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COARSENING OF THIN FILMS WITH WEAK CONDENSATION\ast 

HANGJIE JI\dagger AND THOMAS P. WITELSKI\ddagger 

Abstract. A lubrication model can be used to describe the dynamics of a weakly volatile viscous
fluid layer on a hydrophobic substrate. Thin layers of the fluid are unstable to perturbations and
break up into slowly evolving interacting droplets. A reduced-order dynamical system is derived from
the lubrication model based on the nearest-neighbor droplet interactions in the weak condensation
limit. Dynamics for periodic arrays of identical drops and pairwise droplet interactions are investi-
gated, providing insights into the coarsening dynamics of a large droplet system. Weak condensation
is shown to be a singular perturbation, fundamentally changing the long-time coarsening dynamics
for the droplets and the overall mass of the fluid in two additional regimes of long-time dynamics.
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1. Introduction. The dynamics of viscous fluids spreading on water-repellent
surfaces are of interest in connection with many natural and engineering settings [4].
In what is broadly called dewetting dynamics, nearly uniform thin layers become un-
stable and break up through several stages of intermediate dynamics to eventually
yield large numbers of fluid droplets. Lubrication models [8, 28] have been success-
fully used to describe these physical systems using PDE models [5, 44]. Locally, each
drop will be close to an equilibrium state, but globally the system will exhibit slow
dynamics on long timescales that occur due to interactions of the droplets. The edges
of adjacent drops can collide, leading them to merge together, or large drops can
grow by drawing fluid from smaller ones, causing the latter to collapse. Both of these
mechanisms lead to a monotone decrease in the number of drops present as a function
of time, N(t); this is often called coarsening. Heuristic scaling arguments were used
to obtain power-law behaviors for N , N(t) =O(t - 2/5) for the one-dimensional prob-
lem [9, 14, 15]. Further studies have provided rigorous analysis establishing upper
bounds on the coarsening rate [9, 29] and understanding of the dynamics in the full
two-dimensional problem [10, 13, 31]. These results follow from studies of coarsening
in other systems in materials science having a global conservation of mass [22], with
coarsening proceeding through a sequence of unstable states until reaching the final
single-droplet stable steady state. For fluids experiencing evaporation or condensa-
tion, there is no conservation of mass, and new approaches are needed to describe
the richer dynamics that can occur. Physical modeling of thermally driven dropwise
condensation has been a longstanding area of study [33, 34] that has gained a strong
level of interest in connection with recent engineering applications for improving heat
transfer from high-power devices [3, 12, 35, 41, 42] and desalination [18]. Limitations
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THIN FILM COARSENING WITH WEAK CONDENSATION 363

of experiments can make it difficult to collect enough data on stages of coarsening of
droplets to fully resolve the long-time behaviors [6, 18, 35]; hence it is very helpful
to explore the predictions that can be obtained from more detailed models for these
dynamics.

At low temperatures, fluids may be only very weakly volatile and hence conserve
mass to high precision, but more generally they experience phase change at very slow
rates involving a thermodynamic balance between the liquid state and the ambient
vapor phase in the surrounding atmosphere. The simplest descriptions for how the
volatility of fluids can influence long-time coarsening dynamics use a one-sided model
[7] which treats the vapor phase as passively responding to the dynamics of the thin
film. Evaporation or condensation is driven by temperature differences between the
fluid layer and the surrounding vapor [40]. We show that the influence of slow conden-
sation can be incorporated into coarsening models of thin films and will have dramatic
effects on the long-time behaviors.

Burelbach, Bankoff, and Davis [7] presented a very influential one-sided lubrica-
tion model for volatile thin films that in simplified form can be expressed as

\partial h

\partial t
=

\partial 

\partial x

\biggl( 
h3 \partial p

\partial x

\biggr) 
 - \beta p

h+K
.(1.1)

This is an equation for the evolution of the free surface height of the fluid film, h(x, t),
in response to transport within the film (the first term on the right side) and loss or
gain of mass due to phase change from surrounding vapor (the second, nonconservative
flux term). Here \beta \geq 0 is effectively a phase change rate and K > 0 is called a kinetic
parameter [1, 2, 24, 30, 38]. The dynamic pressure of the interface [40] is given by

p=\Pi (h) - \scrP \ast  - 
\partial 2h

\partial x2
,(1.2)

where \partial 2h/\partial x2 gives the linearized curvature of the free surface and \scrP \ast gives the
influence of a spatially uniform temperature difference between the liquid layer and
the vapor phase [2, 19]. The first term, \Pi (h), is a disjoining pressure describing inter-
molecular forces between the fluid and the solid substrate it coats. For convenience,
we use the simple form [26, 27, 36]

\Pi (h) =
\epsilon 2

h3

\Bigl( 
1 - \epsilon 

h

\Bigr) 
,(1.3)

describing the influence of van der Waals forces on a hydrophobic substrate, with
h = O(\epsilon ) > 0 defining a strongly bound adsorbed or ``precursor"" layer which sets a
lower bound on film thicknesses [5, 19]. The maximum disjoining pressure is \scrP max =
27/(256\epsilon ) = \Pi (4\epsilon /3), and the property \Pi (h\rightarrow \infty )\rightarrow 0 denotes that molecular forces
are negligible for thick films.

This model is a gradient flow in terms of the energy

\scrE [h] =
\int L

0

1

2

\biggl( 
\partial h

\partial x

\biggr) 2

+U(h)dx ,(1.4)

with U \prime (h) =\Pi (h) - \scrP \ast , making this energy monotone dissipated,

d\scrE 
dt

= - 

\Biggl( \int L

0

h3

\biggl( 
\partial p

\partial x

\biggr) 2

dx+ \beta 

\int L

0

p2

h+K
dx

\Biggr) 
\leq 0 .(1.5)
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364 HANGJIE JI AND THOMAS P. WITELSKI
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Fig. 1. (Left) The disjoining pressure function P = \Pi (h), (middle) orbits in the h,hx phase
plane for steady solutions, (right) the homoclinic steady droplet profile for p= 0 (P=\scrP \ast ). All three
are drawn with the common vertical axis, 0\leq h\leq 0.5.

Consequently, for general \beta > 0, equilibria must have a spatially uniform pressure (for
the first integral to vanish), and to make the second integral vanish, we need either
p \equiv 0 or h \rightarrow \infty for t \rightarrow \infty . The first case (p \equiv 0) corresponds to equilibria like
the droplet shown in Figure 1; the latter case (h \rightarrow \infty ) describes spatially uniform
``filmwise"" condensation. For \scrP \ast > 0 there is no lower bound on the energy (1.4),
but the long-time attracting state on any finite-time domain can be shown to be a
uniformly condensing film satisfying

dh

dt
\sim \beta \scrP \ast 

h
=\Rightarrow h(t)\sim 

\sqrt{} 
2\beta \scrP \ast t for t\rightarrow \infty .(1.6)

For \beta > 0, the total fluid mass is not conserved and its evolution depends strongly on
the dynamics of the pressure,

\scrM (t) =

\int L

0

h dx,
d\scrM 
dt

= - \beta 

\int L

0

p

h+K
dx.(1.7)

Namely, the mass will locally decrease or increase due to local variations of the pres-
sure, p > 0 or p < 0, respectively.

The constant \scrP \ast originates from the scaled temperature difference between the
fluid-solid interface and the saturation temperature, and its value is crucial for the
dynamics of the system. If \scrP \ast >\scrP max, then strong condensation dynamics soon lead
to (1.6). If \scrP \ast < 0, then evaporation dominates, leading to h\rightarrow O(\epsilon ) everywhere. In
the critical range, 0 < \scrP \ast \leq \scrP max, the disjoining pressure can compete with phase
change effects yielding complex dynamics. In this range, the problem has two flat-
film steady states \=Hm and \=Hc [19]; see Figure 1(left). For \epsilon \rightarrow 0, the smaller flat-film
steady state \=Hm defines a stable minimum-thickness adsorbed layer,

\=Hm = \epsilon +\scrP \ast \epsilon 
2 + 4\scrP 2

\ast \epsilon 
3 +O(\epsilon 4),(1.8)

and the larger, unstable flat-film steady state \=Hc is given by \=Hc = \scrP  - 1/3
\ast \epsilon 2/3 +O(\epsilon ),

which separates filmwise condensation/evaporation dynamics. Setting p= 0 in (1.2),
these states are fixed points in the phase plane describing a family of spatially periodic
steady solutions (about the \=Hc center point) with the largest amplitude solution being
a homoclinic orbit through the hyperbolic saddle \=Hm; this solution uniquely defines
a critical steady droplet profile. It is unstable, and perturbations can drive it toward
either condensing or evaporating dynamics.

Recognizing the important role of the parameter \scrP \ast in this model, for the rest of
this paper it will be convenient to describe unsteady droplets in terms of a shifted-
pressure, P\equiv p+\scrP \ast , so that droplets that are larger (smaller) than the equilibrium
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THIN FILM COARSENING WITH WEAK CONDENSATION 365

drop (with P=\scrP \ast ) have shifted-pressures below (above) \scrP \ast , respectively, 0<P<\scrP \ast 
(\scrP \ast <P<\scrP max).

We focus on the limit \beta \rightarrow 0, where the total mass evolves slowly, with rate O(\beta ).
We believe this may be the simplest regime among many classes of complicated dy-
namics possible for (1.1). Considerations for the scaling dependence on the \beta param-
eter will be addressed at several points in the text---first for convenience in formal
asymptotics in section 2 and later, further issues on local and larger-scale dynamics
will be described. In section 2 we extend the approach from [14] to reduce the govern-
ing PDE to a dynamical system for the evolution of interacting quasi-steady droplets.
Sections 3 and 4 examine the behaviors for this system for the low-dimensional cases
of a single drop or a pair of drops in periodic domains. This background will then
be used to gain some understanding of the problem of dynamics for larger sets of
droplets (section 5) and ultimately the statistical scalings that describe the stages of
coarsening that can occur (section 6).

2. Derivation of the droplet dynamics model. We begin by reducing the
PDE (1.1) for general solutions to a lower-dimensional dynamical system describing
interacting fluid droplets that form after initial transients [14, 15, 20, 44]. For \beta \rightarrow 0,
the influence of fluid volatility has a weak influence on the dissipation of energy and in
this limit a continuous family of quasi-steady drops exists, parameterized by spatially
uniform pressure in 0<P<\scrP max.

Following [14], we begin by constructing a prototype model for the dynamics of a
single near-equilibrium droplet h= h(x, t) subject to surrounding influences. Consider
a droplet starting in the center of a finite domain with some initial pressure,

h(x,0) = \=\scrH (x;P0),  - \ell \leq x\leq \ell ,

and mass fluxes, defined as

J \equiv  - h3\partial xp,(2.1)

that are imposed with fixed values at the domain boundaries,

J( - \ell ) = \sigma \~J - , J(\ell ) = \sigma \~J+,

with \sigma \ll 1 and \~J = O(1) describing weak fluxes so the evolution of the droplet is
slow and can be assumed to be quasi-steady. We introduce a timescale \tau = \sigma t, where
\sigma \ll 1 will be selected by the scale of the nonconservative flux \beta . By assuming that
the evaporation/condensation effects and the fluxes cause the droplet to vary slowly
in time, we write an expansion perturbing a leading-order quasi-static droplet,

h(x, t) = \=\scrH (x - X(\tau );P(\tau )) + \sigma h1(x, \tau ) +O(\sigma 2),(2.2)

where the droplet profile \=\scrH (x;P) satisfies

\Pi ( \=\scrH ) - d2 \=\scrH 
dx2

=P .(2.3)

This is a homoclinic solution that approaches a far-field flat film \=\scrH (| x| \rightarrow \infty ) \sim 
\epsilon +\epsilon 2P\sim \=Hm+O(\epsilon 2). Substituting (2.2) into (1.1) and using (2.3) yields the leading-
order equation

\sigma 

\biggl[ 
 - d \=\scrH 

dx

dX

d\tau 
+

\partial \=\scrH 
\partial P

dP

d\tau 

\biggr] 
= - \beta (P - \scrP \ast )

\=\scrH +K
+ \sigma \scrL h1,(2.4)
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366 HANGJIE JI AND THOMAS P. WITELSKI

where the linear operator \scrL is given by the composition of two second-order operators,
\scrL \Psi = \scrR \scrS \Psi [19]. The operator \scrR includes the evaporative flux and the mobility
function, and the operator \scrS is the linearized pressure operator:

\scrR w\equiv  - \beta w
\=\scrH +K

+
\partial 

\partial x

\biggl( 
\=\scrH 3 \partial w

\partial x

\biggr) 
, \scrS v\equiv \Pi \prime ( \=\scrH )v - \partial 2v

\partial x2
.(2.5)

The adjoint operator of \scrL is given by \scrL \dagger \Phi \equiv \scrS \scrR \Phi . Expanding \scrL for \beta \rightarrow 0,
\scrL \Psi =\scrL 0\Psi + \beta \scrL 1\Psi + O(\beta 2), gives the leading-order operator as the mass-conserving
operator,

\scrL 0\Psi =\scrR 0\scrS \Psi , \scrR 0w\equiv \partial 

\partial x

\biggl( 
\=\scrH 3 \partial w

\partial x

\biggr) 
,(2.6)

and the adjoint operator is \scrL \dagger 
0\Phi \equiv \scrS \scrR 0\Phi .

To address the influence of condensation effects on the droplet dynamics, we select
the timescale \sigma \sim \beta \ll 1 so that the nonconservative term is included in the leading-
order dynamic balance (2.4), with \sigma \ll 1 being necessary to ensure that the dynamics
are slowly evolving. We choose to study the regime \beta \ll 1 so that the quasi-steady
droplets are determined by (2.3) and we can take advantage of results from previous
studies [14, 15].

Based on the spatial fluxes between finite-sized near-equilibrium drops, it can
be shown that \sigma = O(\epsilon 3) [14]. Consequently, we define a reduced evaporation/
condensation rate \beta 0 as \beta = \beta 0\epsilon 

3 for the following formal asymptotics, with \beta 0 =O(1).
Further dynamic considerations described in later sections will lead us to define the
weak condensation regime in terms of focusing on small \beta 0 \rightarrow 0. In section 3 we show
that using \beta 0 \gg O(1) changes some of the properties of the quasi-steady droplets and
requires a different line of analysis. Then the leading-order dynamic equation (2.4)
at O(\beta ) reduces to

 - d \=\scrH 
dx

dX

d\tau 
+

\partial \=\scrH 
\partial P

dP

d\tau 
= - \beta 0(P - \scrP \ast )

\=\scrH +K
+\scrL 0h1.(2.7)

The null space of \scrL \dagger 
0 is spanned by two bounded functions [14],

\Psi 1(x) = 1, \Psi 2(x) =

\int x

0

\=\scrH (x\prime ) - \=Hm

\=\scrH (x\prime )3
dx\prime .(2.8)

Taking the inner product of (2.7) with \Psi 1(x - X) yields the equation for the evolution
of the total mass, including the contribution of the nonconservative flux,

d\scrM 
d\tau 

= - \~J+ + \~J -  - \beta 0J
nc
\ell , Jnc

\ell =

\int \ell 

 - \ell 

P - \scrP \ast 
\=\scrH +K

dx.(2.9)

If the droplet is located away from the edges of the domain, then small changes in X
have a negligible effect on the mass, so \scrM =

\int 
\=\scrH (x - X;P)dx \approx \scrM (P). Using the

chain rule we can rewrite this as

dP

dt
=CP (P) [J+  - J - + \beta Jnc

\ell ] , CP (P) = - 
\biggl( 
d\scrM 
dP

\biggr)  - 1

.(2.10)

Similarly, using the fact that \=\scrH has a symmetric profile and therefore \=\scrH is odd with
respect to the center of the drop, taking the inner product of \Psi 2(x - X) with (2.7)
yields an equation for the evolution of the center of mass,
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THIN FILM COARSENING WITH WEAK CONDENSATION 367
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JL
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x

Fig. 2. (Left) A schematic figure of a system of three quasi-static droplets in a periodic domain
0 \leq x \leq 150. (Right) Two quasi-static droplets from a numerical solution of (1.1) (solid curve)
locally satisfying (2.3) with the pressures P=P1,2, where the core of droplets can be approximated
by parabolas (dot-dashed curves) defined by (2.12). The shifted pressure P = p(x) + \scrP \ast (dashed
curve) for the precursor layer is given by (2.21) over xL \leq x \leq xR where the fluxes at the edges of
droplets are JR,L.

dX

dt
= - CX(P) [J+ + J - ] , CX(P) =

1

2

\int \ell 

 - \ell 

\=\scrH  - \=Hm

\=\scrH 3
dx

\bigg/ \int \ell 

 - \ell 

( \=\scrH  - \=Hm)2

\=\scrH 3
dx .

(2.11)

Relations to define the fluxes and evaluate the integrals must still be specified, but
for \beta = 0 equations (2.10), (2.11) have the same form as the model derived in [14].
The same form of the quasi-steady droplets is being used; however, we will see that
the nonconservative effects will dramatically change the fluxes between drops.

2.1. The droplet core approximation and the nonconservative flux. For
a quasi-static droplet that satisfies (2.3), with the pressure in the range 0 < P <
\scrP max, in the core region of the droplet, \=\scrH \gg \epsilon , and the disjoining pressure \Pi ( \=\scrH ) is
negligible. Therefore, using the balance of the surface tension \=\scrH xx and the pressure
P, we approximate the core of the droplet by a parabola [5, 14, 21, 29],

\=\scrH (x;P)\approx 1

2
P(w2  - x2) for | x| \ll w,(2.12)

with w being the half-width or radius of the droplet, and \=\scrH \approx \=Hm elsewhere. Droplets
are homoclinic solutions asymptoting to \=Hm in the far-field; separating the compactly
supported parabolic core approximate profile from the surrounding adsorbed precursor
film is a convenient and widely used approach for the analysis of this system [20, 29].
Figure 2 (right) shows two typical quasi-static droplets and the parabolic profiles
approximating their core regions.

From the first integral of (2.3) and the estimate that the inter-droplet film \=\scrH \approx 
\=Hm, the maximum height of the droplet hmax satisfies U(hmax) - U( \=Hm) =P(hmax - 
\=Hm). In the limit \epsilon \rightarrow 0, we get the leading-order estimate hmax \sim  - U( \=Hm)/P. In
this limit, the half-width of the droplet is given by [14, 21]

w(P)\sim A/P with A=
\sqrt{} 
2| U( \=Hm)| ,(2.13)

and for (1.3) this yields A= 1/
\surd 
3 to leading order for \epsilon \rightarrow 0. The mass of the droplet

then can be approximated by the mass of the core region as

M(P) =

\int w

 - w

\=\scrH (x;P) dx=
2

3
Pw3 \sim 2A3

3P2
,(2.14)

where the last relation uses (2.13).
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368 HANGJIE JI AND THOMAS P. WITELSKI

Estimates of the pressure coefficient function CP (P) (from (2.10) with \scrM \approx M)
and the drift coefficient function CX(P) were found in [15] as

CP (P)\sim 3P3

4A3
> 0, CX(P)\sim B

\epsilon ln(P/\scrP max)
> 0,(2.15)

where B is a negative constant independent of \epsilon .
In order to complete the descriptions of (2.10) and (2.11) we must express the

fluxes in terms of droplet properties. The nonconservative flux (2.9) is defined on the
entire domain but can be separated into two parts. We first focus on its contribu-
tions in the droplet core region and will account for the impact of this flux on the
surrounding thin films separately in the next section.

Using approximation (2.12), the nonconservative flux in the droplet core region
is

Jnc \approx 
\int w

 - w

P - \scrP \ast 
1
2P(w2  - x2) +K

dx.(2.16)

This integral relates to the loss or gain of mass in the droplet core. The remainder of
the Jnc

\ell flux (on | x| >w) will be handled implicitly by calculating the pressure in the
precursor films between drops.

Integral (2.16) can be evaluated to yield the estimate

Jnc(P)\approx 4

A
(P - \scrP \ast )\scrG (P)arctanh[\scrG (P)] with \scrG (P) =

\biggl[ 
1 +

2KP

A2

\biggr]  - 1/2

.(2.17)

This form makes clear that the sign of the nonconservative flux Jnc is determined
by the relation between P and \scrP \ast . For an isolated quasi-static droplet with pressure
P > \scrP \ast , the nonconservative flux will be positive, increasing the pressure and de-
creasing droplet mass due to evaporation. If the droplet pressure is smaller than the
critical pressure, 0<P<\scrP \ast , the flux will be negative and the pressure will decrease,
corresponding to increasing droplet mass due to condensation.

2.2. Mass fluxes between drops. To model the fluxes between neighboring
droplets, we focus on the thin film between the drops. Assume that the film between
two drops is thin, h \approx \=Hm, and quasi-steady. Then the reduced governing equation
(1.1) between drops,

d

dx

\biggl( 
h3 dp

dx

\biggr) 
 - \beta p

h+K
= 0,(2.18)

can be approximated by

\=H3
m

d2p

dx2
 - \beta 

\=Hm +K
p= 0 on xL \leq x\leq xR,(2.19)

subject to boundary conditions on the (unshifted) pressures of the adjacent drops,
p(xL) = pL and p(xR) = pR. This linear problem has the general solution

p(x) =A cosh(\alpha x) +B sinh(\alpha x), \alpha =
\sqrt{} 
\beta \mu / \=H3

m, \mu =
1

\=Hm +K
,(2.20)

and applying the boundary conditions yields

p(x) =
pR sinh(\alpha [x - xL]) + pL sinh(\alpha [xR  - x])

sinh(\alpha D)
on xL \leq x\leq xR ,(2.21)
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THIN FILM COARSENING WITH WEAK CONDENSATION 369

where D = xR  - xL is the distance between contact lines of adjacent droplets; see
Figure 2 in terms of droplets 1 and 2, with pL = P1  - \scrP \ast , pR = P2  - \scrP \ast and xL =
X1 +w(P1), xR =X2  - w(P2).

For \alpha \rightarrow 0 (i.e., \beta \rightarrow 0) this reduces to a linear pressure profile, p= \gamma (x - xL)+pL
with pressure gradient \gamma = (pR  - pL)/D, and a uniform flux between the drops,
J =  - h3\partial xp \approx  - \=H3

m\gamma as previously used in coarsening models for nonvolatile films
[14, 20]. For \beta > 0, the fluxes at the neighboring drops will differ and must be
distinguished. The flux JR at the right edge of a drop with pressure pL whose contact
line at xL is the left end of a precursor film connecting it to a neighboring droplet
with pressure pR and contact line at xR (see Figure 2 (right)) is

JR(xL) = - 
\=H3
m\alpha (pR  - pL cosh(\alpha D))

sinh(\alpha D)
\sim  - \=H3

m\gamma +
\beta \mu 

6
D(2pL + pR) +O(\beta 2).(2.22)

Similarly, the flux JL at the left edge of a drop whose contact line at xR is the right
boundary of the precursor film is

JL(xR) = - 
\=H3
m\alpha (pR cosh(\alpha D) - pL)

sinh(\alpha D)
\sim  - \=H3

m\gamma  - \beta \mu 

6
D(pL + 2pR) +O(\beta 2).(2.23)

The derivation of these fluxes has focused on the thin-film region between droplets
in this section, but in general, our focus will be on using these fluxes to describe the
coupling between the adjacent droplets. In particular, we see that these fluxes include
both mass-conserving exchanges between drops (the \gamma terms) and nonconservative
effects due to phase change (the O(\beta ) terms). To separate out these effects, we have
assumed that \alpha D\ll 1. Using \=Hm \sim \epsilon , this condition can be rewritten as \beta \ll K\epsilon 3/D2;
this is more restrictive than the original assumption used to obtain (2.7), but is very
helpful for interpreting behaviors, so we will restrict ourselves to this regime to define
weak condensation.

2.3. The simplified dynamical model. We can now describe an array of
N slowly varying droplets parameterized by their positions \{ Xk(t)\} and pressures
\{ Pk(t)\} , where k = 1,2, . . . ,N (see Figure 2). The governing equations that describe
the evolution of the coupled \{ (Xk,Pk)\} are given by

dPk

dt
=CP (Pk)(J

R
k,k+1  - JL

k - 1,k + \beta Jnc
k ),(2.24a)

dXk

dt
= - CX(Pk)(J

R
k,k+1 + JL

k - 1,k),(2.24b)

where for \beta \rightarrow 0 the leading-order mass fluxes between neighboring droplets are

JR
k,k+1 = - \=H3

m

Pk+1  - Pk

Dk,k+1
+

\beta \mu 

6
Dk,k+1(2Pk +Pk+1  - 3\scrP \ast ),(2.25a)

JL
k - 1,k = - \=H3

m

Pk  - Pk - 1

Dk - 1,k
 - \beta \mu 

6
Dk - 1,k(Pk - 1 + 2Pk  - 3\scrP \ast ),(2.25b)

where the length of the film between two neighboring droplets (the distance between
their contact lines) is (see Figure 2)

Dk,k+1 = (Xk+1  - w(Pk+1)) - (Xk +w(Pk)),(2.25c)
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370 HANGJIE JI AND THOMAS P. WITELSKI

and the nonconservative flux (2.17) can be written as

Jnc
k \sim 

\Biggl\{ 
2\scrP \ast 
A ln

\bigl( 
KPk

2A2

\bigr) 
, Pk \rightarrow 0,

2A
K , Pk \gg \scrP \ast .

(2.25d)

System (2.24) describes smooth, quasi-steady evolution of droplets until one of two
possible singular behaviors (called coarsening events) arises, generating fast dynamics
that decrease the number of droplets:

(a) Droplet collapse: Quasi-steady droplets exist for the range of pressures 0 <
Pk < \scrP max. The limit P \nearrow \scrP max corresponds to small droplets effectively
vanishing into the \=Hm adsorbed film. It was shown that this collapse happens
in finite time with P=O((Tc  - t) - 1/3) [14]. In practice, we define a droplet
collapse event as occurring when the droplet pressure reaches a fixed critical
pressure:

Droplet k collapses if Pk(t) = \^\scrP max,(2.26)

with \^\scrP max := (1 - \eta )\scrP max, where \eta > 0 is a small parameter and \^\scrP max defines
a scale for the minimum observable quasi-stable droplet.
At a collapse event, droplet k is removed to yield the reduced system with
N  - 1 drops for further evolution in (2.24).

(b) Droplet collision: When the separation distance between the edges of adjacent
drops vanishes, after a rapid transition, the two droplets will merge to produce
a single combined drop. This has previously been called droplet collision and
occurs when the flux (2.25a) between drops diverges with Dk,k+1(t)\searrow 0.
In practice, we define a droplet collision event as occurring when the distance
between a pair of drops (2.25c) reaches a fixed small distance, \^\scrD min > 0:

Droplets k and k+ 1 collide if Dk,k+1(t) = \^\scrD min.(2.27)

Having a positive \^\scrD min gives a heuristic correction to the parabolic approxi-
mation for droplets (2.12) underestimating effective droplet widths.
When a droplet collision event occurs, we follow [15] and assume that merging
occurs rapidly so that evaporation or condensation is negligible and it is
reasonable to conserve the total mass of the two droplets. We also assume
that the position of the merged droplet is symmetric with respect to the outer
contact lines of the two merging droplets. The pressure and position of the
merged droplet (Pk,k+1,Xk,k+1) after collision are therefore given by

Pk,k+1 =

\biggl( 
1

P2
k

+
1

P2
k+1

\biggr)  - 1/2

, Xk,k+1 =
1
2 [Xk  - wk +Xk+1 +wk+1] .

(2.28)

The merged droplet will then be used to replace one of the colliding drops,
(Pk,k+1,Xk,k+1) \rightarrow (Pk,Xk), and the system (2.24) will restart with N  - 1
droplets.

Both mechanisms cause the number of droplets to decrease from N to N  - 1
in the system. To numerically capture the coarsening event, we halt the coupled
ODE system (2.24) when a collapse or collision event is detected. Then the reduced
ODE system (2.24) is restarted for the remaining N  - 1 droplets in this coarsening-
type piecewise-defined dynamical system [11, 39]. We observed that the dynamics
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THIN FILM COARSENING WITH WEAK CONDENSATION 371

are not sensitive to the regularizations introduced by the parameters \^\scrP max, \^\scrD min. For
\beta = 0, the dynamical model (2.24) reduces to the coupled ODEs describing the droplet
dynamics of the mass-conserving thin-film equation [14, 15].

To explore the droplet dynamics governed by the dynamical model (2.24)--(2.28),
we will consider three droplet configurations on periodic domains: the dynamics of
a single droplet (section 3), the interactions between two droplets (section 4), and
a system with multiple droplets (section 5). The single droplet case illustrates the
influences of nonconservative effects on periodic droplet arrays. The two-droplet case
provides insights into the interplay between inter-drop mass fluxes and nonconserva-
tive fluxes by separating the evolution of droplet pressures from their motions. The
many-droplet configuration extends the pairwise droplet analysis in the two-droplet
case to a system of slowly varying well-separated droplets.

For all the numerical studies in this paper, we set \epsilon = 0.1 with \scrP \ast = 0.5 in the
middle of the critical pressure range and K = 0.1 unless otherwise specified [19, 24].
We conduct the PDE simulations for the model (1.1) using centered finite differences
with backward Euler time stepping. The simplified dynamical system (2.24) is nu-
merically solved using by a Cash--Karp Runge--Kutta scheme with error control [32].
Adaptive time stepping is used for both PDE and ODE simulations.

3. Dynamics of a single droplet: Pure condensation. First, we consider
a single droplet (N = 1) with the position X and pressure P in a periodic domain
0\leq x\leq L. In this case, the left and right neighbors of the droplet are identical, and
(2.25a), (2.25b) reduce to the leading-order symmetric inter-drop fluxes

JR = - JL \sim \beta \mu 

2
D(P - \scrP \ast ),(3.1)

where the length of the inter-drop film is

D=L - 2w=L - 2A

P
.(3.2)

Setting D = 0 yields a minimum pressure, PL = 2A/L corresponding to the largest
droplet that can fit in the domain. From the equal opposing fluxes, (3.1), the right-
hand side of the dX/dt equation (2.24b) becomes zero. Hence the droplet does not
move and the dynamical system (2.24) reduces to a single equation for the pressure:

dP

dt
=CP (P)

\bigl[ 
2JR + \beta Jnc

\bigr] 
.(3.3)

Substituting into (3.3) the forms of the pressure coefficient CP (P), (2.15), the non-
conservative flux Jnc from the core of the droplet, (2.25d), and the inter-drop fluxes,
(3.1), one arrives at the ODE for the pressure of the droplet:

dP

dt
=

3\beta (P - \scrP \ast )P
3

4A3

\biggl[ 
\mu 

\biggl( 
L - 2A

P

\biggr) 
+

4

A
\scrG (P)arctanh[\scrG (P)]

\biggr] 
.(3.4)

This is called the pure condensation case since there are no conservative fluxes between
identical droplets (\gamma = 0) and hence all of the terms on the right are scaled by \beta .

For the case P>\scrP \ast , (3.4) describes the dynamics of an evaporating droplet that
collapses in finite time. In the collapse limit P \gg \scrP \ast , the leading-order equation of
(3.4) becomes

dP

dt
\sim 3\beta \mu L

4A3
P4,(3.5)
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Fig. 3. (a) PDE simulation of (1.1) for a slowly condensing droplet in a periodic domain 0 \leq 
x\leq L with L= 100 and \beta = 10 - 7. (b) The evolution of the droplet pressure in the PDE model (dots)
compared against predictions from the dynamical model (3.4) (solid curve) for t < tf \approx 1.8 \times 108.
The last stage of the droplet growth is given by (3.7) (dot-dashed curve) as P \rightarrow PL, followed by
convergence to filmwise condensation after the domain is filled for t > tf (dotted curve). (c) The

evolution of the mass \scrM (\^t ) for a rescaled time variable \^t = \beta t at several values of \beta , showing a

transition from the scaling \scrM =O(\^t ) in the dropwise condensation stage to the scaling \scrM =O(
\surd 
\^t )

in the filmwise condensation stage. (d) Parametric plot of droplet half-width w(t) and pressure P(t)
from PDE simulations like (a) at several values of \beta . The quasi-steady relation w(P) =A/P (2.13)
is shown for comparison (dashed line).

which yields P(t) \sim [\kappa (Tc  - t)]
 - 1/3

, where \kappa = (9\beta \mu L)/(4A3), and Tc is the critical
blow-up time. As t \rightarrow Tc, the droplet pressure would blow up, i.e., P \rightarrow \infty , but in
the PDE the pressure is bounded and the droplet collapses to the equilibrium flat
absorbed layer h \equiv \=Hm due to evaporation based on the droplet collapse criteria
(2.26).

Returning to our primary focus, for the case P<\scrP \ast , (3.4) describes the evolution
of a droplet subject to condensation. Figure 3(a) presents a typical simulation of the
PDE (1.1) with \beta = 10 - 7 for a slowly condensing droplet placed at the center of a
periodic domain 0 \leq x \leq 100 (cf. [37, Figure 6]). The initial condition is the quasi-
static droplet profile h(x,0) = \=\scrH (x - X(0);P(0)) with P(0) = 0.1<\scrP \ast and X(0) = 50
at time t = 0. Figure 3(b) shows that the evolution of the pressure P obtained
from the PDE simulation (marked by dots) agrees well with the prediction from the
dynamical model (3.4) (solid curve). This comparison shows that the leading-order
linear approximation for the inter-drop fluxes (3.1) provides a good prediction for the
long-time droplet dynamics under weak condensation.
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THIN FILM COARSENING WITH WEAK CONDENSATION 373

Both terms in the square brackets on the right-hand side of (3.4) contribute to
the evolution of the droplet pressure. The first term is condensation on the film
between drops, while the second describes condensation in the drop core region. This
evolution goes through several stages as P\searrow PL. The rate of condensation is initially
dominated by the contributions from the long films between drops, D\gg 1. Later, the
rate slows as the drops grow and the length of the inter-drop films shrinks, D\searrow \^\scrD min.
For a range of intermediate times, when both terms contribute at leading order, the
evolution can be approximated by

dP

dt
\propto  - 3\beta \scrP \ast 

4A3
P3 =\Rightarrow P=O([t - t0]

 - 1/2).(3.6)

Using (3.6) and (2.14) we can estimate the growth of the droplet mass as M =O(t - t0),
as shown in Figure 3(c), with t0 being a time-shift appropriate for matching to previous
stages.

In the final stage, the condensing drop fills almost the entire domain, with D\rightarrow 0.
In this limit, (3.4) reduces to the following leading-order linear problem for P\rightarrow PL:

dP

dt
\sim  - c0  - c1 (P - PL) =\Rightarrow P\sim PL  - c0

c1
+Ce - c1t,(3.7)

where c0, c1 are positive constants depending on PL,\scrP \ast . The dot-dashed curve in
Figure 3(b) confirms the exponential decay of P as the contact lines of the condensing
drop approach the edge of the domain.

At a critical finite time, here tf \approx 1.8 \times 108, the entire domain is filled with
liquid, and the dynamical model (3.4) no longer applies as the droplet has merged
with its periodic images and starts approaching a spatially uniform condensing film
[19]. Following a short transient at t+f , the scaling law \scrM (t) = Lh(t) = O(

\surd 
t - t1)

(see (1.6)) for filmwise condensation applies with P\sim \Pi (h(t)) = O([t - t1]
 - 3/2)\rightarrow 0;

see Figures 3(b) and 3(c). Figure 3(c) also compares the evolution of \scrM in rescaled
time \^t = \beta t at different values of \beta . In all cases, we observe that \scrM (\^t ) follows the

predicted transition from O(\^t ) to O(
\surd 
\^t ).

Figure 3(d) shows results on droplet pressure versus half-width from PDE simu-
lations following that in Figure 3(a) at several different values of \beta . In all cases, the
droplets retain the parabolic profile (2.12). For \beta = O(\epsilon 3) and smaller, w(P) coin-
cides with the quasi-static relation (2.13), which corresponds to a drop condensing
with a constant effective contact angle, \=\scrH (w) =  - Pw =  - A (cf. [43]). For larger \beta ,
the evolution of drops is different, as evidenced by the fact that they do not have a
constant contact angle and relatedly their mass does not follow M =O(P - 2); we will
not consider this range here.

4. Two-droplet interactions. Next, we discuss the interactions between two
droplets (N = 2) in a periodic domain. To separate the influences of pressure and
inter-drop spacing on the droplet dynamics, we consider two simplified cases: (1)
two droplets with identical pressures and unequal spacing, and (2) two droplets with
identical spacing and unequal pressures. Insights gained from the analysis of these
reduced scenarios will be applied to systems with more droplets.

4.1. Equally sized droplets with unequal spacing: Separation versus
collision. Consider two droplets of identical pressure, P1 = P2 = P (and conse-
quently equal masses (2.14) and equal sizes, w=A/P), in a periodic domain 0<x<L
(see Figure 4). Denote the distance between the right contact line of the first droplet
and the left contact line of the second droplet as D1,2 = (X2 - w) - (X1+w). Since the
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Fig. 4. (Left) PDE simulation of (1.1) for the dynamics of two equally sized droplets in a
periodic domain. At time t = 0, two droplets with identical pressure P = 0.1 are placed at X1 = 40
and X2 = 60. The droplets separate and become more equally spaced as weak condensation occurs.
(Right) The evolution of the droplet peak positions X1(t) and X2(t) (marked by dots) and their
contact line positions X1,2 \pm w(P) (solid curves) from the PDE simulation agree well with the
predictions (dashed curves) from the dynamical model (4.1). The domain size is L = 100 and
\beta = 10 - 7. The shaded area shows the trajectory of two droplets, leading up to filmwise condensation
after the droplets collide.

domain is periodic, the distance between the right contact line of the second droplet
and the left contact line of the first droplet is D0,1 =D2,3 =L - (X2+w)+ (X1 - w).

Then the ODE system (2.24) for the equally sized droplets reduces to

dP

dt
= \beta CP (P)(P - \scrP \ast )

\biggl[ 
\mu 

2
(D1,2 +D0,1) +

Jnc(P)

P - \scrP \ast 

\biggr] 
,(4.1a)

dX1

dt
= - dX2

dt
= - \beta \mu 

2
CX(P)(P - \scrP \ast )(D1,2  - D0,1).(4.1b)

Using w=A/P, we have

dD1,2

dt
=

dX2

dt
 - dX1

dt
+

2A

P2

dP

dt
,

dD0,1

dt
= - dX2

dt
+

dX1

dt
+

2A

P2

dP

dt
.

Therefore, the difference between the inter-droplet spacing \Delta D =D0,1 - D1,2 satisfies

d

dt
\Delta D= 2\beta \mu CX(P)(P - \scrP \ast )\Delta D.(4.2)

This analysis shows that if P<\scrP \ast , then the magnitude of \Delta D can be bounded by an
exponential decay in time, making the droplets asymptotically approach equal spacing
for long times. However, it can be shown that the dD/dt evolution equations allow
for merging of droplets at finite times, D\rightarrow 0 as in the single drop case from section 3.
We note that the differences from the mass-preserving linear instability of periodic
solutions described by [23] stems from the difference in the form of the nonconservative
flux term in (1.1). Here periodic droplet arrays are unstable to filmwise condensation.

The PDE simulation in Figure 4 (left) shows an example of the dynamics of two
equally sized droplets with unequal spacing. As the droplets condense, they move
away from each other, becoming more equally spaced, approaching X1 \rightarrow L/4 and
X2 \rightarrow 3L/4, and eventually merge into a single large droplet via droplet collision.
The plot in Figure 4 (right) traces the separation of the centers of the droplets at X1,
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Fig. 5. Typical PDE simulations starting from two droplets of pressures (P1,P2) placed at
X1 = L/4 and X2 = 3L/4 in a periodic domain 0 \leq x \leq L: (a) (P1,P2) = (0.25,0.18) corresponds
to case (A) pairwise growing; (b) (P1,P2) = (0.25,0.12) corresponds to case (B) growing-shrinking;
(c) (P1,P2) = (0.62,0.6) corresponds to case (C) pairwise shrinking. The system parameters are
L= 100, \beta = 10 - 7.

X2, as well as the contact line motions of the droplets X1,2 \pm w in time. The results
from the PDE simulation (dots for the peak positions and solid curves for the contact
line positions) and from the reduced ODE system (4.1) (dashed curves) show good
agreement. Based on the exponential decay of \Delta D versus the finite-time decay of the
D's, one pair of the contact lines will merge first (D0,1 \rightarrow 0 or D1,2 \rightarrow 0), slightly
before the other (when the domain becomes completely filled).

4.2. Equally spaced droplets with different pressures: Growth versus
collapse. Next, we consider two droplets of different pressures, P1 and P2, in a
periodic domain 0 \leq x\leq L. Furthermore, we assume that the droplets are placed at
the positions X1 =L/4 and X2 = 3L/4, respectively, so that the droplets are equally
spaced, with \lambda =X2  - X1 =L/2, in the periodic domain.

Figure 5 shows PDE simulations illustrating the three different generic modes of
dynamics starting from two droplets:

(A) Pairwise growing: Both droplets grow in time.
(B) Growing-shrinking: One droplet shrinks and collapses in finite time, and the

other droplet grows.
(C) Pairwise shrinking: Both droplets shrink.

For cases (A) and (C), nonconservative effects (condensation or evaporation, respec-
tively) must play a role since the overall mass is changing. For case (B), it may not be
clear whether the dynamics are dominated by conservative or nonconservative fluxes.
While \beta = 10 - 7 used here may appear rather small, noting the separation distance
D = O(L/2) and recalling the discussion in section 2.2, it is close to (but smaller
than) the critical \beta c =K\epsilon 3/D2, which limits when these two fluxes can be separated
out as written in the model.

We first show that the droplets do not change positions. Here the ODE system
(2.24a), with N = 2, can be written as

dX1

dt
= - CX(P1)(D1,2  - D0,1)

\biggl[ \=H3
m(P2  - P1)

D1,2D0,1
+

\beta \mu 

6
(2P1 +P2  - 3\scrP \ast )

\biggr] 
,(4.3)

dX2

dt
= - CX(P2)(D0,1  - D1,2)

\biggl[ \=H3
m(P1  - P2)

D0,1D1,2
+

\beta \mu 

6
(P1 + 2P2  - 3\scrP \ast )

\biggr] 
.

Due to the periodicity, the distances between contact lines are identical,

D1,2 =D0,1 =
L

2
 - A

P1
 - A

P2
> 0.(4.4)
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376 HANGJIE JI AND THOMAS P. WITELSKI

Therefore, we have dX1/dt= dX2/dt= 0, which indicates that droplets do not move,
and the dynamics of the system are only determined by the droplet pressures (P1,P2).
Again, using the ODE system (2.24a) and (4.4), we have

(4.5)

dP1

dt
=CP (P1)

\biggl[ 
2 \=H3

m(P1  - P2)

D(P1,P2)
+

\beta \mu 

3
D(P1,P2)(2P1 +P2  - 3\scrP \ast ) + \beta Jnc(P1)

\biggr] 
,

dP2

dt
=CP (P2)

\biggl[ 
2 \=H3

m(P2  - P1)

D(P2,P1)
+

\beta \mu 

3
D(P2,P1)(2P2 +P1  - 3\scrP \ast ) + \beta Jnc(P2)

\biggr] 
,

where we write D(P1,P2) = D1,2 = D0,1 as defined in (4.4) to highlight the depen-
dence of the contact line separation on the droplet pressures.

The system (4.5) is an autonomous phase plane system for P1,P2 with an equi-
librium point at P1 =P2 =\scrP \ast that is an unstable node. Formally, the system has an-
other equilibrium point on the line P2 =P1, but this point is inaccessible (a ``virtual""
point [11]) since it lies in the unphysical region with D(P1,P2) < 0. Still, it has a
strong influence on the structure of the physically relevant solutions for D > 0. On
the line P2 = P1, the system reduces to the one-drop dynamics given by (3.4) with
the domain being mapped to L\rightarrow L/2 and PL = 4A/L.

The curve D(P1,P2) = 0 makes the first terms on the right in the system (4.5)
singular; hence this is not the most convenient form for standard analysis. Conse-
quently, to remove this singularity, following [25, sect. 11.4], we define a new time
variable by the relation ds/dt= 1/D(P1,P2). Then (4.5) can be rewritten as

d\bfP 1

ds
=CP (\bfP 1)

\biggl[ 
2 \=H3

m(\bfP 1 - \bfP 2)+D(\bfP 1,\bfP 2)

\biggl\{ 
\beta \mu 

3
D(\bfP 1,\bfP 2)(2\bfP 1+\bfP 2 - 3\scrP \ast )+\beta Jnc(\bfP 1)

\biggr\} \biggr] 
,

d\bfP 2

ds
=CP (\bfP 2)

\biggl[ 
2 \=H3

m(\bfP 2 - \bfP 1)+D(\bfP 2,\bfP 1)

\biggl\{ 
\beta \mu 

3
D(\bfP 2,\bfP 1)(2\bfP 2+\bfP 1 - 3\scrP \ast )+\beta Jnc(\bfP 2)

\biggr\} \biggr] 
.

(4.6)

In this form, the system has a hyperbolic saddle point at P2 =P1 = PL. The stable
manifold of this point is the line P2 =P1, and the unstable manifold is the hyperbola
given by D(P1,P2) = 0 (see Figure 6(b)).

Figure 6(a) shows a typical (P1,P2) phase plane of the system (4.6) with L= 200
and \beta = 10 - 7. Three regions appear in the phase plane, where region (A) describes
pairwise droplet growth, region (B) describes growing-shrinking dynamics, and region
(C) characterizes pairwise shrinking.

First, we discuss the separatrix between region (A) and region (B). The solid dots
in Figure 6(a) correspond to PDE simulations starting from initial droplet pressures
in region (A), showing good agreement with the pressure trajectories (black solid
curves) from the dynamical system (4.6) leading to pairwise condensation. When
the droplet pressures are close to the A/B separatrix (plotted in red), PDE solutions
can deviate from the ODE trajectories; one such example is presented by the solid
triangles in Figure 6(a) where the corresponding ODE trajectory indicates that both
droplets should grow, while the PDE simulation yields growing-shrinking dynamics.

For short to moderate times, we see in Figure 6(a) that all of the trajectories in
region (A) appear to have both pressures decreasing, but a close-up view near the
hyperbolic saddle point at P2 = P1 = PL in Figure 6(b) shows that only the stable
manifold trajectory P=P1 =P2 hits the D = 0 collision curve. For sufficiently long
times, all other trajectories bend away (parallel to the unstable manifold) to become
growing-shrinking dynamics. Hence the regularized collision condition D(P2,P1) =
\^\scrD min in (2.27) plays a crucial role in determining the extent of region (A).
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Fig. 6. (a) ODE solution trajectories (black) compared against PDE solutions (dots) for the
equally spaced two-droplet case with L= 200. The separatrix between regions A/B (red), the separatrix
between regions B/C (orange), and the collision criteria (blue) (2.27) identify three droplet dynamic
regions. (b) A close-up view of plot (a), where the black dashed curves represent the unphysical

trajectories that pass the D1,2 = \^\scrD \mathrm{m}\mathrm{i}\mathrm{n} collision criteria (plotted in blue). The red dotted curve
represents D1,2 = 0. (c) Region (A) for L = 100,200,300 (corresponding to three dots in plot (d)).
(d) Area of region (A) (pairwise growing) as a function of the domain size L. The other parameters

are \beta = 10 - 7, \^\scrD \mathrm{m}\mathrm{i}\mathrm{n} = 5, \^\scrP \mathrm{m}\mathrm{a}\mathrm{x} = 0.63. (Color figure available online.)

Trajectories that intersect the curve D= \^\scrD min transversely terminate there, corre-
sponding to droplet collisions (continuations in time have D< \^\scrD min and are unphysical
(shown by dashed curves)). The outermost trajectory in region (A) is the separatrix
between A/B regions (red in Figure 6(b)), identified as the trajectory that is tangent
to the curve D= \^\scrD min at a finite point. Further trajectories do not intersect D= \^\scrD min

and are part of region (B). While the separatrix curves of the ODE system may not
robustly separate the phase space for complex dynamics involving multiple droplets
or for the PDE system, the pairwise droplet dynamics provide valuable insights into
the general system behavior.

The dynamic regions are also dependent on the domain size L. Figure 6(c) shows a
comparison of region (A) (pairwise growth) for a varying domain size L= 100,200,300
(with other parameters fixed). It indicates that region (A) enlarges when the domain
size L increases. We can use the area of region (A) relative to \^\scrP 2

max (the area of
the phase plane for all droplet pair initial conditions) as a heuristic estimate for the
likelihood of occurrence of pairwise growth dynamics from generic initial conditions
(see Figure 6(d)). This indicates that pairwise condensation becomes the dominant
behavior for more widely separated droplets.

The separatrix between regions B/C depends on the collapse condition (2.26).
Consider a coupled droplet system where one of the droplets collapses in finite
time at t = tc, with P1 = \^\scrP max. Then the coupled droplet system reduces to the
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378 HANGJIE JI AND THOMAS P. WITELSKI

single-droplet dynamics following (3.4). The remaining droplet will grow if its pres-
sure P2 < \scrP \ast at t = tc, leading to growing-shrinking dynamics described by region
(B). In contrast, if P2 >\scrP \ast at t= tc, then the remaining droplet will also collapse in
finite time, leading to the pairwise shrinking dynamics in region (C). Therefore, we
identify the separatrix between B/C regions by the trajectories passing through the
points (P1,P2) = ( \^\scrP max,\scrP \ast ) or (P1,P2) = (\scrP \ast , \^\scrP max) (orange curves in Figure 6(a)).

Using the definition of CP (P), (2.10), we can also estimate the evolution for the
difference in droplet masses, \Delta M =M(P2) - M(P1). For droplet pairs in the region
(B) where one drop condenses and the other one collapses, it is clear that the mass
difference increases in time. For droplets in the region (A) that undergo pairwise
condensation, it can be shown the larger droplet gains mass more quickly than the
smaller drop, leading to an increasing absolute difference in mass. However, while the
absolute difference in mass \Delta M grows, the relative difference (\Delta M )/M decreases.

For droplets in the region (C) that collapse via pairwise evaporation, the smaller
droplet loses mass more rapidly than the larger droplet, again leading to an increasing
difference in mass. It is also worth noting that the monotonicity of the mass differ-
ence does not imply that the pressure difference between droplet pairs also evolves
monotonely.

5. Many-droplet systems. For periodic systems with more than two droplets,
lack of symmetry between neighboring drops can lead to more complicated scenarios,
but the results from N = 2 can still provide good guides for nearest-neighbor interac-
tions. Figure 7 presents the dynamics of a system in a periodic domain 0 \leq x \leq 450
with six equally spaced droplets at initial positions Xk = (k - 1

2 )\lambda , where k= 1, . . . ,6,
the peak-to-peak spacing \lambda = 75, and pressures Pk = (0.16,0.22,0.38,0.25,0.12,0.22).

PDE simulation of (1.1) shows that this initial configuration leads to growth of
all droplets (see Figure 7(a)). As the droplets grow in time, spatial motions also
occur; hence the drops are no longer equally spaced with a constant peak-to-peak
spacing. However, since the droplets are still widely separated, we approximate this
many-droplet system by six pairwise interactions between two neighboring droplets
with positions (Xk(t),Xk+1(t)) and pressures (Pk(t),Pk+1(t)) for k= 1, . . . ,6. Due to
the periodic boundary conditions, the rightmost drop with k= 6 also forms a droplet
pair with the leftmost drop with k= 1. Here, the initial droplet peak-to-peak spacing
\lambda is mapped to the domain size L of a two-droplet dynamical system by L = 2\lambda .
Figure 7(b) plots the trajectories of the paired pressures in the (Pk(t),Pk+1(t)) phase
plane discussed in Figure 6. This plot shows that all the droplet pairs fall into the
pairwise growth region (A).

Next, we slightly perturb the initial condition and change the pressure of the
third droplet from P3 = 0.38 to P3 = 0.42, while keeping all the other positions
and pressures unchanged. The PDE simulation result starting from the perturbed
initial condition is shown in Figure 7(c). In this case, instead of growing, the third
droplet (k= 3) collapses in finite time, and its two neighboring droplets move toward
it at a faster rate. The droplets further away from the collapsed droplet do not
show significant changes in dynamics compared to their counterparts in Figure 7(a).
The trajectories of paired pressures for neighboring drops are also presented in the
(Pk,Pk+1) phase plane in Figure 7(d), showing that two droplet pairs undergo growth-
collapse (region (B)). We note that the collapsed droplet shows up in two trajectories
as it forms droplet pairs with its left and right neighbors (k= 2,3 and 3,4).

This illustrates that for an array of well-separated droplets with nearly con-
stant spacing and insignificant droplet drifts, the pairwise pressure phase plane from
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Fig. 7. PDE simulations and pairwise droplet pressure trajectories (Pk(t),Pk+1(t)) with six
droplets initially placed with equal spacing in a periodic domain 0 \leq x \leq 450. In the top row (a),
(b), all the droplets grow in time, with pressure trajectories in the pairwise growth region (A). In
the bottom row (c), (d), one droplet collapses and the other five droplets grow in time, yielding two
pressure trajectories in the growing-shrinking region (B) and the other trajectories in region (A).
The initial peak-to-peak spacing is \lambda = 75. The other parameters are identical to those used in Figure
6: \beta = 10 - 7, \^\scrD \mathrm{m}\mathrm{i}\mathrm{n} = 5, \^\scrP \mathrm{m}\mathrm{a}\mathrm{x} = 0.63.

section 4.2 for (Pk,Pk+1) provides a reasonable estimate for the droplet dynamics.
When a droplet in the system collapses, the comparison between Figures 7(a) and
7(c) also indicates that the influence of the collapsing drop on the rest of the system
is weak.

For many-droplet systems with significant spatial motions, further analysis of the
coupled droplet dynamic model (2.24)--(2.28) is needed to describe the full dynamics.
However, for the case of weak condensation with large droplets, we have observed that
this model provides good predictions for the dynamics.

For the next section, we will turn to the case of a system with a very large number
of drops and consider the full coarsening dynamics going from N \rightarrow N  - 1\rightarrow N  - 2\rightarrow 
\cdot \cdot \cdot \rightarrow 1 and filmwise condensation after that.

6. Scaling regimes for coarsening with weak condensation. To under-
stand the dynamics in macroscale physical problems where there may be a very large
number of drops, N \gg 1, we now seek to heuristically obtain predictions for the new
regimes of long-time asymptotic behaviors in the dynamics with weak condensation.

As an example we consider a typical simulation of the hybrid dynamical system
(2.24)--(2.28) starting from an array of N = 104 droplets. The droplets are chosen to
be initially equally spaced at t = 0 with peak-to-peak spacing \lambda = 40 and pressures
that are independent random variables, all following a uniform distribution with mean
\langle P\rangle = 0.3 and \delta = 0.02, Pk(0) = \scrU (\langle P\rangle  - \delta , \langle P\rangle + \delta ). The drops shown Figure 2 (left)
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Fig. 8. Simulation of the augmented dynamical system (2.24) starting from N = 104 droplets,
showing a typical coarsening dynamics with three stages: (I) quasi-mass-conserving regime; (II)
dropwise condensation regime; (III) filmwise condensation regime. (Left) The coarsening rate shows
a transition from N = O(t - 2/5) to N = O(t - 1/2), followed by logarithmic behaviors governed by
(6.8) as N \searrow 1. (Right) The total mass of droplets in the system, \scrM (t), increases in time, showing
a transition from \scrM = O(t) to \scrM = O(

\surd 
t), followed by a logarithmic law (6.9). The dashed curve

corresponds to filmwise condensation with \scrM =O(
\surd 
t). The initial droplet configuration has \lambda = 40,

\langle P\rangle = 0.3, and the other parameters are \beta = 10 - 9, \^\scrD \mathrm{m}\mathrm{i}\mathrm{n} = 1, \^\scrP \mathrm{m}\mathrm{a}\mathrm{x} = 1.

can represent a typical set of three adjacent drops from this large array. Figure 8
illustrates the long-time coarsening dynamics of this system in terms of both the
number of droplets N(t) and the total mass of droplets \scrM (t) as functions of time.
We observe in Figure 8 (left) that as droplet collapse and collision events occur, the
number of droplets decreases in time, with a transition from an early-stage scaling
N = O(t - 2/5) (as seen previously in [14, 15]) to a later-stage scaling N = O(t - 1/2),
followed by a logarithmic scaling as N \searrow 1. Correspondingly, the total mass of
droplets \scrM stays nearly constant for t < 106 (t \ll O(1/\beta )) and starts increasing as
droplet condensation dominates the system in the later stage (see Figure 8 (right)).
For the transitional regime between the two stages, 107 \lesssim t\lesssim 1010, we observe that the
number of droplets remains nearly constant, whereas the total droplet mass exhibits
significant growth following \scrM =O(t). The value \beta = 10 - 9 used here was chosen to
help more clearly separate the earlier conservative coarsening from the longer-time
condensation-dominated dynamics.

In this section, we will focus on the discussion of these scaling laws for the coars-
ening dynamics. Figure 9 (left) provides another representation of the droplet system
configuration as it evolves over time during coarsening, resulting in significant changes
in the distributions of peak-to-peak spacing \lambda and contact line distances D. For
t < 108, the average peak-to-peak spacing \langle \lambda \rangle and the average contact line distance
\langle D\rangle are close to each other. This suggests that during the early stage, the majority
of droplets in the system are relatively small in size, with widths that are small com-
pared to the distance between droplets; hence collisions can be expected to be rare.
As coarsening proceeds, \langle \lambda \rangle deviates from \langle D\rangle and increases in time. We have shown
in section 4.2 that the droplet dynamics strongly depend on the peak-to-peak spac-
ing \lambda , with pairwise droplet condensation (previously called case (A)) becoming the
expected mode of dynamics when \lambda is large (see Figures 6(c) and 6(d)). In Figure 9
(left) we have indicated a line \lambda = \ell c \approx 225 that was observed to correspond to a
strong transition in the coarsening to yield only droplet collision events for all later
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Fig. 9. (Left) Distribution plots of separation distances \ell for droplets in time, in terms of peak-
to-peak distances \lambda k =Xk+1  - Xk and contact-line distances Dk, from the simulation in Figure 8.
(Right) Time-evolution of the arithmetic average \langle DA\rangle and harmonic average \langle DH\rangle of contact-line
distances D.

times (with \langle \lambda \rangle also continuing to increase monotonely). This was observed to occur
after the timescale expected for condensation effects to become dominant, t=O(\beta  - 1).

For what follows, it is useful to more carefully examine the distribution of sepa-
ration distances between droplets. Figure 9 (right) displays both the arithmetic and
harmonic averages of the contact-line distances Dk,

\langle DA\rangle =
1

N

N\sum 
k=1

Dk, \langle DH\rangle =N

\bigg/ N\sum 
k=1

D - 1
k ,

having dramatic differences during the later stage. For t > 1012, \langle DA\rangle increases while
\langle DH\rangle decreases, which is consistent with the distribution plots of Dk in Figure 9 (left),
showing the coexistence of a small number of very large Dk values with the majority
of distances being small.

Motivated by the observations from Figure 8, we now present heuristic arguments
describing the three distinct stages of dynamics:

Stage I: Quasi-conservative dynamics. In the early stage for t \ll O(\beta  - 1), the
system behaves like the mass-conserving coarsening case discussed in [13, 14, 15],
as condensation has not yet had enough time to contribute significantly. The aver-
age peak-to-peak spacing between droplets \langle \lambda \rangle \sim L/N is small, and the average size
of droplets is also small. In this case, Figure 6(c) suggests that growing-shrinking
dynamics occur for a wider range of droplet pairs. Therefore, the coarsening is domi-
nated by droplet collapse due to mass exchange modified by weak condensation effects.
The number of droplets N follows the mass-conserving scaling, N\langle M\rangle =\scrM , and the
average droplet mass \langle M\rangle \propto \langle 1/P2\rangle from (2.14). Using Jensen's inequality, we have
\langle P\rangle 2 \geq \langle 1/P2\rangle  - 1, which yields an upper bound for N in terms of the average pressure,
N =O(\langle P\rangle 2), and the heuristic scaling law N =O(t - 2/5) [14].

Stage II: Dropwise-condensing dynamics. For t \gg O(\beta  - 1), the remaining drop-
lets are significantly larger in size with large peak-to-peak spacing \lambda due to the
early-stage coarsening (see Figure 9 (left)). We have shown in Figure 6 that pair-
wise growth dynamics (region (A)) are the predominant events in this case, leading
to more droplet collisions. Unlike the mass-conserving coarsening which preserves the
total mass of droplets, the nonconservative coarsening modified by condensation is
constrained by the finite domain size. When an array of large droplets with aver-
age half-width \langle w(P)\rangle are placed in the domain of size L, the number of droplets N

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

05
/2

6/
24

 to
 7

6.
21

6.
17

.2
33

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



382 HANGJIE JI AND THOMAS P. WITELSKI

1

10

100

103

104

104 108 1012 1016

O(t−2/5)

O(t−1/2)O(t−1/2)N

t

β = 0
β = 10−3

β = 10−7

β = 10−8

β = 10−9

1

10

100

103

104

10−6 10−4 10−2 1

O(〈P〉2)

O(〈P〉)

N

〈P〉

β = 0
β = 10−3

β = 10−7

β = 10−8

β = 10−9

Fig. 10. (Left) Coarsening modified by weak condensation with \beta = 10 - 3,10 - 7,10 - 8,10 - 9

compared against the mass-conserving case with \beta = 0, all starting from an identical initial droplet
configuration with N = 104 droplets. (Right) Unlike the mass-conserving case with \beta = 0 that follows
the scaling N =O(\langle P\rangle 2), for \beta = 10 - 7,10 - 8,10 - 9 the average droplet pressure \langle P\rangle shows a scaling
transition from N =O(\langle P\rangle 2) to N =O(\langle P\rangle ) in time as the number of droplets N decreases (indicated
by arrows). For \beta = 10 - 3, the full forms of the fluxes in the first expressions of (2.22)--(2.23) are
used and the coarsening dynamics follow the scaling N =O(t - 1/2).

satisfies 2N\langle w(P)\rangle +N\langle DA\rangle =L. Therefore, N satisfies the constraint N <L/(2 \langle w\rangle ).
Using the estimate (2.13), the droplet half-width w \sim A/P, and we arrive at N =
O(\langle 1/P\rangle  - 1

). Applying Jensen's inequality, we get \langle 1/P\rangle  - 1 \leq \langle P\rangle . Therefore, we
have an estimate for the relation between the number of droplets and their average
pressure N \propto \langle P\rangle . This indicates that an estimate for the number of droplets in time
can be obtained by analyzing the average droplet pressure in time.

A sequence of numerical studies on coarsening dynamics confirms the regime tran-
sition from the early stage scaling law N =O(\langle P\rangle 2) to the later stage law N =O(\langle P\rangle ).
Figure 10 compares the mass-conserving coarsening dynamics (\beta = 0) with the coars-
ening dynamics modified by weak condensation effects (\beta = 10 - 9,10 - 8,10 - 7,10 - 3),
all starting from an identical initial droplet configuration with N = 104 droplets. With
the presence of weak condensation effects, the augmented dynamical system exhibits
a transition from the collapse-dominated N = O(\langle P\rangle 2) scaling law to the collision-
dominated N =O(\langle P\rangle ) coarsening over time, while the mass-conserving case (\beta = 0)
remains close to the N = O(\langle P\rangle 2) scaling law (see Figure 10 (right)). During the
transitional phase between the two stages, we observe that the number of droplets N
remains nearly constant for an extended period of time (107 \lesssim t\lesssim 1010 in the case of
\beta = 10 - 9), while the average pressure \langle P\rangle experiences a significant decrease (see the
flat portion of the curves in Figure 10 (right)). This observation suggests that the ma-
jority of droplets condense quasi-independently during this transitional regime, which
is consistent with the \scrM =O(t) scaling depicted in Figure 8 (right). For the case with
relatively strong condensation effects (see Figure 10 for \beta = 10 - 3), we used the full
forms of the fluxes in terms of hyperbolic functions, as given in the first expressions in
(2.22)--(2.23). After early-stage ``stair-case"" behaviors [17], the coarsening dynamics
quickly transition into the regime following the scaling N =O(t - 1/2) and N =O(\langle P\rangle ).

To heuristically obtain a scaling law for the long-time behavior of an array of
N weakly condensing droplets in the spirit of mean-field models, we consider the
dynamics of a single typical droplet with index k at pressurePk in the array [9, 17]. We
assume that this droplet has both of its neighboring droplets at the average pressure,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

05
/2

6/
24

 to
 7

6.
21

6.
17

.2
33

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



THIN FILM COARSENING WITH WEAK CONDENSATION 383

Pk\pm 1 = \langle P\rangle , but retains the contact-line distances Dk+1,k and Dk,k - 1 satisfying
(D - 1

k+1,k+D - 1
k,k - 1)/2 = \langle DH\rangle  - 1 and (Dk+1,k+Dk,k - 1)/2 = \langle DA\rangle . Here \langle DH\rangle and \langle DA\rangle 

represent the local harmonic and arithmetic averages of the contact-line distances.
Then from (2.24), we arrive at the evolution equation for Pk,

dPk

dt
=Cp(Pk)

\biggl( 
2 \=H3

m

\langle DH\rangle 
(Pk  - \langle P\rangle ) + \beta \mu 

6
\langle DA\rangle (2\langle P\rangle + 4Pk  - 6\scrP \ast ) + \beta Jnc(Pk)

\biggr) 
.

(6.1)

We further assume that in the long-time condensation limit, Pk \ll \scrP \ast and \langle P\rangle \ll \scrP \ast ,
and (6.1) reduces to

dPk

dt
=Cp(Pk)

\biggl( 
2 \=H3

m

\langle DH\rangle 
(Pk  - \langle P\rangle ) - \beta \mu \langle DA\rangle \scrP \ast + \beta Jnc(Pk)

\biggr) 
.(6.2)

Our numerical evidence in Figure 9 (right) suggests that in the later stage, the global
harmonic average satisfies \langle DH\rangle =O(1) and the arithmetic average satisfies \langle DA\rangle \gg 
\langle DH\rangle . Therefore, for large t, the leading-order equation of (6.2) becomes

dPk

dt
\sim \beta Cp(Pk) [ - \mu \langle DA\rangle \scrP \ast + Jnc(Pk)] .(6.3)

Using the forms of Cp(Pk) and Jnc(Pk) defined in (2.15) and (2.25d), we take the
condensation limit Pk \rightarrow 0 in (6.3) and arrive at the leading-order evolution equation
for the droplet pressure:

dPk

dt
\sim  - 3\beta \scrP \ast P

3
k

4A3

\biggl[ 
\mu \langle DA\rangle  - 

2

A
ln

\biggl( 
K

2A2
Pk

\biggr) \biggr] 
.(6.4)

Also, since the right-hand side of (6.4) is a concave function of Pk, averaging over all
the droplets in the system and applying Jensen's inequality to (6.4) yields

d \langle P\rangle 
dt

\lesssim  - 3\beta \scrP \ast \langle P\rangle 3

4A3

\biggl[ 
\mu \langle DA\rangle  - 

2

A
ln

\biggl( 
K

2A2
\langle P\rangle 
\biggr) \biggr] 

.(6.5)

The two terms on the right-hand side of (6.5) correspond to the nonconserva-
tive fluxes arising from the inter-drop films and the core droplet condensation, both
contributing to the overall mass increase. The relative significance of the two fluxes
further divides the later-stage dynamics into two distinct scenarios. When the av-
erage contact-line distance and the average pressure satisfy the relation \mu \langle DA\rangle \gg 
2
A ln

\bigl( 
K
2A2 \langle P\rangle 

\bigr) 
, from (6.5) we have

d \langle P\rangle 
dt

\propto  - \langle P\rangle 3 =\Rightarrow N \propto \langle P\rangle =O(t - 1/2).(6.6)

This transient behavior is observed in both Figure 8 (left) and Figure 10 (left).
As the coarsening and condensation dynamics continue, the droplet system is left

with only a few extremely large droplets that occupy almost the entire domain. In this
case, we have \mu \langle DA\rangle \ll 2

A ln
\bigl( 

K
2A2 \langle P\rangle 

\bigr) 
, and the estimate (6.5) yields the leading-order

governing equation for the average pressure

d \langle P\rangle 
dt

\propto \langle P\rangle 3 ln(\langle P\rangle ).(6.7)
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Then based on the relation between the average pressure and the number of droplets,
N \sim L \langle P\rangle /(2A), this estimate leads to a modified coarsening rate that satisfies

dN

dt
\propto N3 ln(cN),(6.8)

where the constant c \sim 2A/L. Such behavior is also observed in Figure 8 (left) and
in Figure 10 (left), where the number of droplets N decays at a faster rate following
the logarithmic law as N \searrow 1.

Using the relation between the total mass of droplets and the average pressure
\scrM = N\langle M\rangle \propto N\langle 1/P2\rangle \gtrsim N/\langle P\rangle 2, we also obtain an estimate for the total mass
of droplets in the system. That is, for the case \mu \langle DA\rangle \gg 2

A ln
\bigl( 

K
2A2 \langle P\rangle 

\bigr) 
, the total

mass of droplets grows following \scrM = O(
\surd 
t). For the final stage as \langle P\rangle \searrow 0, with

\mu \langle DA\rangle \ll 2
A ln

\bigl( 
K
2A2 \langle P\rangle 

\bigr) 
, the mass increases following a logarithmic law,

d\scrM 
dt

\propto  - 1

\scrM 
ln

\biggl( 
\~c

\scrM 

\biggr) 
,(6.9)

where \~c is a constant. This is consistent with the observation shown in Figure 8
(right).

Stage III: Filmwise condensation dynamics. After the final droplet fills up the
entire domain, the system undergoes filmwise condensation following the scaling law
\scrM (t)\sim L

\surd 
2\beta \scrP \ast t in (1.6) (see the dashed curve in Figure 8 (right)). This is similar

to the filmwise condensation observed in Figure 3 for t > tf .

7. Conclusions. We have studied the coarsening dynamics of volatile thin liquid
films from the PDE model (1.1) in the weak condensation limit \beta \rightarrow 0. A lower-
dimensional dynamical system (2.24) was derived for the behavior of interacting
droplets parameterized by their positions and pressures. Using this reduced-order
system, we have investigated various droplet dynamics and heuristically obtained
scaling laws for different stages of long-time coarsening dynamics with weak con-
densation. Unlike the mass-conserving coarsening dynamics (as described by (1.1)
with \beta = 0) where the scaling law is primarily determined by droplet collapse events,
the coarsening dynamics of weakly condensing droplets exhibit a transition from a
collapse-dominated stage to a collision-dominated stage.

Heuristic scaling laws were presented for the coarsening dynamics with weak con-
densation. Rigorous justification of the arguments sketched out here are needed. For
example, more thorough analysis should be carried out for the transition from Stage
(I) to Stage (II) in the coarsening dynamics. For future work, we are interested in
exploring the regimes of coarsening of thin films with stronger condensation effects
(for \beta =O(\epsilon 3) and larger). Then more careful examination of phase change at drop-
let contact lines is needed, the full forms of the fluxes (2.22) and (2.23) should be
retained, and the thin films between drops have pressure profiles p(x) with boundary
layers, which would give rise to different forms for the dynamical system for drop-
let interactions. Additionally, it would also be interesting to investigate how the
coarsening dynamics are affected by the interplay among condensation, Marangoni
effects, and gravity [16]. We note that thin films with weak condensation may be the
simplest dynamic regimes for volatile films---evaporation-dominated dynamics may
require different analytical descriptions.

Moreover, the mass-conserving droplet coarsening mechanism on a two-
dimensional spatial domain has been explored in previous works [13, 31]. We ex-
pect that extending our findings from this study to a two-dimensional setting will
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THIN FILM COARSENING WITH WEAK CONDENSATION 385

yield more intricate coarsening dynamics, offering a more accurate representation of
the complex phenomena observed in real-world physical applications [3, 12, 33, 41, 42].

Acknowledgment. We appreciated very helpful comments and questions from
the reviewers that enhanced and clarified the manuscript through revisions.
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