Discrete and Continuous Dynamical Systems - Series B
AIMS

doi:10.3934 /dcdsb.2024018

ON WEAK SOLUTIONS OF A CONTROL-VOLUME MODEL FOR
LIQUID FILMS FLOWING DOWN A FIBRE

ROMAN M. TARANETS®™!, HANGJIE JIE*2 AND MARINA CHUGUNOVAES®

Hnstitute of Applied Mathematics and Mechanics of the NASU,
G.Batyuka Str. 19, 84100, Sloviansk, Ukraine

2Department of Mathematics, North Carolina State University,
2311 Stinson Dr, Raleigh, NC 27695, USA

3Institute of Mathematical Sciences, Claremont Graduate University,
150 E. 10th Str., Claremont, CA 91711, USA

(Communicated by Mary Pugh)

ABsTrAacT. This paper presents an analytical investigation of the solutions
to a control-volume model for liquid films flowing down a vertical fibre. The
evolution of the free surface is governed by a coupled system of degenerate
nonlinear partial differential equations, which describe the fluid film’s radius
and axial velocity. We demonstrate the existence of weak solutions to this
coupled system by applying a priori estimates derived from energy-entropy
functionals. Additionally, we establish the existence of traveling wave solutions
for the system. To illustrate our analytical findings, we present numerical
studies that showcase the dynamic solutions of the partial differential equations
as well as the traveling wave solutions.

1. Introduction. Thin liquid films flowing down a vertical fibre have attracted
many interests in the past decades due to their importance in a variety of engineering
applications, including heat and mass exchangers, thermal desalination, and vapor
and COq capturing [32, 43, 42, 44, 31]. These liquid films are fundamentally driven
by Rayleigh-Plateau instability and gravity modulation, spontaneously exhibiting
complex interfacial instability and pattern formation [24, 25, 33, 28].

Previous experimental works have found that the downstream flow dynamics and
pattern formation highly depend on the flow rate, fibre radius, liquid properties,
and inlet geometries. Specifically, three typical flow regimes have been extensively
studied [22, 9, 29, 14, 41]. At high flow rates, the convective instability dominates
the system and irregular droplet coalescence occur frequently. For lower flow rates,
the Rayleigh-Plateau regime emerges where stable travelling droplets move at a
constant speed. If flow rates are further reduced, the isolated droplet regime occurs

2020 Mathematics Subject Classification. Primary: 35K35; Secondary: 35K55, 35K65, 76A20,
35Q35.

Key words and phrases. Thin films, travelling waves, fourth-order parabolic partial differential
equations, lubrication theory, weak solution.

Roman Taranets is partially supported by the European Federation of Academies of Sciences
and Humanities (ALLEA) through grant EFDS-FL2-08. Hangjie Ji is supported by NSF DMS
2309774 and NC State University Faculty Research and Professional Development (FRPD) Grant.

*Corresponding author: Hangjie Ji.


http://dx.doi.org/10.3934/dcdsb.2024018
mailto:taranets_r@yahoo.com
mailto:hangjie_ji@ncsu.edu
mailto:marina.chugunova@cgu.edu

2 ROMAN M. TARANETS, HANGJIE JI AND MARINA CHUGUNOVA

where widely-spaced droplets coexist with small amplitude wave patterns. Similar
regime transitions can also be triggered by varying the nozzle diameters or imposing
a gradient to the liquid property along the fibre [17, 16, 12]. A good understanding
of these dynamics is critical to the design and control of engineering systems that
involve a stable train of travelling droplets.

In the low Reynolds number limit, classical lubrication models have been devel-
oped for the dynamics of falling viscous liquid films along an axisymmetric cylin-
drical fibre. Under the long-wave approximation, the resultant evolution equations
are a family of fourth-order degenerate parabolic PDEs for the fluid film thickness
[14, 7, 19, 15, 23]. These models incorporate the effects of gravity and surface
tension, where the surface tension plays both stabilizing and destabilizing roles de-
pending on the axial and azimuthal curvature of the free surface. Numerical and
analytical investigations of these models have also revealed the dependence of the
droplet dynamics on the substrate effects and external physical fields [18, 16, 26].

For higher flow rates and for fluid films near the nozzle where inertial effects
are significant, systems of coupled equations for both the film thickness and the
local flow rate have also been investigated [39, 30, 29, 17]. These models include
inertia effects based on a weighted-residual integral boundary layer approach by
assuming a local velocity profile. More recently, Ruan et al. [27] proposed a new
framework for liquid films flowing down a fibre using a control-volume approach.
Their model expresses the conservation of mass and axial momentum via a coupled
system for the fluid film radius h(z,t) and the mean axial velocity u(zx,t), where
the momentum equation is

u? [(h? — 1)ug)e U
— g =co— 28 4] 1
wra(g) rone=elr e 1o o .
and the mass conservation equation is
2hhs + afu(h?® — 1)), = 0, (2)

where the dimensionless parameter a represents the square of the Froude number,
b is the reciprocal of the Bond number, ¢ represents the ratio of axial viscous to
gravitational forces, and g(h) represents the axial velocity profile. The film thickness
is given by h(z,t) — 1, and s represents the combined azimuthal and streamwise
curvatures of the free surface,

1 hy
”:hu+@ﬂﬂ‘[u+@ﬂﬂL' )

Furthermore, by taking different forms of g(h), the model (1)—(2) corresponds to
different flow regimes. For the high Reynolds number regime, we have the plug flow
model with the axial velocity profile

g(h) = h* —1. (4)

This model assumes a uniform velocity in the cross section with a viscous drag
force on the fluid. In contrast, for the low Reynolds number case, we assume a
fully-developed laminar velocity profile, with

I(h)
h) = ——— 5
9 = 5 5)

where I(h) = 15 [4h* In(h) + (h* — 1)(1 — 3h?)].
The control-volume approach has been extensively applied in fluid dynamics
problems to analyze mass and momentum balances [38]. In the context of film flow
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FIGURE 1. Schematic plot of a liquid film flowing down a cylindri-
cal fibre. The axial coordinate along the fibre axis is z, and the
radial distance from that axis is h(z,t). The dimensionless fibre
radius R = 1.

and one-dimensional hydraulic jumps, Singha at al. [35] applied control-volume
analysis to establish relationships between inlet and outlet variables. Furthermore,
the adoption of depth-averaging to replace the velocity component in the flow direc-
tion with its average, such as in the work of Bohr et al. [2], has a long history in the
study of such film flows. The approach of Ruan et al. [27] combines control-volume
analysis and depth-averaging for a heuristic derivation of the PDEs describing the
liquid film.

While extensive modelling works have been carried out for falling liquid films,
relatively less research [18] have focused on establishing analytical understanding
of the developed models. In this work, we will analytically investigate the coupled
equations (1)—(2). Energy and entropy estimates will be constructed to establish the
existence of weak solutions to the problem. Similar analytical techniques were also
applied to other models (for example, see [18, 5, 6, 3]). Theory for the uniqueness
of solutions to the system (1)—(2) is still lacking due to its nonlinear and degenerate
nature. However, there have been results regarding solution uniqueness for similar
systems involving compressible fluids (see, e.g. [37, 10]). We will also show the
existence of travelling wave solutions to the problem.

The rest of the paper is structured as follows. In section 2, we formulate the
problem statement. In section 3, we show the existence of weak solutions to the
problem via energy and entropy estimates. Section 4 presents a detailed discussion
on travelling wave solutions. Numerical studies are presented in section 5 for both
the plug flow and the laminar flow cases, followed by concluding remarks in section
6.
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2. Problem statement. We study the following initial boundary value problem:

u? [(h? — 1ug)e u o,
Ut+a(2)x+bﬁz:C h,271 +1_g(h) 1nQT7 (6)
2hh; + afu(h® — 1)], = 0 in Qr, (7)
u and h are |Q| — periodic, (8)
u(x,0) = uo(x), h(x,0) = ho(z), (9)
where Q@ C R! is an open interval, Q7 = Q x (0,7T), a, b, ¢ are non-negative
constants, and
k= fha)h ™ = fha)hee, F(2) = (1+2%)73,
1
B(2) = —, '(2) = 2f(2), ®"(2) = f3(2),
(2) B (2) (2), ®"(2) (2)
I(h)
— 12 —
g(h)_h —].OI'g(h)— h2—1,
where
I(h) := =[4h*In(h) + (h* — 1)(1 — 3h?)].
Let
v="h?-1.
Then we can rewrite (6) and (7) in the following form:
U2 ('U uz)z u
ut+a<> +bke =c +1—— inQr, (10)
2/, v g(h)
ve+a(uv); =0 in Qp. (11)
Integrating (11) in @y, we find that v(z,t) satisfies
/v(x,t)dz:/vg(x)dm =M >0 Vt=>0. (12)
Q Q
Let us denote by
h y
sds
G(h) = /y/ T)dy > 0 for some A > 1. (13)
s
A A
Furthermore, we assume that the initial data (vg,u) satisfy
ho>1, i.e. vg:=h2 —1>0, forall z €
Voo € HY(Q); ho®(ho..), vous € L' (Q); (14)

—log(vg) € L*(Q) for g(h) = v, G(hg) € L'(Q) for g(h) = I(h)

v

Remark 2.1. We note that G(h) defined in (13) has the following asymptotic

behavior,

as h — 1 for some positive constant C.

G(h) ~ hC

Therefore, /vy € H'(Q) and G(ho) € L'(2) are satisfied provided vy > 0 only.
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Definition 2.2. A pair (h,u) is a weak solution to (10)—(11) with periodic boundary
conditions and initial conditions (hg,u) if 1 < h € C(Qr), v = h?>—1, and u satisfy
the regularity properties

Vv € L®(0,T; H'(Q)); —log(v)(or G(h)), vu* € L>(0,T; L*(Q)); (15)
h®(hy) € L=(0,T; L (Q)); h™'f(h ) L'(Qr); (16)
X{[hal<oor V A3 (ha)haws X{o>01VVUa, /57U € L*(Qr), (17)

and the following holds

// vy drdt + /v()(b(x, 0)dx + a// uvg, drdt = 0,
Qr Q Qr
// uvy dedt + /uovow(x 0)dx + - // X{q,>0}vu2¢m dxdt

Qr

* b// (29" (ha) = X{ihal<oo} [ (ha )P )¢ ddt

+ b// (h_lf(hx) - X{\hm|<oo}f3(hx)hm)vwz dxdt

/ / Xios0) Vtiathe dadt + / /

for all ¢ € C°(Qr) and w € C(Qr) such that (;S(a:,T) =(z,T)=0.

We note that the sets v = 0 and h, = oo coincide with the sets h = 1 and
v, = 00. Based on Definition 2.2, we will establish the existence of weak solutions
to the problem and prove the following theorem:

Theorem 2.3. Let the initial data (ho,uo) satisfy (12)=(14) and T > 0. Then
there exists a weak solution (h,u) in the sense of Definition 2.2, where v = h% — 1.
Moreover, the sets {v(.,t) = 0} and {|hx(.,t)| = 0o} have Lebesgue measure zero
for any t € [0, T] for the plug flow model with g(h) = v. In the case of the laminar

flow model with g(h) = L) we have v(z,t) >0 in Q.

v 7

=0

3. Existence of weak solutions. In this section, we will introduce the energy
and entropy functionals for the problem and show their estimates in subsections 3.1
and 3.2. The proof of key results in Lemma 3.1 and Lemma 3.2 follows the work of
Kitavtsev et al. [21].

3.1. Energy estimate. Let us denote the energy functional by
E(t) == %/(qu + 2h9(h,)) dz.
Q

Lemma 3.1 (Energy inequality). Let (h,u) be a solution to the system (10)-
(11) with periodic boundary conditions, where 1 < h e L™0,T; H'(Q)),u €
L>(0,T; L3(Q)) N L%(0,T; HY()) then (h,u) satisfies the following inequality

+c//vu dxdt+// w Jdt < Co(T), (18)
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where v = h% — 1, Co(T) = (£2(0) + VM2,
Proof of Lemma 3.1. Multiplying (10) by uv and integrating over €2, we have

/uvut da:—&—a/uv(%)z alaz:—é—b/uvnI dz = c/u(vuz)z da:+/uv(1 = try) d-

Q Q Q Q Q

Since the first two integrals on the left-hand-side of (19) satisfy

/uvutd:v+a/uv(%2)ggd:c:/v(“;)tdac—a/(uv)m%2 dx

Q Q Q Q

:/v(";)tda:—&—/vt“;dm: %%/mfd:m
Q

Q Q

and the third integral on the left-hand-side of (19) satisfies

b/uvmmda:: —b/(uv)wkadx: g/vmdx

Q Q Q

t(f(hﬂc)h_l - fg(hw)th) dr

I
[V}
o

>
>

e

b

oY

(hef(hy) — hhy® (hy)hey) d

el

el

(hif(ha) + (hhi) @' (hy)) dz

o3

s

Dt RS O 0 O O D

(htf(h:c) + hthif(hx) + h(q)(hx))t) dz

b

2|

(he(h,) + h(B())e) do = 24 [ hb(h,)
Q

then from (19) it follows that

%8(t)+c/vuid:c+/;(2h”) dx:/uvdz:.
Q Q

Q

Taking into account the conservation of mass (12) and

1

/uvdxéM%(/qudx)g,

Q Q

after integrating (20) in time, we obtain the energy estimate (18).

(19)

(20)

(21)
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3.2. Entropy estimate. We define two entropy-like functionals for the plug flow
and laminar flow models separately. For the plug flow model with g(h) = v, we
denote the entropy functional by

Sy (u, h) == g/ [o(u+ €)% + L3 (h,) + 2 (v — log(v))] da.
Q
I(h)

For the laminar flow model with g(h) = , we define the entropy functional as

Sy(u, h) = %/[v(u ey dbug ) 1 BeG(h)] de
Q

where G(h) is defined in (13). Next, we will prove the following entropy estimates
for 81 (u, h) and Sa(u, h).

Lemma 3.2 (Entropy inequality). Let (h,u) be a solution to the system (10)-
(11) with periodic boundary conditions, where v = h*—1,0 < v € L*>(0,T; H'(2))N
L?(0,T; H*(Q)),u € L>(0,T;L*(2)) N L*(0,T; H' (), then (h,u) satisfies the
following inequality

8;(u, h) + 2 / / hf?(hy)h2, dzdt + / / st dwdt (22)
+2le // Rt f(hy)dzdt < Cy(T), i=1,2,
Qr

T
Ci(T) := 8;(ug, ho) +/cCO(t) (QM)%CO%< t)dt.
0

where

Remark 3.3. Using the estimate (a + b)? > ea®
(22) and (18), we deduce that for the plug flow model,

/%dx <(9)°[& /Uu2 dz + 2C;(T)] < C3(T) for any e € (0,1),i=1,2,
Q Q

for any € € [0,1), from

(23)
where

Cs(T) = (2)*[2-Co(T) + 2C4(T)]. (24)
From (23), it follows that (v%)x € L>=(0,T; L*(Q)).

Proof of Lemma 3.2. Multiplying (10) by v, and integrating over €, we have

/(utJrauuz)vm d:z:+b/vmnr dr = fc/vuz(f)z dxf/u;z;) . (25)

Q Q Q Q
For the first integral on the left-hand-side of (25), we have

/(ut + auuy v, de = / (ugvy + a(uv) uy — avu?) de
Q Q

= /(utvx — sty — avul)de = /(utv‘T + g — avul) dx
Q Q
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d 2
dt/uvrda?fa/vuxdx.

Q Q

To handle the first integral on the right-hand-side of (25), we deduce

d v2 VgV v2u, v v2
i fdzz?/zT‘“dxf/ P dx:fQ/(Tf)zvtdx—/U—gvtdx
Q Q Q Q Q
:Qa/(f)( )dx—i—a-/—z(uv) dx
Q Q
—2a/(%’) (uv) dw—2a/(7”)muvzdx—2a/vuz(7”)md:v,
Q Q Q

where the second last step is obtained using integration by parts.
For the second integral on the left-hand-side of (25), we have

b/vmnw dr = —b/vm(f(hw)h‘l — f3(ha)hee) da

Q Q

= =2b [ (B2 4 W) ()b = P (B hr)
Q

= —2b/h*1h2 x—Qb/f ho)h2) oy de
Q
+2b/hf3(hz)h§m dx
Q

=—2b [ R R f(hy)dx —2b | f3(he)hee dz +2b [ Bf3(he)h2, dx
/ / /

Q

= —2b/h—1h§f dx+2b/hf3 Yh2, da.

Then from (25), it follows that

4 (uv, + ET)dx+2b/hf3(hm)h§m dx
Q Q
= a/vui dm+2b/h—1hif(hx) dx—/ugi(’;‘t) dx. (26)
Q Q Q

Multiplying (26) by

and using (20), we arrive at

2 42 c
L (Suvy + £ %) da + LE(t )+%“/hf3(hr)hix dx*/ﬁf(hv) dz
Q @ @
= %/hflhgf(h ) dx — g/ug’g;) dx+/uvdx. (27)
Q

Q Q
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Note that
/( UUI+227§)d.T+%/Uu dx—%/v(u—i—g%f)de’
Q Q a
< Vg — c (uv)z _c v
Q Q Q

=—az | gy de - g/ﬁh)ux dz = —-54 /log( )dz if g(h) =
Q
Therefore, for the plug flow model with g(h) = v, (27) has the form

)
)

[o(u+ £%)% 4+ 2pd(h,) — 25 log(v)] dx (28)

+%/hf3(hx)h§xdx+/u2 dx+%/h*1f(hx)da:
Q Q

Q

= %“/h71®(h$)d:c+/uvdx.

Q Q

[
&l
R

If we set g(h) = @ for the laminar flow model, then by multiplying (11) by

7 (yy) dy, we derive

B — >

h
/u = %%/ h) dz, where G'(h) = h/%dy.
Q Q A
Using this equality in (27), we arrive at
%%/ [o(u+ === )2 + Lha(h,) + 5G(h)] d (29)
Q
+%/hf3( 2, dz+/“?”; dz + 2 [ h=1f(h,) dx
Q Q Q
= %”C/hflcb(hx) dx—l—/uvdx.
Q Q
hoy
Note that v —log(v) > 1 and G(h) = [y [ S(Cis) > 0 for all v > 0 and for some
A A
A > 1. Then, due to (12), (28) and (2 ) can be rewritten in the form

%Si(u,h)Jr%/hf‘g Vh2, dx + /u do+ 2 [ b7 f(hy) dx
Q
_ 2be

Q
= / dx—f—/uvdx, 1=1,2. (30)
Q

Q
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Taking into account (21),

)
/h_lé(hz) dx < /h‘I’(hw) dz for v > 0,
Q Q

and (20), from (30) we obtain (22). O

3.3. Approximate problem. For given § > 0, > 0 and £ > 0, we consider the
following approximate system for (v,u), where v = h? — 1,

(vu)s + a[(uwv + v )], + b K,
= C(’U uz)z + U(]‘ - ﬁ) - 6”“”’1 + Ea’[p(v)]r — €0 VVzgrax, (31)

v+ a(uv), = —an (v4vxm)m , (32)
u and v are | — periodic, (33)
w(x,0) = Uep,0(), v(x,0) = vep,0(x), (34)

where u,; 0 € HY(2) and 0 < v, 0 € H?(2) such that
Ue,0(x) — ug(x) strongly in LQ(Q), ve,0(x) = vo(x) + e? he (0, %),
ve.0(x) — vo(x) strongly in W} (Q) N C(Q),

S%vsyom (z) — 0 strongly in L?(Q),

and

p(z) = %272’ g(h) = v or g(h) = 1]

v

Here, the term 7(v*v,.,), is a thin-film type regularization term that yields uni-
form parabolicity and provides a positive approximation of the solution. The term
ea[p(v)], leads to a positive approximation during the limit process as e — 0. The
term €avvggq.q.q 18 crucial for controlling additional higher-order terms that arise in
the entropy inequality. This regularization approach is in the spirit of the construc-
tion of weak solutions of the Burger’s equation using nonlinear viscous terms and
is also comparable to the approximation method employed in [21, 4]. Specifically,
the incorporation of the thin-film term 7(v*v;4,), in our approximate system re-
sults in the reduction of the seventh-order derivative term of the form ehh(?, as
required in the approximation system considered in [4], to a fifth-order derivative
term €avvggry, in (31).

Remark 3.4. We note that in the laminar flow case, due to the strong positivity
of v, i.e. v > 0, from the boundedness of the entropy, the approximate system
(31)—(32) can be simplified by dropping the regularization term e(p(v)).

Lemma 3.5. Letu € L?(0,T; H*(Q2)) be a periodic function. For any0 < v,. o(z) €

H2(Q), the problem (52)—(33) has a unique weak positive solution v € C’E’tg(QT)
such that

vy € L*(Qr), v e L>=(0,T; H*(Q)), ve L*(0,T; H4(Q)), (35)
Jvdz = [vyeodr := M,y >0, and v satisfies (32) a.e. in Qr. Moreover, there
Q Q
exists a constant C > 1 depending on n such that

& <v<C
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Proof of Lemma 3.5. The main line of proof follows the approach in [1]. We omit
details and restrict the discussion only to the key elements of the proof.
First of all, we approximate (32) by

vy + a([u]av)m = —6”7((”4 + B)Uzza:)an (36)
where § > 0 and [u], denotes a smooth approximation of w such that
[u]o — u strongly in L?(0,T; H*(Q)) as a — 0.

We also approximate v, o in the H%-norm by C**7 functions vg,. o, satisfying (33),
and replace (34) by

v(2,0) = vgen,0(). (37)
Using the parabolic Schauder estimates from [36], one can generalise [13, The-
orem 6.3, p. 302] and show that the problem (36)—(37) has a unique classical

2
solution vg, € C;L:%H%Q x [0,78q]) for some 7, > 0; that is, the fourth-
Jd+v/4

order spatial derivative vga zpzs € C’;t (Q % [0,784]), and the time derivative
Aty,y/4
Vet € Cot 774 x [0, 75a]).
Next, for simplicity, we will replace vg, by v. Multiplying (36) by —v,, and
integrating by parts, we have
%% /vi dzr + na/(v4 + B2, dx
Q Q

—q / ([lav) o sz dz

Q

= fa/([u]a)mvvm dr — 3¢ [ ([u]o).v2 do
Q Q

<asuplol( Q/ (o 2te) " ([ e2de) 4 % sup (ol [ o2

< ([ (e ) (22 [ 2 g M ( & )’

Q Q Q

whence from the Gronwall inequality we obtain

N 5a|0\% K
=25 [ I(ula)as |2 ds 2
/vi dzx <(||Uﬂns70z”2+ Afgr /H([u]a)muze I dt)
Q2 0

1 T
5a\Q|§be([u]a)mH2 dt

X € ,

which leads to

v2dz + na (v* + B2, dzdt < C(T). (38)
fouin

Due to (38), we deduce that HUB”C%’ __is uniformly bounded with respect to a,

1
a:,tg (QT)
B and 7g,. For any fixed values of 8 and «, by [13, Theorem 9.3, p. 316], we can
extend the solution vg step-by-step to all of Q¢ for any 7" > 0.
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Let us denote by G5(z) > 0 such that

dsdy l/ _ 1
praw; = 2B

Multiplying (32) by Gj3(v) and integrating by parts, we arrive at

4 [Spwyartna [ 20 = —a / ([a)e (05} (v) — G5(v)) dz
Q

whence

T
e} [([u]a)z] dt
/95(11) dr + na // vix dxdt < ea ‘ofs?lp : /95(U6ns,o)d$-
Q Qr Q

Due to (38) and (39), similar to the proof of [1, Theorem 4.1, p.190], after taking
B — 0, we obtain the global existence of a unique positivity classical solution vy,
for any a > 0. Moreover, we have é < voe < C < 00, where C' > 1 is independent

of a.

For the limit process a — 0, we need the following a priori estimate. Multiplying

(36) with 8 = 0 by vzs.. and integrating by parts, we have

1d 4 2
2dt / Vg dx + na / Vyzax dx
Q Q

3
=-a / U]a¥) 2 Vzzze dx — 4na / V2V VszaVozze AT
Q

1 1
(/ xa:zz 2 (/ ezl ] ) dl’ ’ + 477(1 /v4v$mmm
Q Q

Q

@
m\»—\

2,2, 2
(/”U VpVgaa
Q

X %/ Vzzza d.%'+%/ ([“]‘“’) dz + 16@77/ ’ ivizz dx
Q Q Q
%/ Ve 42 + 22 (0 ([ua)2 13 + o™ S ve 3 [u]a13)
Q

1600~ P [l % / 02, de,
Q

whence

%H%«x”% +77“/”4”;%%3:% dx
Q

N

< aCn~ulallfn + aC (™ [ulallzn +77/ Vi 47)||vaoll3.
Q
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Integrating this inequality in time, we have

/ng dx +na // vio?  drdt (40)
Q Qr

. —aC [ (1 a0 f 02, do) ds
< (IeneuslB 4 a0~ [ alalie " )
0

aC [ (n a2+ J v*02,, do) ds

xe 0 & .
By (40) and (38), ||vOOl||C§ $ On) is uniformly bounded with respect to a. This
uniform bound follows from Voo € L®(0,T; H?(2)) and voa,: € L2(Qr) (see [40,
Lemma 7.19, p. 175]). Taking av — 0, it completes the proof. O

For the given § > 0, n > 0 and £ > 0, equation (31) is uniformly parabolic with
respect to u for any v from Lemma 3.5. Based on Faedo-Galerkin approximation
(see, e.g., [6]), the system (31)—(32) with periodic boundary conditions has a local
in time weak solution (v,u) := (Vspe, Usne). Next, we establish a priori estimates
which guarantee the global in time solvability.

Lemma 3.6 (a priori estimates). For fized and positive constants 6 > 0, n > 0,
>0, and T > 0, there exists a weak solution (Vsye,Usye) to the problem (31)-(34)
in the following sense

//um/}t dxdt + /usn 0Ven,0¥(,0) dz + a// uv + nu vmz)ud)z dxdt (41)

+ b// Kvzt) dadt + b// KoY, dedt — c// VU, drdt
// 1/) dxdt — 5// Uz Ve dxdt — €a // v)1h, dadt

—ea / / Vra (Uaath + 20gy + Vgg) dadt = 0,

// vy dxdt+/vgn7o¢(x,0) dx+a// uvg, drdt + an // V00000 dedt = 0
Qr Q Qr Qr

(42)
for all ¢ € C=(Qr) and ¢ € C2(Qr) such that ¢(x,T) = (z,T) = 0.

Moreover, there exists a positive constant C > 0 depending only on a, b, ¢, T, £(0),
and 8;(ug,vg) such that the following terms are bounded by C in respective norms

Vv e L®(0,T; H'(Q)), vvu € L>(0,T; L*()), (43)
—log(v)(or G(h)), h®(h,) € L*(0, T~L1(Q)) h=tf(h,) € LY (Qr), (44)
V hf3(ha:) TT s \fuw; \/ g U S L (QT) (45)

(46)

g3t eTu,, € L‘x’(O,T;LZ(Q))7 46
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1 1

5%Uxac7 (577)%7] Vgzax; €2Vzxx, gi(vil)x € L2(QT), (47)

and

0 <e<w(x,t) <C forall (z,t) € Qr. (48)
Proof of Lemma 3.6. Let us denote by
E(1) = %/@ 2 + 2 (h,) + Sv72 + 202, da
Q
Multiplying (31) by u and integrating over 2, we have

58 +6/u dsr:—l—sna/v vmmdx—i—ana/viwdx—i—c/vuidx—i—/;jz) dz

Q Q Q Q
= /uv dx — 4€na/v3vmvmmvmm dx — bn/ (v pz) ek dz.  (49)
Q Q Q
Note that )
/uvdw < M%(/quda:)E.
Q Q

We will use the following estimates

1 1
[v]lco < C lvaell2 + WMP [v2lloo < C |lvexll2; |Vazzlle < C |vezaz |3 |vazl3

and
- —1y3 1 1
o™ oo < € (07 HI3 (lvaell3 + )% + (lvaallz +v)72) Yo >0, (50)
For the proof of (50), see [8, Lemma 3.2, p.807]. From (50), we deduce that

/Ungvwaxvvxzww d.l? H’U mezw||2|‘vvwvma:x|‘2

Q
< Hvzvmw||2||U||oo||Uw||oonvmw||2
< C [v*vsazall20lloollvslloo 0aaae 3 10se 13
C l[0*vaswal3 0 oo (24 + vz llz) vz 13

< O 0*vaseol3 (07113 (loasll3 + 1% + 1) (2 + vaall2) lvas 3,
and
/(v%mx)xndaf = /U4vmm/£dx+4/v VgpVppa i AT
Q

<

NI

vi? dx+%/v4/£ dx + C||11 ||go/06v§,%2 dx
Q Q

vi? dr+ € /(v + 0302 ) dx + C||v_1||4 /(UG—&—vagm) dx
Q Q

<5 | M0k do + S+ [0ae 3 [(757)% + lvea 3 + v HIS (Gap)° + v l13)]-

IS

N
N0
D O O

By these estimates, from (49) we have
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%Ss(t)Jr(;/uimd:rJrE”Ta/ mwd:ergna/vimderc/vuidx+/gﬁz) du

Q Q Q Q Q
<CEZ(t) + Cne83(t) + Cane=32(1), (51)

whence by the nonlinear Gronwall inequality, we have

+5//u dxdt + =5* // v, dxdt
—l—sna// Mdacdt—&—c//vu dxdt +

for all T < T), := [IGCmaX{l,a,b}Eg( )na_g}_l — 400 as n — 0. In particular,
from (52), due to (50), we arrive at

[ oo < Ce™, (53)

w o) (52)

whence 11512f v>=Ce.

Next, we consider the plug flow case g(h) = v only, and the laminar flow case
can be addressed in a similar manner. Multiplying (31) by “= and integrating over
2, we obtain that

481 < (u,v) 2bc/hf3 Yh2 dx—i—/qux—i—%bc/h_lf(h,:)dx (54)
Q Q
+6/uimd$+sa/v§md3§+%/2—zdx
Q Q Q
= QTbC/hflfﬁ(hm) dw+/uvdzf5/(’i—f)mumd:chnc/vum(v%mm)z dx
Q Q Q

where

S1.e(u,v) == % /[v(u + ol )2+ 2hd(h,) + %(v —log(v)) +2ev2 + Evﬁx] dx.

Using the equality
3

L ~3 9lz. 55
( v )m v v2 + v3 (55)

and the following estimates

vzl < C||Uwz||2 HUtz s Mvezlloo < Cllveaal|2,
we find that

‘5/ (38) gt dr < SH 8zl (12222 2 + 3] 2= 2 + 21122 )

< 0% 102 uggll2 (0™ oo [vaae |2 + 3107 % vz 2l vaslloo + 20~ |2 [0z [13)
< O 02 (|0% ugs |2 (0™ oo [vaaallz + 10712 vell2lvas 2

T 1 4l
+ [Jv 1”20””36”%””96%”2) <Céze 4”52um‘|2””mx|‘2
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1401 1 1
<Céze 4||52u;cxH2||U:cxxac”2 < CO7e™ 3262 e o]l () T 0P V0 fo-

As a result, due to (52), we find that

5// TT Uz dzdl < C(S%nféefg.
Using (55) and the estimates
1 1
20 gp)? AL
oot de < ([ o2 dn)” ([ Hdz), fealls < Cllvans I 0.5
QO 0 Q
we find that
/(%)xv(v?’vzm)m dr = — / (%ﬂ)xmvélvzxm dx — / (%)xv?’vzvmz dx
Q Q QO
= _/ Vo dx + 2/U Vo Vg Vpax AT — /U'US'U;mm dx
Q QO
i 6 N\
/1)3’1)59” dx + % (/ v? dx) (/ = dm)
QO Q 0
w30 H v H 1 3,2 1 6
([t de) ([ an)” <=d [0, dos Ol el
Q Q Q
< _%/’USUgmx dz + Cllv™ oolve 3] vaaa 2
Q
<=4 [ it ot Ol el
)
<-h [t dot Ol ol < < [ ik, do+ Ot
Q Q
As a result, due to (52), we arrive at

77// (%ﬂ)xv(vgvmx)m dxdt < fg//v Vi dxdt +Cne™ 10,
Qr Qr
Using the estimate

/v(v Vs ) C/ Ve dx—i—C/v%ivim

Q
<Cll, / 12, de + CllollS s / 2. dr
Q Q
< C(lol% + ol el o %) / o2, d

Q

_15
<Ce™ 2 /v%izmdx,
Q
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we deduce that

1 1
nc// vum(v?’vzm)m dxdt < // vu d:rdt : // v o dxdt) :
QT Q

T

1 1
//U’LL d:vdt ’ C’e // mmdwdt 27

whence, due to (52), we have

770// Vg (V000 )z dzdt < C Te T (58)
Using the estimate
/(”41’+‘)‘da@ = /vsvmm dx—|—4/v VpUgppas AT
Q Q Q
< [o*vzaaall2(l0ll2 + C o™ IS vl 2 02 ]12)
_z 1 1
< Ce™ 2 ||UZUJ;1:Q:$||2 = 077 2e 4”(57])21)2@1:;1%7;”2;
we get
Hprr)e 1
n< //%dxdt <Cnze ™ (59)
Integrating (54) in time, takmg into account (52) and (56)—(59), we obtain

81.c(u,v) 2”6/ hf3(h dzdt+//u da:dt+2bc//h Lf(hy) dadt
+6// uy, dxdt + ea // o dodt + %2 // - dadt + ’70 // V5 dadt

Qr
1

< 812 (Ueno, vmo) +C(T) + Cainﬁs*? +Cne 04 COpze= T (60)
for all T' < T, O

3.4. Compactness and limit processes. Passage to the limit § — 0. Denote
the corresponding solution to the approximate problem (31)—(34) by (vsye, Usne)-
Let T < T,,. We study the compactness properties of the sequence (Vsye, Usye)
by using the estimates derived in Lemma 3.6. From (46) and (47), we have that
{vsye to>0 is bounded in L*°(0,T; H*(Q)) and {vsye,¢}s>0 is bounded in L2(Qr).
Therefore, using [40, Lemma 7.19, p. 175], we conclude that {vs,.}s>0 is bounded in

33 _
C2*(Qr). By the Arzela-Ascoli theorem, after possibly extracting a subsequence,
we obtain that
Vsne 530 Upe uniformly in @7,
Vanet = Uner Weakly in L*(Qr),

whence

—1
1)5776 —> v,

Also, by (47) we obtain that
Usne = Une weakly in L%(0,T; H*(Q)),
—

e ! uniformly in Q7.
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Usne .~ Une strongly in L*(0,T; H3(Q)).
—0

Next, we turn to compactness properties of {usye }5>0. By (43)—(48) and the bound-
edness v, away from zero, we have that {us,. }s>0 is bounded in L>(0,T; L?(£2))N
L%(0,T; H*(Q)). Moreover, {(vsyetisne)t }o>0 and {usye ¢ }s>0 are bounded in
L?(0,T; H2(Q2)). Therefore, we have

Usne 6:>0 Upe strongly in L*(Qr),
Usne,o 5:)() Upe,o Weakly in LQ(QT),
Usnet 73 Unet * weakly in L?(0,T; H %(Q)),
VsneUsne 5:>0 Upelpe strongly in L? (Qr),
(VoneUsne )t 6j0(”nsuns)t x — weakly in L2(0, T, H*Q(Q)).

Moreover, from (47) we obtain

Qr

N

Based on the convergence results obtained, we can take the limit as 6 — 0 in (41)
and (42).

Passage to the limit n — 0. Since T;, — 400 as 7 — 0, we can extend the
results to any 7' > 0. Now, we consider the compactness properties of the sequence
(Une, une) by using the estimates derived in Lemma 3.6. Due to (46) and (47), we
have that {v;.},>0 is bounded in L>(0,T; H*(Q)) and {v,+}y>0 is bounded in
L?(0,T; H 1(Q)). Therefore, similar to [1, Lemma 2.1, p. 183], we arrive at the
conclusion that {vy.},~0 is bounded in Cw%f (Qr). By the Arzela-Ascoli theorem,
after possibly extracting a subsequence, we obtain that

Upe — e uniformly in Qr,
n—0

Upet — Vey * — weakly in L*(0,T; H~1(Q)),
o Ve

whence
-1 -1 . . ~
Upe njo vz " uniformly in Q.
Also, by (47) we obtain that

Vpe — ve weakly in L?(0,T; H?(2)),
n—0
Upe njo v, strongly in L*(0,T; H*(Q)).

Next, we turn to compactness properties of {u,e}n>0. Using (43)—(48) and the
boundedness v, away from zero, we have that {u,e},>0 is bounded in L> (0, T; L*(Q2))N
L*(0,T; H' (). Moreover, {v,cuz.}y>o is bounded in LP(Qr) for p € (1,3), and
{(vyetine )t }y>0 and {uye ¢ }e>0 are bounded in L?(0,T; H~2(Q)). Therefore, we have

Une njo u. strongly in L*(Qr),
Upe.g — Uep Weakly in LQ(QT),
n—0 ’

Une t njo Ue * — weakly in LQ(O, T, H_Z(Q)),
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Upellpe — Vsl strongly in L*(Qr),
n—0

2
Upell

ne = veu? strongly in L2(Qr),
n—

(Unetne )t %O(vgus)t * — weakly in L2(0,T; H %()).
n—

Moreover, by (43) and (47), we arrive at

T
7
n//uv4vxx:cwx dzdt < n/H\/EUIlzHvlléollvmllzllwxl\oodt
Qr 0

_1 1
< Cne™2|le2vpaa || L2 () 1V L2 (0,7, 12(2)) < Cme™ 2,

[

1 1
" / / 0N paabe dadt < neH 0] o @ 123 Va2 0 el 220
Qr

_1 _1

< Cne™ 2 ||[¥ll 2,1 (0) < Cne™ 2.
The obtained convergence results enable us to take the limit as » — 0 in (41) and

(42) with § = 0.

Passage to the limit ¢ — 0. Next, we study the compactness properties of the
sequence (v, ue) by using the estimates derived in Lemma 3.6. Taking into account

(\/a)t = *a(\/au)m + %\/T)uma
by (43) and (45), we deduce that {(/v:)¢}e>o0 is uniformly bounded in L?(0,T; H~'(£2)),
and {,/0:}c>0 is uniformly bounded in L>(0,T; H'(€2)). Therefore, based on the
lemma of compactness embedding from [34, Corollary 4, p. 85|, we obtain that

NOR =, Vv uniformly in Qr, (61)
E—r
and it follows that B
Ve 7V uniformly in Qr. (62)
e—

Also, by (43) and (61), {ucve}eso is uniformly bounded in L?(Q7). Therefore, we
find that {ve}e>0 is uniformly bounded in L?(0,T; H~'(2)), which implies that

ver — vy * — weakly in L?(0,T; H1(Q)).
e—0

From the boundedness of {h.®(hc ;) }e>0 in L(0,T; L' (2)), we deduce that
{v}es0 is uniformly bounded in L>(0,T; Wi (Q)). (63)
Therefore, from (62), it follows that
Ve, he = v, h % — weakly in L*(0, T W),
e—
and the set {|hy(.,t)] = oo} has Lebesgue measure zero for any ¢ > 0. By the

boundedness of {log(v.)}eso in L°°(0,T; L (2)) and (62), the set {v(.,t) = 0} has
Lebesgue measure zero for any ¢ > 0, and it follows that

p(ve) = p(v)

e—0
holds for almost all x and for any ¢ > 0, where p(z) = %z’Q.

In the case of the laminar flow model with g(h) = %h), from (43) and (44), due to
(62), we obtain that v/v € L>(0,T; H*(Q)) and [ G(h)dx < +oco. Next, we show
Q

that v(z,t) > 0 in Qr by contradiction. Assume that there exists a point zg € Q
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such that v(zg,t) = 0, then v(z,t) < C|z — x¢|. Taking into account G(h) ~ %
as h — 1 (see Remark 2.1), we find that

+oo>/G(h)dx>c/d— +00.

|z—z0]
Q Q

This contradiction proves that v > 0.
By (62), ep(v.) — 0 uniformly on {v > v} as € — 0 for any v > 0. Then

// ep(ve ), daxdt — 0 as e — 0

{v>v}

for any v > 0. By (46) and (47), {¢"/?v-}.¢ is uniformly bounded in

L>(0,T; L3(2)) N L2(0,T; HY(Q). Using [11, Proposition 3.3, p.10], we obtain that
{e'/?v71} is uniformly bounded in L*(0,T; L>=(R)). From here, if ¢ is sufficiently
small, depending on v, we deduce that

‘// ep(v. wxdazdt’ _‘ // (/207 1) 20, dadt
{v<v} {v<v}

< glle o a0 e e [{o( ) <INVl o)
te

)

< C(sup [{o(.,t) <wv})'2
te[0,T)

As a result, since v > 0 is arbitrary and |{v(.,t) = 0}| = 0 for any ¢ > 0, we take
¢ — 0 and arrive at

// ep(ve ), dxdt — 0 as e — 0.

Let us denote by F(z f f2(s)ds and F'(£00) = 0. By (45), we find that
{F (he.2)}eso is uniformly bounded in L?(0,T; H*(Q)). Therefore, we have
F(he) = F(hs) weakly in L*(0,T; H'(Q)),
E—r
F(he ) —>0F(hx) strongly in L?(Qr) and a.e. in Qr,
E—r
and it follows that
he.aa = hao weakly in L*({|ha| < K}), (64)
e—
hea = ha strongly in L*({|hz] < K}) (65)
£—

for any K > 0. In particular, in view of [{|h;(.,t)| = co}| = 0 for any ¢ > 0, we
obtain that
he » =, hg strongly in L?(Q7) and a.e. in Q7. (66)
e—

Using the following estimates

el =[R2 flhew) — /2 222) b f3(he Ve o | < 14 \SBe f3(he) e,

E:Uf SI - EI\/hf El“ \/h’f ECE EQZZL”
<2+2||¢E||oo he f3(he o) he.al,

| ke
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5), we have that {k.}e>0 and {£:vc ¢ }e>0 are uniformly bounded

due to (62) and (4
), for any K > 0, we have

in L2(Qr). Therefore, from (64)— (66) and (62

/ £ (he e qvet dadt = // P2 (ha)hav by dudt,
{lha|<K} {|h <K}
hewhe 2 (he o) he ot dadt e / / hohf3(he)heet dadt,
e—
{lha|<K} {|ha|<K}

// A smvs%dwdtﬁ// “1f (hy v, dzdt,
// he 2 f( Ezi/}dxdt%//hf ) dxdt.

On the other hand, 1f e is sufficiently small (dependlng on K), then by (45) and
using the form f(z) = (1 + 22)~/2 and the inequality 22f3(z) < f(z), we obtain

] P dedt] < / [ 1o it o)’

{lha|Z K}
< TR

1
] e bt dedt] < oo //h P e )12 g )

{hal>K)
< T

As a result, since K > 0 is arbitrary, we take ¢ — 0 and deduce that

//Revg%dxdt 3 // (W71 f(ha) = X{ihal<oo} £ (ha) how )00z dadt,

//ﬁgvmwdxdt — // (29" (ha) — X{ha|<oo} £ (

By (47), (63), and

||UM||2 <

ha)Ughe )W dadt.

3 2 1 4
CHUM:E||25 ||Uw||157 vz l2 < CH“HDMHQ) ||v$||15,

we have

6‘ / / Vgzz (Ve + 20,05 + Vg, ) dadt

T
: / 0mas 20 214 oo dt
0

T
422 [ foraalolvalalaloc e+ [ Noraalolaslzloloe
0

1,1 8 2
<Ces ||€2v:L’:D:EHZ2(QT)HUQJ”ZOO(O’T;LI(Q))Hw”LE’ 0,T;L>°(£2))
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2, 1 g 4
+ Ces ‘Ia‘??}xmaj“zz(QT)Hvx||zoo(07T;L1(Q)) HwIHL%(O,T;L‘X’(Q))

1 1 1
+ e |[e2vavall L2 (@) 1Pl 20,1512 (02)) < Ce3.

By (45), {uc}eso is uniformly bounded in L?(Qr), and {uc ,}eso is uniformly
bounded in L?({v > u}) for any pu > 0. Therefore, we have

ue — u weakly in L?(Qr), (67)
e—0
Uex — u, weakly in L2({v > u}), (68)
e—0
Uus 3 u strongly in L?({v > pu}) and a.e. in {v > p}. (69)
E—r

By (62) and (68), we obtain

// Velle o Wq dxdt ajo // VUL, dxdt.

{v>pu} {v>p}

On the other hand, if ¢ is sufficiently small (depending on u), then by (45), we

arrive at
‘//vsuaxw$da§dt‘<Cu //vE awda:dt <C’ 3,

{v=p}
From here, since p > 0 is arbitrary, we take € — 0 and deduce that

// Velle x5 ddt ejO // X{v>0}V Uty dxdl.

Similarly, using (62), (69) and (45), we arrive at

// VU 24py dadt % // X{v>0}VU 24, dadt.

By (62) and (67), we get

UeVe = U weakly in L*(Qr),

// UV Yy dxdt —> // uv, dadt.
e—0
Qr QT

Using the obtained convergence results, we pass to the limit as ¢ — 0 in (41) and
(42), with 6 =n = 0. As a result, we obtain a weak solution (h,u) in the sense of
Definition 2.2.

and therefore we have

4. Travelling wave solutions. Next, we focus on the travelling wave solutions to
the control-volume model. Specifically, we look for a solution to (10)— (11) in the
form:
u(a,t) =U(E), v(z,t)=V(€) =H*) — 1, where £ =z — st,

where s is the propagation speed. Substituting the ansatz into (10)— (11), we obtain
the system of travelling wave ODEs for (U(£),V(£)) for 0 < ¢ < L,
vu'y U
( ) +1- )

4 g(H)

—sV'+a(UV) =0 (71)

—sU' +aUU + bk = (70)
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subject to the L-periodic boundary conditions. We also impose the following mass
constraint

L
/H2<f>d£=9vt>o,
0

where M is related to the mass M defined in (12) by M = M + L. We will look
for L (depending on M) such that V(£) > 0 for £ € (0,L) and U are continuous
functions.

To study the structure of travelling wave solutions, first we consider a general
travelling wave solution that satisfies the periodic boundary condition

V(0)=V(L) > 0. (72)
From (71) it follows that
—V(s—aU) = Cy, (73)
which implies that
U:Uch@ V(o € R, where U, := > (74)
aV a

Lemma 4.1. There exist L > 0, s and Cy # 0 such that the problem (70)—(71) has
at least one periodic (non-trivial) solution (H,U) satisfying

H()=H(L)>1, H(0)=H'(L) = 0.
Proof of Lemma 4.1. From (70) it follows that

[br+8(U-U)?) =S +1- T

whence, due to (74), we obtain

ez cc v\ U, c
[or+ S2v2] =~ (B) 41— oy — . (75)

a

Let Cp # 0. Then we have

2 /
() = 5V = (€ - GE)HH Ve e R, (76)
where
f !
—p1 U, C cCo1 (V/
Ge) =1 / (sctttom + avastmman — 1+ <% (V) ) dv.
&

By imposing the periodicity G(0) = G(L), we obtain

L L
2

4 Co 1 VEW)Y g —
Uc/ st + % | (vamen +evey )y = L (77)
0 0

Integrating (76), we deduce that
2
F(H') = A©H +BOH ™ + g5 H'V, (78)
where

3
A€) = Cy - 1G(6), B(E)=Cy+ ) / G/ (y) H(y) dy
&o
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and C; for ¢ = 1,2 are arbitrary constants such that A(0) = A(L) and B(0) = B(L).
From B(0) = B(L) it follows that

L
C H V/2
T/ V(y)g( (I%(y te V3(( )))dy =M (79)
0
Therefore, solvmg system (77), (79) for U, and Cy, we find that
. L L
- - H(y)dy v’
U=z (2 / Ve ~ M / vty + el =M / v d
0 0
L L
__a H2(y)
Z(L/ gCH(y / o))
0 0
where
L L L L
2 :( dy )( H (y)dy ) _ ( HQ(y)dy)( dy )
9(H(y)) V(y)g(H(y)) 9(H(y)) V(y)g(H(y))
0 0 0 0
L L
_ V(y)dy V2(y)
C(/ g(H(y)))(/ vt dy).
0 0

As a result, by (78) we arrive at

1 [a@n + Bou + Sav]
2 (€)=

2
[A©H + BEH + a1V
Furthermore, if we select C; for ¢ = 1,2 such that A(0) = B(0) = 0, then we have
H'(0) = H'(L) = 0 provided that H(0) = H(L) > 1 satisfy the following equation

H(O)(H?(0) - 1) = <&

which has one solution if Cy # 0. O

Next, we consider a special case when the film profile touches down to zero at
the boundary. That is, we assume that
V(0)=V(L)=0, orequivalently, H(0) = H(L) = 1. (80)
From (73) and (80), we obtain Cy = 0, and U (&) becomes a trivial solution

S
= = —. 1
U=Ue:=" (81)

Lemma 4.2. There exist L > 0 and s such that the problem (70)-(71) has at least
one periodic solution (H,U) that satisfies
H()=H(L)=1, H'(0) = H'(L),

where the average fluid film radius

L H?(y)—1
M I gty W
M_f:1+OL m (82)
o)
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Remark 4.3. If g(H) = H? — 1 (the plug flow case), then (82) implies that
M=1+2.
a

Proof of Lemma 4.2. Since U is a trivial solution satisfying (81), the ODE (70)

reduces to
U,

b’ =1— )
g(H)

Using the relation

K = f(H/)Hfl _ fS(HI)H// _

we obtain

) {(Hf(H’))’}' U -

HH'
Integrating (83) once, we have
(Hf(H))

e (G (34)

where
¢
F(&):=b"1 / (1- 7g(gfy)))dy.
£o
By periodicity, we find that F(0) = F(L) which implies
L

l/
Lg
0

From (84), we deduce that

where
A(§) = C1+ LF(©), BO) = C— 1 / H2(y)F'(y) dy,

and C; for i = 1,2 are arbitrary constants. We note that a necessary condition for
the existence of real-valued solutions to the ODE (85) is 0 < A(§)H+B(§)H! < 1.
By periodicity, we find that
L L

/(1 - m)dy = /HQ(y)(l - m) dy,

0 0
whence we get

L

H
M= L+U/ ;,y(yd—m %/

Hence, M = M satisfies

-1 2
H (y)—1
/ ST Y-

H?(y)—

o

dy
M=1+ )

g(H (y
L dy
I
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Moreover, by (85) we arrive at

1 - [A©H + BEOH'J?

T = T+ B 7

Furthermore, if we select C; for ¢ = 1,2 such that A(0) = B(0) = 0, then we have
H'(0) = H'(L) = oo. O

In section 5, we present numerical studies of travelling wave solutions discussed
in Lemma 4.1 that do not touch down to zero. Since we do not observe any PDE
solution to the system (6) — (9) that leads to a touch-down singularity in finite time,
we leave the discussion of the traveling wave solution that touches down to zero, as
considered in Lemma 4.2, for future work.

5. Numerical studies. In this section, we numerically investigate the coupled
PDE system (6) — (9) to explore the fibre coating dynamics and verify the analytical
results in previous sections. Following the work of Ruan et al. [27], we specify the
form of the function g(h) based on two models - the plug flow model and the laminar
flow model. For the plug flow model, we set g(h) based on the form in (4). For the
laminar flow model, the function g(h) takes the form in equation (5).

Firstly, we numerically investigate the travelling wave solutions (H(&),U(£))
that satisfy the coupled ODE system (70) - (71) with the mass constraint (12),

fOL V(€ d¢ = fOL(HQ(f) — 1) d¢ = M. We apply Newton’s method to solve this
nonlinear eigenvalue problem, where the speed s is treated as an unknown vari-
able. The coupled differential equations are discretized for 0 < ¢ < L with periodic
boundary conditions on H and U by second-order centered finite differences. An
additional constraint H(£*) = H* for some 0 < £* < L is imposed to guarantee the

local uniqueness of the solution.

Figure 2 presents typical travelling wave solutions (H (), U(&)) corresponding to
two cases for the plug flow model and two cases for the laminar flow model:

(a) Plug flow: a =0.2,b = 10, ¢ = 1 with travelling speed s = 1.396
(b) Plug flow: a = 0.4,b = 12, ¢ = 3 with travelling speed s = 2.517;
(c¢) laminar flow a = 1.5,b = 13, ¢ = 4 with travelling speed s = 1.482;
(d) laminar flow a = 0.1,b = 11, ¢ = 4 with travelling speed s = 0.1.

The choices of the parameters a, b, and ¢ for these cases correspond to the typical
traveling waves simulated and discussed in [27]. These parameter values result
in typical traveling wave solutions for both plug flow and laminar flow models of
varying magnitudes. A fixed domain size L = 20 and mass constraint M = 84.8 are
set for all cases. The profiles are shifted so that the maximum of the droplet peaks
are located at & = L/2. This comparison shows that in a fixed domain with equal
volumes, the travelling waves for the plug flow model have more prominent peaks
and higher velocity magnitude than those obtained from the laminar flow model.

Next, we study the transient PDE solutions of the governing model (6) — (9) and
verify the derived energy and entropy estimates in previous sections. To numeri-
cally solve the coupled fourth-order PDEs, we use the Keller box method [20] to
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FIGURE 2. Typical travelling wave profiles (left) H(£) and (right)
U(¢) for two plug flow cases ((a) and (b)) and two laminar flow
cases ((c) and (d)).

decompose the model into a system of first-order differential equations,

k:hm, szx, W = Ug,

us +a (f)w +b[f(k)h~" = f2(k)p]  =c

2hh; + a[u(h® — 1)), = 0.

h? — Dwl, u
08 Wele gt

Starting from the initial fluid film radius and the initial velocity
h(x,0) = hg + 0.1sin(27x/L), u(z,0) = g(h(x,0)), (87)

we solve the system (86) using fully implicit second-order centered finite differences
over the domain 0 < z < L, with periodic boundary conditions imposed on both u
and h. Here, we follow the work of Ruan et al. [27], using the axial velocity profile
g(h(z,0)) as the initial velocity profile. For all PDE simulations, we keep the domain
size L = 20 and hg = 2.29, so that the mass M = 84.8. The values chosen for hg
and L correspond to those used in a experimental comparison conducted in [27].

The top two plots in Figure 3 show the dynamics of (h(x,t),u(x,t)) for the
plug flow case, where the PDE solution converges to a travelling wave solution
(H(&),U(&)) that satisfies the ODE system (70) — (71) with the velocity s = 1.396.
The solution profiles are shifted by @ — & — Zmax(t) + L/2, where Tmax(t) is the
location of the peaks of the travelling waves in time, so that the peaks are aligned
as the wave evolves and travels to the right. The system parameters are given by
a=0.2,b=10, c=1with g(h) = h? —1 in (4), and the traveling wave corresponds
to the case (a) presented in Fig. 2.

We also numerically verify the analytically derived energy and entropy estimates.
In Figure 3 (bottom left), we show that the energy estimate (18)

(1) +I(t) < Co(t)

is satisfied as the transient PDE solution approaches the travelling wave profile in
2

time, where J(t) = ¢ [[ vu2 dzdt + [[ 5% dzdt. Fig. 3 (bottom right) presents the
Qt Qt

g(h)

L 2
numerically approximated integral [ %f dz and the upper bound Cs(t) defined in
0
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FIGURE 3. Dynamics of plug flow with (top left) h(z,t) and (top
right) w(x,t) starting from initial profiles (87) with hg = 2.29,
showing that the PDE solution approaches a travelling wave solu-
tion (H (&), U(€)) satisfying equations (70) — (71) with the velocity
s = 1.396. The solutions are shifted so that the maximums are
aligned. The corresponding energy (bottom left) satisfies the es-
timate (18), &(t) + I(¢t) < Co(t), where I(t) = c [[vu? dzdt +
Q¢

I ;(2h“) dzxdt. The entropy (bottom right) satisfies the estimate
Qt

(23), fOL v2/v dv < C3(t). The system parameters are L = 20,
a=0.2,b=10, c=1 with g(h) = h? — 1.

(24) for the dynamic PDE solution, indicating that the entropy estimate (23),

L

/%m<@m

0

is also satisfied in time. Here, we set € = 0.5 in the definition of C5(¢) in (24), and
this estimate holds for any € € (0,1).

Figure 4 shows a similar numerical study for the laminar flow case with the
system parameters a = 0.1, b = 11, and ¢ = 4, and the function g(h) is given by (5).
In this case, the laminar flow fluid radius h(x,t) and velocity u(x,t) starting from
identical initial data used in Fig. 3 converge to a slowly-moving travelling wave
parametrized by (H(),U(§)) with the speed of propagation s = 0.1 (see Fig. 4
(top panel)). The obtained travelling wave corresponds to the case (d) presented
in Fig. 2. Similar to the plug-flow case shown in Fig. 3, the laminar flow solution
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FIGURE 4. Dynamics of laminar flow (top left) h(x,t) and (top
right) w(z,t) starting from initial profiles (87) with hg = 2.29,
showing that the PDE solution approaches a travelling wave solu-
tion (H(£),U(&)) satisfying equations (70) - (71) with the veloc-
ity s = 0.1. The solutions are shifted so that the maximums are
aligned. Again, the corresponding energy plot (bottom left) shows
that the energy satisfies the estimate (18), &(t) + J(t) < Co(t),

where J(t) = ¢ [[vuZ dzdt + [[ w*v gxdt. The entropy (bottom
Qt Qt

g(h)

right) satisfies the estimate (23), fOL v2/v dx < C3(t). The system
parameters are L = 20,a = 0.1, b = 11, ¢ = 4, g(h) = I(h)/(h*-1).

also satisfies the energy and entropy estimates, as demonstrated in Fig. 4 (bottom
panel).

6. Conclusions. The main contribution of this paper is the proof of the existence
of weak solutions to the coupled PDE system (6)—(7) for the control-volume fibre
coating model. This result establishes the analytical foundation for the control-
volume model in real-world applications. The a priori energy-entropy functional
estimates used in the proof also provide a possible pathway for showing the reg-
ularity of solutions in similar coupled PDE systems in other fibre coating models
[29, 17]. In contrast to the work of Bresch et al. [6] and Kitavtsev et al. [21], for
the proof of existence, we use another approximation of the continuity equation by
the family of thin film equations (see (32)). This new idea can be applied for the
analysis of other systems with the same structure. Typical numerical simulations
of the PDE model are presented to support the analytical results, with a focus on
the travelling wave solutions. For future studies, it would be interesting to further
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investigate the convergence criteria of PDE solutions to travelling wave solutions
and other coherent structures.
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