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Abstract

We develop a distributed Block Chebyshev-Davidson algorithm to solve large-scale leading eigenvalue

problems for spectral analysis in spectral clustering. First, the efficiency of the Chebyshev-Davidson

algorithm relies on the prior knowledge of the eigenvalue spectrum, which could be expensive to estimate.

This issue can be lessened by the analytic spectrum estimation of the Laplacian or normalized Laplacian

matrices in spectral clustering, making the proposed algorithm very efficient for spectral clustering.

Second, to make the proposed algorithm capable of analyzing big data, a distributed and parallel version

has been developed with attractive scalability. The speedup by parallel computing is approximately

equivalent to
√

p, where p denotes the number of processes. Numerical results will be provided to

demonstrate its efficiency in spectral clustering and scalability advantage over existing eigensolvers used

for spectral clustering in parallel computing environments.

Keywords. sparse symmetric matrices, parallel computing, spectral analysis, spectral clustering.

1 Introduction

Spectral clustering has a long history [1, 2, 3, 4, 5, 6, 7] and it was popularized as a machine learning model
by Shi & Malik [1] and Ng, Jordan, & Weiss [7]. Spectral clustering makes use of the spectrum of the
similarity matrix of the data to perform dimensionality reduction before clustering in fewer dimensions. The
basic algorithm is summarized as follows:

1. Calculate the symmetric normalized Laplacian A of an undirected graph with N graph nodes.

2. Compute the first k eigenvectors corresponding to the smallest k eigenvalues of A.

3. Normalize each row of the eigenvectors and use the resulting matrix as the feature matrix where
the l-th row defines the features of graph node l.

4. Cluster the graph based on the features using clustering methods like K-means.

Throughout the paper, we consider the symmetric normalized Laplacian A ∈ R
N×N of a undirected

graph of N nodes:
A = I −D−1/2SD−1/2, (1)

where I is the identity matrix, S is the similarity matrix of the graph with Sij = 1 if nodes i and j are
connected otherwise 0, and Dii =

∑

j Sij is the digonal degree matrix. We always assume A is sparse because
most graphs in real applications are sparse. We focus on solving the large-scale leading eigenvalue problem,
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which is the second step of spectral clustering. Given the symmetric normalized Laplacian matrix A, the
leading eigenvalue problem is to find

AV = V Λk, (2)

where Λk ∈ R
k×k is a diagonal matrix with 0 ≤ ¼1 ≤ ¼2 ≤ ... ≤ ¼k ≤ 2 as the k smallest eigenvalues

of A along the diagonal, and V ∈ R
N×k is a tall-skinny (k << N) matrix consisting of the corresponding

eigenvectors.
The Chebyshev-Davidson method is a good candidate to solve the eigenproblem with fast convergence

for spectral clustering, since the spectrum bounds of the Laplacian and normalized Laplacian matrices in
spectral clustering are known explicitly [2]. The Chebyshev-Davidson method was first introduced [8] as an
eigensolver for quantum chemistry systems [9, 10, 11, 12] and symmetric eigenvalue problems [13, 14, 15, 16],
which applies a Chebyshev polynomial filter to accelerate the convergence of the Davidson method [17]. The
Davidson method can augment the searching subspace for eigenvectors by a potentially better new vector
than the one based on a strict Krylov subspace structure, resulting in faster convergence. The augmentation
vector added to the subspace at each step requires solving a correction equation that is not affordable
for big data, even though the Jacobi-Davidson method [18] has been designed to favor the efficient use
of modern iterative techniques for the correction-equation, based on preconditioning and Krylov subspace
acceleration. Compared to all other types of Davidson-type methods, there is no need to form or solve any
correction equations in the Chebyshev-Davidson method. Instead, interval-wise filtering based on Chebyshev
polynomials is utilized, making it very suitable for large-scale sparse matrices with known bounds of the
spectrum. The Chebyshev filter can enhance the eigensubspace of interest and dampen the eigensubspace
undesired, making the Chebyshev-Davidson method efficiently applicable to general matrices, including the
sparse symmetric matrices in spectral analysis. The Chebyshev-Davidson method could be extended to the
Block Chebyshev-Davidson method [19, 20] with an inner-outer restart technique to reduce total CPU time
and a progressive polynomial filter to take advantage of suitable initial vectors when they are available. Good
initials are available and essential in many data science scenarios. For example, when partitioning a streaming
graph changing over time using spectral clustering, eigenpairs computed for the previous graph are good
initials for evaluating the eigenpairs of the current graph. The Block Chebyshev-Davidson method and some
variants are widely used in problems including linear response eigenvalue problem [21], partial eigenvalue
decomposition [22, 23, 24], generalized eigenvalue problems [25], supramolecular systems [26], correlated
eigenvalue problems [27] and self-consistent-filed calculations [28]. In this paper, we propose to use the
Block Chebyshev-Davidson method for spectral clustering and develop a scalable version of the algorithm
for parallel spectral clustering. The framework of spectral clustering via the Block Chebyshev-Davidson
method is summarized as Algorithm 1.

Problems in data science areas like spectral clustering are usually large-scale, and parallel algorithms are a
common practice to reduce CPU time. The multi-threading implementation for a single shared-memory node
and the multi-processing/distributed implementation for distributed-memory nodes are standard paralleliza-
tion techniques. Multi-threading algorithms are easy to implement, but their ability to handle large-scale
problems and accelerate solutions is still restricted by the limited memory and number of threads in one
single node. Multi-process algorithms are difficult to implement and scale due to the communication cost
among processes; however, they could deal with large-scale matrices that cannot be stored or processed in a
single node. Besides, with careful design, distributed algorithms could accelerate solutions much further.

Since matrices in problem (2) are usually too large for one single node, even though they are sparse
in spectral clustering in practice, we propose a novel multi-processing Block Chebyshev-Davidson method
to solve the leading eigenvalue problem. There are three essential components in the Block Chebyshev-
Davidson method to be parallelized in distributed memory: sparse times tall-skinny matrix multiplication
(SpMM), Chebyshev polynomial filter to tall-skinny matrices, and tall-skinny matrix orthonormalization.
A multi-processing implementation of the Block Chebyshev-Davidson method could be found in PARSEC
package [28] and it is used to solve the Kohn-Sham eigenvalue problem [29, 30, 31]. However, it is not
scalable to large concurrencies due to its 1D parallel SpMM algorithm in the Chebyshev polynomial filters
and the parallel DGKS [32] for orthonormalization. Unlike the well-studied parallel algorithms for dense
matrix-dense matrix multiplication (GEMM) [33, 34, 35, 36] and sparse matrix-sparse matrix multiplication
(SpGEMM) [37, 38, 39], the research of parallel SpMM algorithms has not flourished until recent years due
to the needs in data science areas. The flops in parallel GEMM scale with N3 for multiplying two N × N
matrices, whereas the communication costs scale with N2. This benefit of parallel GEMM is called the
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surface-to-volume ratio. Parallel SpGEMM and SpMM do not benefit from this favorable computation-to-
communication scaling. In fact, it is easier to scale SpGEMM than to scale SpMM to large concurrencies
[40]. For example, the 1D SpMM algorithm scales poorly to dozens of concurrencies. Oguz Selvitopi et al.
[40] compare A-Stationary 1.5D [41], A-Stationary 2D, and C-Stationary 2D algorithms [39] and conclude
that, unlike for GEMM and SpGEMM, 2D algorithms are not strongly scalable to large process counts for
SpMM; instead, 1.5D achieves much better scaling. We adopt the A-Stationary 1.5D algorithm for SpMM
and Chebyshev polynomial filter. In the A-Stationary 1.5D algorithm, the sparse matrix is partitioned in
2D while the tall-skinny matrix is partitioned in 1D. The resulting tall-skinny matrix is partitioned in 1D
but in a different schema. Hence, the 1.5D algorithm generally does not apply to a Chebyshev polynomial
filter which conducts multiple SpMMs and matrix-matrix additions sequentially. When the sparse matrix A
is symmetric and square, we could solve the issue by transposing the 2D process grid and re-distributing the
tall-skinny matrices.

Parallel orthonormalization is another issue because a parallel QR seldom scales due to communication
costs. James Demmel et al. [42] compare multiple parallel QR algorithms and present a parallel Tall Skinny
QR (TSQR) algorithm, which attains known communication lower bounds and communicates as little as
possible only up to polylogarithmic factors. The parallel TSQR algorithm leads to significant speedups in
practice over some of the existing algorithms, including DGEQRF in LAPACK [43] and PFDGEQRF in
ScaLAPACK [44]. We adopt the parallel TSQR for orthonormalization, which is also more efficient than the
parallel DGKS. Though orthonormalization hardly scales to large concurrencies, orthonormalization only
takes a small amount of computation cost compared to Chebyshev polynomial filters, especially when the
ratio of the degree of the filter to the number of desired eigenvectors is large. Note that a higher ratio results
in faster convergence as well. Therefore, the distributed Block Chebyshev-Davidson method is practically
scalable and efficient for data science applications like spectral clustering. Table 1 summarizes the flops and
communication costs of our distributed algorithm and the components.

Free software implementing spectral clustering is available in large open-source projects like Scikit-learn
using LOBPCG [45] or ARPACK [46], and MLlib for pseudo-eigenvector clustering using the power iteration
method [47]. Parallel versions of the eigensolvers mentioned are used in different parallel spectral clustering
methods [48, 49, 50, 51]. Parallel LOBPCG is used in [48] for parallel spectral graph partitioning, and the
speedup increases slowly as the number of processes becomes large. Numerical results in [49, 51] using up
to 256 processes show that the parallel ARPACK used in parallel spectral clustering is accelerated at a
rate proportional to the square root

√
p of the number of processes p. The parallel power iteration method

in parallel Power Iteration Clustering (p-PIC) [50] achieves linear speedups in one single node when the
number of processes is smaller than 70, but then the speedups drop when the number of processes is larger.
No numerical results are provided in [50] to demonstrate the scalability when the number of processes is
larger than 90. The speedup of a parallel eigensolver is usually high with dozens of processes but becomes
less significant when the number of processes keeps growing. In most of the works mentioned above, the
scalabilities of the parallel eigensolvers are tested with less than 256 processes. In Figure 5, we test the
scalability of parallel ARPACK and LOBPCG up to 1000 processes and show the lack of scalability when
the number of processes is large. In our work, besides theoretical proof, we will test the scalability of our
algorithm with up to 1000 processes to demonstrate that the speedup is approximately the square root

√
p

when the number of processes p is large. See Figure 7.
The contributions of this paper are summarized as follows:

• We propose to use the Block Chebyshev-Davidson method as an efficient eigensolver for spectral clus-
tering due to the known analytic spectrum bounds.

• We develop a scalable distributed Block Chebyshev-Davidson method which achieves approximately√
p speedup when the number of processes p is large. Our method is more scalable in parallel computing

environments than the eigensolvers ARPACK and LOBPCG used in spectral clustering.

The rest of this paper is organized as follows. In Section 2, we will briefly introduce the Block Chebyshev-
Davidson method. In Section 3, we will describe the distributed Block Chebyshev-Davidson. Numerical
results are provided in Section 4 to demonstrate the effectiveness of our algorithm. Section 5 concludes the
paper.
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Algorithm 1 Spectral Clustering via the Block Chebyshev-Davidson method

1: Input: an undirected graph with N graph nodes.
2: Calculate the symmetric normalized Laplacian A of the undirected graph.
3: Use the Block Chebyshev-Davidson method to compute the first k eigenvectors corresponding to the

smallest k eigenvalues of A.
4: Normalize each row of the eigenvectors and use the resulting matrix as the feature matrix where the l-th

row defines the features of graph node l.
5: Cluster the graph based on the features using clustering methods like K-means.
6: Output: the cluster assignments of the graph nodes.

Table 1: Summary of the complexity per iteration of components in our distributed Block
Chebyshev-Davidson algorithm for solving the problem (2) with p processes. kb and actmax

(kb < actmax) are constants related to k. nnz(A) is the number of nonzero entries in A. See
Section 3 for a detailed analysis.

Components #Flops #Messages #Words

Filter (deg m) O(
nnz(A)mkb

p
) O(m log p) O(

2mNkb√
p

)

SpMM O(
nnz(A)kb

p
) O(log p) O(

2Nkb√
p

)

Orthonormalization O(
3Nact2max

p
+ 3act3max log p) O(log p) O(act2max log p)

Update Rayleigh-quotient O(
Nkbactmax

p
) O(log p) O(actmaxkb log p)

Evaluate residual O(
nnz(A)kb +Nk2b

p
) O(log p) O(

2Nkb√
p

)

Totals O(
nnz(A)mkb +Nact2max

p
+ 3act3max log p) O(m log p) O(

2mNkb√
p

+ act2max log p)

2 Block Chebyshev-Davidson Method

Chebyshev-Davidson [8] and Block Chebyshev-Davidson [19] algorithms employ Chebyshev polynomial filters
to accelerate the convergence of the Davidson method. The latter applies an inner-outer restart technique
inside an iteration that reduces the computational costs of using a large dimension subspace and a progressive
filtering technique to take advantage of suitable initial vectors if available. The sequential Block Chebyshev-
Davidson algorithm is summarized in Algorithm 2, which is Algorithm 3.1 in [19]. There are successful
applications of the Block Chebyshev-Davidson method and its variants in problems including linear response
eigenvalue problem [21], partial eigenvalue decomposition [22, 23, 24], generalized eigenvalue problems [25],
supramolecular systems [26], correlated eigenvalue problems [27] and self-consistent-filed calculations [28]. In
this paper, we apply it to spectral clustering and develop a scalable parallel version of it in the next section.
The spectral clustering via the Block Chebyshev-Davidson method is summarized as Algorithm 1.

To understand the algorithm, we first introduce some input variables. kwant denotes the number of
eigenpairs one wants to evaluate. kb is the number of vectors added to the projection basis per iteration
in Step 5 of Algorithm 2. ksub is the dimension of the current subspace V , kc is the number of converged
eigenvectors and kact is the dimension of the active subspace in V deflated by the converged eigenvectors
V (:, 1 : kc). It always holds that kc + kact = ksub. actmax and dimmax denote the maximum dimensions of
the active subspace, and the subspace spanned by V , respectively. We will briefly introduce the essential
components of the algorithm and refer the readers to the original paper [19] for more details.

Chebyshev polynomial filter (Step 5 of Algorithm 2). Given a full eigendecomposition A = V ΛV T

of the symmetric matrix in the leading eigenvalue problem (2), for any polynomial ϕ(x) : R ↪→ R, it holds

ϕ(A) = V ϕ(Λ)V T . (3)
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Algorithm 2 Block Chebyshev-Davidson method with inner-outer restart

1: Compute or assign upperb, lowb, and low nwb.
2: Set Vtmp = Vinit(:, 1 : kb), (construct kb − kinit random vectors if kinit < kb); set ki = kb(ki counts the

number of used vectors in Vinit).
3: Set kc = 0, ksub = 0 (ksub counts the dimension of the current subspace); set kact = 0 (kact counts the

dimension of the active subspace.)
4: while itmax is not exceeded do
5: V (:, ksub + 1 : ksub + kb) = ChebyshevF ilter(Vtmp,m, lowb, upperb, low nwb).
6: Orthonormalize V (:, ksub + 1 : ksub + kb) against V (:, 1 : ksub).
7: Compute W (:, kact+1 : kact+kb) = AV (:, ksub+1 : ksub+kb); set kact = kact+kb; set ksub = ksub+kb.
8: Compute the last kb columns of the Rayleigh-quotient matrix H: H(1 : kact, kact − kb + 1 : kact) =

V (:, kc + 1 : ksub)
TW (:, kact − kb + 1 : kact), then symmetrize H.

9: Compute eigen-decomposition ofH(1 : kact, 1 : kact) asHY = Y D, where diag(D) is in non-increasing
order. Set kold = kact.

10: If kact + kb > actmax, then do inner restart as: kact = kri, ksub = kact + kc.
11: Do subspace rotation (final step of Rayleigh-Ritz refinement) as: V (:, kc+1 : kc+kact) = V (:, kc+1 :

kold)Y (1 : kold, 1 : kact),W (:, 1 : kact) = W (:, 1 : kold)Y (1 : kold, 1 : kact).
12: Compute residual r = AV (:, kc +1 : kc + kb)−V (:, kc +1 : kc + kb)D(kc +1 : kc + kb, kc +1 : kc + kb)

and test for convergence of the kb vectors in V (:, kc + 1, kc + kb), denote the number of newly converged
Ritz pairs at this step as ec. If ec > 0, then update kc = kc + ec, save converged Ritz values in eval(sort
eval(:) in non-increasing order), and deflate/lock converged Ritz vectors (only need to sort V (:, 1 : kc)
according to eval(1 : kc)).

13: If kc ≥ kwant, then return eval(1 : kc) and V (:, 1 : kc), exit.
14: If ec > 0, set W (:, 1 : kact − ec) = W (:, ec + 1 : kact), kact = kact − ec.
15: UpdateH as the diagonal matrix containing non-converged Ritz valuesH = D(ec+1 : ec+kact, ec+1 :

ec + kact).
16: If ksub + kb > dimmax, do outer restart as: ksub = kc + kro, kact = kro.
17: Get new vectors for the next filtering: Set Vtmp = [Vinit(ki+1 : ki+ec), V (:, kc+1 : kc+kb−ec)]; ki =

ki + ec.
18: Set low nwb as the median of non-converged Ritz value in D.
19: end while

Algorithm 3 [W ] = ChebyshevF ilter(V,m, a, b, a0)

1: variables: A the sparse matrix; V the input matrix; m the degree of a Chebyshev polynomial; a the
lower bound of unwanted eigenvalues of A; b the upper bound of all eigenvalues; a0 the lower bound of
all eigenvalues;

2: c = (a+ b)/2; e = (b− a)/2;
3: Ã = e/(a0 − c);
4: t = 2/Ã;
5: U = (AV − cV )Ã/e;
6: for i = 2 : m do
7: Ã1 = 1/(Ä − Ã);
8: W = 2Ã1(AU − cU)/e− ÃÃ1v;
9: V = U ;

10: U = W ;
11: Ã = Ã1;
12: end for
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The Chebyshev polynomial of degree m is defined as

Cm(x) =

{

cos(m cos−1(x)), −1 ≤ x ≤ 1,

cosh(m cosh−1(x)), |x| > 1,
(4)

which rapidly grows outside the interval [−1, 1]. By (3), if ϕ(x) = Cm(sx+ t) with appropriate s and t, then
the smallest k eigenvalues of A become the largest k eigenvalues of ϕ(A) which are significantly much larger
than other eigenvalues, making they well separated from others, which means that it is relatively much easier
to identify the leading k eigenpairs of ϕ(A) using the Davidson method without correction-equation. Note
that the eigenvectors of A and ϕ(A) remain unchanged by (3). Therefore, it is sufficient to find the k largest
eigenpairs of ϕ(A). Another advantage of Chebyshev polynomials is that they admit a three-term recurrence
relation such that ϕ(A) can be efficiently applied to an arbitrary vector v as long as the fast matvec of A
is available. For example, ϕ(A) = Cm(sA + tIN ) can be applied to an arbitrary vector v efficiently via the
following recursive computation:

Ck+1(sA+ tIN )v = 2(sA+ tIN )Ck(sA+ tIN )v − Ck−1(sA+ tIN )v, (5)

for k = 1, ...,m− 1, where C0(sA+ tIN ) = IN , C1(sA+ tIN ) = sA+ tIN , and IN is the identify matrix of
size N . The computation above only requires a fast algorithm for the matvec of A, which is available since
A is sparse. Algorithm 3 is an example of Chebyshev polynomial filter which projects [a0, b] to [−1, 1] and
[a, a0) to (−∞,−1) respectively, where a and b are the lower and upper bounds of the spectrum respectively,
and a0 is the lower bound of the unwanted eigenvalues. When the bounds a, a0, and b are unknown, they
could be estimated by standard Lanczos decomposition via some matrix-vector products [19]. Note that a
and b are 0 and 2 respectively when A is the normalized Laplacian matrix of a graph, and in this case, a0
could be roughly estimated, e.g., a0 = a+ (b− a)kwant/N . Though the first estimation of a0 might not be
satisfactory, it will be approximated by Ritz values computed in Step 18 in Algorithm 2.

Orthonormalization (Step 6 of Algorithm 2). The orthonormalization step is initially performed
by the DGKS method [32]; random vectors are used to replace any vectors in V (:, ksub + 1 : ksub + kb) that
may become numerically linearly dependent to the current basis vectors in V . However, a parallel DGKS is
inefficient and scales poorly to large concurrencies. We, therefore, replace parallel DGKS with the parallel
TSQR [42] for orthonormalization, which attains known communication lower bounds and communicates
as little as possible only up to polylogarithmic factors. We leave the description of the parallel TSQR in
Section 3.3.

Inner-outer restart (Steps 10 and 16 of Algorithm 2). When the dimension of the active space is
larger than actmax (Step 10, kact + kb > actmax), inner-restart would be applied to reduce the dimension of
the active subspace to a smaller value kri. When the dimension of the current subspace is larger than dimmax

(Step 16, ksub + kb > dimmax), outer-restart would be used to reduce the dimension of the subspace to a
smaller value kro. The default values of the optional parameters actmax, kro and kri can be readily determined

by kwant, kb and the matrix dimension; e.g. kri = max([
actmax

2
], actmax−3kb) and kro = dimmax−2kb−kc.

Though the outer restart is a standard technique in eigensolvers, the inner restart is applied to reduce
the cost of the orthonormalization in Step 6 and the Rayleigh-Ritz refinement in Steps 8, 9, and 11. The
orthonormalization cost can be high since orthogonalizing k vectors is of O(Nk2) complexity. A larger
dimmax may incur more orthonormalization cost at each iteration. In contrast, if we perform an inner
restart, the number of non-converged vectors involved in the orthonormalization per iteration is less than
actmax. A Rayleigh-Ritz refinement includes computing the last column of the Rayleigh-quotient matrix H
(Step 8), computing an eigendecomposition of H (Step 9), and refining the basis V (Step 11). When kwant

is large and only standard outer restart is applied, the size of H would become too large, making the last
two steps expensive. Instead of waiting until the size of H exceeds dimmax to perform the standard restart,
the algorithm performs an inner restart to restrict the active subspace V (:, kc + 1 : kc + kact) and hence
the size of H. The reduced refinement and reorthogonalization cost per iteration induced by the inner-outer
restart may require more iterations to reach convergence; however, the total CPU time for the approach can
be much smaller than that of only using standard restart [19].

Progressive filtering technique to utilize initial vectors (Step 17 of Algorithm 2). Instead of
using subspace iteration on the entire available initial vectors at once, the algorithm progressively iterates over
blocks of the initial vectors [19]. By assuming that the initial vectors are ordered so that their corresponding
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Rayleigh quotients are in non-decreasing order, the algorithm progressively filters all initial vectors in the
natural order. First, it filters the first kb initial vectors when starting the iteration. Then, for each iteration
afterward, it filters ec number of the leftmost unused initial vectors together with kb − ec number of the
current best non-converged Ritz vectors, then augment the kb filtered vectors into the projection basis. One
advantage of this approach is that it can augment potentially better new basis vectors during the iteration
process instead of only resorting to the initials [19].

3 Distributed Block Chebyshev-Davidson Algorithm

With a basic understanding of the sequential algorithm, we are now ready to describe our distributed
algorithm. Algorithm 4 summarizes the framework of our distributed Block Chebyshev-Davidson method and
Table 1 summarizes the complexity of each component of the distributed algorithm. To describe the algorithm
and complexities in detail, we will progressively explain the following essential steps: distribution of matrices
like A and V , communication among processes, distributed SpMM, distributed Chebyshev polynomial filter,
local matrix-matrix multiplication, and orthonormalization of tall-skinny matrices.

Before describing the algorithm, we want to highlight the scalability of the parallel algorithm. Though
orthogonalization is used in the algorithm, it only takes a small portion in terms of computation costs due
to the existence of the Chebyshev polynomial filter, which is scalable. See Figure 8 for the percentage of
each algorithm component. Note that a higher degree of a Chebyshev polynomial filter results in faster
convergence [19, 8] and more dominance among other components. Therefore, our parallel algorithm is more
scalable than the eigensolvers, ARPACK, and LOBPCG, used in spectral clustering. See Figures 5 and 7
for demonstration.

We assume that p processes partitioning in parallel computation are organized into either a 2D
√
p×√p =

p grid or a 1D grid. We use P (i, j) where 0 ≤ i, j <
√
p or P (ℓ) where 0 ≤ ℓ < p to indicate a process

at the corresponding location, respectively. For the former, the set of processes at row i and column j are
respectively indicated with P (i, :) and P (:, j). Note that P (i, j) and P (j

√
p + i) refer to the same process.

A matrix M is partitioned in a 2D
√
p×√p block structure or a 1D p row block structure. For the former,

M [i, j] denotes the submatrix associated with the P (i, j) process, and for the latter, M [i
√
p+ j] denotes the

row block associated with P (i
√
p+ j) or P (j

√
p+ i) depending on the context.

Collective communications play an important role in the algorithm. For communication cost analysis,
we assume the cost of sending a message of size w from one process to another is given by ³ + ´w, where
³ is the latency or message setup time, and ´ is the reciprocal bandwidth or per-word transfer time. Five
collective communication operations are applied to our work: MPI Bcast, MPI Reduce, MPI Allreduce,
MPI Allgather, and MPI Reduce scatter. If implemented with a tree algorithm, the MPI Bcast collective
takes O(³ log p+ ´w log p) cost to broadcast w words to all processes in a communicator. The MPI Reduce
collective reduces w words from all processes at a single process, which has O(³ log p + ´w log p) cost with
a tree implementation. The MPI Allreduce collective combines MPI Reduce and MPI Bast, which con-
sequently has O(³ log p + ´w log p) cost as well. The MPI Allgather collective gathers w words from all
processes at each process, which has O(³ log p + ´wp) cost if implemented with a recursive doubling algo-
rithm. The MPI Reduce scatter collective collects w words from each process and then scatters w/p words
to each process, which has O(³ log p+ ´w) cost assuming a recursive halving implementation. For details of
these algorithms, refer to a survey by Chan et al. [52].

3.1 Distributed SpMM

Sparse times tall-skinny matrix multiplication (SpMM) is computing

U = AV (6)

where V, U ∈ R
N×kb and kb << N . Such computations widely appear in Algorithm 4 including Steps 5, 7,

and 12, so a fast distributed SpMM is of essential importance for distributed data.
In the A-Stationary 1.5D algorithm [40], A is partitioned in 2D such that P (i, j) process has A[i, j]; V

and U are partitioned in 1D (by rows) such that P (i, j) process has V [j
√
p+ i] and U [i

√
p+ j]. See Figure

1 for illustration. V is first replicated among
√
p processes in each column of the process grid, and after this
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Algorithm 4 Distributed Block Chebyshev-Davidson method

1: Set up communicators of a 2D grid of p processes and set upperb, lowb, and low nwb.
2: Set and distribute Vtmp = Vinit(:, 1 : kb), (construct kb−kinit random vectors if kinit < kb); set ki = kb(ki

counts the number of used vectors in Vinit).
3: Set kc = 0, ksub = 0 (ksub counts the dimension of the current subspace); set kact = 0 (kact counts the

dimension of the active subspace.)
4: while itmax is not exceeded do
5: V (:, ksub + 1 : ksub + kb) = DistributedChebyshevF ilter(Vtmp,m, lowb, upperb, low nwb).
6: Orthonormalize V (:, ksub + 1 : ksub + kb) against V (:, 1 : ksub) using parallel TSQR.
7: Compute W (:, kact + 1 : kact + kb) = AV (:, ksub + 1 : ksub + kb) using distributed SpMM; set

kact = kact + kb; set ksub = ksub + kb.
8: Parallelly compute the last kb columns of the Rayleigh-quotient matrix H: H(1 : kact, kact − kb + 1 :

kact) = V (:, kc + 1 : ksub)
TW (:, kact − kb + 1 : kact), then symmetrize H.

9: Compute eigen-decomposition of H(1 : kact, 1 : kact) as HY = Y D locally, where diag(D) is in
non-increasing order. Set kold = kact.

10: If kact + kb > actmax, then do inner restart as: kact = kri, ksub = kact + kc.
11: Do subspace rotation locally (final step of Rayleigh-Ritz refinement) as: V (:, kc +1 : kc + kact) = V (:

, kc + 1 : kold)Y (1 : kold, 1 : kact),W (:, 1 : kact) = W (:, 1 : kold)Y (1 : kold, 1 : kact).
12: Compute residual using distributed SpMM r = AV (:, kc+1 : kc+kb)−V (:, kc+1 : kc+kb)D(kc+1 :

kc+kb, kc+1 : kc+kb) and test for convergence of the kb vectors in V (:, kc+1, kc+kb), denote the number
of newly converged Ritz pairs at this step as ec. If ec > 0, then update kc = kc + ec, save converged Ritz
values in eval(sort eval(:) in non-increasing order), and deflate/lock converged Ritz vectors (only need
to sort V (:, 1 : kc) according to eval(1 : kc)).

13: If kc ≥ kwant, then return eval(1 : kc) and V (:, 1 : kc), exit.
14: If ec > 0, set W (:, 1 : kact − ec) = W (:, ec + 1 : kact), kact = kact − ec.
15: UpdateH as the diagonal matrix containing non-converged Ritz valuesH = D(ec+1 : ec+kact, ec+1 :

ec + kact).
16: If ksub + kb > dimmax, do outer restart as: ksub = kc + kro, kact = kro.
17: Get new vectors for the next filtering: Set Vtmp = [Vinit(ki+1 : ki+ec), V (:, kc+1 : kc+kb−ec)]; ki =

ki + ec.
18: Set low nwb as the median of non-converged Ritz value in D.
19: end while

U A V

= ×

U [7] A[2, 1]

V [5]

Figure 1: Illustration of A-Stationary 1.5D SpMM U = AV when the number of processes is
p = 9. Process P (2, 1) owns the submatrices U [7], V [5], and A[2, 1].
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operation, P (i, j) has
√
p blocks of V , which are given by V [j

√
p + ℓ] for 0 ≤ ℓ <

√
p. Next, the processes

perform local SpMM of form U j [i
√
p+ ℓ] = A[i, j]B[j

√
p+ ℓ] for 0 ≤ ℓ <

√
p, where U j denotes the partial

dense resulting matrix evaluated by the process at j − th column of the grid. These partial dense matrices

are then summed up to get the final result matrix at each process with U [i
√
p+ j] = Σ

√
p

ℓ=0
U ℓ[i
√
p+ j]. The

memory requirement for each process is nnz(A)/p+2Nkb/
√
p where nnz(A) denotes the number of nonzeros

in A, and the local computation takes O((nnz(A)/p)kb) flops.
We use an MPI Allgather collective to realize the replication among

√
p processes in each column of the

process grid. The replication begins at each process withNkb/p words, and thus the respective MPI Allgather
has a cost of O(³ log p + ´Nkb/

√
p). We use an MPI Reduce scatter collective with a summation operator

to realize the reduction of partial dense matrices among
√
p processes in each row of the process grid. The

reduction begins at each process with Nkb/
√
p words, and thus the respective MPI Reduce scatter has a

cost of O(³ log p+ ´Nkb/
√
p). Therefore, the total communication cost is

O(³ log p+ ´
2Nkb√

p
). (7)

In our distributed implementation Algorithm 4, A is partitioned in 2D, and V, Vinit, Vtmp,W are par-
titioned in 1D (by rows) in the same way. Each process maintains identical copies of other small dense
matrices D,Y,H. The distributed SpMM is applied to Steps 5, 7, and 12. Applying Chebyshev polynomial
filters in Step 5 requires additional treatments other than direct A-Stationary 1.5D.

In the distributed implementation in PARSEC, A, V, Vinit, Vtmp,W are all partitioned in 1D (by rows) in
the same way, and then a straightforward 1D SpMM is applied. Though local computation in the 1D SpMM
takes the same amount of flops, the communication cost

O(³ log p+ ´Nkb) (8)

is much more expensive and not scalable because MPI Allgather is used for all p processes simultaneously.

3.2 Distributed Chebyshev Polynomial Filter

To apply a polynomial of degree m of a distributed sparse A to a distributed dense matrix V , we must
evaluate the distributed SpMM AV m times. Imagine applying a simple polynomial filter xm with m = 2:

U2 = AAV, V ∈ R
N×kb , (9)

we have to first compute U1 = AV and then the filtering matrix U2 = AU1. In the A-Stationary 1.5D
algorithm, U1 and V are partitioned in 1D but in different ways: the P (i, j) process owns V [j

√
p + i] and

U1[i
√
p+j]. Computing AU1 directly via the A-Stationary 1.5D algorithm leads to the wrong filtering matrix

when A is a general sparse matrix. When A is symmetric, P (j, i) owns U1[j
√
p + i] and the submatrices

owned by P (i, j) and P (j, i) are the same. As a consequence, transposing the process grid and then applying
the A-Stationary 1.5D algorithm to A and U1 gives the correct filtering matrix U2 because the operations
are equal to computing ATU1. Note that V and U2 need not be two separate variables in implementation.
However, this only works for the case when m is even. When m is odd, the final filtering matrix Um after
applying a polynomial of degree m to V is still partitioned differently (like U1). There are two remedies.

• a) When m is odd, we partition an identity matrix I in the same way as we partition A, transpose
the process grid, and then apply A-Stationary 1.5D to I and the filtering matrix Um to get the final
matrix which is partitioned in the same way as V ;

• b) After each distributed SpMM, we apply a) to the resulting matrix to get a re-distributed matrix
partitioned in the same way as V . It is clear that this remedy is more expensive than the first one,
but the total complexities are still in the same order.

Note that applying a distributed SpMM to the identity matrix I and a matrix U is essentially equal to moving
around parts of the matrix U without any local computations. Our distributed Chebyshev polynomial
filter of degree m is implemented in the second way because every intermediate matrix Ui(i <= m) and

9



V should be partitioned in the same way due to the addition operations in Step 5 and 8 in Algorithm 3.
Algorithm 5 summarizes the distributed Chebyshev polynomial filter algorithm. The local computation takes
O(nnz(A)mkb/p) because each process averagely own nnz(A)/p nonzeros of A, and the total communication
cost is

O(m³ log p+ ´
2mNkb√

p
). (10)

Despite applying the 1D SpMM in PARSEC to compute the filtering matrices is straightforward, which
avoids the issues mentioned above, it requires much more communication cost

O(m³ log p+ ´mNkb), (11)

which is not scalable.

Algorithm 5 [W ] = DistributedChebyshevF ilter(V,m, a, b, a0)

1: variables: Ω the 2D grid of p processes; A the distributed sparse matrix; I the distributed identity
matrix; V the distributed input matrix; m the degree of a Chebyshev polynomial; a the lower bound of
unwanted eigenvalues of A; b the upper bound of all eigenvalues; a0 the lower bound of all eigenvalues;

2: c = (a+ b)/2; e = (b− a)/2;
3: Ã = e/(a0 − c);
4: t = 2/Ã;
5: Compute U = (AV − cV )Ã/e using distributed SpMM;
6: Transpose the 2D grid Ω;
7: Update U ←↩ IU using distributed SpMM;
8: for i = 2 : m do
9: Ã1 = 1/(Ä − Ã);

10: Transpose the 2D grid Ω;
11: Compute W = 2Ã1(AU − cU)/e− ÃÃ1v using distributed SpMM;
12: Transpose the 2D grid Ω;
13: Update W ←↩ IW using distributed SpMM;
14: V = U ;
15: U = W ;
16: Ã = Ã1;
17: end for

3.3 Distributed Orthonormalization

For orthonormalization, we adopt the parallel TSQR in [42]. We begin by illustrating the algorithm for
the case of p = 4 processes and then state the general version of the algorithm and its performance model.
Suppose that the N × n matrix V is divided into four row blocks V = [V [0];V [1];V [2];V [3]], where V [i]
is N/4 × n associated with P (i) process. First, process i computes the QR factorization of its row block
V [i] = QiRi, see eq. (12).

V =









Q0R0

Q1R1

Q2R2

Q3R3









,









(

R0

R1

)

(

R2

R3

)









=

(

Q01R01

Q23R23

)

,

(

R01

R23

)

= Q0123R0123. (12)

Then, processes work in pairs, combining their local R factors by computing the QR factorization of the
2n× n matrix [R0;R1], [R2;R3], respectively. Thus, [R0;R1] is replaced by R01 and [R2;R3] is replaced by
R23. Here and later, the subscripts on a matrix like Rij refer to the original row blocks V [i] and V [j] on
which they depend. Finally, the 2n× n QR factorization [R01;R23] = Q0123R0123 is computed. It is easy to
verify that R0123 is the R factor in the QR factorization of the original matrix V . We could combine all the
steps above into eq. (13), which expresses the entire computation as a product of intermediate orthonormal
factors. Note that the dimensions of the intermediate Q factors are chosen consistently for the product to

10



make sense. The Q factor of the QR decomposition is then the product of the intermediate orthonormal
factors. Note that the Q factor is computed locally without communication cost because each process owns
all the corresponding intermediate orthonormal factors.

V =









Q0

Q1

Q2

Q3









(

Q01

Q23

)

Q0123R0123. (13)

The parallel TSQR for general cases is summarized in Algorithm 6 (Algorithm 1 in [42]). In the imple-
mentation, the communication between process i and its q − 1 neighbor in Step 5, 6, and 7 are achieved
by MPI Allgather, which take O(³ log q + ´n2q) time each level. Note that q is a constant. The local QR
decomposition at the leaf level and a non-leaf level take O(2Nn2/p − 2n3/3) and O(2qn3 − 2n3/3) flops,
respectively. The local update of Q at the leaf level and a non-leaf level take O(Nn2/p) and O(qn3), re-
spectively. When orthonormalizing V in Step 6 of Algorithm 4, the second dimension n of V is bounded by
actmax. Therefore, in our distributed orthonormalization with TSQR, it takes totally

O(3Nact2max/p+ 3act3max log p) (14)

flops for local computation and
O(³ log p+ ´act2max log p) (15)

time for communication.
Unlike the parallel TSQR, to orthonormalize V (:, ksub + 1 : ksub + kb) against V (:, 1 : ksub) in Step 6 of

Algorithm 4, the parallel DGKS first orthonormalizes V (:, ksub +1) against V (:, 1 : ksub), then orthonormal-
izes V (:, ksub + 2) against V (:, 1 : ksub + 1), and repeats the procedures until all vectors are orthonormal.
Despite simple, the local computation takes O(Nactmaxk

2
b/p) flops and communication takes

O(³kb log p+ ´
Nkb
p

log p) (16)

time because MPI Allreduce is applied to normalization. Note that the communication cost is much higher
than that of the parallel TSQR because Nkb/p is much larger than the constant act2max when the problem
dimension N is large.

Algorithm 6 parallel TSQR

1: Require: set Π of p processes; tree with p leaves and height L = logq p, describing communication
pattern; N × n matrix V distributed in 1D; current process index i.

2: Compute QR factorization A[i] = Qi,0Ri,0

3: for k = 1 : L do
4: if the current process i has q − 1 neighbors then
5: Send Ri,k−1 to each neighbor
6: Receive Rj,k−1 from each neighbor j
7: Stack the Rj,k−1 from all neighbors (incl. Ri,k−1), in j order, into the qn × n matrix Ci,k , and

factor Ci,k = Qi,kRi,k

8: else
9: Ri,k := Ri,k−1, and Qi,k := In×n

10: end if
11: end for
12: Ensure: Ri,L is the R factor of A, for all processes.
13: Ensure: Q factor could be evaluated locally and top-down using the tree of intermediate Q factors

Qi,k : i ∈ Π, k ∈ 0, 1, ..., L.

11



3.4 Other Steps

In our algorithm, each process maintains the same Rayleigh-quotient Matrix H which is updated in Step
8. To update H(1 : kact, kact − kb + 1 : kact), we first perform the local computation of the transpose of
the corresponding parts of V [j

√
p+ i] and W [j

√
p+ i] on process P (i, j), then reduce all results among

√
p

processes in each row by MPI Allreduce with summation operator. Next, we perform a similar reduction
for all resulting among

√
p processes in each column to get the updated H. This step takes at most

O(Nkbactmax/p) flops for local computation and

O(³ log p+ ´actmaxkb log p) (17)

for communication, where actmax and kb are small constants.
Each process also maintains the same copy of D and Y at each process because they are of dimension

at most actmax. Computing residual in Step 12 involves a distributed SpMM, a local matrix-matrix mul-
tiplication, and communication, which in total takes O(nnz(A)kb/p + Nk2b/p) flops for local computation
and

O(³ log p+ ´
2Nkb√

p
). (18)

time for communication.
Steps 9, 11, and 15 are performed locally without any communication cost and together take at most

O(act3max +Nact2max/p) flops. All other steps take only O(1) time.

4 Numerical Results

We present the numerical results of three experiments to demonstrate the effectiveness and advantages of
our algorithm.

1. In the first experiment, we apply our algorithm as the eigensolver in spectral clustering to partition
graphs with known truth from the IEEE HPEC Graph Challenge 1. We compare the sequential version
of our method with the eigensolvers, ARAPCK, and LOBPCG, used in spectral clustering. Numerical
results demonstrate the effectiveness of our method when used for spectral clustering.

2. In the second experiment, we test the scalability of parallel ARPACK, parallel LOBPCG, and the
parallel version of our method to show that our method is more scalable.

3. In the final experiment, we show the superiority of our parallel implementation to the parallel
implementation of the Block Chebyshev-Davidson method in PARSEC.

All the numerical experiments conducted on the Zaratan cluster operated by the University of Maryland.
It features 360 compute nodes, each with dual 2.45 GHz AMD 7763 64-core CPUs. The cluster has HDR-100
(100 Gbit) Infiniband interconnects between the nodes, with storage and service nodes connected with full
HDR (200 Gbit). The theoretical peak floating-point rate is 3.5 Pflops. The sequential version of our method
is written in Matlab, and the parallel version is developed in Julia 1.7.3 using MPI.jl [53] with OpenMPI
[54]. The code2 is available on GitHub. Standard variable settings used in the numerical experiments are as
follows:

• p: the number of processes or cores;

• k: the number of eigenvectors to compute;

• N : the dimension of a matrix or the number of nodes in a graph;

• m: the degree of a Chebyshev polynomial filter;

• kb: the number of vectors added to the projection basis per iteration;

1http://graphchallenge.mit.edu
2https://github.com/qiyuanpang/DistributedLEVP.jl
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Figure 2: Comparisons of ARPACK, LOBPCG without preconditioning, and the Block Chebyshev-Davidson
method (Bchdav) in clustering performance on graphs with 50 thousand nodes. ARPACK runs with tolerance
.1 and .01. LOBPCG and Bchdav run with tolerance .1. In Bchdav, kb = 4 and m = 11.

• actmax: the maximum dimension of the active subspace actmax = max(5kb, 30) throughout all experi-
ments;

• dimmax: the maximum dimension of the subspace dimmax = max(actmax + 2kb, k + 30) throughout
all experiments;

• tol: the stopping criterion or tolerance.

4.1 Comparisons of eigensolvers used in spectral clustering

The exact bounds of the Laplacian or normalized Laplacian A are known, e.g., the smallest and largest
eigenvalues of the normalized Laplacian are 0 and 2, respectively. The Block Chebyshev-Davidson method,
therefore, converges fast with the optimal bounds. Here, we consider the symmetric normalized Laplacian
A of static undirected graphs from the IEEE HPEC Graph Challenge. There are four categories of graphs:
low block overlap and low block size variation (LBOLBSV), low block overlap and high block size variation
(LBOHBSV), high block overlap and low block size variation (HBOLBSV), and high block overlap and high
block size variation (HBOHBSV). We use notations like ”LBOLBSV-200K” to denote different graphs, where
”LBOLBSV” indicates the graph category and ”200K” indicates the graph owns 200 thousand nodes. For
the symmetric normalized Laplacian of each graph, we apply eigensolvers to compute k = 32 or k = 64
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Figure 3: Comparisons of ARPACK, LOBPCG without preconditioning, and the Block Chebyshev-Davidson
method (Bchdav) in clustering performance on graphs with 200 thousand nodes. ARPACK runs with
tolerance .1 and .01. LOBPCG and Bchdav run with tolerance .1. In Bchdav, kb = 4 and m = 11.

eigenvectors and then apply K-means clustering to partition the graph. Since the true partitions are known
for each graph, the number of clusters in K-means clustering is always set to be the number of true partitions.
We adopt external indexes Adjusted Rand Index (ARI) [55] and Normalized Mutual Information (NMI)
[56] to measure clustering quality. For ARI and NMI, values close to 0 indicate that the two clusterings
are primarily independent, while values close to 1 indicate significant agreement. ARI is adjusted against
chance, while NMI is not. To alleviate the randomness in K-means clustering, we repeat each experiment
20 times to record the average indexes.

Figure 2 and 3 summarize the comparisons of sequential ARPACK, LOBPCG, and the Block Chebyshev-
Davidson method when used for spectral clustering. LOBPCG is sometimes used with Algebraic multigrid
(AMG) preconditioning in spectral clustering, but AMG preconditioning is not always effective [57]. Figure 4
shows that AMG preconditioning does not improve clustering quality on the graphs we considered but takes
additional expensive costs. Hence, in this experiment, we only used LOBPCG without preconditioning. The
numerical results show that the Block Chebyshev-Davidson method has the top clustering quality, though
it is usually a bit slower than ARPACK and LOBPCG with .1 tolerance. With .1 tolerance, ARPACK
achieves the worst clustering quality. Even with a .01 tolerance, ARPACK sometimes reaches worse cluster-
ing quality compared to LOBPCG and Block Chebyshev-Davidson method with .1 tolerance. To conclude,
Block Chebyshev-Davidson achieves competitive clustering performance even though it is a bit more com-
putationally expensive. However, in the next experiment, we will show that Block Chebyshev-Davidson is
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Figure 4: Comparisons of LOBPCG with and without preconditioning (AMG) in clustering performance on
graphs with 200 thousand nodes. LOBPCG runs with tolerance .1.

more scalable in parallel computing environments.

Table 2: Properties of matrices used in our evaluations. The values under the “load imb.”
column present the load imbalance in terms of the sparse matrix elements for 121 processes
(i.e., 11 × 11 2D partition).

Sparse Matrix N avg degree nnz(A) load imb.
LBOLBSV 5M 48.5 242M 1.21
HBOLBSV 20M 48.5 970M 1.21

MAWI-Graph-1 18M 3.0 56M 8.8
Graph500-scale24-ef16 16M 31.6 529M 7.15

4.2 Scalability of parallel eigensolvers

In this experiment, we test the scalability of our parallel Block Chebyshev-Davidson method, ARAPCK,
and LOBPCG. We first test the scalability of parallel ARPACK and LOBPCG via the PETSc library
[58, 59, 60] on the graph LBOLBSV(SG)-1M. See Figure 5. Parallel ARPACK and LOBPCG lose scalability
when the number of processes exceeds 256. This is mainly because they carry out orthogonalization or
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Figure 5: Scaling of parallel ARPACK and LOBPCG to compute k = 64 eigenvectors of the matrix
LBOLBSV(SG)-1M with tolerance 0.01.

Figure 6: Scaling of local computation and communication in a distributed Chebyshev filter,
SpMM, and TSQR, on the HBOLBSV matrix in Table 2. The degree of the filter is m = 11
and the number of vectors is k = 8.

orthonormalization at every iteration, which does not scale in parallel environments.
To show the scalability of our parallel Block Chebyshev-Davidson method, we consider four sparse normal-

ized Laplacian matrices input, including traffic data from the MAWI Project (MAWI-Graph-1 [61]), synthetic
data at various scales generated using the scalable Graph500 Kronecker generator (Graph500-scale24-ef16
[62]), and two matrices from the Graph Challenge (LBOLBSV and HBOLBSV). Various properties of these
matrices are presented in Table 2. Load imbalance is defined as the ratio of the maximum number of nonzeros
assigned to a process to the average number of nonzeros in each process:

p ∗maxi,j nnz(A[i, j])

nnz(A)
. (19)

We test the scaling of our distributed algorithm and its components on the four matrices. Figure 6
illustrates how local computation and communication in a Chebyshev polynomial filter, an SpMM, and an
orthonormalization using TSQR scale to large concurrencies. The speedup of the filter and SpMM is roughly
proportional to

√
p because communication is more costly in the two components and accelerated at a rate

roughly proportional to
√
p. The orthonormalization using distributed TSQR does not scale well due to

communication costs. Figure 7 presents the scaling of the distributed algorithm and its components and
shows the speedup of the Chebyshev polynomial filter, and hence the entire algorithm is roughly proportional
to
√
p. Though the distributed orthonormalization and other components, including updating the Rayleigh-

quotient matrix and evaluating residuals, do not scale well to the numbers of cores, Figure 8 shows that they
are minor, and the filters are dominant in terms of CPU time. Note that a higher degree of a Chebyshev
polynomial filter tends to result in faster convergence [8, 19] and more dominance among other components.
Therefore, the distributed algorithm is efficient and practically scalable to a large number of cores.
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Figure 7: Scaling of the distributed Block Chebyshev-Davison algorithm and its components
to numbers of cores. The stopping criteria are tol = 10−3 and the degrees are m = 15. The
number of eigenvectors k and the number of vectors added per iteration kb vary for matrices.
LBOLBSV: k = 16, kb = 16; HBOHBSV: k = 4, kb = 4; MAWI-Graph-1: k = 4, kb = 4; Graph500-
scale24-ef16: k = 4, kb = 4.

4.3 Comparison of different implementations

We compare our distributed implementation of the Block Chebyshev-Davidson method with the distributed
implementation in PARSEC. Comparing the corresponding implementations of SpMM, Chebyshev polyno-
mial filters, and orthonormalization is sufficient. Figure 9 shows our implementations consistently outperform
the implementations in PARSEC in efficiency and scalability. Indeed, the implementations in PARSEC do
not scale to relatively large concurrencies.

5 Conclusion

ARPACK and LOBPCG are the most frequently used eigensolvers in spectral clustering. We propose
to use the Block Chebyshev-Davidson method for eigenvector computation in spectral clustering. Due
to the known analytic bounds of the spectrum of the symmetric normalized Laplacian of an undirected
graph, one does not need prior estimation of the bounds in the vanilla Block Chebyshev-Davidson method.
Furthermore, the exact analytic bounds also help the convergence of the method. Numerical results show
that the Block Chebyshev-Davidson method produces competitive clustering quality. Though it is a bit
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Figure 8: Percentages of the CPU time spent on components in the experiments shown in
Figure 7 when the number of cores p = 121.

Figure 9: Comparison of our implementation and PARSEC’s implementation of Chebyshev
polynomial filters, SpMM, and orthonormalization. The experiment is conducted on the
LBOLBSV matrix in Table 2 with problem size N = 5× 106, the number of vectors k = 16, and
the degree of the filter m = 11.

slower than ARPACK and LOBPCG, it is more scalable in parallel computing environments, which means
it has more potential to handle spectral clustering for large graphs. Although all three eigensolvers conduct
orthogonalization at each iteration, orthogonalization only takes a small portion in the sense of computation
costs in the parallel Block Chebyshev-Davidson method due to the use of the Chebyshev polynomial filter.
Since a higher degree of a Chebyshev polynomial filter results in faster convergence and more dominance
among other components, the parallel algorithm is efficient and practically scalable to a large number of
cores.
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