 2.1. Suppose that there exists a solution ℎ ∈ 𝐶4(𝐿𝑇 ) of (𝑃 ), where 𝐿𝑇 = [0, 𝐿) × [0, 𝑇 ). Suppose we further assume

(ℎ) =𝑂(ℎ𝑛), (ℎ) ≥ 0,

+, − ∈ 𝐶2(ℝ+), and ′
+(ℎ) ≥ 0, ′

−(ℎ) ≤ 0.

en, the solution ℎ satisfies the following two properties:

(𝐼)

𝐿

∫
0

ℎ(𝑥,𝑇 ) + 𝛼

2
ℎ2(𝑥,𝑇 )𝑑𝑥 =

𝐿

∫
0

ℎ(𝑥,0) + 𝛼

2
ℎ2(𝑥,0)𝑑𝑥 (Conservation of mass),

(II)

𝐿

∫
0

𝐺(ℎ(𝑥,𝑇 ))𝑑𝑥 ≤
𝐿

∫
0

𝐺(ℎ(𝑥,0))𝑑𝑥+ ∫
𝐿𝑇

(−(ℎ)
2

)2
𝑑𝑥𝑑𝑡 (Entropy estimate).

oof. The conservation of mass (I) is achieved by integrating the problem (𝑃 ) on 𝐿𝑇 :

∫
𝐿𝑇

𝜕

𝜕𝑡

(
ℎ+ 𝛼

2
ℎ2
)
𝑑𝑥𝑑𝑡= −∫

𝐿𝑇

𝜕

𝜕𝑥

[
(ℎ)

(
1 + 𝜕𝑝

𝜕𝑥

)]
𝑑𝑥𝑑𝑡

⟹

𝐿

∫
0

(
ℎ(𝑥,𝑇 ) + 𝛼

2
ℎ2(𝑥,𝑇 )

)
𝑑𝑥−

𝐿

∫
0

(
ℎ(𝑥,0) + 𝛼

2
ℎ2(𝑥,0)

)
𝑑𝑥 = 0.

te that the periodic boundary condition removes the complex expression surrounded by 𝜕

𝜕𝑥
[...] on the right-hand side of the 

uality in the first line.
The entropy estimate (II) is achieved by directly calculating the time derivative of 𝐺(ℎ):

𝑑

𝐿

𝐺(ℎ)𝑑𝑥 =

𝐿

𝐺′(ℎ)ℎ𝑡𝑑𝑥
4

𝑑𝑡 ∫
0

∫
0
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=

𝐿

∫
0

⎧⎪⎨⎪⎩(1 + 𝛼ℎ)ℎ𝑡

ℎ

∫
𝐴

1
(𝑠)

𝑑𝑠

⎫⎪⎬⎪⎭𝑑𝑥

= −

𝐿

∫
0

⎧⎪⎨⎪⎩
𝜕

𝜕𝑥

[
(ℎ)

(
1 + 𝜕𝑝

𝜕𝑥

)] ℎ

∫
𝐴

1
(𝑠)

𝑑𝑠

⎫⎪⎬⎪⎭𝑑𝑥
=

𝐿

∫
0

ℎ𝑥

(
1 + 𝜕𝑝

𝜕𝑥

)
𝑑𝑥.

e equalities are justified by the integration by parts. Note that the periodic boundary plays a crucial role in simplifying expressions 
 the boundary. We use the definition 𝑝 = ℎ𝑥𝑥 −(ℎ) = ℎ𝑥𝑥 −+(ℎ) −−(ℎ) to continue our calculation:

𝑑

𝑑𝑡

𝐿

∫
0

𝐺(ℎ)𝑑𝑥 =

𝐿

∫
0

ℎ𝑥𝑑𝑥+

𝐿

∫
0

ℎ𝑥

𝜕

𝜕𝑥

(
ℎ𝑥𝑥 −(ℎ)

)
𝑑𝑥

= −

𝐿

∫
0

ℎ2
𝑥𝑥

+

𝐿

∫
0

ℎ𝑥𝑥−(ℎ)𝑑𝑥−

𝐿

∫
0

ℎ2
𝑥
′

+(ℎ)𝑑𝑥

= −

𝐿

∫
0

(
ℎ𝑥𝑥 −

𝑍−(ℎ)
2

)2
𝑑𝑥+

𝐿

∫
0

(
𝑍−(ℎ)

2

)2
𝑑𝑥−

𝐿

∫
0

ℎ2
𝑥
′

+(ℎ)𝑑𝑥

≤ −

𝐿

∫
0

(
ℎ𝑥𝑥 −

𝑍−(ℎ)
2

)2
𝑑𝑥+

𝐿

∫
0

(
𝑍−(ℎ)

2

)2
𝑑𝑥.

Again, the periodic boundary is crucial in eliminating ∫ 𝐿

0 ℎ𝑥𝑑𝑥 in the first line. We simplify the expression by completing the 
uare on the third line. We obtain the inequality in the last line because ′

+(ℎ) ≥ 0. Integrating over time gives us

𝐿

∫
0

𝐺(ℎ(𝑥,𝑇 ))𝑑𝑥+ ∫
𝐿𝑇

(
ℎ𝑥𝑥 −

−(ℎ)
2

)2
𝑑𝑥𝑑𝑡≤

𝐿

∫
0

𝐺(ℎ(𝑥,0))𝑑𝑥+ ∫
𝐿𝑇

(−(ℎ)
2

)2
𝑑𝑥𝑑𝑡.

nally, one can drop the second term on the left side of the inequality since it is nonnegative. □

The above properties allow us to create a positivity-preserving numerical method due to the entropy estimate. Lubrication-type 
uations are well-known to satisfy entropy-dissipating properties. Bernis et al. recognized the significance of the entropy dissipation 
operty in third-order or higher degenerate parabolic equations and used it to prove the nonnegativity of weak solutions with 
fficiently high degeneracy in one space dimension [61]. They also proved that the solution is unique and strictly positive if the 
obility order 𝑛 ≥ 4. Following their work, several articles regarding lubrication-type equations discussed the importance of entropy 
timates in numerical and analytical contexts [30,41,48–50,60,65–67]. These ideas have largely been lacking in the fiber coating 
oblem, except for the entropy analysis done by Ji et al. [21], which proves the existence of a generalized nonnegative weak solution 
 a fiber-coating model with fully nonlinear curvature terms on a periodic domain. In this paper, we use these ideas to develop a 
sitivity-preserving numerical method.

 Positivity-preserving finite difference method

In this section, we present a continuous time and discrete in space positivity-preserving finite difference method, the Bounded 
tropy Method (BEM), and compare it to the current state of the art method General Method (GM) used in fiber coating models 
8]. Our method is second-order accurate in space while preserving the positivity of a numerical solution at each time. Our method 
motivated by prior work by Zhornitskaya & Bertozzi [49] and Grün & Rumpf [30] for a simple lubrication-type model without the 
ometry and physics of fiber coating. Before introducing our method, we define the following notation.

tation. Suppose we divide our domain [0, 𝐿] into 𝑁 equally spaced grids of size Δ𝑥 =𝐿∕𝑁 . Let 𝑢𝑖(𝑡) be a solution of a numerical 
ethod that is continuous in time and discrete in space at time 𝑡 and on grid 𝑖. Define the forward difference in space and the 
ckward difference in space as

𝑢𝑖,𝑥 =
𝑢𝑖+1(𝑡) − 𝑢𝑖(𝑡)

Δ𝑥
, 𝑢𝑖,𝑥̄ =

𝑢𝑖(𝑡) − 𝑢𝑖−1(𝑡)
Δ𝑥

.

5

spectively, higher-order differences in space can be defined as
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𝑢𝑖,𝑥̄𝑥 =
𝑢𝑖+1,𝑥̄ − 𝑢𝑖,𝑥̄

Δ𝑥
, 𝑢𝑖,𝑥̄𝑥𝑥̄ =

𝑢𝑖,𝑥̄𝑥 − 𝑢𝑖−1,𝑥̄𝑥

Δ𝑥
.

As we highlight the importance of the entropy 𝐺(ℎ) in designing a positivity-preserving method in Section 2, the discretized 
obility (ℎ) is the key factor that determines the qualitative behavior of the solutions near zero. We define the discrete mobility 
nction 𝑚(𝑠1, 𝑠2) according to Definition 3.1.

finition 3.1 (Discretization of Mobility). The mobility term (𝑠) in the problem (𝑃 ) is discretized to satisfy the following criteria 
9]:

) 𝑚(𝑠, 𝑠) =(𝑠),
) 𝑚(𝑠1, 𝑠2) =𝑚(𝑠2, 𝑠1),
) 𝑚(𝑠1, 𝑠2) ∈ 𝐶4((0, ∞) × (0, ∞)) ∩𝐶([0, ∞] × [0, ∞]),
) ∀𝛿 > 0, there exists 𝛾 > 0 such that 𝑠1, 𝑠2 > 𝛿 ⟹ 𝑚(𝑠1, 𝑠2) ≥ 𝛾 > 0.

The above definition of 𝑚(𝑠1, 𝑠2) is symmetric and continuously differentiable everywhere except possibly at 0. Condition (d) 
lows the 𝑚(𝑠1, 𝑠2) to be degenerate if one of the arguments ℎ → 0 but guarantees positivity if both of the arguments are greater than 
 Our positivity-preserving finite difference method, the Bounded Entropy Method (BEM), presented below, satisfies Definition 3.1.

Bounded Entropy Method (BEM). The finite difference discretization of the problem (𝑃 ) with continuous time is written by the 
following equations:

(1 + 𝛼𝑢𝑖)
𝑑𝑢𝑖

𝑑𝑡
+ [𝑚(𝑢𝑖−1, 𝑢𝑖)(1 + 𝑝𝑖,𝑥̄)]𝑥 = 0, 𝑝𝑖 = 𝑢𝑖,𝑥̄𝑥 −+(𝑢𝑖) −−(𝑢𝑖),

𝑢𝑖(0) = 𝑢0(𝑖Δ𝑥), 𝑖 = 0,1,2⋯𝑁,

𝑚(𝑠1, 𝑠2) =

{(𝑠1) if 𝑠1 = 𝑠2,

(𝑠2 − 𝑠1)∕ ∫ 𝑠2
𝑠1

1
(𝑠)𝑑𝑠 if 𝑠1 ≠ 𝑠2.

(3)

In Section 4, we show that the above discretization of (ℎ) in BEM (1) guarantees a discrete equivalent of the conservation of 
ass (I) and the entropy estimate (II). We also write the numerical method of Ji et al. [18] as the following, which we refer to as 
neric Method (GM).

Generic Method (GM). The finite difference discretization of the problem (𝑃 ) with continuous time is written by the following 
equations:

(1 + 𝛼𝑢𝑖)
𝑑𝑢𝑖

𝑑𝑡
+ [𝑚(𝑢𝑖−1, 𝑢𝑖)(1 + 𝑝𝑖,𝑥̄)]𝑥 = 0, 𝑝𝑖 = 𝑢𝑖,𝑥̄𝑥 −+(𝑢𝑖) −−(𝑢𝑖),

𝑢𝑖(0) = 𝑢0(𝑖Δ𝑥), 𝑖 = 0,1,2⋯𝑁,

(4)

where 𝑚(𝑠1, 𝑠2) satisfies Definition 3.1.

As an example of 𝑚(𝑠1, 𝑠2) used in GM (4), one can let 𝑚(𝑠1, 𝑠2) =(0.5(𝑠1 + 𝑠2)) or 𝑚(𝑠1, 𝑠2) = 0.5((𝑠1) +(𝑠2)), where either 
e estimates the mobility at the midpoint. Note that 𝑚(𝑠1, 𝑠2) in BEM (1) and GM (4) uses center-difference, allowing the numerical 
ethod to conserve flux at each time step. Together with second-order consistency, both numerical methods are “shock capturing,” 
hich is a desirable property to have in conservation law type of equations [68]. In the following section, we show that BEM (1)

tisfies the conservation of mass and entropy estimate, which allows us to prove the positivity of the numerical method.

 Positivity of numerical solutions

In the previous section, we claim that 𝑚(𝑠1, 𝑠2) in BEM (1) satisfies a discrete equivalent of the conservation of mass and 
e entropy estimates discussed in Section 2. In this section, we prove our claim through Proposition 4.1 and explain how such 
scretizations preserve the positivity of BEM (1) through Theorem 4.1. Our method is inherently more complex than entropy dis-
ating schemes for traditional lubrication-type equations because of three reasons. First, the time derivative of (1) involves the 
ometry of the cylindrical fiber 𝛼

2 ℎ
2. Second, a nonlinear advection 𝜕

𝜕𝑥
(ℎ) is incorporated. Lastly, nonlinear pressure 𝑝 entails 

ℎ) = +(ℎ) +−(ℎ). The coupled entropy estimate expression in Proposition 2.1 is consequently more complicated than “entropy 
ssipation”, which is the case for the conventional lubrication-type equations. The following proposition is a discrete analog of 
6

oposition 2.1.



B.

Pr

Pr

su

(3

As

sim

co

Fi

un

of

ar

Th

𝑠 ≥
Journal of Computational Physics 496 (2024) 112560Kim, H. Ji, A.L. Bertozzi et al.

oposition 4.1. Suppose 𝑢𝑖(𝑡) is a solution of the BEM (1) at time 𝑡 and 𝑖-th grid in space. Suppose we further assume

(ℎ) =𝑂(ℎ𝑛), (ℎ) ≥ 0,

+, − ∈ 𝐶2(ℝ+), and ′
+(ℎ) ≥ 0, ′

−(ℎ) ≤ 0,

𝐺′(ℎ) = (1 + 𝛼ℎ)

ℎ

∫
𝐴

1
(𝑠)

𝑑𝑠, for some fixed 𝐴> 0.

Then, 𝑢𝑖(𝑡) satisfies the following two properties given 𝑇 > 0;

(𝐼)
∑
𝑖

(
𝑢𝑖(𝑇 ) +

𝛼

2
𝑢𝑖(𝑇 )2

)
Δ𝑥 =

∑
𝑖

(
𝑢𝑖(0) +

𝛼

2
𝑢𝑖(0)2

)
Δ𝑥 (Discrete conservation of mass),

(II)
∑
𝑖

𝐺(𝑢𝑖(𝑇 ))Δ𝑥 ≤∑
𝑖

𝐺(𝑢𝑖(0))Δ𝑥+

𝑇

∫
0

∑
𝑖

(−(𝑢𝑖(𝑡))
2

)2
Δ𝑥𝑑𝑡 (Discrete entropy estimate).

oof. The proof of the statements is very similar to the proof of Proposition 2.1. The only difference is that we multiply by Δ𝑥 and 
m over 𝑖 = 0, 1, 2... 𝑁 instead of integrating over space. Discrete conservation of mass (I) is achieved by integrating the first line of 
) by time and summing over 𝑖 = 0, 1, 2... 𝑁 :

𝑇

∫
0

∑
𝑖

(1 + 𝛼𝑢𝑖)
𝑑𝑢𝑖

𝑑𝑡
Δ𝑥𝑑𝑡= −

𝑇

∫
0

∑
𝑖

[𝑚(𝑢𝑖−1, 𝑢𝑖)(1 + 𝑝𝑖,𝑥̄)]𝑥Δ𝑥𝑑𝑡

⟹
∑
𝑖

(
𝑢𝑖(𝑇 ) +

𝛼

2
𝑢𝑖(𝑇 )2

)
Δ𝑥−

∑
𝑖

(
𝑢𝑖(0) +

𝛼

2
𝑢𝑖(0)2

)
Δ𝑥 = 0.

 we saw in the continuous case, the periodic boundary condition removes the expression surrounded by [...]𝑥.
The discrete entropy estimate (II) is achieved by direct calculation.

𝑑

𝑑𝑡

∑
𝑖

𝐺(𝑢𝑖)Δ𝑥 =
∑
𝑖

𝐺′(𝑢𝑖)
𝑑𝑢𝑖

𝑑𝑡
Δ𝑥

= −
∑
𝑖

𝑢𝑖

∫
𝐴

1
(𝑠)

𝑑𝑠[𝑚(𝑢𝑖−1, 𝑢𝑖)(1 + 𝑝𝑖,𝑥̄)]𝑥Δ𝑥

=
∑
𝑖

1
Δ𝑥

⎛⎜⎜⎝
𝑢𝑖

∫
𝑢𝑖−1

1
(𝑠)

𝑑𝑠

⎞⎟⎟⎠𝑚(𝑢𝑖−1, 𝑢𝑖)(1 + 𝑝𝑖,𝑥̄)Δ𝑥

=
∑
𝑖

𝑢𝑖,𝑥̄(1 + 𝑝𝑖,𝑥̄)Δ𝑥

=
∑
𝑖

{
−(𝑢𝑖,𝑥̄𝑥)2 − 𝑢𝑖,𝑥̄[+(𝑢𝑖)]𝑥̄ + 𝑢𝑖,𝑥̄𝑥−(𝑢𝑖)

}
Δ𝑥

≤ −
∑
𝑖

(
𝑢𝑖,𝑥̄𝑥 −

−(𝑢𝑖)
2

)2
Δ𝑥+

∑
𝑖

(−(𝑢𝑖)
2

)2
Δ𝑥.

Until the 4th line, the equalities are justified by integration by parts. Note that the periodic boundary plays a crucial role in 
plifying expressions on the boundary and eliminating ∑𝑖 𝑢𝑖,𝑥̄Δ𝑥 in the 4th line. We obtain the inequality in the last line after 
mpleting the square and using the fact that ′

+ ≥ 0. From the inequality, one integrates over time from 0 to 𝑇 .

∑
𝑖

𝐺(𝑢𝑖(𝑇 ))Δ𝑥+

𝑇

∫
0

∑
𝑖

(
𝑢𝑖,𝑥̄𝑥(𝑡) −

−(𝑢𝑖(𝑡))
2

)2
Δ𝑥𝑑𝑡 ≤∑

𝑖

𝐺(𝑢𝑖(0))Δ𝑥+

𝑇

∫
0

∑
𝑖

(−(𝑢𝑖(𝑡))
2

)2
Δ𝑥𝑑𝑡

nally, one can drop the second term on the left side since it is nonnegative and the desired entropy estimate is achieved. □

We have two versions of theorems on the positivity: (a) a priori bound - depending on Δ𝑥 and (b) a posteriori bound assuming a 
iform Lipschitz condition on the numerical solution. We note that the solution is observed to have a uniform Lipschitz bound in all 
 our numerical simulations. Thus, the uniform Lipschitz assumption is observed numerically and thus can be used in an a posteriori
gument. We leave proving the smoothness of PDE, such as establishing a uniform Lipschitz bound, as future work.

eorem 4.1. (Positivity of BEM) Suppose we have the same assumptions as Proposition 4.1. We further assume that (𝑍−(𝑠))2 ≤ 𝐶1 for any 
7

0 and the initial data 𝑢𝑖(0) > 0. Then, the solution of BEM (3) at time 𝑇 > 0, 𝑢𝑖(𝑇 ), satisfies the following conditions;
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) if 𝑛 ≥ 2, there exists 𝛿 such that 𝑢𝑖(𝑇 ) ≥ 𝛿(Δ𝑥) > 0 for all 𝑖,
) if 𝑛 > 2 and 𝑢𝑖(𝑡) is uniformly Lipchitz on [0, 𝑇 ], there is a posteriori lower bound 𝛿 independent of Δ𝑥 such that 𝑢𝑖(𝑇 ) ≥ 𝛿 > 0. i.e. One 
assumes |𝑢𝑖(𝑡) − 𝑢𝑗 (𝑡)| ≤ 𝐶𝐿|(𝑖 − 𝑗)Δ𝑥| for some 𝐶𝐿 > 0 and for ∀𝑖, 𝑗, ∀0 ≤ 𝑡 ≤ 𝑇 .

oof. Notice that we assume that (ℎ) =𝑂(ℎ𝑛) and consider cases where 𝑛 ≥ 2. Thus, for the sake of simplicity, we take (ℎ) = ℎ𝑛

roughout the proof. More general cases can be proved similarly. Let us first prove statement (a). The given assumptions allow us 
 use the discrete entropy estimate (II) from Proposition 4.1. First, we claim that ∑𝑖 𝐺(𝑢𝑖(𝑇 ))Δ𝑥 ≤ 𝐶 for a fixed constant 𝐶 as any 
(𝑇 ) → 0. Since we take (ℎ) = ℎ𝑛, we can explicitly calculate

𝐺(ℎ) =

⎧⎪⎪⎨⎪⎪⎩

−lnℎ+𝑂(ℎ) +𝑂(1) if 𝑛 = 2,
1

(𝑛−1)(𝑛−2)ℎ
−(𝑛−2) +𝑂(ℎ3−𝑛) +𝑂(1) if 2 < 𝑛 < 3,

1
2ℎ − 𝛼

2 lnℎ+𝑂(ℎ) +𝑂(1) if 𝑛 = 3,
1

(𝑛−1)(𝑛−2)ℎ
−(𝑛−2) + 𝛼

(𝑛−1)(𝑛−3)ℎ
−(𝑛−3) +𝑂(ℎ) +𝑂(1) if 𝑛 > 3.

Here, the choice of 𝐴 only affects the coefficients of the higher-order terms but not the leading-order term. Each 𝐺(𝑢𝑖(0)) is also 
ell defined because we have fixed initial data 𝑢𝑖(0) > 0. This leads us to conclude∑

𝑖

𝐺(𝑢𝑖(0))Δ𝑥 ≤ 𝐶0, for some constant 𝐶0.

e also assume (𝑍−(𝑠))2 ≤ 𝐶1 for any 𝑠 ≥ 0 so

𝑇

∫
0

∑
𝑖

(−(𝑢𝑖(𝑡))
2

)2
Δ𝑥𝑑𝑡≤ 𝐶2𝑇 , for some constant 𝐶2, as any 𝑢𝑖(𝑇 )→ 0.

nce, we get

∑
𝑖

𝐺(𝑢𝑖(𝑇 ))Δ𝑥 ≤∑
𝑖

𝐺(𝑢𝑖(0))Δ𝑥+

𝑇

∫
0

∑
𝑖

(−(𝑢𝑖(𝑡))
2

)2
Δ𝑥𝑑𝑡≤ 𝐶0 +𝐶2𝑇 ≤ 𝐶.

Next, we show that 𝛿(𝑇 ) = min𝑖 𝑢𝑖(𝑇 ) ≥ 0 using the boundedness of ∑𝑖 𝐺(𝑢𝑖(𝑇 ))Δ𝑥. Notice that each leading-order term of 𝐺(𝛿) is 
sitive as 𝛿 → 0, up to constant differences.

𝐺(𝛿) =

⎧⎪⎪⎨⎪⎪⎩

−ln 𝛿 +𝑂(𝛿) +𝑂(1) if 𝑛 = 2,
1

(𝑛−1)(𝑛−2) 𝛿
−(𝑛−2) +𝑂(𝛿3−𝑛) +𝑂(1) if 2 < 𝑛 < 3,

1
2𝛿 − 𝛼

2 ln 𝛿 +𝑂(𝛿) +𝑂(1) if 𝑛 = 3,
1

(𝑛−1)(𝑛−2) 𝛿
−(𝑛−2) + 𝛼

(𝑛−1)(𝑛−3) 𝛿
−(𝑛−3) +𝑂(𝛿) +𝑂(1) if 𝑛 > 3,

us, 𝛿 → 0 implies 𝐺(𝛿) → +∞, which contradicts ∑𝑖 𝐺(𝑢𝑖(𝑇 ))Δ𝑥 ≤ 𝐶 . Hence, we achieve min𝑖 𝑢𝑖(𝑇 ) = 𝛿 > 0.
To prove (b), we use ∑𝑖 𝐺(𝑢𝑖(𝑇 ))Δ𝑥 ≤ 𝐶 as well. From part (a), we have nonnegativity of 𝑢𝑖(𝑇 ) so

𝐺(𝑢𝑖(𝑇 )) =

𝑢𝑖

∫
𝐵

(1 + 𝛼𝑣)

𝑣

∫
𝐴

1
(𝑠)

𝑑𝑠𝑑𝑣+𝑂(1) ≥
𝑢𝑖

∫
𝐵

𝑣

∫
𝐴

1
(𝑠)

𝑑𝑠𝑑𝑣+𝑂(1), for some 𝐵 > 0.

erefore,

𝐶 ≥∑
𝑖

𝐺(𝑢𝑖(𝑇 ))Δ𝑥 ≥∑
𝑖

𝑢𝑖

∫
𝐵

𝑣

∫
𝐴

1
(𝑠)

𝑑𝑠𝑑𝑣Δ𝑥+𝑂(1) ≥∑
𝑖

𝑢𝑖

∫
𝐵

𝑣

∫
𝐴

1
𝑠𝑛

𝑑𝑠𝑑𝑣Δ𝑥+𝑂(1) =
∑
𝑖

𝑢2−𝑛Δ𝑥+𝑂(1).

ppose 𝛿(𝑇 ) =min𝑖 𝑢𝑖(𝑇 ) occurs at 𝑖∗. Due to the uniform Lipschitzness, 𝑢𝑖 ≤ 𝛿 +𝐶𝐿|(𝑖∗ − 𝑖)Δ𝑥|, ∀𝑖 so
𝐶̃ ≥∑

𝑖

1
𝑢𝑛−2
𝑖

Δ𝑥 ≥∑
𝑖

Δ𝑥
(𝛿 +𝐶𝐿|(𝑖− 𝑖∗)Δ𝑥|)𝑛−2 ≥∑

𝑖

Δ𝑥
(𝛿 +𝐶𝐿(𝑖Δ𝑥))𝑛−2

≥
𝐿

∫
0

𝑑𝑥

(𝛿 +𝐶𝐿𝑥)𝑛−2
≥ 1

𝐶𝐿𝛿
𝑛−1

𝐿𝐶𝐿∕𝛿

∫
0

𝑑𝑠

(1 + 𝑠)𝑛−2
.

𝐿𝐶𝐿

𝛿
≤ 1 ⟹ 𝛿 ≥𝐿𝐶𝐿 so we have lower bound for 𝛿 independent of Δ𝑥. In the case when 

𝐿𝐶𝐿

𝛿
≥ 1,

𝐶̃ ≥ 1
1

𝑑𝑠 = 𝐶 ′
8

𝐶𝐿𝛿
𝑛−1 ∫

0
(1 + 𝑠)𝑛−2 𝛿𝑛−1
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⟹ 𝛿 ≥
(
𝐶 ′

𝐶̃

)1∕𝑛−1
. □

rollary 4.2. Continuous time, discrete space, numerical solutions of the Craster-Matar model (CM) [24] and the Film Stabilization Model 
SM) [18] are positive at any time 𝑇 > 0 and grid point 𝑖 if we use the BEM (1).

oof. For both cases, the same mobility function (ℎ) is used, but different (ℎ) is used:

(ℎ) = ℎ3

3
𝜙(𝛼ℎ)
𝜙(𝛼)

+ ℎ2(𝛼ℎ+ 2)2𝜆
4𝜙(𝛼)

,

𝜙(𝑥) = 3
16𝑥3

[
(1 + 𝑥)4(4 ln(1 + 𝑥) − 3) + 4(1 + 𝑥)2 − 1

]
,

𝐶𝑀 (ℎ) =𝐶𝑀−(ℎ) =
𝛼

𝜂(1 + 𝛼ℎ)
,

𝐹𝑆𝑀 (ℎ) =𝐹𝑆𝑀+ +𝐹𝑆𝑀− = −
𝐴𝐻

ℎ3
+ 𝛼

𝜂(1 + 𝛼ℎ)
,

r 𝛼, 𝜂, 𝐴𝐻 > 0. We prove that the assumptions for Theorem 4.1 are satisfied by showing that (ℎ) =𝑂(ℎ2) as ℎ → 0 and (−(𝑠))2 ≤
𝜂

)2
. To simplify the calculation, let 𝑦 = 𝛼ℎ. Then, we achieve

(ℎ) = 1
16𝛼3𝜙(𝛼)

[
(𝑦+ 1)4(4 ln(𝑦+ 1) − 3) + 4(𝑦+ 1)2 − 1 + 4𝜆𝛼𝑦2(𝑦+ 2)2

]
= 1

𝐶

[
𝐴4𝑦

4 +𝐴3𝑦
3 +𝐴2𝑦

2 +𝐴1𝑦+𝐴0
]
,

here

𝐴4 = 4𝛼𝜆+ 4 ln(𝑦+ 1) − 3, 𝐴3 = 16𝛼𝜆+ 16 ln(𝑦+ 1) − 12, 𝐴2 = 16𝛼𝜆+ 24 ln(𝑦+ 1) − 14,

𝐴1 = 16 ln(𝑦+ 1) − 4, 𝐴0 = 4 ln(𝑦+ 1).

As 𝑦 → 0, ln(𝑦 + 1) =𝑂(𝑦). Thus,

(ℎ) =𝑂(𝑦2) + 1
𝐶
[𝐴1𝑦+𝐴0] =𝑂(𝑦2) + 16𝑦2 − 4𝑦+ 4𝑦 =𝑂(𝑦2) =𝑂(ℎ2).

nally, for any 𝑠 ≥ 0,

−(𝑠) =
𝛼

𝜂(1 + 𝛼𝑠)
≤ 𝛼

𝜂
.

 finish the proof, we apply Theorem 4.1 and see that the numerical solutions of both CM and FSM are positive. □

eorem 4.3 (Consistency). GM (4) and BEM (1) are second-order consistent in space. That is, given a smooth solution 𝑢(𝑥, 𝑡) of the problem 
), a local truncation error 𝜏𝑖(𝑡) is 𝑂(Δ𝑥2), where

𝜏𝑖(𝑡) = (1 + 𝛼𝑢𝑖)
𝑑𝑢𝑖

𝑑𝑡
+ [𝑚(𝑢𝑖−1, 𝑢𝑖)(1 + 𝑝𝑖,𝑥̄)]𝑥.

oof. Let us denote 𝑢𝑖 = 𝑢(𝑖Δ𝑥, 𝑡) to simplify the notation. First, note that both GM and BEM have very similar formulations and 
tisfy Definition 3.1. Thus, we can use an approach similar to [49]. After Taylor expansion,

𝑚(𝑠1, 𝑠2) =𝑚(𝑠+Δ𝑠, 𝑠−Δ𝑠) =𝑚(𝑠, 𝑠) + 𝜕𝑚

𝜕𝑠1
(𝑠, 𝑠)Δ𝑠− 𝜕𝑚

𝜕𝑠2
(𝑠, 𝑠)Δ𝑠+ 𝛽(𝑠)Δ𝑠2 +𝑂(Δ𝑠2)

=(𝑠) + 𝛽(𝑠)Δ𝑠2 +𝑂(Δ𝑠2),

here 𝑠 = 𝑠1+𝑠2
2 , Δ𝑠 = 𝑠1−𝑠2

2 , and

𝛽(𝑠) = 1
2

(
𝜕2𝑚(𝑠, 𝑠)

𝜕𝑠21

− 2 𝜕
2𝑚(𝑠, 𝑠)
𝜕𝑠1𝜕𝑠2

+ 𝜕2𝑚(𝑠, 𝑠)
𝜕𝑠22

)
.

e cancel out 𝑂(Δ𝑠) terms by using the symmetry of 𝑚(𝑠1, 𝑠2), according to (b) from Definition 3.1. We also obtain

𝑝𝑖,𝑥̄ = 𝑢𝑖,𝑥̄𝑥𝑥̄ −
[(𝑢𝑖)

]
𝑥̄
,

𝑢𝑖,𝑥̄𝑥𝑥̄ =
𝑢𝑖+1 − 3𝑢𝑖 + 3𝑢−1 − 𝑢𝑖−2

Δ𝑥3
= 𝑢

(3)
𝑖− 1

2

+ 𝛼(𝑥
𝑖− 1

2
)Δ𝑥2 +𝑂(Δ𝑥4),

𝑢 − 𝑢
(𝑢𝑖 − 𝑢

𝑖− 1 )2 − (𝑢𝑖−1 − 𝑢
𝑖− 1 )2
9

[(𝑢𝑖)]𝑥̄ =′(𝑢
𝑖− 1

2
) 𝑖 𝑖−1

Δ𝑥
+′′(𝑢

𝑖− 1
2
) 2 2

2Δ𝑥
+𝑂(Δ𝑥2) +𝑂(Δ𝑥4)



B.

Af

fo

No

Th

5.

tim

to

se

fo

pa

on

sc

a 
M

Th

go

5.

fu

im

le

Su
Journal of Computational Physics 496 (2024) 112560Kim, H. Ji, A.L. Bertozzi et al.

=′(𝑢
𝑖− 1

2
)
[
𝑢′

𝑖− 1
2
+ Δ𝑥2

24
𝑢
(3)
𝑖− 1

2

+𝑂(Δ𝑥4)
]
+′′(𝑢𝑖−1∕2)

[
Δ𝑥2
8

𝑢′
𝑖− 1

2
𝑢′′

𝑖− 1
2
+𝑂(Δ𝑥4)

]
.

ter a simplification, we achieve

𝑝𝑖,𝑥̄ = 𝑢
(3)
𝑖− 1

2

+′(𝑢
𝑖− 1

2
)𝑢′

𝑖− 1
2
+ 𝛾(𝑥

𝑖− 1
2
)Δ𝑥2 +𝑂(Δ𝑥4)

r some smooth function 𝛾(𝑥).
As a result,

[𝑚(𝑢𝑖−1, 𝑢𝑖)(1 + 𝑝𝑖,𝑥̄)]𝑥 =
1
Δ𝑥
[
𝑚(𝑢𝑖, 𝑢𝑖+1)(1 + 𝑝𝑖+1,𝑥̄) −𝑚(𝑢𝑖−1, 𝑢𝑖)(1 + 𝑝𝑖,𝑥̄)

]
= 1

Δ𝑥

{

(
𝑢𝑖 + 𝑢𝑖+1

2

)
+ 𝛽

(
𝑢𝑖 + 𝑢𝑖+1

2

)( 𝑢𝑖+1 − 𝑢𝑖

2

)2
+𝑂(Δ𝑥3)

}{
1 + 𝑢

(3)
𝑖+ 1

2

+′(𝑢
𝑖+ 1

2
)𝑢′

𝑖+ 1
2
+ 𝛾(𝑥

𝑖+ 1
2
)Δ𝑥2 +𝑂(Δ𝑥4)

}
− 1

Δ𝑥

{

(
𝑢𝑖 + 𝑢𝑖−1

2

)
+ 𝛽

(
𝑢𝑖 + 𝑢𝑖−1

2

)( 𝑢𝑖−1 − 𝑢𝑖

2

)2
+𝑂(Δ𝑥3)

}{
1 + 𝑢

(3)
𝑖− 1

2

+′(𝑢
𝑖− 1

2
)𝑢′

𝑖− 1
2
+ 𝛾(𝑥

𝑖− 1
2
)Δ𝑥2 +𝑂(Δ𝑥4)

}
.

te that for any continuously differentiable function 𝑔(𝑠),

𝑔

(
𝑢𝑖 + 𝑢𝑖+1

2

)
= 𝑔(𝑢

𝑖+ 1
2
) + 𝑔′(𝑢

𝑖+ 1
2
)
𝑢′′

𝑖+ 1
2

2

(Δ𝑥
2

)2
+𝑂(Δ𝑥4),( 𝑢𝑖+1 − 𝑢𝑖

2

)2
= (𝑢′

𝑖+ 1
2
)2
(Δ𝑥

2

)2
+𝑂(Δ𝑥4).

e above properties can be applied to (𝑠) and 𝛽(𝑠). Hence we conclude

[𝑚(𝑢𝑖−1, 𝑢𝑖)(1 + 𝑝𝑖,𝑥̄)]𝑥 =
[(𝑢𝑖)(1 + 𝑢

(3)
𝑖

−𝑍′(𝑢𝑖)𝑢′𝑖)
]′
+𝑂(Δ𝑥2). □

 Numerical simulation

In this Section 5, we present numerical simulations based on the continuous time method in Section 3 with a practical discrete-
e adaptive time stepping method. We illustrate the benefit of using the BEM over GM in a physically relevant setting in comparison 

 results from laboratory experiments. Throughout Section 5, we solve problem (𝑃 ) with the specific functions.

(ℎ) = ℎ3𝜙(𝛼ℎ)
3𝜙(𝛼)

, 𝜙(𝑋) = 3
16𝑋3 [(1 +𝑋)4(4 log(1 +𝑋) − 3) + 4(1 +𝑋)2 − 1],

+(ℎ) = −
𝐴𝐻

ℎ3
, −(ℎ) =

𝛼

𝜂(1 + 𝛼ℎ)
.

(5)

This corresponds to the FSM in Ji et al. [18] with 𝜆 = 0. In their work, setting 𝜆 = 0 matched the experimental data better than 
tting 𝜆 > 0. Thus, this is a good example to demonstrate our method on. The film stabilization term +(ℎ) takes the functional 
rm of disjoining pressure, with 𝐴𝐻 corresponding to the Hamaker constant. Increasing the value of 𝐴𝐻 stabilizes the flow. The 
rameter 𝜂 acts as a scaling parameter in the azimuthal curvature −(ℎ), and decreasing its value destabilizes the flow.
For each simulation, we use the functions in (5) and dimensionless parameters 𝛼, 𝜂, 𝐴𝐻 > 0 and a dimensionless initial data ℎ0(𝑥)

 domain [0, 𝐿]. In Section 5.1 and Section 5.3, we use dimensionless variables to compare the performance of the two numerical 
hemes. Whereas, in Section 5.2, the simulation is compared with experimental data, so the numerical results are converted back to 
dimensional scale. The dimensionless parameters and the initial data are chosen to be in the range of physically meaningful values. 
any times, we choose the initial data as a slightly perturbed constant state,

ℎ0(𝑥) = ℎ̄(1 + 0.01 sin(𝜋𝑥∕𝐿)).

e initial condition represents the profile of a flat liquid film at the onset of the instability, where ℎ̄ is a critical flow parameter that 
verns the size, spacing, and frequency of the liquid beads, consequently having a strong influence on the flow regime [15].

1. Comparison of numerical schemes

In this section, we compare the simulation of BEM and GM in a physically relevant setting. We simulate BEM and GM with the 
nctions (5) with dimensionless parameters 𝛼 = 10.6, 𝜂 = 0.223227, 𝐴𝐻 = 0.001. We choose the initial data as

ℎ0(𝑥) = 1.471(1 + 0.01 sin(𝜋𝑥∕𝐿)), 𝐿 = 24.0.

The numerical schemes presented in Section 4 are continuous in time. Thus, we must discretize the time step for the practical 
plementation. We discretize the continuous method (1) using the 𝜃-weighted time-step method with 𝜃 = 1

2 (semi-implicit). This 
ads to the semi-implicit BEM method:
While other terms involving spatial differences, including +, are discretized implicitly, we note that − is discretized explicitly. 
10

ch discretization is a well-known technique that increases the stability of a numerical method by treating a concave term and 
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Bounded Entropy Method (Semi-implicit BEM).(
1 + 𝛼

𝑢𝑘+1
𝑖

+ 𝑢𝑘
𝑖

2

)(
𝑢𝑘+1
𝑖

− 𝑢𝑘
𝑖

Δ𝑡

)
+ [𝑚(𝑢𝑘+1

𝑖−1 , 𝑢
𝑘+1
𝑖

)(1 + 𝑝𝑘+1
𝑖,𝑥̄

)]𝑥 = 0, (6)

𝑝𝑘+1
𝑖

= 𝑢𝑘+1
𝑖,𝑥̄𝑥

−+(𝑢𝑘+1𝑖
) −−(𝑢𝑘𝑖 ), (7)

𝑢𝑖(0) = 𝑢0(𝑖Δ𝑥), 𝑖 = 0,1,2⋯𝑁, (8)

𝑚(𝑠1, 𝑠2) =

{(𝑠1) if 𝑠1 = 𝑠2,

(𝑠2 − 𝑠1)∕ ∫ 𝑠2
𝑠1

1
(𝑠)𝑑𝑠 if 𝑠1 ≠ 𝑠2.

(9)

convex term separately [48,56,59]. One may employ a fully implicit method, but this typically requires Δ𝑡 to be very small. 
e observe that the semi-implicit method is stable for larger time steps. When using the semi-implicit scheme, we accelerate the 
ulations by incorporating adaptive time stepping, as discussed in detail in Section 5.3. We also note that one has to numerically 
lculate ∫ 𝑠2

𝑠1
1

(𝑠)𝑑𝑠 while evaluating 𝑚(𝑠1, 𝑠2). We use the Simpson’s method with 2-4 grids to numerically integrate 1∕(ℎ) on 
𝑖−2, 𝑢𝑖−1], [𝑢𝑖−1, 𝑢𝑖], and so on. Similarly, we discretize the continuous method (4) using the fully implicit time-stepping scheme in 
8].

Generic Method (Implicit GM with discrete mobility).(
1 + 𝛼

𝑢𝑘+1
𝑖

+ 𝑢𝑘
𝑖

2

)(
𝑢𝑘+1
𝑖

− 𝑢𝑘
𝑖

Δ𝑡

)
+ [𝑚(𝑢𝑘+1

𝑖−1 , 𝑢
𝑘+1
𝑖

)(1 + 𝑝𝑘+1
𝑖,𝑥̄

)]𝑥 = 0, (10)

𝑝𝑘+1
𝑖

= 𝑢𝑘+1
𝑖,𝑥̄𝑥

−+(𝑢𝑘+1𝑖
) −−(𝑢𝑘+1𝑖

), (11)

𝑢𝑖(0) = 𝑢0(𝑖Δ𝑥), 𝑖 = 0,1,2⋯𝑁, (12)

𝑚(𝑠1, 𝑠2) =

{(𝑠1) if 𝑠1 = 𝑠2,

(
0.5(𝑠1 + 𝑠2)

)
if 𝑠1 ≠ 𝑠2.

(13)

We take 𝑚(𝑠1, 𝑠2) = 
(
0.5(𝑠1 + 𝑠2)

)
, which satisfies Definition 3.1. The calculation of 𝑚(𝑠1, 𝑠2) for GM is relatively simple since 

does not require numerical integration. As mentioned before, the GM is fully implicit so Δ𝑡 needs to be well-controlled and kept 
all. Thus, when we compare the simulation of BEM (6) to GM (10) in Section 5.1-5.2, we use a fixed Δ𝑡 unless the numerical 
ethod fails to converge in which case we decrease Δ𝑡 by half. In Section 5.3, we show an example of BEM (6) implemented with 
e adaptive time stepping algorithm (see Algorithm 1) to demonstrate more efficient implementation. For both methods, we use 
wton’s method at each time step to solve discrete nonlinear equations. The Newton’s method returns True if it successfully solves 
r the numerical solution at the next time step within 15 iterations; otherwise, it returns False. When the Newton’s method fails, 
e decrease Δ𝑡 by 50% and try Newton’s method again. The detailed procedure of the Newton’s method is written in Algorithm 2 of 
pendix A.

Fig. 2 and Fig. 3 compare numerical simulations of the GM (10) and the BEM (6) methods on a dimensionless domain [0, 24]. In 
g. 2, one observes a classic evolution of isolated droplet dynamics where the bigger droplet collides with a smaller one and merges 
to one droplet as the solution propagates. Fig. 3 is a closeup of the results from Fig. 2 at the time of singularity. To generate Fig. 2
d Fig. 3, we simulate GM on a fine grid (6144 grid points on [0, 24]) until dimensionless time 𝑡 = 610 with Δ𝑡 = 10−4 fixed. At this 
e 𝑡 = 610, we extract the data corresponding to a coarse grid (3072 grid points on [0, 24], which is twice the grid size of the fine 
id) and set it as an initial condition for Fig. 2 and Fig. 3. From this time, we simulate BEM and GM on the coarse grid with fixed 
 = 0.1. Fig. 2(a) illustrates the evolution of the simulation of GM while Fig. 2(b) illustrates the evolution of the simulation of BEM. 
 𝑡 = 650.05 in Fig. 2(a), one observes that the numerical solution becomes negative at one grid point in an underresolved mesh 
tting. Notice that Fig. 2(a) has a singularity at 𝑡 = 650.05 instead of 𝑡 = 650.0 or 𝑡 = 650.1 despite keeping Δ𝑡 = 0.1 fixed. This is 
cause, at 𝑡 = 650, the Newton’s method for GM fails. As a consequence, the time step Δ𝑡 = 0.1 is decreased by half, Δ𝑡 = 0.05 (see 
gorithm 2 in Appendix A). The Newton’s method succeeds after decreasing the time step by half, yet the recovered solution has a 
gative ℎ value. On the other hand, BEM successfully maintains positivity throughout the dynamics.
In Fig. 3, one observes the detailed profile of each simulation at the time of the numerical singularity. We continue the simulation 

 Fig. 2 until 𝑡 = 654. Note that we observe the numerical singularity on the coarse GM (10) simulation at 𝑡 = 650.05 for the first 
e. The coarse GM simulation continues to have a negative value in contrast to the coarse BEM (6) simulation, which stays 
sitive. Having a singularity is critical since it often prevents further numerical simulation and provides inaccurate results. It is also 
physical because no finite time rupture is observed in the experiment. Such numerical singularities are commonly observed with 
11

e GM method in this dynamic regime of the simulation. The details of the fixed time closeup are described in the caption of Fig. 3.
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. 2. Simulation results with (a) Generic Method (GM) (10) from 𝑡 = 610 to 𝑡 = 650.05 and (b) Bounded Entropy Method (BEM) (6) from 𝑡 = 610 to 𝑡 = 655 on a coarse 
d (3072 grid points on [0, 24]). The details of the simulation are described in Sec. 5.1. The plots illustrate the difference between the evolution profiles of traveling 
oplets as they merge. At 𝑡 = 640, GM prematurely fuses two droplets while BEM does not. Because of the instability caused during the merging, GM develops 
gativity at 𝑡 = 650.05, indicated by the blue square marker. The instability also causes the Newton’s method to fail for GM at 𝑡 = 650, so Δ𝑡 = 0.1 is decreased by 
lf Δ𝑡 = 0.05. On the other hand, BEM can handle such an instability (see 𝑡 = 655) and maintain the positivity of the film thickness while keeping the time step size 
 = 0.1. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

. 3. A closeup of a coarse grid simulation (3072 points on [0, 24]) around 𝑡 = 654. The details of the simulation are described in Sec. 5.1. The coarse GM simulation 
taken at 𝑡 = 654.45, the coarse BEM simulation is taken at 𝑡 = 654.40, and the fine GM simulation is taken at 𝑡 = 654.41. Fig. 3(a) represents the full profile, and 
. 3(b) represents the closeup profile near the singularity. Note that ℎ of the coarse GM simulation goes below the zero line indicated in dashed black at 𝑡 = 654.4500, 
ereas the coarse BEM simulation does not go below the zero line at 𝑡 = 654.400. The fine GM simulation uses twice as many grid points (6144 grid points on [0, 24]) 
d is captured at 𝑡 = 654.4100. Besides the phase shift, the coarse BEM simulation agrees better with the fine GM simulation in the sense that the average 𝑙2 error 
error = 2.0116) across the domain is lower than the average 𝑙2 error caused by coarse GM simulation (𝑙2 error = 2.5999). The average 𝑙2 error was calculated by 
uation (14).

One can see that the singularity affects the shape of the solution making the numerical prediction inaccurate. Let us take a closer 
ok at the downstream and upstream profile of the droplet in Fig. 3. We see that the coarse BEM (6) simulation has more smoothness 
wnstream of the droplet (from 𝑥 = 23 to 𝑥 = 24), whereas GM (10) simulation has a finite time pinchoff (marked by a blue square). 
e also see that BEM’s wavy pattern at the upstream matches better with the experiment than the GM’s (from 𝑥 = 0 to 𝑥 = 15). 
rthermore, the coarse BEM simulation has a lower average 𝑙2 error (𝑙2 error = 2.0116) than the error caused by the coarse GM 
ulation (𝑙2 error = 2.5999) despite using different schemes. Here, we define the average 𝑙2 error as

𝑙2 error =
1
𝐿

∑
𝑖

(𝑢𝑖 − 𝑢∗
𝑖
)2, (14)

here 𝑢𝑖 is the simulation results on the coarse grid and 𝑢∗𝑖 is the simulation result on the fine grid at the corresponding points of the 
arse grid.

2. Comparison with laboratory experiment

Here we compare predictions from our method with the experimental data. In the experiment, the coating flow is created by 
jecting a fluid into the nozzle with an inner diameter of 0.8 mm using a programmable syringe pump. We use Rhodorsil silicone 
l v50, which is a well-wetting liquid with the density 𝜌 = 963 kg/m3, kinematic viscosity 𝜈 = 50 mm2/s, and surface tension 𝜎 = 
.8 mN/m at 20 ◦𝐶 . The corresponding capillary length 𝑙𝑐 = 1.5 mm. The fluid flows along 0.6 m-long Nylon string that is hung 
rtically. The radius of the Nylon string is 0.1 mm. A high-speed camera captures the flow at a frame rate of 1000 frames/second. 
12

e estimate the measurement uncertainty in the liquid bead radius and length to be approximately ± 0.08 mm, and that in the 
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. 4. Comparison between laboratory experimental data and simulation data of the numerical methods. The details of the simulation and laboratory data acquisition 
 described in Sec. 5.2. GM (10) and BEM (6) were simulated with a fine grid (1000 grid points on the domain [0, 5]) and then shifted horizontally to match the 
ase. The experimental profile (the black solid line) follows the Rayleigh-Plateau regime, extracted from an experiment conducted with a flow rate of 0.08 g/s, a 
er radius of 0.1 mm, and nozzle ID of 0.8 mm.

. 5. Comparison between laboratory experimental data and simulation data of the numerical methods. The details of the simulation and laboratory data acquisition 
 described in Sec. 5.2. GM (10) and BEM (6) were simulated with a relatively coarse grid (1999 grid points on the domain [0, 39.338]) and then shifted horizontally 
match the phase. The experimental profile (the black solid line) follows the isolated droplet regime, extracted from an experiment conducted with a flow rate of 
6 g/s, a fiber radius of 0.1 mm, and a nozzle ID of 0.8 mm.

uid bead spacing approximately ± 0.3 mm. Further details of our experimental setup, procedure, and data analysis can be found 
 a previous publication [15].
We consider two cases: the Rayleigh-Plateau case and the isolated droplet case. We do not consider the convective regime because 
requires different boundary conditions. For the first case, we let the flow rate be 0.08 g/s for a fiber with a radius of 0.1 mm and 
nozzle inner diameter (nozzle ID) of 0.8 mm. The experiments and corresponding numerical method both exhibit the Rayleigh-
ateau regime (see Fig. 4). For the second case, we let the flow rate be 0.006 g/s for the same fiber. For these parameters, one 
serves the isolated droplet regime (see Fig. 5).
The experimentally obtained images are processed and segmented by the built-in methods in MATLAB, where we have incorpo-
ted the Canny method and Otsu’s method. By processing high-resolution optical images and using other experimental values such 
 the flow rate, fiber radius, the density of the fluid 𝜌, and the kinematic viscosity 𝜈, we obtain a characteristic length scale ℎ𝑁 and 
e estimated period 𝐿 of traveling beads. Using these values, one can calculate dimensionless parameters 𝛼, 𝜂, and nondimensional 
aling constants. We must perform this task for each experimental case since the resulting parameters are different. To generate 
g. 4 and Fig. 5, we simulate GM (10) and BEM (6) on a dimensionless domain and scale back to dimensional data to compare with 
e experimental data.
Fig. 4 illustrates the simulation results of GM (10) and BEM (6) compared with the experimental data of the Rayleigh-Plateau 
gime. We simulate GM and BEM with the functions (5) with corresponding 𝛼= 5.8856 and 𝜂= 0.2912 with a stabilizing parameter 
osen to be 𝐴𝐻 = 10−11. We choose the initial data as a slightly perturbed constant state

ℎ0(𝑥) = ℎ̄(1 + 0.01 sin(𝜋𝑥∕𝐿)), 𝐿 = 5.0, ℎ̄ = 0.9568.

te that the stabilizing parameter 𝐴𝐻 is relatively small compared to 𝜂 or 𝛼 or the average film thickness ℎ̄. We simulate GM and 
M on a fine grid until dimensionless time 𝑡 = 250.006 with adaptive time where 10−3 ≤Δ𝑡 ≤ 10−2. The adaptive time stepping was 
ed to expedite the simulation process, but we made sure the maxΔ𝑡 is small enough for an accurate simulation (i.e. one results in 
e almost identical simulation if we keep Δ𝑡 = 10−4, fixed). After the simulation, we dimensionalize the data by multiplying scaling 
nstants with respect to space and time. One can see that the three simulations match well despite the fact that both GM and BEM 
ghtly underpredict the bead traveling speed as they go further along the 𝑥-direction.
Fig. 5 illustrates the simulation results of GM (10) and BEM (6) compared with the experimental data of the isolated droplet 
gime. We simulate GM and BEM with the functions (5) with corresponding 𝛼 = 3.092621559 and 𝜂 = 0.123 with a stabilizing 
rameter chosen to be 𝐴𝐻 = 4.0 × 10−2. Note that the stabilizing parameter 𝐴𝐻 is bigger than the value we choose to simulate the 
yleigh-Plateau regime. We have simulated GM and BEM with a slightly perturbed constant state condition as the initial data, but 
e simulation has resulted in a dramatically different and unphysical profile from the experimental data. We expect this to be natural 
cause the profile of the isolated droplet regime is inherently more complex than the Rayleigh-Plateau regime. We expect that there 
e several different steady states, and it may depend on the initial data intricately. Therefore, we extract the initial condition from 
e experiment and use an interpolating sine series to find the best-fitting smooth function. We enforce a periodic boundary condition 
 cropping the data appropriately so that the ℎ0 at 𝑥 = 0 matches ℎ0 at 𝑥 = 𝐿. After cropping, we use a moving average filter to 
ooth data even further. The code implementation details are published in a GitHub repository [69]. After acquiring the initial 
ta, we simulate GM and BEM on a fine grid until dimensionless time 𝑡 = 807.107 for GM and 𝑡 = 827.8070 for BEM with adaptive 
e where 10−3 ≤ Δ𝑡 ≤ 10−2. The adaptive time stepping is used to expedite the simulation process again. Similar to the Rayleigh-
13

ateau simulation, we dimensionalize the data by multiplying scaling constants with respect to space and time. One can see that 
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lgorithm 1: Adaptive time stepping for BEM (6) described in Sec. 5.3.
Input: Discrete initial data 𝐮0 , time step Δ𝑡, final time 𝑡𝑒𝑛𝑑 , adaptive time tolerance 𝑡𝑜𝑙1 , the maximum number of count countMax
Output: 𝐮𝑘 at the 𝑡𝑒𝑛𝑑 if the simulation succeeds. Otherwise outputs 𝐮𝑘 at the time of the simulation failure.
SimulateAdaptive(𝐮0,Δ𝑡,𝑡𝑒𝑛𝑑):
set 𝑡 = 0, bad = 0, count = 0, and 𝐮𝑘 = 𝐮0;
while 𝑡 < 𝑡𝑒𝑛𝑑 do

if NewtonMethod(𝐮𝑘,Δ𝑡,𝑡𝑜𝑙1) == True then

𝑡 = 𝑡 +Δ𝑡, 𝐮𝑘 = 𝐮𝑘+1; /* Update time and solution */

Δ𝑡 =Δ𝑡 ∗ 1.01; /* Increase Δ𝑡 by 1% */

calculate 𝐞𝑘+1, 𝐞𝑘, and 𝐋𝐓𝐄(𝑡𝑘+1);
if ‖𝐋𝐓𝐄(𝑡𝑘+1)‖∞ < 𝑡𝑜𝑙1 then

count=count+1;

if count =countMax then

Δ𝑡 =Δ𝑡 ∗ 1.2; /* Increase Δ𝑡 by 20% */

count = 0;
end

end

else

bad = bad+1;
Δ𝑡 =Δ𝑡 ∗ 0.5; /* Try the Newton’s Method with smaller Δ𝑡 */

if bad > 4 then

exit(1); /* Stop the simulation */

end

end

end

th simulations predict the width of the droplet well with slight overprediction of the height of the droplet. We note that BEM 
scribes the pinchoff behavior downstream of the bead better (from 𝑥 = 18 mm to 𝑥 = 20 mm) than GM since GM is nearly flat in 
is region (from 𝑥 = 18 mm to 𝑥 = 20 mm) in Fig. 5.

3. Adaptive time stepping and computational efficiency

Adaptive time stepping can optimize the performance of the numerical method while still accurately capturing the droplet 
opagation. In the early stage of the computation, we expect to see a lot of change in the shape of the graph. Therefore, one wishes 
 keep the time step very small to capture the accurate profile of the solution. However, as the computation progress, the algorithm 
proaches a nearly steady state. It becomes costly to implement a small time step calculation for many iterations, while such a small 
p iteration does not contribute much to the change of the profile or the phase. Here we use an adaptive time stepping scheme 
otivated by the method in [41,70].
The main idea is to use a dimensionless local truncation error for every time step and see if it surpasses a tolerance value that we 
pose. This choice of adaptive method was inspired by similar ideas in [41,70]. We define the dimensionless local truncation error 
ing the following formula,

𝐿𝑇𝐸(𝑡𝑘+1)𝑖 =
|||||𝑒𝑘+1𝑖

− Δ𝑡
Δ𝑡𝑜𝑙𝑑

𝑒𝑘
𝑖

|||||,
here

𝑒𝑘+1
𝑖

=
𝑢𝑘+1
𝑖

− 𝑢𝑘
𝑖

𝑢𝑘
𝑖

, 𝑒𝑘
𝑖
=

𝑢𝑘
𝑖
− 𝑢𝑘−1

𝑖

𝑢𝑘−1
𝑖

, Δ𝑡 = 𝑡𝑘+1 − 𝑡𝑘, Δ𝑡𝑜𝑙𝑑 = 𝑡𝑘 − 𝑡𝑘−1.

e details of the entire algorithm are given by Algorithm 1. Note that we store information from the previous timestep 𝐮𝑘−1
 calculate 𝐋𝐓𝐄(𝑡𝑘+1). If one successfully calculates 𝐮𝑘+1 with the Newton’s method, we increase our time step by 1%, calculate 
𝐄(𝑡𝑘+1), and check ||𝐋𝐓𝐄(𝑡𝑘+1)||∞ < 𝑡𝑜𝑙1. If ||𝐋𝐓𝐄(𝑡𝑘+1)||∞ < 𝑡𝑜𝑙1 more than countMax times (in our case, we let countMax = 3
roughout Sec. 5.3), we increase our time step by 20%. To speed up the simulation even further, one may increase the percentage 
 a higher value while the time step reduces by half if the Newton’s method fails. If the error is bigger than 𝑡𝑜𝑙1, we proceed to 
lculate the next time step. In the case when the Newton’s method fails, we decrease our time step by 50% and try the Newton’s 
ethod again.

3.1. An adaptive time stepping example without a singular behavior
We simulate the semi-implicit BEM (6) with the functions (5), and dimensionless parameters 𝛼 = 5.0, 𝜂 = 0.02, 𝐴𝐻 = 10−5. We 
oose the initial data as

ℎ0(𝑥) = 0.95(1 + 0.01 sin(𝜋𝑥∕𝐿)), 𝐿 = 1.0,

d use 100 grid points on [0,1]. We start with initial Δ𝑡 = 10−3 and use Algorithm 1 to increase Δ𝑡 until 𝑡 = 1.0 with 𝑡𝑜𝑙1 = 10−1 and 
14

untMax= 3. Fig. 6 illustrates the increase of Δ𝑡 throughout the simulation when 𝜂 is relatively high and the stabilizing parameter 
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. 6. Plots of Δ𝑡 for the simulation described in Sec. 5.3.1 for 0 < 𝑡 < 1. The Newton’s iteration always succeeds so Δ𝑡 continuously increases by 1% every time while 
 additional increase of 20% (20 times in total) occurs every 3rd time. The image on the right shows a close-up of the early time interval from 𝑡 =0 to 𝑡 = 0.1.

. 7. Plots of Δ𝑡 for the simulation described in Sec. 5.3.2 for 0 < 𝑡 < 1. The Newton’s iteration always succeeds so Δ𝑡 continuously increases by 1% every time. 
wever, unlike Fig. 6, an additional 20% increase occurs irregularly. In fact, from 𝑡 = 0.045228 to 𝑡 = 0.0918907, Δ𝑡 does not increase. The image on the right shows a 
se-up of the early time interval from 𝑡 = 0 to 𝑡 = 0.1.

Fig. 8. Evolution of a flow with a singular behavior described in Sec. 5.3.2. All of the plots have ℎ ≥ 6.0942 × 10−4 .

is relatively high. Because the parameters are selected to simulate a relatively stable coating flow, the ||𝐋𝐓𝐄(𝑡𝑘+1)||∞ < 𝑡𝑜𝑙1
ndition is satisfied whenever the Newton’s method succeeds. Thus, every 3rd-time step (note that countMax = 3), Δ𝑡 increases 
 20%.

3.2. An adaptive time stepping example with near singular behavior
We simulate the semi-implicit BEM (6) with the functions (5), and dimensionless parameters 𝛼 = 5.0, 𝜂 = 0.005, 𝐴𝐻 = 0. We choose 
e initial data as

ℎ0(𝑥) = 0.95(1 + 0.01 sin(𝜋𝑥∕𝐿)), 𝐿 = 1.0,

d use 100 grid points on [0,1]. We start with initial Δ𝑡 = 10−3 and use Algorithm 1 to increase Δ𝑡 until 𝑡 = 1.0 with 𝑡𝑜𝑙1 = 10−1
d countMax = 3 again. Since we set the stabilizing parameter 𝐴𝐻 = 0 and take a lower 𝜂 value, we observe a singular behavior 
 the simulated flow (see Fig. 8). Fig. 7 illustrates the increase of Δ𝑡 throughout the simulation when there is a singular behavior. 
like Fig. 6, the ||𝐋𝐓𝐄(𝑡𝑘+1)||∞ ≥ 𝑡𝑜𝑙1 from 𝑡 = 0.045228 to 𝑡 = 0.0918907. In this region, Δ𝑡 is increased by 1% to carefully handle the 
15

nsition of droplet dynamics (see Fig. 8).
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Table 1

Computational cost comparison of BEM and GM for examples discussed in Sec. 5.3.3.

Time stepping Positivity CPU time

GM with Δ𝑥 = 0.01 Fixed Fails at 𝑡 = 0.299 0.286 s until 𝑡 = 0.299
BEM Δ𝑥 = 0.01 Fixed Success 0.374 s until 𝑡 = 0.299
BEM Δ𝑥 = 0.01 Adaptive Success 0.317 s until 𝑡 = 0.299
GM with Δ𝑥 = 0.005 Fixed Fails at 𝑡 = 1.09594 0.602 s until 𝑡 = 1.09594
BEM with Δ𝑥 = 0.005 Fixed Success 1.08 s until 𝑡 = 1.096
BEM with Δ𝑥 = 0.005 Adaptive Success 0.412 s until 𝑡 = 1.09678
GM with Δ𝑥 = 0.0025 Fixed Fails at 𝑡 = 3.4765 2.959 s until 𝑡 = 3.4765
BEM with Δ𝑥 = 0.0025 Fixed Success 4.727 s until 𝑡 = 3.477
BEM with Δ𝑥 = 0.0025 Adaptive Success 0.724 s until 𝑡 = 3.51201

3.3. Computational efficiency and accuracy of the adaptive time stepping
In this section, we demonstrate the computational efficiency of our method BEM over GM. We simulate semi-implicit BEM (6)

d implicit GM (10) with the functions (5), and dimensionless parameters 𝛼 = 5.0, 𝜂 = 0.005, 𝐴𝐻 = 0. We choose the initial data as

ℎ0(𝑥) = 0.45(1 + 0.01 sin(𝜋𝑥∕𝐿)), 𝐿 = 1.0,

d record the CPU time of each method on three different grid sizes. Note that this is a similar setting as the simulation run in 
c. 5.3.2. When we use the fixed time stepping (see Algorithm 3 in Appendix A) for BEM and GM, we let Δ𝑡 = 10−3. When we use 
e adaptive time stepping, which is only used for BEM, we use Algorithm 1 with initial Δ𝑡 = 10−3, 𝑡𝑜𝑙1 = 10−3, and countMax = 3. 
ch GM simulation is run until the numerical solution fails to preserve positivity, resulting in different termination times. On the 
her hand, each BEM always preserves the positivity of the numerical solution regardless of using any time stepping method so that 
can be run until any time. For a fair CPU time comparison, we run BEM until GM fails with the respective grid sizes. By examining 
ble 1, one may notice the computational benefits of using adaptive time stepping with increased grid points.

 Conclusion

In this paper, we introduce a positivity-preserving finite difference method for the problem fiber-coating a vertical cylindrical 
er. While the current state of the art method (GM) achieves close agreement with experiments and successfully captures regime 
nsitions, it struggles to match the flow profiles as the film thickness becomes small. In particular, the GM needs significant grid 
finement to resolve very thin films without a numerical singularity. We prove that our BEM preserves positivity given (ℎ) =𝑂(ℎ𝑛)
r 𝑛 ≥ 2 and furthermore that there exists a lower bound independent of grid size given an a posteriori Lipschitz bound on the solution 
omething that is always observed in experiments). By constructing a generalized entropy estimate, we extend the idea of positivity-
eserving methods for basic lubrication equations to the problem involving cylindrical geometry, gravity, and nonlinear pressure. 
is technique has promise for thin liquid film equations with complex geometry, advection effect, and other surface tension effects.
There are a number of directions one can pursue from this work. One obvious direction is to prove the convergence of the BEM. 
ch work would benefit from additional regularity and positivity results for the continuum PDE. Another direction is to generalize 
e method to the fully 2D fiber coating problem e.g. using ADI methods such as [71] or to consider more general geometries as in 
2]. Finally, it would be interesting to consider other types of boundary conditions since the experiment is not periodic in space. 
e boundary conditions on an inlet and an outlet of the flow can change if other models are considered, such as one that includes 
nozzle geometry [73] or a thermal effect [74].
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pendix A. Algorithms used for numerical simulation

1. The Newton’s method and the fixed time step algorithm

lgorithm 2: The Newton’s method for BEM.
Input: numerical solution 𝐮𝑘 , the current time step Δ𝑡, and tolerance 𝑡𝑜𝑙 for the convergence success criteria.
Output: True or False depending on whether the method succeed or fail.
NewtonMethod(𝐮𝑘,Δ𝑡,𝑡𝑜𝑙):
𝐮𝑘+1 = 𝐮𝑘; /* Initial guess for the Newton’s method */

for 𝑖 = 0 to 15 do

𝐟(𝐮𝑘) = the left side of the equality of equation (6); /* Use (10) for GM */

𝐮𝑘+1 = 𝐮𝑘 − (∇𝐟(𝐮𝑘))−1𝐟(𝐮𝑘);
if ‖𝐟(𝐮𝑘)‖∞ < 𝑡𝑜𝑙∕10 then

break;

end

end

if ‖𝐟(𝐮𝑘)‖∞ < 𝑡𝑜𝑙 then
return True;

else
return False;

end

e Newton’s algorithm is specifically written for BEM (6), but setting 𝐟(𝐮𝑘) as the left side expression of the equality of equation 
0) in Algorithm 2 results in the algorithm for GM (10). The function NewtonMethod has the input of the numerical solution 
 𝑘th time step 𝐮𝑘, the current time step Δ𝑡, and the tolerance value 𝑡𝑜𝑙 which determines the success or failure of the Newton’s 
ration. NewtonMethod returns True if ‖𝐟(𝐮𝑘)‖∞ < 𝑡𝑜𝑙 after the for loop and updates the numerical solution by setting 𝐮𝑘 = 𝐮𝑘+1.
wtonMethod gives a chance of 15 iterations, but in practice, we see that the method satisfies ‖𝐟(𝐮𝑘)‖∞ < 𝑡𝑜𝑙∕10 within 3-4 
ration. When ‖𝐟(𝐮𝑘)‖∞ ≥ 𝑡𝑜𝑙, NewtonMethod returns False.

lgorithm 3: Simulation with regular time stepping.
Input: a discrete initial data 𝐮0 , the time step Δ𝑡, the end time 𝑡𝑒𝑛𝑑 , and tolerance 𝑡𝑜𝑙 for the convergence success criteria.
Output: 𝐮𝑘 at the 𝑡𝑒𝑛𝑑 if the simulation succeeds. Otherwise outputs 𝐮𝑘 at the time of the simulation failure.
Simulate(𝐮0,Δ𝑡,𝑡𝑒𝑛𝑑):
set 𝑡 = 0, bad = 0, and 𝐮𝑘 = 𝐮0;
while 𝑡 < 𝑡𝑒𝑛𝑑 do

if NewtonMethod(𝐮𝑘, Δ𝑡, 𝑡𝑜𝑙) == True then

𝑡 = 𝑡 +Δ𝑡 ; /* Update time */

𝐮𝑘 = 𝐮𝑘+1; /* Update the numerical solution */

bad = 0;
else

bad = bad+1;
Δ𝑡 =Δ𝑡 ∗ 0.5; /* Try the Newton’s Method with smaller Δ𝑡 */

if bad > 4 then

exit(1); /* Stop the simulation */

end

end

end

In the case when NewtonMethod returns False, we decrease Δ𝑡 by 50% and try NewtonMethod again with the same 𝐮𝑘 and 
𝑙 (see Algorithm 2 and Algorithm 1). Below is the algorithm using regular time step which is used to generate Fig. 2 and Fig. 3. 
tice that Δ𝑡 is only decreased when NewtonMethod returns False. If NewtonMethod fails more than 4 consecutive times, we 
mpletely stop the simulation.
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