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ARTICLE INFO ABSTRACT
Keywords: When a thin liquid film flows down on a vertical fiber, one can observe the complex and
Surface tension captivating interfacial dynamics of an unsteady flow. Such dynamics are applicable in various

Fiber coating
Positivity preserving
Finite difference scheme

fluid experiments due to their high surface area-to-volume ratio. Recent studies verified that when
the flow undergoes regime transitions, the magnitude of the film thickness changes dramatically,
making numerical simulations challenging. In this paper, we present a computationally efficient
numerical method that can maintain the positivity of the film thickness as well as conserve
the volume of the fluid under the coarse mesh setting. A series of comparisons to laboratory
experiments and previously proposed numerical methods supports the validity of our numerical
method. We also prove that our method is second-order consistent in space and satisfies the
entropy estimate.

1. Introduction

Thin-film flows over fibers exhibit complex dynamical properties due to interplay among various forces, such as the surface
tension, viscous force, gravity, and inertia force. In the Rayleigh instability regime, an initially uniform flow quickly breaks up into
regularly spaced beads, and forms traveling waves in the presence of gravity along the fiber direction [1,2]. The beaded morphology
creates an array of localized high-curvature regions that act as radial sinks, making it attractive for devices for heat and mass transfer
along the liquid-gas interfaces [3,4].

These thin-film flows have applications in gas absorption [5-7], heat exchange [8,9], microfluidics [10], desalination [3], and
others. The wide variety of potential applications attracted theoretical studies over the last few decades [1,2,11-16]. The fundamental
component determining the profile of the thin liquid film on a vertical fiber is surface tension, which has a stabilizing effect on the
axial curvatures, and destabilizing effect on the azimuthal curvatures of the interface [17]. In addition, other factors increasing the
flow’s complexity are the cylindrical geometry of the fiber and the gravitational force. Experimentally, interfacial instabilities of the
flow have been studied over decades [1,16]. Kliakhandler et al. experimentally characterized the three distinct regimes of interfacial
patterns (a)-(¢) [17]. In this paper, we use the convention by Ji et al. [18] and call (a)-(c) regimes convective, Rayleigh-Plateau,
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Fig. 1. Illustration of a thin liquid film flowing down a vertical fiber. R* represents the radius of a vertical cylinder, h* represents the thickness of the liquid film,
g represents the gravitational constant, and u*, v* represent velocity components in the axial and radial direction. Dimensional variables are indicated with = while
we drop * to represent corresponding dimensionless variables (see equation (1)). Ji et al., Dynamics of thin liquid films on vertical cylindrical fibres, Journal of Fluid
Mechanics (2019), vol. 865, 303-327, reproduced with permission.

and isolated droplet regimes. The convective regime, observed when the flow rate is high, corresponds to the flow profile where
irregular droplets collide with each other. The Rayleigh-Plateau regime corresponds to the flow profile, where beaded traveling
waves propagate nearly constantly. The isolated droplet regime, observed when the flow rate is low, corresponds to the flow profile
where small wavy patterns follow well-separated large droplets. The distinct dynamics of each regime and its transition is extensively
studied, both theoretically and experimentally [2,16,18-21].

In this paper, we consider reduced-order models of the Navier-Stokes equations incorporating linear and nonlinear effects of the
flow. Li & Chao [22] summarize a few notable methods: the gradient expansion method [18,23-25], the integral method [26,27],
the weighted residual method [13,14,20], and the energy integral method [28]. The models are often classified according to the size
of the Reynolds number. For the low Reynolds number cases, the flow profile is approximated by the Stokes equations combined
with the lubrication approximation [18,24]. For moderate Reynolds number cases, one incorporates inertial terms in the governing
equation using the weighted residual boundary integral method [13,14]. Many of the models are verified against the experimental
data [13,14]. For example, a recent study by Ji et al. shows a good agreement with experimental data by correctly predicting bead
velocities, flow profiles, and regime transition bifurcation [18].

A major challenge is that fiber coating equations are extremely difficult to solve both numerically and analytically. They are
typically fourth-order degenerate nonlinear parabolic equations due to the surface tension in the dynamics. We consider the following
model from [18] (Fig. 1):

0

2 (h+ 20 )+ Zmw+ =

ap| _
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M(h) = 0", p= % _Z(h).

Equation (1) is an evolution equation of dimensionless film thickness A(x, ). From left to right,

. %(h + %hz) denotes the mass change over time where a = H/R* > 0 is the aspect ratio between the characteristic radial length
scale of film thickness  to the fiber radius R*.

* M(h) is often referred to as the mobility function that describes the hydrodynamic interactions of the transverse waves. Many
times, M(h) = O(h"). For example, setting M(h) = h> corresponds to the no-slip boundary condition, and setting M(h) = A> +
ph" for n € (0,3) corresponds to various Navier-slip conditions (cf. [29]). The smoothness of M(h) near h =0 determines the
qualitative behavior of solutions at zero [30].

+ The pressure p consists of two terms - the linearized curvature ()272’, representing the streamwise surface tension, and the Z(h), rep-
resenting other nonlinear pressure effects. Z(h) often contains a destabilizing surface tension term that arises from the azimuthal
curvature but can also include other terms.

Equation (1) is considered state of the art for this problem because it quantitatively agrees with bead velocities, flow profiles,
and regime transition bifurcations as compared to experiments. Previously, the model by Kliakhandler et al. [17] incorporated fully
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nonlinear curvature to capture the qualitative behavior of the Rayleigh-Plateau and isolated droplet regime. Nevertheless, this model
overestimated the beads’ velocity by 40%. Craster & Matar [24] revisited this idea and presented an asymptotic model describing
Rayleigh-Plateau and isolated droplet regime but again overestimated the bead velocity. Their model also identified the Rayleigh-
Plateau regime to be transient rather than a stationary state. Duprat et al. [31], and Smolka et al. [32] further studied regime
transitions but predicting the regime transitions remained challenging. Ji et al.’s film stabilization model (FSM) [18] improved the
preceding models by incorporating a film stabilization term among generalized pressure terms. This stabilization term was inspired
by the attractive part of the long-range apolar van der Waals forces, which are carefully studied for the well-wetting liquids [33,34].
One can see that simulating such complex models is a delicate procedure. Thus, it is vital to have a robust numerical method for
simulating complex spatiotemporal dynamics to predict flow profiles and regime transitions.

The degeneracy of the mobility function M(h) and the complex nonlinear pressure terms Z(h) are two hurdles one needs to clear
to construct a robust numerical method. First, the degeneracy of the mobility function presents a substantial challenge in numerically
solving equation (1) since the solution may lose regularity as 4 — 0. Second, the nonlinear term Z(h) in pressure p complicates the
problem further since it is often relatively large in magnitude as 4 — 0. As a result, the numerical method can suffer from instabilities
as h — 0. Therefore, keeping h positive is not only crucial for the solution to be physically meaningful but also important for the
solution to be accurate. Fortunately, we found similarities between equation (1) and many lubrication-type equations and realized
we could view equation (1) as a variant of a lubrication-type equation with generalized pressure [30,35,36].

oh 0 o\ _o _9%h n
o (M(h)$> =0 p="5-Z(h where f()~h" as h—0. @

One may see that setting « =0 and %M(h) =0 in equation (1) results in equation (2). Setting « = 0 would mean neglecting the

effect of the fiber, and %M(h) =0 would mean neglecting the advection effect by liquid traveling downward. Such experimental
and theoretical settings are discussed in various studies devoted to the lubrication theory so that we can take advantage of them
[30,37-40,36]. We know the solution of (2) is smooth whenever the solution is positive but typically loses its regularity as the
solution A — 0 due to the degeneracy of the equation [41,42]. We also know that the nonlinear pressure terms often introduce a large
numerical instability as 2 — 0, making it challenging to maintain the positive numerical solution [30,40]. Examples of fiber coating
problems include Z(h) = —(a/e)?h in [43], assuming the thickness of the film is much smaller than the fiber radius (H < R*). Craster
& Matar [24] used Z(h) = m, assuming the film thickness comparable to the fiber radius (« = O(1)). Ji et al. [18] used that

Zh) = m — ’;—{;. The parameters Ay and 5 are discussed in more detail in Section 5. In both the Craster & Matar’s model and Ji
et al.’s model, we can expect numerical challenges when # is small. Indeed, we show in Section 5.1 that the numerical method used
in [18] can generate a false singularity as 7 — 0 when the spatial grid size is underresolved. In other words, although the analytical
solution of (1) is positive everywhere, the solution produced by a naive numerical method can produce negative values within
some range of the solution when the grid size is underresolved. Such numerical methods can be quite difficult to extend to higher
dimensions where grid refinement is computationally expensive. We also show that the negativity further prevents calculating the
solution after the singularity. Thus, it is desirable to have a positivity-preserving numerical method that can perform well at different
grid resolutions without spurious numerical singularities.

Constructing positivity-preserving methods for partial differential equations (PDEs) is addressed in a wealth of literature yet
most of them are limited to the first-order or second-order equations [44-47]. Equations above the second order have no maximum
or comparison principles, and higher-order spatial derivatives make the numerical system extremely stiff. Numerical methods for
fourth-order or higher-order equations with positivity-preserving properties have received far less attention. Early works include
[40,48-50] and make use of entropy estimates to prove positivity. Some of the recent approaches use cut-off, or Lagrange multiplier
methods which have a limitation in conserving mass or maintaining smoothness [51,52]. Here we introduce a convex-splitting
method that preserves physical quantities like energy, entropy, and mass [30,53-55] which treats the stabilizing terms implicitly
and the destabilizing terms explicitly. A few methods are unconditionally stable [56,57] which include the scalar auxiliary variable
method by Huang et al. [58]. The applications of these methods are to solve Cahn-Hilliard or Hele-Shaw cell-type equations.

This paper presents a positivity-preserving numerical scheme that works on a general family of lubrication-type equations on
cylindrical geometries. Positivity-preserving numerical methods have not been studied in the context of fiber coating, especially in
the regime that is most relevant to physical experiments. The structure of the paper follows. In Section 2, we prove properties that the
PDE (1) holds and discuss how the PDE imparts such properties to our numerical methods. In Section 3, we introduce our numerical
method and the state of art method used in Ji et al. [18]. In Section 4, we present proof of the positivity and the consistency of
our method. Section 5 contains numerical simulations of our methods. In particular, in Section 5.1, we compare simulations of our
method with simulations of the state of the art method while in Section 5.2, we compare simulations of our method with laboratory
experimental data. We also demonstrate how to employ adaptive time stepping to efficiently implement our method in Section 5.3.
An example without any numerical singular behavior is presented in Section 5.3.1 whereas an example with a finite time numerical
singular behavior is presented in Section 5.3.2. We also compare the CPU time of simulating our method and the state of the art
method in Section 5.3.3. Finally, in Section 6, we conclude our paper with a few remarks and suggest future research directions.

2. Properties of the partial differential equation

This section investigates two essential properties of the continuous fiber coating equation (1). We ensure that our numerical
method preserves the discrete equivalent of the properties. We consider the following initial-boundary value problem:
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=—-Z,(h-Z_(h),
(P)y P=71 Z,(h-2Z_(h

[0, L] — periodic boundary conditions,

2 PNl _q; _ 2
a;(“ h)+—[ (h)( ax>]—OlnLT—(O,L)><(O,T)cR,

h(x,0) = hy(x) > 0.

The main difference from previous equation (1) is that we split Z(h) into two parts: Z,(h) and Z_(h), where Z’, (h) >0 and
Z'_(h) £0. Such splittings are not generally unique but useful in the design of stable numerical schemes. Examples of convex-
concave splitting can be found in many numerical works of Cahn-Hilliard or thin-film equations [48,56,59]. An example is discussed
in Section 5.1. We assume periodic boundary conditions for simplicity and a positive initial condition to match the physical setting.

Here we assume that a smooth positive solution exists to the problem (P). The existence of a solution to problems such as (P)
has been studied in depth [21,60,61]. The general procedure is like this. First, one applies a regularization technique to problem
(P) to overcome the degeneracy and make the problem uniformly parabolic. The boundary condition can be extended to the whole
line using a proper continuation technique such as the one suggested in [62]. The well-known parabolic Schauder estimates [62-64]
guarantee a unique solution in a small time interval say, L, = (0, L) X (0,0). In the end, the limit of the regularized solution results
in a smooth, positive solution. We direct our readers to [21,61] for the full derivation. We believe a similar derivation is possible
through the canonical approach although continuation of solutions past the initial small time interval requires a priori bounds on
certain norms. A full discussion of this problem is beyond the scope of this paper.

The key idea of developing a positivity-preserving numerical method is to formulate an entropy estimate for the continuous
problem (P). Such an estimate guarantees the positivity of solutions in the continuous setting. Therefore, designing a numerical
method that satisfies the discrete equivalent of the entropy estimate will result in a positivity-preserving numerical method. For our
problem (P), we define entropy G(h) so that its derivative G'(h) satisfies

G'(h=1+ah) [ ——ds, f fixed A > 0.
(h) (+a)A/M() s, for some fixe >

We point out that the positivity proof for a continuous solution in Section 2, the definition of numerical methods in Section 3, and
the positivity proof for a discrete solution in Section 4 do not explicitly involve the constant A > 0. In other words, A is only involved
in G’(h) to ensure that it is well-defined. We claim that solutions to the problem (P) satisfy conservation of mass and an entropy
estimate.

Proposition 2.1. Suppose that there exists a solution h € C*(Ly) of (P), where Ly = [0, L) X [0,T). Suppose we further assume
M(h) = O(h"), M(h)=0,

Z,, Z_eC*®R"Y), and Z' (h) >0, Z'_(h) <0.

Then, the solution h satisfies the following two properties:

L L
(I / h(x,T)+ %hz(x,T)dx= / h(x,0) + %hz(x,O)dx (Conservation of mass),
0
L L " 5
(11)/G(h(x,T))dx§/G(h(x,O))dx+/ <%) dxdt (Entropy estimate).
0 0 Ly

Proof. The conservation of mass (I) is achieved by integrating the problem (P) on L;:

P} 5 P ap
/az (h+2h )dxdz_—/a [M(h)<1+a—>]dxdt
L L

T T
L L
a, o (L) _
— /(h(x,T)+§h (x,T))dx—/(h(x,0)+5h (x,O))dx—O‘
0 0

Note that the periodic boundary condition removes the complex expression surrounded by % [...] on the right-hand side of the
equality in the first line.
The entropy estimate (II) is achieved by directly calculating the time derivative of G(h):

L
/ (h)dx—/G'(h)hrdx
0

&lg
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L h
1
=/ (l+ah)h,/—M(s)ds dx
0 A
L h
-_[lo P» 1
= / 3 [M(h)<l+ax>]/M(s)ds dx
0 A
L
- 9
_/hx <l+ax>dx.

0

=

The equalities are justified by the integration by parts. Note that the periodic boundary plays a crucial role in simplifying expressions
on the boundary. We use the definition p=h,, — Z(h) = h,, — Z.(h) — Z_(h) to continue our calculation:

L L L
d P
E/G(h)dx:/hxdx+ =~ (R = 2(h)) dx
0 0 0
L L

h)zcx+/hxxz—(h)dx—/h)zcz,+(h)dx
0 0

Z_(h)\? [ 2\ L
<hxx—ﬁ) dx+/<ﬁ) dx—/h22’+(h>dx
2 2 *

0 0
Z_ ()2 [z
5—/<hxx——2 > dx+/<—2 ) dx.
0

0

~ o\h C\h

Again, the periodic boundary is crucial in eliminating fOL h.dx in the first line. We simplify the expression by completing the
square on the third line. We obtain the inequality in the last line because Z’_ (h) > 0. Integrating over time gives us

L 2 L 2
/G(h(x,T))dx+/ <hxx—¥> dxdts/G(h(x,O))dx+/ (%) dxdt.
0 0 L

Ly T

Finally, one can drop the second term on the left side of the inequality since it is nonnegative. []

The above properties allow us to create a positivity-preserving numerical method due to the entropy estimate. Lubrication-type
equations are well-known to satisfy entropy-dissipating properties. Bernis et al. recognized the significance of the entropy dissipation
property in third-order or higher degenerate parabolic equations and used it to prove the nonnegativity of weak solutions with
sufficiently high degeneracy in one space dimension [61]. They also proved that the solution is unique and strictly positive if the
mobility order n > 4. Following their work, several articles regarding lubrication-type equations discussed the importance of entropy
estimates in numerical and analytical contexts [30,41,48-50,60,65-67]. These ideas have largely been lacking in the fiber coating
problem, except for the entropy analysis done by Ji et al. [21], which proves the existence of a generalized nonnegative weak solution
of a fiber-coating model with fully nonlinear curvature terms on a periodic domain. In this paper, we use these ideas to develop a
positivity-preserving numerical method.

3. Positivity-preserving finite difference method

In this section, we present a continuous time and discrete in space positivity-preserving finite difference method, the Bounded
Entropy Method (BEM), and compare it to the current state of the art method General Method (GM) used in fiber coating models
[18]. Our method is second-order accurate in space while preserving the positivity of a numerical solution at each time. Our method
is motivated by prior work by Zhornitskaya & Bertozzi [49] and Griin & Rumpf [30] for a simple lubrication-type model without the
geometry and physics of fiber coating. Before introducing our method, we define the following notation.

Notation. Suppose we divide our domain [0, L] into N equally spaced grids of size Ax = L/N. Let u;(t) be a solution of a numerical
method that is continuous in time and discrete in space at time 7 and on grid i. Define the forward difference in space and the
backward difference in space as

_ ui+1(1) _ui(t) w = u,’(’) —ui_l(t)

™ Ax v Ax
Respectively, higher-order differences in space can be defined as
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Uiy1x ~ Uiz _ HMizx T Uio1zx

i,XxX Ax

As we highlight the importance of the entropy G(h) in designing a positivity-preserving method in Section 2, the discretized
mobility M(h) is the key factor that determines the qualitative behavior of the solutions near zero. We define the discrete mobility
function m(s,, s,) according to Definition 3.1.

Definition 3.1 (Discretization of Mobility). The mobility term M(s) in the problem (P) is discretized to satisfy the following criteria
[49]:

(@ m(s,s)=M(s),

(b) m(sy,s.) =m(sy,5)),

(©) m(s,s7) € CH((0, 00) X (0, 00)) N C([0, 00] X [0, c0]),

(d) Vé>0, there exists y > 0 such that 51,5, > 6 = m(s,s5,) >y >0.

The above definition of m(s;,s,) is symmetric and continuously differentiable everywhere except possibly at 0. Condition (d)
allows the m(s;, s,) to be degenerate if one of the arguments 42 — 0 but guarantees positivity if both of the arguments are greater than
0. Our positivity-preserving finite difference method, the Bounded Entropy Method (BEM), presented below, satisfies Definition 3.1.

Bounded Entropy Method (BEM). The finite difference discretization of the problem (P) with continuous time is written by the
following equations:
du;
(I+ au,‘)? + [m(u,-,l,ui)(l + Pi,;)]x =0, Pi =Ujxx — Z+(ui) - Z—(”i)’
u;(0) = uy(iAx), i=0,1,2 - N,

M(sy) ifs1=s,
m(sy,8,) = ;

(SZ_SI)//:IZ Ml(x)ds ifs; #5,.

€)]

In Section 4, we show that the above discretization of M(h) in BEM (1) guarantees a discrete equivalent of the conservation of

mass (I) and the entropy estimate (II). We also write the numerical method of Ji et al. [18] as the following, which we refer to as
Generic Method (GM).

Generic Method (GM). The finite difference discretization of the problem (P) with continuous time is written by the following
equations:

du;
1+ aui)d—t' FImu_ g u)(A+p 0l =0, pr=u; o — Z, ) — Z_ (),
u;(0) = uy(iAx), i=0,1,2-+ N,

4

where m(s|, s,) satisfies Definition 3.1.

As an example of m(s,,s,) used in GM (4), one can let m(s|, s,) = M(0.5(s| + s,)) or m(s,sy) = 0.5(M(s;) + M(s,)), where either
one estimates the mobility at the midpoint. Note that m(s;, s,) in BEM (1) and GM (4) uses center-difference, allowing the numerical
method to conserve flux at each time step. Together with second-order consistency, both numerical methods are “shock capturing,”
which is a desirable property to have in conservation law type of equations [68]. In the following section, we show that BEM (1)
satisfies the conservation of mass and entropy estimate, which allows us to prove the positivity of the numerical method.

4. Positivity of numerical solutions

In the previous section, we claim that m(s;,s,) in BEM (1) satisfies a discrete equivalent of the conservation of mass and
the entropy estimates discussed in Section 2. In this section, we prove our claim through Proposition 4.1 and explain how such
discretizations preserve the positivity of BEM (1) through Theorem 4.1. Our method is inherently more complex than entropy dis-
sipating schemes for traditional lubrication-type equations because of three reasons. First, the time derivative of (1) involves the
geometry of the cylindrical fiber %hz. Second, a nonlinear advection %M(h) is incorporated. Lastly, nonlinear pressure p entails
Z(h)=Z . (h)+ Z_(h). The coupled entropy estimate expression in Proposition 2.1 is consequently more complicated than “entropy
dissipation”, which is the case for the conventional lubrication-type equations. The following proposition is a discrete analog of
Proposition 2.1.
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Proposition 4.1. Suppose u;(t) is a solution of the BEM (1) at time ¢ and i-th grid in space. Suppose we further assume

M(h) =O(h"), M(h) >0,

Z,,Z_eCXR"), and Z',(h)>0,Z'_(h) <0,
h

1 .
"(h)=(1 h — ds A .
Gh=~1+a )/M(s)dv,forsomeﬁxed >0
A
Then, u;(¢) satisfies the following two properties given T > 0;
%) ax= S (w0 + Lu (02 - -
) Z (“i(T)+ 7 4(T) ) Ax z (u,(O) + 70 ) Ax (Discrete conservation of mass),

i

T
2
N Y, Gu(THAx < Y G, (0)Ax + / D <w> Axdt (Discrete entropy estimate).
i i 0 i

Proof. The proof of the statements is very similar to the proof of Proposition 2.1. The only difference is that we multiply by Ax and
sum over i =0,1,2... N instead of integrating over space. Discrete conservation of mass (I) is achieved by integrating the first line of
(3) by time and summing over i =0,1,2... N:

T T
/2(1 +aui)%Axdt= —/ D Imu_yu)(1+ p; )] Axdt
0 i 0 i

= Z (u,.(T) + %u,-(T)z) Ax— Z (u,-(O) + %ui(0)2> Ax=0.

As we saw in the continuous case, the periodic boundary condition removes the expression surrounded by [...],.
The discrete entropy estimate (II) is achieved by direct calculation.

d _ / dui
= Z Gu)Ax = Z G/ () —+ Ax

: 1
=— Z/ M(S)ds[m(u,-_l,u,-)(l + P Ax
A

1/
— Z i / M(s)ds m(u;_y,u;)(1+ p; 5 )Ax

i—1

=D u; (1 +p; 5)Ax
i

= D 50)” =212 )]s + w5 Z_ ()} Ax

Z_w)\? Z_w)\?
S_Z<“i’f"_ 2 )Ax+lz< 2 )Ax

i

Until the 4th line, the equalities are justified by integration by parts. Note that the periodic boundary plays a crucial role in
simplifying expressions on the boundary and eliminating Y, u; ;Ax in the 4th line. We obtain the inequality in the last line after
completing the square and using the fact that Z’, > 0. From the inequality, one integrates over time from 0 to 7.

T T
Z_ )\ Z_ )\
Z‘ G(u,(T)Ax + / Z (u,.jx(z) - T) Axdt < Z G(;(0)Ax + / Z (T Axdt
0 0
Finally, one can drop the second term on the left side since it is nonnegative and the desired entropy estimate is achieved. []

We have two versions of theorems on the positivity: (a) a priori bound - depending on Ax and (b) a posteriori bound assuming a
uniform Lipschitz condition on the numerical solution. We note that the solution is observed to have a uniform Lipschitz bound in all
of our numerical simulations. Thus, the uniform Lipschitz assumption is observed numerically and thus can be used in an a posteriori
argument. We leave proving the smoothness of PDE, such as establishing a uniform Lipschitz bound, as future work.

Theorem 4.1. (Positivity of BEM) Suppose we have the same assumptions as Proposition 4.1. We further assume that (Z_(s))* < C; for any
s >0 and the initial data u;(0) > 0. Then, the solution of BEM (3) at time T > 0, u;(T), satisfies the following conditions;
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(a) if n>2, there exists § such that u,(T) > 5(Ax) >0 for all i,
(b) if n>2 and u,(t) is uniformly Lipchitz on [0,T], there is a posteriori lower bound & independent of Ax such that u;(T) > 6 > 0. i.e. One
assumes |u;(t) —u; ()| < Cr|(i — j)Ax]| for some Cy >0 and for Vi, j, VO<t <T.

Proof. Notice that we assume that M(h) = O(h") and consider cases where n > 2. Thus, for the sake of simplicity, we take M(h) = h"
throughout the proof. More general cases can be proved similarly. Let us first prove statement (a). The given assumptions allow us
to use the discrete entropy estimate (/I) from Proposition 4.1. First, we claim that ), G(u;(T))Ax < C for a fixed constant C as any
u,(T) — 0. Since we take M(h) = h", we can explicitly calculate

—Inh+OM)+0(1) ifn=2,
L__p-0-2 4y o3+ 0(1) if2<n<3,

G(h) = (;!—1)('1’1—2) )
3~ 5Inh+O0Mm+0Q1) ifn=3,
1 -(-2) ¢ p-(-3) i
e T e o0 + 0 if n> 3.

Here, the choice of A only affects the coefficients of the higher-order terms but not the leading-order term. Each G(y;(0)) is also
well defined because we have fixed initial data u;(0) > 0. This leads us to conclude

Z G(u;(0))Ax < C, for some constant C,.
i

We also assume (Z_(s))> < C, for any s> 0 so

r 2
Z_(u;(1)
Z — Axdt < C,T, for some constant C,, as any u;(T) — 0.
0 1

Hence, we get

T
2
Y Gu(T)Ax < Y’ G (0)Ax + / D <w> Axd1 <Cy+C,T <C.
i i 0 i

Next, we show that §(T) = min; u;(T) > 0 using the boundedness of ) ; G(u;(T))Ax. Notice that each leading-order term of G(6) is
positive as 6 — 0, up to constant differences.

—Iné+0(5)+0() ifn=2,

1 —(n=2) 3—n s
66) = —(nfl)(n72)5 +0™M+0(1) if2<n<3,
L_ Sns+0@)+0(1) ifn=3,

26
1 —(n-2) a —(n=3) i
(n—l)(n—Z)(s + (H)(H)é +0(6)+0(1) ifn>3,

Thus, 6 — 0 implies G(§) — +o0, which contradicts ), G(;(T))Ax < C. Hence, we achieve min; u;(T) =6 > 0.
To prove (b), we use Y, G(u;(T))Ax < C as well. From part (a), we have nonnegativity of u;(T) so

Ui

G(ui(T))=/(1+au)/ﬁdsdu+0(l)2// ! dsdv + O(1), for some B > 0.
B A B A

M(s)

Therefore,

CZZG(u,-(T))AxZZ//Nl](s)dsdqu+0(1)ZZ//sl—ndsdqu+O(1)=Zuz""Ax+O(1).
1 1 B A 1 B A 1

Suppose §(T') = min; u;(T') occurs at i*. Due to the uniform Lipschitzness, u; <6 + C; |(i* —i)Ax|, Vi so

~ 1 Ax Ax
C> Ax> >
=2 = x_2(5+CL|(i—i*)Ax|)"—2_Z(6+CL(iAx))"—2

i i

L LCL /8
S / dx > 1 / ds
) G+Cxrt T el (1+s5)m=2"
0 0
If % <1 = 6> LC; so we have lower bound for § independent of Ax. In the case when % >1,

1
> 1 / _ds _C
Tt (s sl
0

o1}
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Corollary 4.2. Continuous time, discrete space, numerical solutions of the Craster-Matar model (CM) [24] and the Film Stabilization Model
(FSM) [18] are positive at any time T > 0 and grid point i if we use the BEM (1).

Proof. For both cases, the same mobility function M(h) is used, but different Z(h) is used:

1 ¢ah) h2(ah+2)%2

M(h) = ,
M=73 4@ 4p(a)

_ 3 4 _ 2_
¢ =15 [(1+x)*@ In(l +x) - 3) + 41 +x)° - 1],
a

ZCM(h)—ZCMf(h)— m:

AH o
—_— + _—
h3 n(1+ah)

for a,n, Ay > 0. We prove that the assumptions for Theorem 4.1 are satisfied by showing that M(h) = O(h?) as h — 0 and (Z_(s))*> <

ZrsmMW)=Zpspms + Zpsm-=—

2
(%) . To simplify the calculation, let y = ah. Then, we achieve

M(h) [+ D*@ I+ 1) =3)+ 4+ 1)> = 1 +44ay*(y +2)%]

1
" Teddpla)
= é [A40* + A30° + A% + A1y + Ayl
where
Ayg=4ad+4In(y+1)—3, A;=16ai+ 16In(y+ 1) — 12, Ay = 1624 +241In(y+ 1) — 14,
A =16In(y+1)—4, Ay=4In(y +1).
As y— 0, In(y + 1) = O(y). Thus,
M(h) =00 + é[Aly +Agl =007 + 16y* — 4y + 4y = 0(y*) = O(h?).
Finally, for any s >0,
Z()=———<

a
nd+as) ~ 5
To finish the proof, we apply Theorem 4.1 and see that the numerical solutions of both CM and FSM are positive. []

Theorem 4.3 (Consistency). GM (4) and BEM (1) are second-order consistent in space. That is, given a smooth solution u(x, 1) of the problem
(P), a local truncation error 7,(t) is O(Ax?), where

du;
() =1+ au,-)d—t' + [m(u;_y,u)(1+ p; o)y
Proof. Let us denote u; = u(iAx,t) to simplify the notation. First, note that both GM and BEM have very similar formulations and
satisfy Definition 3.1. Thus, we can use an approach similar to [49]. After Taylor expansion,
m(sy,s,) =m(s+ As,s — As) =m(s,s) + g—m(s, s)As — g—m(s, s)As + ,B(S)As2 + O(Asz)
51 $2
= M(s) + f(5)As? + O(As?),

51+ 51—
where s = %,As: %, and

2 2 2
B(s) = % (0 m(s, s) _2(3 m(s, s) + 7] m(s,s)>'

as% 0s10s2 asg

We cancel out O(As) terms by using the symmetry of m(s;, s,), according to (b) from Definition 3.1. We also obtain

Uiy —3u; +3u_q —u;_
U s =~ / L= ”(3)1 +a(x,_ 1)AX? + O(Ax*),
’ Ax3 i~3 =3
(u; — “-_1)2 —(u_y — ”-_1)2
(2 =2, )2l g 2y )—— 2 " 1 0(Ax) +0(Ax")
e i-3 Ax i-3 2Ax
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Ax?

=Z'(u, W+ 2@
R L Vi)

A 2
+ O(Ax4)] + 2"y ) [Txu”;%u”ii% +0(Axh|.

3
After a simplification, we achieve

pix=u +2'u,_
2

O’ 1 +y(x, 1)AX% +0(Ax*)
20 73 =3

for some smooth function y(x).
As a result,

[mQu; . u)(A +pi )] = i [mu, i YA+ Py 2) = mGui_g,u)(1+ p; )]

_ 1 Ui+ Uiy Ui+ Uig g\ (Ui = U \2 3 @ / / 2 4
_E{M< 2 >+ﬂ< 5 >( 7 ) + O(Ax”) 1+ui+%+Z(ui+%)ui+%+y(xi+%)Ax + O(AX™)

U u; o= u\2
L () (T (5 ) +0@ax®) b 1+u®, + 2 oW 1 4y DA 40X |
Ax 2 2 2 -1 IR SO

Note that for any continuously differentiable function g(s),

"

2|
Ui+ , i+3 (Ax\? 4
g(T> =80, ) +8 W, ) (F7) +o@axd),

(%)2 = (u’H%)2 (%)2 +0(Ax%).

The above properties can be applied to M(s) and f(s). Hence we conclude
[mGu;_y,u)(1 +p; )l = [M(u,-)(l +ul — Z’(u,-)u'i)]’ +0Ax%). O
5. Numerical simulation
In this Section 5, we present numerical simulations based on the continuous time method in Section 3 with a practical discrete-

time adaptive time stepping method. We illustrate the benefit of using the BEM over GM in a physically relevant setting in comparison
to results from laboratory experiments. Throughout Section 5, we solve problem (P) with the specific functions.

_ h3¢7(ah) _ 3 4 _ 2
M(h)= —3¢(a) , p(X) = 63 [(1+X)"(4log(1+X)-3)+4(1+ X)" - 1], -
z(h):_A_H Z ()= —2
* K n(l+ah)’

This corresponds to the FSM in Ji et al. [18] with 4= 0. In their work, setting 4 =0 matched the experimental data better than
setting A > 0. Thus, this is a good example to demonstrate our method on. The film stabilization term Z, (k) takes the functional
form of disjoining pressure, with Ay corresponding to the Hamaker constant. Increasing the value of Ay stabilizes the flow. The
parameter # acts as a scaling parameter in the azimuthal curvature Z_(h), and decreasing its value destabilizes the flow.

For each simulation, we use the functions in (5) and dimensionless parameters a, 1, Ay >0 and a dimensionless initial data A,(x)
on domain [0, L]. In Section 5.1 and Section 5.3, we use dimensionless variables to compare the performance of the two numerical
schemes. Whereas, in Section 5.2, the simulation is compared with experimental data, so the numerical results are converted back to
a dimensional scale. The dimensionless parameters and the initial data are chosen to be in the range of physically meaningful values.
Many times, we choose the initial data as a slightly perturbed constant state,

hy(x) = h(1 +0.01sin(zx/L)).
The initial condition represents the profile of a flat liquid film at the onset of the instability, where & is a critical flow parameter that
governs the size, spacing, and frequency of the liquid beads, consequently having a strong influence on the flow regime [15].

5.1. Comparison of numerical schemes

In this section, we compare the simulation of BEM and GM in a physically relevant setting. We simulate BEM and GM with the
functions (5) with dimensionless parameters a = 10.6, n = 0.223227, Ay =0.001. We choose the initial data as

ho(x) = 1.471(1 + 0.0 sin(zx/L)), L=24.0.

The numerical schemes presented in Section 4 are continuous in time. Thus, we must discretize the time step for the practical
implementation. We discretize the continuous method (1) using the §-weighted time-step method with 6 = % (semi-implicit). This
leads to the semi-implicit BEM method:

While other terms involving spatial differences, including Z ., are discretized implicitly, we note that Z_ is discretized explicitly.
Such discretization is a well-known technique that increases the stability of a numerical method by treating a concave term and
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Bounded Entropy Method (Semi-implicit BEM).
uk+l + uk ultl — yk
<1 +ta——— — )+ [ WA+ piEh], =0, (6)
P =l - 2 @t - 2, )
u;(0) =uy(iAx),i=0,1,2--- N, (€©))
M(sy) if 51 =55,
m(sl,s2>={ g e s ©
(s5 =51/ o S if 5| # 5,

a convex term separately [48,56,59]. One may employ a fully implicit method, but this typically requires Az to be very small.
We observe that the semi-implicit method is stable for larger time steps. When using the semi-implicit scheme, we accelerate the
simulations by incorporating adaptive time stepping, as discussed in detail in Section 5.3. We also note that one has to numerically
calculate [, TZ ﬁds while evaluating m(s,, s,). We use the Simpson’s method with 2-4 grids to numerically integrate 1/M(h) on
[u;—p,u;_; 1, [u;_1,u;], and so on. Similarly, we discretize the continuous method (4) using the fully implicit time-stepping scheme in

[18].

Generic Method (Implicit GM with discrete mobility).
Ukl 4y k uktl — yk
i i i i k+1  k+1 k+1 —
<1 +a 5 A + [m(u:l BT ¢! +pi; ), =0, (10)
Pt =t - Z Wt - Z W, (in
u;(0) = ug(iAx), i=0,1,2- N, 12
M(s if 51 =15,,
m(sy,s7) = G f e (13)
M(0.5(s; +57))  if 51 # 55

We take m(s;,s,) = M (0.5(s1 + sz)), which satisfies Definition 3.1. The calculation of m(s,,s,) for GM is relatively simple since
it does not require numerical integration. As mentioned before, the GM is fully implicit so Az needs to be well-controlled and kept
small. Thus, when we compare the simulation of BEM (6) to GM (10) in Section 5.1-5.2, we use a fixed Az unless the numerical
method fails to converge in which case we decrease At by half. In Section 5.3, we show an example of BEM (6) implemented with
the adaptive time stepping algorithm (see Algorithm 1) to demonstrate more efficient implementation. For both methods, we use
Newton’s method at each time step to solve discrete nonlinear equations. The Newton’s method returns True if it successfully solves
for the numerical solution at the next time step within 15 iterations; otherwise, it returns False. When the Newton’s method fails,
we decrease Ar by 50% and try Newton’s method again. The detailed procedure of the Newton’s method is written in Algorithm 2 of
Appendix A.

Fig. 2 and Fig. 3 compare numerical simulations of the GM (10) and the BEM (6) methods on a dimensionless domain [0,24]. In
Fig. 2, one observes a classic evolution of isolated droplet dynamics where the bigger droplet collides with a smaller one and merges
into one droplet as the solution propagates. Fig. 3 is a closeup of the results from Fig. 2 at the time of singularity. To generate Fig. 2
and Fig. 3, we simulate GM on a fine grid (6144 grid points on [0, 24]) until dimensionless time ¢ = 610 with At = 10~* fixed. At this
time ¢ = 610, we extract the data corresponding to a coarse grid (3072 grid points on [0, 24], which is twice the grid size of the fine
grid) and set it as an initial condition for Fig. 2 and Fig. 3. From this time, we simulate BEM and GM on the coarse grid with fixed
At =0.1. Fig. 2(a) illustrates the evolution of the simulation of GM while Fig. 2(b) illustrates the evolution of the simulation of BEM.
At 1 =650.05 in Fig. 2(a), one observes that the numerical solution becomes negative at one grid point in an underresolved mesh
setting. Notice that Fig. 2(a) has a singularity at 7 = 650.05 instead of ¢ = 650.0 or # = 650.1 despite keeping A7 = 0.1 fixed. This is
because, at 1 = 650, the Newton’s method for GM fails. As a consequence, the time step A7 =0.1 is decreased by half, Az =0.05 (see
Algorithm 2 in Appendix A). The Newton’s method succeeds after decreasing the time step by half, yet the recovered solution has a
negative h value. On the other hand, BEM successfully maintains positivity throughout the dynamics.

In Fig. 3, one observes the detailed profile of each simulation at the time of the numerical singularity. We continue the simulation
in Fig. 2 until + = 654. Note that we observe the numerical singularity on the coarse GM (10) simulation at = 650.05 for the first
time. The coarse GM simulation continues to have a negative value in contrast to the coarse BEM (6) simulation, which stays
positive. Having a singularity is critical since it often prevents further numerical simulation and provides inaccurate results. It is also
unphysical because no finite time rupture is observed in the experiment. Such numerical singularities are commonly observed with
the GM method in this dynamic regime of the simulation. The details of the fixed time closeup are described in the caption of Fig. 3.
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Fig. 2. Simulation results with (a) Generic Method (GM) (10) from 7 =610 to 7 =650.05 and (b) Bounded Entropy Method (BEM) (6) from 7 =610 to ¢ = 655 on a coarse
grid (3072 grid points on [0,24]). The details of the simulation are described in Sec. 5.1. The plots illustrate the difference between the evolution profiles of traveling
droplets as they merge. At 1 = 640, GM prematurely fuses two droplets while BEM does not. Because of the instability caused during the merging, GM develops
negativity at = 650.05, indicated by the blue square marker. The instability also causes the Newton’s method to fail for GM at ¢ =650, so At =0.1 is decreased by
half At =0.05. On the other hand, BEM can handle such an instability (see ¢t = 655) and maintain the positivity of the film thickness while keeping the time step size
At =0.1. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
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Fig. 3. A closeup of a coarse grid simulation (3072 points on [0,24]) around 7 = 654. The details of the simulation are described in Sec. 5.1. The coarse GM simulation
is taken at t = 654.45, the coarse BEM simulation is taken at 7 = 654.40, and the fine GM simulation is taken at r = 654.41. Fig. 3(a) represents the full profile, and
Fig. 3(b) represents the closeup profile near the singularity. Note that & of the coarse GM simulation goes below the zero line indicated in dashed black at 7 = 654.4500,
whereas the coarse BEM simulation does not go below the zero line at 7 = 654.400. The fine GM simulation uses twice as many grid points (6144 grid points on [0, 24])
and is captured at 7 = 654.4100. Besides the phase shift, the coarse BEM simulation agrees better with the fine GM simulation in the sense that the average /, error
(I, error = 2.0116) across the domain is lower than the average /, error caused by coarse GM simulation (/, error = 2.5999). The average /, error was calculated by
equation (14).

One can see that the singularity affects the shape of the solution making the numerical prediction inaccurate. Let us take a closer
look at the downstream and upstream profile of the droplet in Fig. 3. We see that the coarse BEM (6) simulation has more smoothness
downstream of the droplet (from x =23 to x = 24), whereas GM (10) simulation has a finite time pinchoff (marked by a blue square).
We also see that BEM’s wavy pattern at the upstream matches better with the experiment than the GM’s (from x =0 to x = 15).
Furthermore, the coarse BEM simulation has a lower average I, error (I, error = 2.0116) than the error caused by the coarse GM
simulation (/, error = 2.5999) despite using different schemes. Here, we define the average /, error as

— 1 32
I, error = I Z(ui —u)’, 14

where y; is the simulation results on the coarse grid and u is the simulation result on the fine grid at the corresponding points of the
coarse grid.

5.2. Comparison with laboratory experiment

Here we compare predictions from our method with the experimental data. In the experiment, the coating flow is created by
injecting a fluid into the nozzle with an inner diameter of 0.8 mm using a programmable syringe pump. We use Rhodorsil silicone
oil v50, which is a well-wetting liquid with the density p = 963 kg/m?, kinematic viscosity v = 50 mm?/s, and surface tension ¢ =
20.8 mN/m at 20 °C. The corresponding capillary length /., = 1.5 mm. The fluid flows along 0.6 m-long Nylon string that is hung
vertically. The radius of the Nylon string is 0.1 mm. A high-speed camera captures the flow at a frame rate of 1000 frames/second.
We estimate the measurement uncertainty in the liquid bead radius and length to be approximately + 0.08 mm, and that in the
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Fig. 4. Comparison between laboratory experimental data and simulation data of the numerical methods. The details of the simulation and laboratory data acquisition
are described in Sec. 5.2. GM (10) and BEM (6) were simulated with a fine grid (1000 grid points on the domain [0,5]) and then shifted horizontally to match the
phase. The experimental profile (the black solid line) follows the Rayleigh-Plateau regime, extracted from an experiment conducted with a flow rate of 0.08 g/s, a
fiber radius of 0.1 mm, and nozzle ID of 0.8 mm.

L 1 | L L 1
— Experiment

X(mm)

Fig. 5. Comparison between laboratory experimental data and simulation data of the numerical methods. The details of the simulation and laboratory data acquisition
are described in Sec. 5.2. GM (10) and BEM (6) were simulated with a relatively coarse grid (1999 grid points on the domain [0, 39.338]) and then shifted horizontally
to match the phase. The experimental profile (the black solid line) follows the isolated droplet regime, extracted from an experiment conducted with a flow rate of
0.06 g/s, a fiber radius of 0.1 mm, and a nozzle ID of 0.8 mm.

liquid bead spacing approximately + 0.3 mm. Further details of our experimental setup, procedure, and data analysis can be found
in a previous publication [15].

We consider two cases: the Rayleigh-Plateau case and the isolated droplet case. We do not consider the convective regime because
it requires different boundary conditions. For the first case, we let the flow rate be 0.08 g/s for a fiber with a radius of 0.1 mm and
a nozzle inner diameter (nozzle ID) of 0.8 mm. The experiments and corresponding numerical method both exhibit the Rayleigh-
Plateau regime (see Fig. 4). For the second case, we let the flow rate be 0.006 g/s for the same fiber. For these parameters, one
observes the isolated droplet regime (see Fig. 5).

The experimentally obtained images are processed and segmented by the built-in methods in MATLAB, where we have incorpo-
rated the Canny method and Otsu’s method. By processing high-resolution optical images and using other experimental values such
as the flow rate, fiber radius, the density of the fluid p, and the kinematic viscosity v, we obtain a characteristic length scale 4, and
the estimated period L of traveling beads. Using these values, one can calculate dimensionless parameters «, #, and nondimensional
scaling constants. We must perform this task for each experimental case since the resulting parameters are different. To generate
Fig. 4 and Fig. 5, we simulate GM (10) and BEM (6) on a dimensionless domain and scale back to dimensional data to compare with
the experimental data.

Fig. 4 illustrates the simulation results of GM (10) and BEM (6) compared with the experimental data of the Rayleigh-Plateau
regime. We simulate GM and BEM with the functions (5) with corresponding a« = 5.8856 and n = 0.2912 with a stabilizing parameter
chosen to be Ay = 107'1. We choose the initial data as a slightly perturbed constant state

ho(x) = A(1 +0.01sin(zx/L)), L=5.0, h=0.9568.

Note that the stabilizing parameter A is relatively small compared to # or « or the average film thickness . We simulate GM and
BEM on a fine grid until dimensionless time ¢ = 250.006 with adaptive time where 103 < At < 10~2. The adaptive time stepping was
used to expedite the simulation process, but we made sure the max Az is small enough for an accurate simulation (i.e. one results in
the almost identical simulation if we keep At =107, fixed). After the simulation, we dimensionalize the data by multiplying scaling
constants with respect to space and time. One can see that the three simulations match well despite the fact that both GM and BEM
slightly underpredict the bead traveling speed as they go further along the x-direction.

Fig. 5 illustrates the simulation results of GM (10) and BEM (6) compared with the experimental data of the isolated droplet
regime. We simulate GM and BEM with the functions (5) with corresponding a = 3.092621559 and 5 = 0.123 with a stabilizing
parameter chosen to be A, =4.0 x 1072, Note that the stabilizing parameter Ay, is bigger than the value we choose to simulate the
Rayleigh-Plateau regime. We have simulated GM and BEM with a slightly perturbed constant state condition as the initial data, but
the simulation has resulted in a dramatically different and unphysical profile from the experimental data. We expect this to be natural
because the profile of the isolated droplet regime is inherently more complex than the Rayleigh-Plateau regime. We expect that there
are several different steady states, and it may depend on the initial data intricately. Therefore, we extract the initial condition from
the experiment and use an interpolating sine series to find the best-fitting smooth function. We enforce a periodic boundary condition
by cropping the data appropriately so that the h, at x =0 matches A, at x = L. After cropping, we use a moving average filter to
smooth data even further. The code implementation details are published in a GitHub repository [69]. After acquiring the initial
data, we simulate GM and BEM on a fine grid until dimensionless time ¢ = 807.107 for GM and = 827.8070 for BEM with adaptive
time where 10~3 < Ar < 1072, The adaptive time stepping is used to expedite the simulation process again. Similar to the Rayleigh-
Plateau simulation, we dimensionalize the data by multiplying scaling constants with respect to space and time. One can see that

13



B. Kim, H. Ji, A.L. Bertozzi et al. Journal of Computational Physics 496 (2024) 112560

Algorithm 1: Adaptive time stepping for BEM (6) described in Sec. 5.3.

Input: Discrete initial data u’, time step At, final time ,,,, adaptive time tolerance fol,, the maximum number of count countMax
Output: u* at the ¢,,, if the simulation succeeds. Otherwise outputs u* at the time of the simulation failure.

SimulateAdaptive(uU,AIde):
set t=0, bad = 0, count = 0, and u*=u’;
while r<1,,, do

if NewtonMethod(uk,AtJoh) == True then
t=t+At,uf =utt!; /% Update time and solution */
At=At*1.01; /* Increase At by 1% */

calculate e*t! ek, and LTE(#*t!);
if ||[LTE@*")||, <tol, then
count=count+1;
if count =countMax then

At=Ar*12; /* Increase At by 20% */
count = 0;
end
end
else
bad = bad+l;
At=Ar*0.5; /* Try the Newton’s Method with smaller Ar %/
if bad >4 then
exit (1) ; /* Stop the simulation x/
end

end

end

both simulations predict the width of the droplet well with slight overprediction of the height of the droplet. We note that BEM
describes the pinchoff behavior downstream of the bead better (from x = 18 mm to x =20 mm) than GM since GM is nearly flat in
this region (from x = 18 mm to x =20 mm) in Fig. 5.

5.3. Adaptive time stepping and computational efficiency

Adaptive time stepping can optimize the performance of the numerical method while still accurately capturing the droplet
propagation. In the early stage of the computation, we expect to see a lot of change in the shape of the graph. Therefore, one wishes
to keep the time step very small to capture the accurate profile of the solution. However, as the computation progress, the algorithm
approaches a nearly steady state. It becomes costly to implement a small time step calculation for many iterations, while such a small
step iteration does not contribute much to the change of the profile or the phase. Here we use an adaptive time stepping scheme
motivated by the method in [41,70].

The main idea is to use a dimensionless local truncation error for every time step and see if it surpasses a tolerance value that we
impose. This choice of adaptive method was inspired by similar ideas in [41,70]. We define the dimensionless local truncation error
using the following formula,

At
LTE@#**h), = ekt — =k
! Aty
where
k+1 k k k—1
u. —Uu. u. —u.
el = i Loeb=t 1 A=k A1, =1F =L
i uk 4 uk—l

i i

The details of the entire algorithm are given by Algorithm 1. Note that we store information from the previous timestep u*~!
to calculate LTE(t**!). If one successfully calculates u**! with the Newton’s method, we increase our time step by 1%, calculate
LTE(*!), and check ||[LTE@**)||, < tol;. If |[LTE(@#**1)||, < tol, more than countMax times (in our case, we let countMax = 3
throughout Sec. 5.3), we increase our time step by 20%. To speed up the simulation even further, one may increase the percentage
to a higher value while the time step reduces by half if the Newton’s method fails. If the error is bigger than ro/,, we proceed to
calculate the next time step. In the case when the Newton’s method fails, we decrease our time step by 50% and try the Newton’s
method again.

5.3.1. An adaptive time stepping example without a singular behavior
We simulate the semi-implicit BEM (6) with the functions (5), and dimensionless parameters « = 5.0, 7 =0.02, Ay = 1075. We
choose the initial data as

hy(x) =0.95(1 + 0.01sin(zx/L)), L= 1.0,

and use 100 grid points on [0,1]. We start with initial Az = 103 and use Algorithm 1 to increase At until t = 1.0 with tol, = 10~! and
countMax = 3. Fig. 6 illustrates the increase of Ar throughout the simulation when # is relatively high and the stabilizing parameter
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Fig. 6. Plots of At for the simulation described in Sec. 5.3.1 for 0 <7 < 1. The Newton’s iteration always succeeds so At continuously increases by 1% every time while
an additional increase of 20% (20 times in total) occurs every 3rd time. The image on the right shows a close-up of the early time interval from 1 =0 to r =0.1.
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Fig. 7. Plots of At for the simulation described in Sec. 5.3.2 for 0 < ¢ < 1. The Newton’s iteration always succeeds so Ar continuously increases by 1% every time.
However, unlike Fig. 6, an additional 20% increase occurs irregularly. In fact, from ¢ = 0.045228 to t = 0.0918907, Ar does not increase. The image on the right shows a
close-up of the early time interval from t=0to t=0.1.
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Fig. 8. Evolution of a flow with a singular behavior described in Sec. 5.3.2. All of the plots have & > 6.0942 x 107,

Ay is relatively high. Because the parameters are selected to simulate a relatively stable coating flow, the |[LTE(**!)||,, < tol,
condition is satisfied whenever the Newton’s method succeeds. Thus, every 3rd-time step (note that countMax = 3), At increases
by 20%.

5.3.2. An adaptive time stepping example with near singular behavior
We simulate the semi-implicit BEM (6) with the functions (5), and dimensionless parameters a = 5.0, 7 =0.005, A = 0. We choose
the initial data as

hy(x) =0.95(1 + 0.01sin(zx/L)), L= 1.0,

and use 100 grid points on [0,1]. We start with initial Az = 10~ and use Algorithm 1 to increase At until ¢ = 1.0 with tol; = 107!
and countMax =3 again. Since we set the stabilizing parameter A, =0 and take a lower # value, we observe a singular behavior
of the simulated flow (see Fig. 8). Fig. 7 illustrates the increase of At throughout the simulation when there is a singular behavior.
Unlike Fig. 6, the |[LTE(**!)||,, > tol; from t = 0.045228 to t = 0.0918907. In this region, At is increased by 1% to carefully handle the
transition of droplet dynamics (see Fig. 8).
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Table 1
Computational cost comparison of BEM and GM for examples discussed in Sec. 5.3.3.

Time stepping Positivity CPU time
GM with Ax =0.01 Fixed Fails at + =0.299 0.286 s until # =0.299
BEM Ax =0.01 Fixed Success 0.374 s until = 0.299
BEM Ax =0.01 Adaptive Success 0.317 s until = 0.299
GM with Ax =0.005 Fixed Fails at 1 = 1.09594 0.602 s until 7 = 1.09594
BEM with Ax =0.005 Fixed Success 1.08 s until 7 =1.096
BEM with Ax = 0.005 Adaptive Success 0.412 s until # = 1.09678
GM with Ax =0.0025 Fixed Fails at 1 =3.4765 2.959 s until r = 3.4765
BEM with Ax = 0.0025 Fixed Success 4.727 s until t =3.477
BEM with Ax =0.0025 Adaptive Success 0.724 s until 1 =3.51201

5.3.3. Computational efficiency and accuracy of the adaptive time stepping
In this section, we demonstrate the computational efficiency of our method BEM over GM. We simulate semi-implicit BEM (6)
and implicit GM (10) with the functions (5), and dimensionless parameters a = 5.0, 7 = 0.005, Ay =0. We choose the initial data as

ho(x) = 0.45(1 +0.01 sin(rx/L)), L= 1.0,

and record the CPU time of each method on three different grid sizes. Note that this is a similar setting as the simulation run in
Sec. 5.3.2. When we use the fixed time stepping (see Algorithm 3 in Appendix A) for BEM and GM, we let A7 = 10~>. When we use
the adaptive time stepping, which is only used for BEM, we use Algorithm 1 with initial A7 = 1073, to/; = 1073, and countMax = 3.
Each GM simulation is run until the numerical solution fails to preserve positivity, resulting in different termination times. On the
other hand, each BEM always preserves the positivity of the numerical solution regardless of using any time stepping method so that
it can be run until any time. For a fair CPU time comparison, we run BEM until GM fails with the respective grid sizes. By examining
Table 1, one may notice the computational benefits of using adaptive time stepping with increased grid points.

6. Conclusion

In this paper, we introduce a positivity-preserving finite difference method for the problem fiber-coating a vertical cylindrical
fiber. While the current state of the art method (GM) achieves close agreement with experiments and successfully captures regime
transitions, it struggles to match the flow profiles as the film thickness becomes small. In particular, the GM needs significant grid
refinement to resolve very thin films without a numerical singularity. We prove that our BEM preserves positivity given M(h) = O(h")
for n > 2 and furthermore that there exists a lower bound independent of grid size given an a posteriori Lipschitz bound on the solution
(something that is always observed in experiments). By constructing a generalized entropy estimate, we extend the idea of positivity-
preserving methods for basic lubrication equations to the problem involving cylindrical geometry, gravity, and nonlinear pressure.
This technique has promise for thin liquid film equations with complex geometry, advection effect, and other surface tension effects.

There are a number of directions one can pursue from this work. One obvious direction is to prove the convergence of the BEM.
Such work would benefit from additional regularity and positivity results for the continuum PDE. Another direction is to generalize
the method to the fully 2D fiber coating problem e.g. using ADI methods such as [71] or to consider more general geometries as in
[72]. Finally, it would be interesting to consider other types of boundary conditions since the experiment is not periodic in space.
The boundary conditions on an inlet and an outlet of the flow can change if other models are considered, such as one that includes
a nozzle geometry [73] or a thermal effect [74].
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Appendix A. Algorithms used for numerical simulation

A.1. The Newton’s method and the fixed time step algorithm

Algorithm 2: The Newton’s method for BEM.

Input: numerical solution u¥, the current time step At, and tolerance tol for the convergence success criteria.
Output: True or False depending on whether the method succeed or fail.

NewtonMethod (uf, At, tol) :

uktl =uk; /% Initial guess for the Newton'’s method =/
for i=0to 15 do
f(u¥)= the left side of the equality of equation (6); /* Use (10) for GM x/

utt = ut — (VE) T )
if ||f(u“)\|w<ml/10 then
| break;
end

end

if ||f(u*)l, <tol then

| return True;

else
| return False;

end

The Newton’s algorithm is specifically written for BEM (6), but setting f(u*) as the left side expression of the equality of equation
(10) in Algorithm 2 results in the algorithm for GM (10). The function NewtonMethod has the input of the numerical solution
at kth time step u¥, the current time step Az, and the tolerance value to/ which determines the success or failure of the Newton’s
iteration. NewtonMethod returns True if ||f(u¥)||,, < tol after the for loop and updates the numerical solution by setting u* = u®+!,
NewtonMethod gives a chance of 15 iterations, but in practice, we see that the method satisfies ||f(u¥)||,, < to//10 within 3-4
iteration. When ||f(uX)||, > tol, NewtonMethod returns False.

Algorithm 3: Simulation with regular time stepping.

Input: a discrete initial data u’, the time step At, the end time 1,,,, and tolerance to! for the convergence success criteria.
Output: u* at the ¢,,, if the simulation succeeds. Otherwise outputs u* at the time of the simulation failure.

Simulate (u®, Af,1,,,) :
set t=0, bad = 0, and u*=u’;
while ¢<1t,, do

if NewtonMethod (u*, At, tol) == True then
=t+At ; /* Update time x/
uk =ukt!; /* Update the numerical solution x/
bad = 0;

else
bad = bad+1;
At=Ar*0.5; /* Try the Newton’s Method with smaller Ar %/
if bad >4 then

exit (1) ; /* Stop the simulation =/

end

end

end

In the case when NewtonMethod returns False, we decrease At by 50% and try NewtonMethod again with the same u* and
tol (see Algorithm 2 and Algorithm 1). Below is the algorithm using regular time step which is used to generate Fig. 2 and Fig. 3.
Notice that Az is only decreased when NewtonMethod returns False. If NewtonMethod fails more than 4 consecutive times, we
completely stop the simulation.
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