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Abstract. This paper presents an analytical investigation of the solutions
to a control-volume model for liquid films flowing down a vertical fibre. The
evolution of the free surface is governed by a coupled system of degenerate
nonlinear partial differential equations, which describe the fluid film’s radius
and axial velocity. We demonstrate the existence of weak solutions to this
coupled system by applying a priori estimates derived from energy-entropy
functionals. Additionally, we establish the existence of traveling wave solutions
for the system. To illustrate our analytical findings, we present numerical
studies that showcase the dynamic solutions of the partial differential equations
as well as the traveling wave solutions.

1. Introduction. Thin liquid films flowing down a vertical fibre have attracted
many interests in the past decades due to their importance in a variety of engineering
applications, including heat and mass exchangers, thermal desalination, and vapor
and CO2 capturing [32, 43, 42, 44, 31]. These liquid films are fundamentally driven
by Rayleigh-Plateau instability and gravity modulation, spontaneously exhibiting
complex interfacial instability and pattern formation [24, 25, 33, 28].

Previous experimental works have found that the downstream flow dynamics and
pattern formation highly depend on the flow rate, fibre radius, liquid properties,
and inlet geometries. Specifically, three typical flow regimes have been extensively
studied [22, 9, 29, 14, 41]. At high flow rates, the convective instability dominates
the system and irregular droplet coalescence occur frequently. For lower flow rates,
the Rayleigh-Plateau regime emerges where stable travelling droplets move at a
constant speed. If flow rates are further reduced, the isolated droplet regime occurs
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where widely-spaced droplets coexist with small amplitude wave patterns. Similar
regime transitions can also be triggered by varying the nozzle diameters or imposing
a gradient to the liquid property along the fibre [17, 16, 12]. A good understanding
of these dynamics is critical to the design and control of engineering systems that
involve a stable train of travelling droplets.

In the low Reynolds number limit, classical lubrication models have been devel-
oped for the dynamics of falling viscous liquid films along an axisymmetric cylin-
drical fibre. Under the long-wave approximation, the resultant evolution equations
are a family of fourth-order degenerate parabolic PDEs for the fluid film thickness
[14, 7, 19, 15, 23]. These models incorporate the effects of gravity and surface
tension, where the surface tension plays both stabilizing and destabilizing roles de-
pending on the axial and azimuthal curvature of the free surface. Numerical and
analytical investigations of these models have also revealed the dependence of the
droplet dynamics on the substrate effects and external physical fields [18, 16, 26].

For higher flow rates and for fluid films near the nozzle where inertial effects
are significant, systems of coupled equations for both the film thickness and the
local flow rate have also been investigated [39, 30, 29, 17]. These models include
inertia effects based on a weighted-residual integral boundary layer approach by
assuming a local velocity profile. More recently, Ruan et al. [27] proposed a new
framework for liquid films flowing down a fibre using a control-volume approach.
Their model expresses the conservation of mass and axial momentum via a coupled
system for the fluid film radius h(x, t) and the mean axial velocity u(x, t), where
the momentum equation is

ut + a

(
u2

2

)
x

+ b κx = c
[(h2 − 1)ux]x

h2 − 1
+ 1− u

g(h)
(1)

and the mass conservation equation is

2hht + a[u(h2 − 1)]x = 0, (2)

where the dimensionless parameter a represents the square of the Froude number,
b is the reciprocal of the Bond number, c represents the ratio of axial viscous to
gravitational forces, and g(h) represents the axial velocity profile. The film thickness
is given by h(x, t) − 1, and κ represents the combined azimuthal and streamwise
curvatures of the free surface,

κ =
1

h(1 + h2x)
1/2

−
[

hx
(1 + h2x)

1/2

]
x

. (3)

Furthermore, by taking different forms of g(h), the model (1)–(2) corresponds to
different flow regimes. For the high Reynolds number regime, we have the plug flow
model with the axial velocity profile

g(h) = h2 − 1. (4)

This model assumes a uniform velocity in the cross section with a viscous drag
force on the fluid. In contrast, for the low Reynolds number case, we assume a
fully-developed laminar velocity profile, with

g(h) =
I(h)

h2 − 1
, (5)

where I(h) = 1
16 [4h

4 ln(h) + (h2 − 1)(1− 3h2)].
The control-volume approach has been extensively applied in fluid dynamics

problems to analyze mass and momentum balances [38]. In the context of film flow
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Figure 1. Schematic plot of a liquid film flowing down a cylindri-
cal fibre. The axial coordinate along the fibre axis is x, and the
radial distance from that axis is h(x, t). The dimensionless fibre
radius R = 1.

and one-dimensional hydraulic jumps, Singha at al. [35] applied control-volume
analysis to establish relationships between inlet and outlet variables. Furthermore,
the adoption of depth-averaging to replace the velocity component in the flow direc-
tion with its average, such as in the work of Bohr et al. [2], has a long history in the
study of such film flows. The approach of Ruan et al. [27] combines control-volume
analysis and depth-averaging for a heuristic derivation of the PDEs describing the
liquid film.

While extensive modelling works have been carried out for falling liquid films,
relatively less research [18] have focused on establishing analytical understanding
of the developed models. In this work, we will analytically investigate the coupled
equations (1)–(2). Energy and entropy estimates will be constructed to establish the
existence of weak solutions to the problem. Similar analytical techniques were also
applied to other models (for example, see [18, 5, 6, 3]). Theory for the uniqueness
of solutions to the system (1)–(2) is still lacking due to its nonlinear and degenerate
nature. However, there have been results regarding solution uniqueness for similar
systems involving compressible fluids (see, e.g. [37, 10]). We will also show the
existence of travelling wave solutions to the problem.

The rest of the paper is structured as follows. In section 2, we formulate the
problem statement. In section 3, we show the existence of weak solutions to the
problem via energy and entropy estimates. Section 4 presents a detailed discussion
on travelling wave solutions. Numerical studies are presented in section 5 for both
the plug flow and the laminar flow cases, followed by concluding remarks in section
6.
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2. Problem statement. We study the following initial boundary value problem:

ut + a

(
u2

2

)
x

+ b κx = c
[(h2 − 1)ux]x

h2 − 1
+ 1− u

g(h)
in QT , (6)

2hht + a[u(h2 − 1)]x = 0 in QT , (7)

u and h are |Ω| − periodic, (8)

u(x, 0) = u0(x), h(x, 0) = h0(x), (9)

where Ω ⊂ R1 is an open interval, QT := Ω × (0, T ), a, b, c are non-negative
constants, and

κ = f(hx)h
−1 − f3(hx)hxx, f(z) = (1 + z2)−

1
2 ,

Φ(z) =
1

f(z)
, Φ′(z) = zf(z), Φ′′(z) = f3(z),

g(h) = h2 − 1 or g(h) =
I(h)

h2 − 1
,

where
I(h) := 1

16 [4h
4 ln(h) + (h2 − 1)(1− 3h2)].

Let
v = h2 − 1.

Then we can rewrite (6) and (7) in the following form:

ut + a

(
u2

2

)
x

+ b κx = c
(v ux)x
v

+ 1− u

g(h)
in QT , (10)

vt + a(u v)x = 0 in QT . (11)

Integrating (11) in Qt, we find that v(x, t) satisfies∫
Ω

v(x, t) dx =

∫
Ω

v0(x) dx :=M > 0 ∀ t ⩾ 0. (12)

Let us denote by

G(h) =

h∫
A

y

y∫
A

s ds

I(s)
dy ⩾ 0 for some A > 1. (13)

Furthermore, we assume that the initial data (v0, u0) satisfy

h0 ⩾ 1, i. e. v0 := h20 − 1 ⩾ 0, for all x ∈ Ω̄;
√
v0 ∈ H1(Ω); h0Φ(h0,x), v0u

2
0 ∈ L1(Ω);

− log(v0) ∈ L1(Ω) for g(h) = v, G(h0) ∈ L1(Ω) for g(h) = I(h)
v .

(14)

Remark 2.1. We note that G(h) defined in (13) has the following asymptotic
behavior,

G(h) ∼ C

h− 1
as h→ 1 for some positive constant C.

Therefore,
√
v0 ∈ H1(Ω) and G(h0) ∈ L1(Ω) are satisfied provided v0 > 0 only.
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Definition 2.2. A pair (h, u) is a weak solution to (10)–(11) with periodic boundary
conditions and initial conditions (h0, u0) if 1 ⩽ h ∈ C(Q̄T ), v = h2−1, and u satisfy
the regularity properties

√
v ∈ L∞(0, T ;H1(Ω)); − log(v)(or G(h)), vu2 ∈ L∞(0, T ;L1(Ω)); (15)

hΦ(hx) ∈ L∞(0, T ;L1(Ω)); h−1f(hx) ∈ L1(QT ); (16)

χ{|hx|<∞}
√
hf3(hx)hxx; χ{v>0}

√
vux,

√
v

g(h)u ∈ L2(QT ), (17)

and the following holds∫∫
QT

vϕt dxdt+

∫
Ω

v0ϕ(x, 0) dx+ a

∫∫
QT

uvϕx dxdt = 0,

∫∫
QT

uvψt dxdt+

∫
Ω

u0v0ψ(x, 0) dx+
a

2

∫∫
QT

χ{v>0}vu
2ψx dxdt

+ b

∫∫
QT

(2Φ′(hx)− χ{|hx|<∞}f
3(hx)vxhxx)ψ dxdt

+ b

∫∫
QT

(h−1f(hx)− χ{|hx|<∞}f
3(hx)hxx)vψx dxdt

− c

∫∫
QT

χ{v>0}vuxψx dxdt+

∫∫
QT

(
v − uv

g(h)

)
ψ dxdt = 0

for all ϕ ∈ C∞
c (Q̄T ) and ψ ∈ C∞

c (Q̄T ) such that ϕ(x, T ) = ψ(x, T ) = 0.

We note that the sets v = 0 and hx = ∞ coincide with the sets h = 1 and
vx = ∞. Based on Definition 2.2, we will establish the existence of weak solutions
to the problem and prove the following theorem:

Theorem 2.3. Let the initial data (h0, u0) satisfy (12)–(14) and T > 0. Then
there exists a weak solution (h, u) in the sense of Definition 2.2, where v = h2 − 1.
Moreover, the sets {v(., t) = 0} and {|hx(., t)| = ∞} have Lebesgue measure zero
for any t ∈ [0, T ] for the plug flow model with g(h) = v. In the case of the laminar
flow model with g(h) = I(h)

v , we have v(x, t) > 0 in QT .

3. Existence of weak solutions. In this section, we will introduce the energy
and entropy functionals for the problem and show their estimates in subsections 3.1
and 3.2. The proof of key results in Lemma 3.1 and Lemma 3.2 follows the work of
Kitavtsev et al. [21].

3.1. Energy estimate. Let us denote the energy functional by

E(t) := 1
2

∫
Ω

(vu2 + 4b
a hΦ(hx)) dx.

Lemma 3.1 (Energy inequality). Let (h, u) be a solution to the system (10)–
(11) with periodic boundary conditions, where 1 < h ∈ L∞(0, T ;H1(Ω)), u ∈
L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) then (h, u) satisfies the following inequality

E(T ) + c

∫∫
QT

vu2x dxdt+

∫∫
QT

u2v
g(h) dxdt ⩽ C0(T ), (18)



6 ROMAN M. TARANETS, HANGJIE JI AND MARINA CHUGUNOVA

where v = h2 − 1, C0(T ) = (E
1
2 (0) +

√
2M
2 T )2.

Proof of Lemma 3.1. Multiplying (10) by uv and integrating over Ω, we have∫
Ω

uvut dx+a

∫
Ω

uv(u
2

2
)x dx+b

∫
Ω

uvκx dx = c

∫
Ω

u(vux)x dx+

∫
Ω

uv(1− u
g(h)

) dx. (19)

Since the first two integrals on the left-hand-side of (19) satisfy∫
Ω

uvut dx+ a

∫
Ω

uv(u
2

2 )x dx =

∫
Ω

v(u
2

2 )t dx− a

∫
Ω

(uv)x
u2

2 dx

=

∫
Ω

v(u
2

2 )t dx+

∫
Ω

vt
u2

2 dx = 1
2

d
dt

∫
Ω

vu2 dx,

and the third integral on the left-hand-side of (19) satisfies

b

∫
Ω

uvκx dx = −b
∫
Ω

(uv)xκ dx = b
a

∫
Ω

vtκ dx

= 2b
a

∫
Ω

hht(f(hx)h
−1 − f3(hx)hxx) dx

= 2b
a

∫
Ω

(htf(hx)− hhtΦ
′′(hx)hxx) dx

= 2b
a

∫
Ω

(htf(hx)− hht(Φ
′(hx))x) dx

= 2b
a

∫
Ω

(htf(hx) + (hht)xΦ
′(hx)) dx

= 2b
a

∫
Ω

(htf(hx) + hthxΦ
′(hx) + hhxtΦ

′(hx)) dx

= 2b
a

∫
Ω

(htf(hx) + hth
2
xf(hx) + h(Φ(hx))t) dx

= 2b
a

∫
Ω

(htΦ(hx) + h(Φ(hx))t) dx = 2b
a

d
dt

∫
Ω

hΦ(hx) dx,

then from (19) it follows that

d
dtE(t) + c

∫
Ω

vu2x dx+

∫
Ω

u2v
g(h) dx =

∫
Ω

uv dx. (20)

Taking into account the conservation of mass (12) and∫
Ω

uv dx ⩽M
1
2

(∫
Ω

vu2 dx
) 1

2

, (21)

after integrating (20) in time, we obtain the energy estimate (18).
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3.2. Entropy estimate. We define two entropy-like functionals for the plug flow
and laminar flow models separately. For the plug flow model with g(h) = v, we
denote the entropy functional by

S1(u, h) :=
1
2

∫
Ω

[
v(u+ c

a
vx

v )2 + 4b
a hΦ(hx) +

2c
a2 (v − log(v))

]
dx.

For the laminar flow model with g(h) = I(h)
v , we define the entropy functional as

S2(u, h) :=
1
2

∫
Ω

[
v(u+ c

a
vx

v )2 + 4b
a hΦ(hx) +

8c
a2G(h)

]
dx,

where G(h) is defined in (13). Next, we will prove the following entropy estimates
for S1(u, h) and S2(u, h).

Lemma 3.2 (Entropy inequality). Let (h, u) be a solution to the system (10)–
(11) with periodic boundary conditions, where v = h2−1, 0 < v ∈ L∞(0, T ;H1(Ω))∩
L2(0, T ;H2(Ω)), u ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)), then (h, u) satisfies the
following inequality

Si(u, h) +
2bc
a

∫∫
QT

hf3(hx)h
2
xx dxdt+

∫∫
QT

u2v
g(h) dxdt (22)

+ 2bc
a

∫∫
QT

h−1f(hx) dxdt ⩽ Ci(T ), i = 1, 2,

where

Ci(T ) := Si(u0, h0) +

T∫
0

cC0(t) + (2M)
1
2C

1
2
0 (t) dt.

Remark 3.3. Using the estimate (a + b)2 ⩾ ϵa2 − ϵ
1−ϵb

2 for any ϵ ∈ [0, 1), from
(22) and (18), we deduce that for the plug flow model,∫

Ω

v2
x

v dx ⩽ (ac )
2
[

1
1−ϵ

∫
Ω

v u2 dx+ 2
ϵCi(T )

]
⩽ C3(T ) for any ϵ ∈ (0, 1), i = 1, 2,

(23)
where

C3(T ) := (ac )
2
[

2
1−ϵC0(T ) +

2
ϵCi(T )

]
. (24)

From (23), it follows that
(
v

1
2

)
x
∈ L∞(0, T ;L2(Ω)).

Proof of Lemma 3.2. Multiplying (10) by vx and integrating over Ω, we have∫
Ω

(ut + auux)vx dx+ b

∫
Ω

vxκx dx = −c
∫
Ω

vux(
vx

v )x dx−
∫
Ω

u vx

g(h) dx. (25)

For the first integral on the left-hand-side of (25), we have∫
Ω

(ut + auux)vx dx =

∫
Ω

(utvx + a(uv)xux − a vu2x) dx

=

∫
Ω

(utvx − vtux − a vu2x) dx =

∫
Ω

(utvx + uvxt − a vu2x) dx
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= d
dt

∫
Ω

uvx dx− a

∫
Ω

vu2x dx.

To handle the first integral on the right-hand-side of (25), we deduce

d
dt

∫
Ω

v2
x

v dx = 2

∫
Ω

vxvxt

v dx−
∫
Ω

v2
xvt

v2 dx = −2

∫
Ω

( vx

v )xvt dx−
∫
Ω

v2
x

v2 vt dx

= 2a

∫
Ω

( vx

v )x(uv)xdx+ a

∫
Ω

v2
x

v2 (uv)x dx

= 2a

∫
Ω

( vx

v )x(uv)xdx− 2a

∫
Ω

( vx

v )xuvxdx = 2a

∫
Ω

vux(
vx

v )xdx,

where the second last step is obtained using integration by parts.

For the second integral on the left-hand-side of (25), we have

b

∫
Ω

vxκx dx = −b
∫
Ω

vxx(f(hx)h
−1 − f3(hx)hxx) dx

= −2b

∫
Ω

(h2x + hhxx)(f(hx)h
−1 − f3(hx)hxx) dx

= −2b

∫
Ω

h−1h2xf(hx) dx− 2b

∫
Ω

f(hx)(1− f2(hx)h
2
x)hxx dx

+ 2b

∫
Ω

hf3(hx)h
2
xx dx

= −2b

∫
Ω

h−1h2xf(hx) dx− 2b

∫
Ω

f3(hx)hxx dx+ 2b

∫
Ω

hf3(hx)h
2
xx dx

= −2b

∫
Ω

h−1h2xf(hx) dx+ 2b

∫
Ω

hf3(hx)h
2
xx dx.

Then from (25), it follows that

d
dt

∫
Ω

(uvx + c
2a

v2
x

v ) dx+ 2b

∫
Ω

hf3(hx)h
2
xx dx

= a

∫
Ω

vu2x dx+ 2b

∫
Ω

h−1h2xf(hx) dx−
∫
Ω

u vx

g(h) dx. (26)

Multiplying (26) by c
a and using (20), we arrive at

d
dt

∫
Ω

( cauvx + c2

2a2

v2
x

v ) dx+ d
dtE(t) +

2bc
a

∫
Ω

hf3(hx)h
2
xx dx+

∫
Ω

u2v
g(h) dx

= 2bc
a

∫
Ω

h−1h2xf(hx) dx− c
a

∫
Ω

u vx

g(h) dx+

∫
Ω

uv dx. (27)



WEAK SOLUTIONS OF A CONTROL-VOLUME FIBRE COATING MODEL 9

Note that ∫
Ω

( cauvx + c2

2a2

v2
x

v ) dx+ 1
2

∫
Ω

vu2 dx = 1
2

∫
Ω

v(u+ c
a
vx

v )2 dx,

c
a

∫
Ω

u vx

g(h) dx = c
a

∫
Ω

(uv)x
g(h) dx− c

a

∫
Ω

v
g(h)ux dx

= − c
a2

∫
Ω

vt

g(h) dx− c
a

∫
Ω

v
g(h)ux dx = − c

a2
d
dt

∫
Ω

log(v) dx if g(h) = v.

Therefore, for the plug flow model with g(h) = v, (27) has the form

1
2

d
dt

∫
Ω

[
v(u+ c

a
vx

v )2 + 4b
a hΦ(hx)−

2c
a2 log(v)

]
dx (28)

+ 2bc
a

∫
Ω

hf3(hx)h
2
xx dx+

∫
Ω

u2 dx+ 2bc
a

∫
Ω

h−1f(hx) dx

= 2bc
a

∫
Ω

h−1Φ(hx) dx+

∫
Ω

uv dx.

If we set g(h) = I(h)
v for the laminar flow model, then by multiplying (11) by

h∫
A

y
I(y)dy, we derive

∫
Ω

u vx

g(h) dx = 4
a

d
dt

∫
Ω

G(h) dx, where G′(h) = h

h∫
A

y
I(y)dy.

Using this equality in (27), we arrive at

1
2

d
dt

∫
Ω

[
v(u+ c

a+ϵ0
vx

v )2 + 4b
a hΦ(hx) +

8c
a2G(h)

]
dx (29)

+ 2bc
a

∫
Ω

hf3(hx)h
2
xx dx+

∫
Ω

u2v2

I(h) dx+ 2bc
a

∫
Ω

h−1f(hx) dx

= 2bc
a

∫
Ω

h−1Φ(hx) dx+

∫
Ω

uv dx.

Note that v − log(v) ⩾ 1 and G(h) =
h∫
A

y
y∫
A

s ds
I(s)dy ⩾ 0 for all v ⩾ 0 and for some

A > 1. Then, due to (12), (28) and (29) can be rewritten in the form

d
dtSi(u, h) +

2bc
a

∫
Ω

hf3(hx)h
2
xx dx+

∫
Ω

u2v
g(h) dx+ 2bc

a

∫
Ω

h−1f(hx) dx

= 2bc
a

∫
Ω

h−1Φ(hx) dx+

∫
Ω

uv dx, i = 1, 2. (30)
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Taking into account (21),∫
Ω

h−1Φ(hx) dx ⩽
∫
Ω

hΦ(hx) dx for v ⩾ 0,

and (20), from (30) we obtain (22).

3.3. Approximate problem. For given δ > 0, η > 0 and ε > 0, we consider the
following approximate system for (v, u), where v = h2 − 1,

(v u)t + a [(uv + ηv4vxxx)u]x + b v κx

= c (v ux)x + v
(
1− u

g(h)

)
− δuxxxx + ε a[p(v)]x − ε a vvxxxxx, (31)

vt + a(u v)x = −a η
(
v4vxxx

)
x
, (32)

u and v are |Ω| − periodic, (33)

u(x, 0) = uεη,0(x), v(x, 0) = vεη,0(x), (34)

where uεη,0 ∈ H1(Ω) and 0 < vεη,0 ∈ H2(Ω) such that

uε,0(x) → u0(x) strongly in L2(Ω), vε,0(x) ⩾ v0(x) + εθ, θ ∈ (0, 12 ),

vε,0(x) → v0(x) strongly in W 1
1 (Ω) ∩ C(Ω̄),

ε
1
2 vε,0xx(x) → 0 strongly in L2(Ω),

and
p(z) = 1

2z
−2, g(h) = v or g(h) = |I(h)|

v .

Here, the term η(v4vxxx)x is a thin-film type regularization term that yields uni-
form parabolicity and provides a positive approximation of the solution. The term
ϵa[p(v)]x leads to a positive approximation during the limit process as ϵ → 0. The
term ϵavvxxxxx is crucial for controlling additional higher-order terms that arise in
the entropy inequality. This regularization approach is in the spirit of the construc-
tion of weak solutions of the Burger’s equation using nonlinear viscous terms and
is also comparable to the approximation method employed in [21, 4]. Specifically,
the incorporation of the thin-film term η(v4vxxx)x in our approximate system re-
sults in the reduction of the seventh-order derivative term of the form ϵhh(7), as
required in the approximation system considered in [4], to a fifth-order derivative
term ϵavvxxxxx in (31).

Remark 3.4. We note that in the laminar flow case, due to the strong positivity
of v, i.e. v > 0, from the boundedness of the entropy, the approximate system
(31)–(32) can be simplified by dropping the regularization term ϵ(p(v))x.

Lemma 3.5. Let u ∈ L2(0, T ;H2(Ω)) be a periodic function. For any 0 < vηε,0(x) ∈
H2(Ω), the problem (32)—(33) has a unique weak positive solution v ∈ C

3
2 ,

3
8

x,t (Q̄T )
such that

vt ∈ L2(QT ), v ∈ L∞(0, T ;H2(Ω)), v ∈ L2(0, T ;H4(Ω)), (35)∫
Ω

v dx =
∫
Ω

vηε,0 dx := Mηε > 0, and v satisfies (32) a. e. in QT . Moreover, there

exists a constant C > 1 depending on η such that
1
C ⩽ v ⩽ C.
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Proof of Lemma 3.5. The main line of proof follows the approach in [1]. We omit
details and restrict the discussion only to the key elements of the proof.

First of all, we approximate (32) by

vt + a([u]αv)x = −a η((v4 + β)vxxx)x, (36)

where β > 0 and [u]α denotes a smooth approximation of u such that

[u]α → u strongly in L2(0, T ;H2(Ω)) as α→ 0.

We also approximate vηε,0 in the H2-norm by C4+γ functions vβηε,0, satisfying (33),
and replace (34) by

v(x, 0) = vβεη,0(x). (37)

Using the parabolic Schauder estimates from [36], one can generalise [13, The-
orem 6.3, p. 302] and show that the problem (36)–(37) has a unique classical
solution vβα ∈ C

4+γ,1+ γ
4

x,t (Ω × [0, τβα]) for some τβα > 0; that is, the fourth-
order spatial derivative vβα,xxxx ∈ C

γ,1+γ/4
x,t (Ω × [0, τβα]), and the time derivative

vβα,t ∈ C
4+γ,γ/4
x,t (Ω× [0, τβα]).

Next, for simplicity, we will replace vβα by v. Multiplying (36) by −vxx and
integrating by parts, we have

1
2

d
dt

∫
Ω

v2x dx+ ηa

∫
Ω

(v4 + β)v2xxx dx

= a

∫
Ω

([u]αv)xvxx dx

= −a
∫
Ω

([u]α)xxvvx dx− 3a
2

∫
Ω

([u]α)xv
2
x dx

⩽ a sup
Ω

|v|
(∫
Ω

([u]α)
2
xx dx

) 1
2
(∫
Ω

v2x dx
) 1

2

+ 3a
2 sup

Ω
|([u]α)x|

∫
Ω

v2x dx

⩽
(∫
Ω

([u]α)
2
xx dx

) 1
2
[
5a|Ω|

1
2

2

∫
Ω

v2x dx+
Mβηε

|Ω|

(∫
Ω

v2x dx
) 1

2
]
,

whence from the Gronwall inequality we obtain∫
Ω

v2x dx ⩽
(
∥vβηε,0x∥2 + Mβηε

|Ω|

T∫
0

∥([u]α)xx∥2e
− 5a|Ω|

1
2

2

t∫
0

∥([u]α)xx∥2 ds
dt
)2

× e
5a|Ω|

1
2

T∫
0

∥([u]α)xx∥2 dt
,

which leads to ∫
Ω

v2x dx+ ηa

∫∫
QT

(v4 + β)v2xxx dxdt ⩽ C(T ). (38)

Due to (38), we deduce that ∥vβ∥
C

1
2
, 1
8

x,t (Q̄T )
is uniformly bounded with respect to α,

β and τβα. For any fixed values of β and α, by [13, Theorem 9.3, p. 316], we can
extend the solution vβ step-by-step to all of QT for any T > 0.
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Let us denote by Gβ(z) ⩾ 0 such that

Gβ(z) =

z∫
1

y∫
1

dsdy
s4+β , G′′

β(z) =
1

z4+β .

Multiplying (32) by G′
β(v) and integrating by parts, we arrive at

d
dt

∫
Ω

Gβ(v) dx+ ηa

∫
Ω

v2xx dx = −a
∫
Ω

([u]α)x(vG
′
β(v)− Gβ(v)) dx

⩽ aC sup
Ω

|([u]α)x|
∫
Ω

Gβ(v) dx,

whence ∫
Ω

Gβ(v) dx+ ηa

∫∫
QT

v2xx dxdt ⩽ e
aC

T∫
0

sup
Ω

|([u]α)x| dt
∫
Ω

Gβ(vβηε,0) dx. (39)

Due to (38) and (39), similar to the proof of [1, Theorem 4.1, p.190], after taking
β → 0, we obtain the global existence of a unique positivity classical solution v0α
for any α > 0. Moreover, we have 1

C ⩽ v0α ⩽ C < ∞, where C > 1 is independent
of α.

For the limit process α→ 0, we need the following a priori estimate. Multiplying
(36) with β = 0 by vxxxx and integrating by parts, we have

1
2

d
dt

∫
Ω

v2xx dx+ ηa

∫
Ω

v4v2xxxx dx

= −a
∫
Ω

([u]αv)xvxxxx dx− 4ηa

∫
Ω

v3vxvxxxvxxxx dx

⩽ a
(∫
Ω

v4v2xxxx dx
) 1

2
(∫
Ω

([u]αv)2x
v4 dx

) 1
2

+ 4ηa
(∫
Ω

v4v2xxxx dx
) 1

2
(∫
Ω

v2v2xv
2
xxx dx

) 1
2

⩽ ηa
2

∫
Ω

v4v2xxxx dx+ a
η

∫
Ω

([u]αv)2x
v4 dx+ 16aη

∫
Ω

v2v2xv
2
xxx dx

⩽ ηa
2

∫
Ω

v4v2xxxx dx+ 2a
η

(
∥v−1∥2∞∥([u]α)x∥22 + ∥v−1∥4∞∥vx∥2∞∥[u]α∥22

)
+ 16aη∥v−1∥2∞∥vx∥2∞

∫
Ω

v4v2xxx dx,

whence

d
dt∥vxx∥

2
2 + ηa

∫
Ω

v4v2xxxx dx

⩽ aC η−1∥[u]α∥2H1 + aC
(
η−1∥[u]α∥2H1 + η

∫
Ω

v4v2xxx dx
)
∥vxx∥22.
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Integrating this inequality in time, we have∫
Ω

v2xx dx+ ηa

∫∫
QT

v4v2xxxx dxdt (40)

⩽
(
∥vηε,0xx∥22 + aC η−1

T∫
0

∥[u]α∥2H1e
−aC

t∫
0

(
η−1∥[u]α∥2

H1+η
∫
Ω

v4v2
xxx dx

)
ds

dt
)

× e
aC

t∫
0

(
η−1∥[u]α∥2

H1+η
∫
Ω

v4v2
xxx dx

)
ds

.

By (40) and (38), ∥v0α∥
C

3
2
, 3
8

x,t (Q̄T )
is uniformly bounded with respect to α. This

uniform bound follows from v0α ∈ L∞(0, T ;H2(Ω)) and v0α,t ∈ L2(QT ) (see [40,
Lemma 7.19, p. 175]). Taking α→ 0, it completes the proof.

For the given δ > 0, η > 0 and ε > 0, equation (31) is uniformly parabolic with
respect to u for any v from Lemma 3.5. Based on Faedo-Galerkin approximation
(see, e. g., [6]), the system (31)–(32) with periodic boundary conditions has a local
in time weak solution (v, u) := (vδηε, uδηε). Next, we establish a priori estimates
which guarantee the global in time solvability.

Lemma 3.6 (a priori estimates). For fixed and positive constants δ > 0, η > 0,
ε > 0, and T > 0, there exists a weak solution (vδηε, uδηε) to the problem (31)–(34)
in the following sense∫∫

QT

uvψt dxdt+

∫
Ω

uεη,0vεη,0ψ(x, 0) dx+ a

∫∫
QT

(uv + ηv4vxxx)uψx dxdt (41)

+ b

∫∫
QT

κvxψ dxdt+ b

∫∫
QT

κvψx dxdt− c

∫∫
QT

vuxψx dxdt

+

∫∫
QT

(
v − uv

g(h)

)
ψ dxdt− δ

∫∫
QT

uxxψxx dxdt− εa

∫∫
QT

p(v)ψx dxdt

− εa

∫∫
QT

vxxx(vxxψ + 2vxψx + vψxx) dxdt = 0,

∫∫
QT

vϕt dxdt+

∫
Ω

vεη,0ϕ(x, 0) dx+ a

∫∫
QT

uvϕx dxdt+ aη

∫∫
QT

v4vxxxϕx dxdt = 0

(42)

for all ϕ ∈ C∞
c (Q̄T ) and ψ ∈ C∞

c (Q̄T ) such that ϕ(x, T ) = ψ(x, T ) = 0.

Moreover, there exists a positive constant C > 0 depending only on a, b, c, T, E(0),
and Si(u0, v0) such that the following terms are bounded by C in respective norms

√
v ∈ L∞(0, T ;H1(Ω)),

√
vu ∈ L∞(0, T ;L2(Ω)), (43)

− log(v)(or G(h)), hΦ(hx) ∈ L∞(0, T ;L1(Ω)), h−1f(hx) ∈ L1(QT ), (44)√
hf3(hx)hxx,

√
vux,

√
v

g(h)u ∈ L2(QT ), (45)

ε
1
2 v−1, ε

1
2 vxx ∈ L∞(0, T ;L2(Ω)), (46)
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δ
1
2uxx, (εη)

1
2 v2vxxxx, ε

1
2 vxxx, ε

1
2 (v−1)x ∈ L2(QT ), (47)

and
0 < ε ⩽ v(x, t) ⩽ C for all (x, t) ∈ QT . (48)

Proof of Lemma 3.6. Let us denote by

Eε(t) :=
1
2

∫
Ω

(v u2 + 2b
a hΦ(hx) +

ε
3v

−2 + εv2xx) dx.

Multiplying (31) by u and integrating over Ω, we have

d
dtEε(t)+ δ

∫
Ω

u2xx dx+εηa

∫
Ω

v4v2xxxx dx+εηa

∫
Ω

v2xx dx+ c

∫
Ω

vu2x dx+

∫
Ω

u2v
gε(h)

dx

=

∫
Ω

uv dx− 4εηa

∫
Ω

v3vxvxxxvxxxx dx− bη

∫
Ω

(v4vxxx)xκ dx. (49)

Note that ∫
Ω

uv dx ⩽M
1
2

(∫
Ω

vu2 dx
) 1

2

.

We will use the following estimates

∥v∥∞ ⩽ C ∥vxx∥2 + M
|Ω| , ∥vx∥∞ ⩽ C ∥vxx∥2, ∥vxxx∥2 ⩽ C ∥vxxxx∥

1
2
2 ∥vxx∥

1
2
2 ,

and
∥v−1∥∞ ⩽ C

(
∥v−1∥

3
2
2 (∥vxx∥22 + ν)

1
4 + (∥vxx∥22 + ν)−

1
2

)
∀ ν ⩾ 0. (50)

For the proof of (50), see [8, Lemma 3.2, p.807]. From (50), we deduce that∫
Ω

v3vxvxxxvxxxx dx ⩽ ∥v2vxxxx∥2∥vvxvxxx∥2

⩽ ∥v2vxxxx∥2∥v∥∞∥vx∥∞∥vxxx∥2

⩽ C ∥v2vxxxx∥2∥v∥∞∥vx∥∞∥vxxxx∥
1
2
2 ∥vxx∥

1
2
2

⩽ C ∥v2vxxxx∥
3
2
2 ∥v−1∥∞

(
M
|Ω| + ∥vxx∥2

)
∥vxx∥

3
2
2

⩽ C ∥v2vxxxx∥
3
2
2

(
∥v−1∥

3
2
2 (∥vxx∥22 + 1)

1
4 + 1

)(
M
|Ω| + ∥vxx∥2

)
∥vxx∥

3
2
2 ,

and∫
Ω

(v4vxxx)xκ dx =

∫
Ω

v4vxxxxκ dx+ 4

∫
Ω

v3vxvxxxκ dx

⩽ ε
4

∫
Ω

v4v2xxxx dx+ 2
ε

∫
Ω

v4κ2 dx+ C
ε ∥v

−1∥4∞
∫
Ω

v6v2xκ
2 dx

⩽ ε
4

∫
Ω

v4v2xxxx dx+ C
ε

∫
Ω

(v3 + v3v2xx) dx+ C
ε ∥v

−1∥4∞
∫
Ω

(v6 + v6v2xx) dx

⩽ ε
4

∫
Ω

v4v2xxxx dx+ C
ε (1 + ∥vxx∥22)

[
( M
|Ω| )

3 + ∥vxx∥32 + ∥v−1∥4∞(( M
|Ω| )

6 + ∥vxx∥62)
]
.

By these estimates, from (49) we have



WEAK SOLUTIONS OF A CONTROL-VOLUME FIBRE COATING MODEL 15

d
dtEε(t)+ δ

∫
Ω

u2xx dx+
εηa
2

∫
Ω

v4v2xxxx dx+ εηa

∫
Ω

v2xx dx+ c

∫
Ω

vu2x dx+

∫
Ω

u2v
gε(h)

dx

⩽ C E
1
2
ε (t) + C bηε−9E8

ε(t) + C aηε−8E9
ε(t), (51)

whence by the nonlinear Gronwall inequality, we have

Eε(T ) + δ

∫∫
QT

u2xx dxdt+
εηa
2

∫∫
QT

v4v2xxx dxdt

+ εηa

∫∫
QT

v2xx dxdt+ c

∫∫
QT

vu2x dxdt+

∫∫
QT

u2v
g(h) dxdt ⩽ C(T ) (52)

for all T ⩽ Tη := [16Cmax{1, a, b}E8
ε(0)ηε

−8]−1 → +∞ as η → 0. In particular,
from (52), due to (50), we arrive at

∥v−1∥∞ ⩽ C ε−1, (53)

whence inf
Ω
v ⩾ C ε.

Next, we consider the plug flow case g(h) = v only, and the laminar flow case
can be addressed in a similar manner. Multiplying (31) by vx

v and integrating over
Ω, we obtain that

d
dtS1,ε(u, v) +

2bc
a

∫
Ω

hf3(hx)h
2
xx dx+

∫
Ω

u2 dx+ 2bc
a

∫
Ω

h−1f(hx) dx (54)

+ δ

∫
Ω

u2xx dx+ εa

∫
Ω

v2xxx dx+ εa
3

∫
Ω

v2
x

v4 dx

= 2bc
a

∫
Ω

h−1Φ(hx) dx+

∫
Ω

uv dx− δ

∫
Ω

(
vx

v

)
xx
uxx dx+ η c

∫
Ω

vux(v
3vxxx)x dx

+ η c2

a

∫
Ω

(
vx

v

)
x
v(v3vxxx)x dx+ η c

a

∫
Ω

(v4vxxx)x
g(h) dx,

where

S1,ε(u, v) :=
1
2

∫
Ω

[
v(u+ c

a
vx

v )2 + 4b
a hΦ(hx) +

2c
a2 (v− log(v)) + 2εv−2 + εv2xx

]
dx.

Using the equality (vx
v

)
xx

=
vxxx
v

− 3
vxvxx
v2

+ 2
v3x
v3
, (55)

and the following estimates

∥vx∥6 ⩽ C∥vxx∥
1
3
2 ∥vx∥

2
3
2 , ∥vxx∥∞ ⩽ C∥vxxx∥2,

we find that

δ

∫
Ω

(
vx

v

)
xx
uxx dx ⩽ δ

1
2 ∥δ 1

2uxx∥2
(
∥ vxxx

v ∥2 + 3∥ vxvxx

v2 ∥2 + 2∥ vx

v ∥36
)

⩽ δ
1
2 ∥δ 1

2uxx∥2
(
∥v−1∥∞∥vxxx∥2 + 3∥v−1∥2∞∥vx∥2∥vxx∥∞ + 2∥v−1∥3∞∥vx∥36

)
⩽ C δ

1
2 ∥δ 1

2uxx∥2
(
∥v−1∥∞∥vxxx∥2 + ∥v−1∥2∞∥vx∥2∥vxxx∥2

+ ∥v−1∥3∞∥vx∥22∥vxxx∥2
)
⩽ C δ

1
2 ε−4∥δ 1

2uxx∥2∥vxxx∥2
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⩽ C δ
1
2 ε−4∥δ 1

2uxx∥2∥vxxxx∥2 ⩽ C δ
1
2 ε−

13
2 η−

1
2 ∥δ 1

2uxx∥2∥(εη)
1
2 v2vxxxx∥2.

As a result, due to (52), we find that

δ

∫∫
QT

(
vx

v

)
xx
uxx dxdt ⩽ C δ

1
2 η−

1
2 ε−

13
2 . (56)

Using (55) and the estimates∫
Ω

vv2xv
2
xx dx ⩽ 1

3

(∫
Ω

v3v2xxx dx
) 1

2
(∫
Ω

v6
x

v dx
) 1

2

, ∥vx∥6 ⩽ C∥vxxx∥
1
6
2 ∥vx∥

5
6
2 ,

we find that∫
Ω

(
vx

v

)
x
v(v3vxxx)x dx = −

∫
Ω

(
vx

v

)
xx
v4vxxx dx−

∫
Ω

(
vx

v

)
x
v3vxvxxx dx

= −
∫
Ω

v3v2xxx dx+ 2

∫
Ω

v2vxvxxvxxx dx−
∫
Ω

vv3xvxxx dx

⩽ −
∫
Ω

v3v2xxx dx+ 2√
3

(∫
Ω

v3v2xxx dx
) 3

4
(∫
Ω

v6
x

v dx
) 1

4

+
(∫
Ω

v3v2xxx dx
) 1

2
(∫
Ω

v6
x

v dx
) 1

2

⩽ − 1
2

∫
Ω

v3v2xxx dx+ C∥v−1∥∞∥vx∥66

⩽ − 1
2

∫
Ω

v3v2xxx dx+ C∥v−1∥∞∥vx∥52∥vxxx∥2

⩽ − 1
2

∫
Ω

v3v2xxx dx+ C∥v−1∥
5
2∞∥vx∥52∥v

3
2 vxxx∥2

⩽ − 1
4

∫
Ω

v3v2xxx dx+ C∥v−1∥5∞∥vxx∥102 ⩽ − 1
4

∫
Ω

v3v2xxx dx+ C ε−10.

As a result, due to (52), we arrive at

η

∫∫
QT

(
vx

v

)
x
v(v3vxxx)x dxdt ⩽ −η

4

∫∫
QT

v3v2xxx dxdt+ C η ε−10. (57)

Using the estimate∫
Ω

v(v3vxxx)
2
x dx ⩽ C

∫
Ω

v7v2xxxx dx+ C

∫
Ω

v5v2xv
2
xxx dx

⩽ C∥v∥3∞
∫
Ω

v4v2xxxx dx+ C∥v∥5∞∥vx∥2∞
∫
Ω

v2xxx dx

⩽ C
(
∥v∥3∞ + ∥v∥5∞∥vx∥2∞∥v−1∥4∞

) ∫
Ω

v4v2xxxx dx

⩽ C ε−
15
2

∫
Ω

v4v2xxxx dx,
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we deduce that

η c

∫∫
QT

vux(v
3vxxx)x dxdt ⩽ η c

(∫∫
QT

vu2x dxdt
) 1

2
(∫∫
QT

v(v3vxxx)
2
x dxdt

) 1
2

⩽ η c
(∫∫
QT

vu2x dxdt
) 1

2
(
C ε−

15
2

∫∫
QT

v4v2xxxx dxdt
) 1

2

,

whence, due to (52), we have

η c

∫∫
QT

vux(v
3vxxx)x dxdt ⩽ C η

1
2 ε−

17
4 . (58)

Using the estimate∫
Ω

(v4vxxx)x
v dx =

∫
Ω

v3vxxxx dx+ 4

∫
Ω

v2vxvxxx dx

⩽ ∥v2vxxxx∥2(∥v∥2 + C ∥v−1∥2∞∥v∥2∞∥vx∥2)

⩽ C ε−
7
2 ∥v2vxxxx∥2 = C η−

1
2 ε−4∥(εη) 1

2 v2vxxxx∥2,
we get

η c
a

∫∫
QT

(v4vxxx)x
g(h) dxdt ⩽ C η

1
2 ε−4. (59)

Integrating (54) in time, taking into account (52) and (56)–(59), we obtain

S1,ε(u, v) +
2bc
a

∫∫
QT

hf3(hx)h
2
xx dxdt+

∫∫
QT

u2 dxdt+ 2bc
a

∫∫
QT

h−1f(hx) dxdt

+ δ

∫∫
QT

u2xx dxdt+ εa

∫∫
QT

v2xxx dxdt+
2εa
3

∫∫
QT

v2
x

v4 dxdt+
ηc2

4a

∫∫
QT

v3v2xxx dxdt

⩽ S1,ε(uεη,0, vεη,0) + C(T ) + C δ
1
2 η−

1
2 ε−

13
2 + C η ε−10 + C η

1
2 ε−

17
4 (60)

for all T ⩽ Tη.

3.4. Compactness and limit processes. Passage to the limit δ → 0. Denote
the corresponding solution to the approximate problem (31)–(34) by (vδηε, uδηε).
Let T ⩽ Tη. We study the compactness properties of the sequence (vδηε, uδηε)
by using the estimates derived in Lemma 3.6. From (46) and (47), we have that
{vδηε}δ>0 is bounded in L∞(0, T ;H2(Ω)) and {vδηε,t}δ>0 is bounded in L2(QT ).
Therefore, using [40, Lemma 7.19, p. 175], we conclude that {vδηε}δ>0 is bounded in
C

3
2 ,

3
8

x,t (Q̄T ). By the Arzela-Ascoli theorem, after possibly extracting a subsequence,
we obtain that

vδηε →
δ→0

vηε uniformly in Q̄T ,

vδηε,t →
δ→0

vηε,t weakly in L2(QT ),

whence
v−1
δηε →

δ→0
v−1
ηε uniformly in Q̄T .

Also, by (47) we obtain that

vδηε →
δ→0

vηε weakly in L2(0, T ;H4(Ω)),
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vδηε →
δ→0

vηε strongly in L2(0, T ;H3(Ω)).

Next, we turn to compactness properties of {uδηε}δ>0. By (43)–(48) and the bound-
edness vδηε away from zero, we have that {uδηε}δ>0 is bounded in L∞(0, T ;L2(Ω))∩
L2(0, T ;H1(Ω)). Moreover, {(vδηεuδηε)t}δ>0 and {uδηε,t}δ>0 are bounded in
L2(0, T ;H−2(Ω)). Therefore, we have

uδηε →
δ→0

uηε strongly in L2(QT ),

uδηε,x →
δ→0

uηε,x weakly in L2(QT ),

uδηε,t →
δ→0

uηε,t ∗ − weakly in L2(0, T ;H−2(Ω)),

vδηεuδηε →
δ→0

vηεuηε strongly in L2(QT ),

(vδηεuδηε)t →
δ→0

(vηεuηε)t ∗ − weakly in L2(0, T ;H−2(Ω)).

Moreover, from (47) we obtain

δ
∣∣∣∫∫
QT

uxxψxx dxdt
∣∣∣ ⩽ δ

1
2 ∥δ 1

2uxx∥L2(QT )∥ψ∥L2(0,T ;H2(Ω)) ⩽ C δ
1
2 .

Based on the convergence results obtained, we can take the limit as δ → 0 in (41)
and (42).

Passage to the limit η → 0. Since Tη → +∞ as η → 0, we can extend the
results to any T > 0. Now, we consider the compactness properties of the sequence
(vηε, uηε) by using the estimates derived in Lemma 3.6. Due to (46) and (47), we
have that {vηε}η>0 is bounded in L∞(0, T ;H2(Ω)) and {vηε,t}η>0 is bounded in
L2(0, T ;H−1(Ω)). Therefore, similar to [1, Lemma 2.1, p. 183], we arrive at the
conclusion that {vηε}η>0 is bounded in C

3
2 ,

1
4

x,t (Q̄T ). By the Arzela-Ascoli theorem,
after possibly extracting a subsequence, we obtain that

vηε →
η→0

vε uniformly in Q̄T ,

vηε,t →
η→0

vε,t ∗ − weakly in L2(0, T ;H−1(Ω)),

whence
v−1
ηε →

η→0
v−1
ε uniformly in Q̄T .

Also, by (47) we obtain that

vηε →
η→0

vε weakly in L2(0, T ;H3(Ω)),

vηε →
η→0

vε strongly in L2(0, T ;H2(Ω)).

Next, we turn to compactness properties of {uηε}η>0. Using (43)–(48) and the
boundedness vηε away from zero, we have that {uηε}η>0 is bounded in L∞(0, T ;L2(Ω))∩
L2(0, T ;H1(Ω)). Moreover, {vηεu2ηε}η>0 is bounded in Lp(QT ) for p ∈ (1, 3), and
{(vηεuηε)t}η>0 and {uηε,t}ε>0 are bounded in L2(0, T ;H−2(Ω)). Therefore, we have

uηε →
η→0

uε strongly in L2(QT ),

uηε,x →
η→0

uε,x weakly in L2(QT ),

uηε,t →
η→0

uε,t ∗ − weakly in L2(0, T ;H−2(Ω)),
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vηεuηε →
η→0

vεuε strongly in L2(QT ),

vηεu
2
ηε →

η→0
vεu

2
ε strongly in L2(QT ),

(vηεuηε)t →
η→0

(vεuε)t ∗ − weakly in L2(0, T ;H−2(Ω)).

Moreover, by (43) and (47), we arrive at

η

∫∫
QT

u v4vxxxψx dxdt ⩽ η

T∫
0

∥
√
vu∥2∥v∥

7
2∞∥vxxx∥2∥ψx∥∞ dt

⩽ C ηε−
1
2 ∥ε 1

2 vxxx∥L2(QT )∥ψ∥L2(0,T ;H2(Ω)) ⩽ C ηε−
1
2 ,

η

∫∫
QT

v4vxxxϕx dxdt ⩽ ηε−
1
2 ∥v∥L∞(QT )∥ε

1
2 vxxx∥L2(QT )∥ψx∥L2(QT )

⩽ C ηε−
1
2 ∥ψ∥L2(0,T ;H1(Ω)) ⩽ C ηε−

1
2 .

The obtained convergence results enable us to take the limit as η → 0 in (41) and
(42) with δ = 0.

Passage to the limit ε→ 0. Next, we study the compactness properties of the
sequence (vε, uε) by using the estimates derived in Lemma 3.6. Taking into account

(
√
v)t = −a(

√
vu)x + a

2

√
vux,

by (43) and (45), we deduce that {(√vε)t}ε>0 is uniformly bounded in L2(0, T ;H−1(Ω)),
and {√vε}ε>0 is uniformly bounded in L∞(0, T ;H1(Ω)). Therefore, based on the
lemma of compactness embedding from [34, Corollary 4, p. 85], we obtain that

√
vε →

ε→0

√
v uniformly in Q̄T , (61)

and it follows that
vε →

ε→0
v uniformly in Q̄T . (62)

Also, by (43) and (61), {uεvε}ε>0 is uniformly bounded in L2(QT ). Therefore, we
find that {vε,t}ε>0 is uniformly bounded in L2(0, T ;H−1(Ω)), which implies that

vε,t →
ε→0

vt ∗ − weakly in L2(0, T ;H−1(Ω)).

From the boundedness of {hεΦ(hε,x)}ε>0 in L∞(0, T ;L1(Ω)), we deduce that

{vε}ε>0 is uniformly bounded in L∞(0, T ;W 1
1 (Ω)). (63)

Therefore, from (62), it follows that

vε, hε →
ε→0

v, h ∗ − weakly in L∞(0, T ;W 1
1 (Ω)),

and the set {|hx(., t)| = ∞} has Lebesgue measure zero for any t > 0. By the
boundedness of {log(vε)}ε>0 in L∞(0, T ;L1(Ω)) and (62), the set {v(., t) = 0} has
Lebesgue measure zero for any t > 0, and it follows that

p(vε) →
ε→0

p(v)

holds for almost all x and for any t > 0, where p(z) = 1
2z

−2.
In the case of the laminar flow model with g(h) = I(h)

v , from (43) and (44), due to
(62), we obtain that

√
v ∈ L∞(0, T ;H1(Ω)) and

∫
Ω

G(h) dx < +∞. Next, we show

that v(x, t) > 0 in QT by contradiction. Assume that there exists a point x0 ∈ Ω̄
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such that v(x0, t) = 0, then v(x, t) ⩽ C|x − x0|. Taking into account G(h) ∼ C
h−1

as h→ 1 (see Remark 2.1), we find that

+∞ >

∫
Ω

G(h) dx ⩾ C

∫
Ω

dx
|x−x0| = +∞.

This contradiction proves that v > 0.
By (62), εp(vε) → 0 uniformly on {v > ν} as ε→ 0 for any ν > 0. Then∫∫

{v>ν}

εp(vε)ψx dxdt→ 0 as ε→ 0

for any ν > 0. By (46) and (47), {ε1/2v−1
ε }ε>0 is uniformly bounded in

L∞(0, T ;L2(Ω))∩L2(0, T ;H1(Ω). Using [11, Proposition 3.3, p.10], we obtain that
{ε1/2v−1

ε } is uniformly bounded in L4(0, T ;L∞(Ω)). From here, if ε is sufficiently
small, depending on ν, we deduce that∣∣∣∫∫
{v⩽ν}

εp(vε)ψx dxdt
∣∣∣ = ∣∣∣ 12 ∫∫

{v⩽ν}

(ε1/2v−1
ε )2ψx dxdt

∣∣∣
⩽ 1

2∥ε
1/2v−1

ε ∥2L4(0,T ;L∞(Ω))( sup
t∈[0,T ]

|{v(., t) ⩽ ν}|)1/2∥ψx∥L2(QT )

⩽ C ( sup
t∈[0,T ]

|{v(., t) ⩽ ν}|)1/2.

As a result, since ν > 0 is arbitrary and |{v(., t) = 0}| = 0 for any t > 0, we take
ε→ 0 and arrive at ∫∫

QT

εp(vε)ψx dxdt→ 0 as ε→ 0.

Let us denote by F (z) =
z∫

−∞
f

3
2 (s) ds and F ′(±∞) = 0. By (45), we find that

{F (hε,x)}ε>0 is uniformly bounded in L2(0, T ;H1(Ω)). Therefore, we have

F (hε,x) →
ε→0

F (hx) weakly in L2(0, T ;H1(Ω)),

F (hε,x) →
ε→0

F (hx) strongly in L2(QT ) and a. e. in QT ,

and it follows that

hε,xx →
ε→0

hxx weakly in L2({|hx| < K}), (64)

hε,x →
ε→0

hx strongly in L2({|hx| < K}) (65)

for any K > 0. In particular, in view of |{|hx(., t)| = ∞}| = 0 for any t > 0, we
obtain that

hε,x →
ε→0

hx strongly in L2(QT ) and a. e. in QT . (66)

Using the following estimates

|κε| =
∣∣h−1

ε f(hε,x)−
√

f3(hε,x)
hε

√
hεf3(hε,x)hε,xx

∣∣ ⩽ 1 +
√
hεf3(hε,x)|hε,xx|,

|κεvε,x| = 2
∣∣hε,xf(hε,x)− hε,x

√
hεf3(hε,x)

√
hεf3(hε,x)hε,xx

∣∣
⩽ 2 + 2∥

√
hε∥∞

√
hεf3(hε,x)|hε,xx|,
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due to (62) and (45), we have that {κε}ε>0 and {κεvε,x}ε>0 are uniformly bounded
in L2(QT ). Therefore, from (64)– (66) and (62), for any K > 0, we have∫∫

{|hx|<K}

f3(hε,x)hε,xxvεψx dxdt →
ε→0

∫∫
{|hx|<K}

f3(hx)hxxv ψx dxdt,

∫∫
{|hx|<K}

hε,xhεf
3(hε,x)hε,xxψ dxdt →

ε→0

∫∫
{|hx|<K}

hxhf
3(hx)hxxψ dxdt,

∫∫
QT

h−1
ε f(hε,x)vεψx dxdt →

ε→0

∫∫
QT

h−1f(hx)v ψx dxdt,

∫∫
QT

hε,xf(hε,x)ψ dxdt →
ε→0

∫∫
QT

hxf(hx)ψ dxdt.

On the other hand, if ε is sufficiently small (depending on K), then by (45) and
using the form f(z) = (1 + z2)−1/2 and the inequality z2f3(z) ⩽ f(z), we obtain∣∣∣ ∫∫

{|hx|⩾K}

f3(hε,x)hε,xxvεψx dxdt
∣∣∣ ⩽ C

(1+K2)3/4

(∫∫
QT

hεf
3(hε,x)h

2
ε,xx dxdt

) 1
2

⩽ C
(1+K2)3/4

,

∣∣∣ ∫∫
{|hx|⩾K}

hε,xhεf
3(hε,x)hε,xxψ dxdt

∣∣∣ ⩽ C
(1+K2)1/4

(∫∫
QT

hεf
3(hε,x)h

2
ε,xx dxdt

) 1
2

⩽ C
(1+K2)1/4

.

As a result, since K > 0 is arbitrary, we take ε→ 0 and deduce that∫∫
QT

κεvεψx dxdt →
ε→0

∫∫
QT

(h−1f(hx)− χ{|hx|<∞}f
3(hx)hxx)vψx dxdt,

∫∫
QT

κεvε,xψ dxdt →
ε→0

∫∫
QT

(2Φ′(hx)− χ{|hx|<∞}f
3(hx)vxhxx)ψ dxdt.

By (47), (63), and

∥vxx∥2 ⩽ C∥vxxx∥
3
5
2 ∥vx∥

2
5
1 , ∥vx∥2 ⩽ C∥vxxx∥

1
5
2 ∥vx∥

4
5
1 ,

we have

ε
∣∣∣∫∫
QT

vxxx(vxxψ + 2vxψx + vψxx) dxdt
∣∣∣

⩽ ε

T∫
0

∥vxxx∥2∥vxx∥2∥ψ∥∞ dt

+ 2ε

T∫
0

∥vxxx∥2∥vx∥2∥ψx∥∞ dt+ ε

T∫
0

∥vxxx∥2∥ψxx∥2∥v∥L∞(QT ) dt

⩽ C ε
1
5 ∥ε 1

2 vxxx∥
8
5

L2(QT )∥vx∥
2
5

L∞(0,T ;L1(Ω))∥ψ∥L5(0,T ;L∞(Ω))
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+ C ε
2
5 ∥ε 1

2 vxxx∥
6
5

L2(QT )∥vx∥
4
5

L∞(0,T ;L1(Ω))∥ψx∥
L

5
2 (0,T ;L∞(Ω))

+ ε
1
2 ∥ε 1

2 vxxx∥L2(QT )∥ψ∥L2(0,T ;H2(Ω)) ⩽ C ε
1
5 .

By (45), {uε}ε>0 is uniformly bounded in L2(QT ), and {uε,x}ε>0 is uniformly
bounded in L2({v > µ}) for any µ > 0. Therefore, we have

uε →
ε→0

u weakly in L2(QT ), (67)

uε,x →
ε→0

ux weakly in L2({v > µ}), (68)

uε →
ε→0

u strongly in L2({v > µ}) and a. e. in {v > µ}. (69)

By (62) and (68), we obtain∫∫
{v>µ}

vεuε,xψx dxdt →
ε→0

∫∫
{v>µ}

vuxψx dxdt.

On the other hand, if ε is sufficiently small (depending on µ), then by (45), we
arrive at ∣∣∣∫∫

{v⩾µ}

vεuε,xψx dxdt
∣∣∣ ⩽ C µ

1
2

(∫∫
QT

vεu
2
ε,x dxdt

) 1
2

⩽ C µ
1
2 .

From here, since µ > 0 is arbitrary, we take ε→ 0 and deduce that∫∫
QT

vεuε,xψx dxdt →
ε→0

∫∫
QT

χ{v>0}v uxψx dxdt.

Similarly, using (62), (69) and (45), we arrive at∫∫
QT

vεu
2
εψx dxdt →

ε→0

∫∫
QT

χ{v>0}vu
2ψx dxdt.

By (62) and (67), we get

uεvε →
ε→0

uv weakly in L2(QT ),

and therefore we have ∫∫
QT

uεvεψx dxdt →
ε→0

∫∫
QT

uvψx dxdt.

Using the obtained convergence results, we pass to the limit as ε → 0 in (41) and
(42), with δ = η = 0. As a result, we obtain a weak solution (h, u) in the sense of
Definition 2.2.

4. Travelling wave solutions. Next, we focus on the travelling wave solutions to
the control-volume model. Specifically, we look for a solution to (10)– (11) in the
form:

u(x, t) = U(ξ), v(x, t) = V (ξ) = H2(ξ)− 1, where ξ = x− s t,

where s is the propagation speed. Substituting the ansatz into (10)– (11), we obtain
the system of travelling wave ODEs for (U(ξ), V (ξ)) for 0 ⩽ ξ ⩽ L,

−sU ′ + aU U ′ + b κ′ = c
(V U ′)′

V
+ 1− U

g(H)
, (70)

−s V ′ + a(U V )′ = 0 (71)
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subject to the L-periodic boundary conditions. We also impose the following mass
constraint

L∫
0

H2(ξ) dξ = M > 0,

where M is related to the mass M defined in (12) by M = M + L. We will look
for L (depending on M) such that V (ξ) > 0 for ξ ∈ (0, L) and U are continuous
functions.

To study the structure of travelling wave solutions, first we consider a general
travelling wave solution that satisfies the periodic boundary condition

V (0) = V (L) > 0. (72)

From (71) it follows that
−V (s− aU) = C0, (73)

which implies that

U = Uc +
C0

a V
∀C0 ∈ R1, where Uc :=

s

a
. (74)

Lemma 4.1. There exist L > 0, s and C0 ̸= 0 such that the problem (70)–(71) has
at least one periodic (non-trivial) solution (H,U) satisfying

H(0) = H(L) > 1, H ′(0) = H ′(L) = 0.

Proof of Lemma 4.1. From (70) it follows that[
b κ+ a

2 (U − Uc)
2
]′
= c (V U ′)′

V + 1− U
g(H) ,

whence, due to (74), we obtain[
b κ+

C2
0

2a V
−2

]′
= − cC0

a
1
V

(
V ′

V

)′
+ 1− Uc

g(H) −
C0

a V g(H) . (75)

Let C0 ̸= 0. Then we have[
Hf(H ′)− C2

0

4abV
−1

]′
= (C1 −G(ξ))HH ′ ∀C1 ∈ R1, (76)

where

G(ξ) := b−1

ξ∫
ξ0

(
Uc

g(H(y)) +
C0

a V (y)g(H(y)) − 1 + cC0

a
1
V

(
V ′

V

)′)
dy.

By imposing the periodicity G(0) = G(L), we obtain

Uc

L∫
0

dy
g(H(y)) +

C0

a

L∫
0

(
1

V (y)g(H(y)) + c V ′2(y)
V 3(y)

)
dy = L. (77)

Integrating (76), we deduce that

f(H ′) = A(ξ)H +B(ξ)H−1 +
C2

0

4abH
−1V −1, (78)

where

A(ξ) = C1 − 1
2G(ξ), B(ξ) = C2 +

1
2

ξ∫
ξ0

G′(y)H2(y) dy
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and Ci for i = 1, 2 are arbitrary constants such that A(0) = A(L) and B(0) = B(L).
From B(0) = B(L), it follows that

Uc

L∫
0

H2(y)dy
g(H(y)) + C0

a

L∫
0

( H2(y)
V (y)g(H(y)) + c V ′2(y)

V 3(y)

)
dy = M. (79)

Therefore, solving system (77), (79) for Uc and C0, we find that

Uc =
1

Z

(
L

L∫
0

H2(y)dy
V (y)g(H(y)) −M

L∫
0

dy
V (y)g(H(y)) + c(L−M)

L∫
0

V ′2(y)
V 3(y) dy

)
,

C0 = − a

Z

(
L

L∫
0

H2(y)dy
g(H(y)) −M

L∫
0

dy
g(H(y))

)
,

where

Z =
( L∫
0

dy
g(H(y))

)( L∫
0

H2(y)dy
V (y)g(H(y))

)
−
( L∫
0

H2(y)dy
g(H(y))

)( L∫
0

dy
V (y)g(H(y))

)

− c
( L∫
0

V (y)dy
g(H(y))

)( L∫
0

V ′2(y)
V 3(y) dy

)
.

As a result, by (78) we arrive at

H ′2(ξ) =
1−

[
A(ξ)H +B(ξ)H−1 +

C2
0

4abH
−1V −1

]2
[
A(ξ)H +B(ξ)H−1 +

C2
0

4abH
−1V −1

]2 .

Furthermore, if we select Ci for i = 1, 2 such that A(0) = B(0) = 0, then we have
H ′(0) = H ′(L) = 0 provided that H(0) = H(L) > 1 satisfy the following equation

H(0)(H2(0)− 1) =
C2

0

4ab ,

which has one solution if C0 ̸= 0.

Next, we consider a special case when the film profile touches down to zero at
the boundary. That is, we assume that

V (0) = V (L) = 0, or equivalently, H(0) = H(L) = 1. (80)

From (73) and (80), we obtain C0 = 0, and U(ξ) becomes a trivial solution

U ≡ Uc :=
s

a
. (81)

Lemma 4.2. There exist L > 0 and s such that the problem (70)–(71) has at least
one periodic solution (H,U) that satisfies

H(0) = H(L) = 1, H ′(0) = H ′(L),

where the average fluid film radius

M̄ :=
M

L
= 1 +

L∫
0

H2(y)−1
g(H(y)) dy

L∫
0

dy
g(H(y))

. (82)
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Remark 4.3. If g(H) = H2 − 1 (the plug flow case), then (82) implies that

M̄ = 1 +
s

a
.

Proof of Lemma 4.2. Since U is a trivial solution satisfying (81), the ODE (70)
reduces to

b κ′ = 1− Uc

g(H)
.

Using the relation

κ = f(H ′)H−1 − f3(H ′)H ′′ =
(Hf(H ′))′

HH ′ ,

we obtain

b

[
(Hf(H ′))′

HH ′

]′
= 1− Uc

g(H)
. (83)

Integrating (83) once, we have
(Hf(H ′))′

HH ′ = F (ξ) + C1, (84)

where

F (ξ) := b−1

ξ∫
ξ0

(
1− Uc

g(H(y))

)
dy.

By periodicity, we find that F (0) = F (L) which implies

Uc =
( 1

L

L∫
0

dy

g(H(y))

)−1

.

From (84), we deduce that

f(H ′) = A(ξ)H +B(ξ)H−1, (85)

where

A(ξ) = C1 +
1
2F (ξ), B(ξ) = C2 − 1

2

ξ∫
ξ0

H2(y)F ′(y) dy,

and Ci for i = 1, 2 are arbitrary constants. We note that a necessary condition for
the existence of real-valued solutions to the ODE (85) is 0 ⩽ A(ξ)H+B(ξ)H−1 ⩽ 1.
By periodicity, we find that

L∫
0

(
1− Uc

g(H(y))

)
dy =

L∫
0

H2(y)
(
1− Uc

g(H(y))

)
dy,

whence we get

M = L+ Uc

L∫
0

H2(y)−1
g(H(y)) dy = L+

(
1
L

L∫
0

dy
g(H(y))

)−1
L∫

0

H2(y)−1
g(H(y)) dy.

Hence, M̄ = M satisfies

M̄ = 1 +

L∫
0

H2(y)−1
g(H(y)) dy

L∫
0

dy
g(H(y))

.
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Moreover, by (85) we arrive at

[H ′]2 =
1− [A(ξ)H +B(ξ)H−1]2

[A(ξ)H +B(ξ)H−1]2
.

Furthermore, if we select Ci for i = 1, 2 such that A(0) = B(0) = 0, then we have
H ′(0) = H ′(L) = ∞.

In section 5, we present numerical studies of travelling wave solutions discussed
in Lemma 4.1 that do not touch down to zero. Since we do not observe any PDE
solution to the system (6) – (9) that leads to a touch-down singularity in finite time,
we leave the discussion of the traveling wave solution that touches down to zero, as
considered in Lemma 4.2, for future work.

5. Numerical studies. In this section, we numerically investigate the coupled
PDE system (6) – (9) to explore the fibre coating dynamics and verify the analytical
results in previous sections. Following the work of Ruan et al. [27], we specify the
form of the function g(h) based on two models - the plug flow model and the laminar
flow model. For the plug flow model, we set g(h) based on the form in (4). For the
laminar flow model, the function g(h) takes the form in equation (5).

Firstly, we numerically investigate the travelling wave solutions (H(ξ), U(ξ))
that satisfy the coupled ODE system (70) - (71) with the mass constraint (12),∫ L

0
V (ξ) dξ =

∫ L

0
(H2(ξ) − 1) dξ = M . We apply Newton’s method to solve this

nonlinear eigenvalue problem, where the speed s is treated as an unknown vari-
able. The coupled differential equations are discretized for 0 ≤ ξ ≤ L with periodic
boundary conditions on H and U by second-order centered finite differences. An
additional constraint H(ξ∗) = H∗ for some 0 ≤ ξ∗ ≤ L is imposed to guarantee the
local uniqueness of the solution.

Figure 2 presents typical travelling wave solutions (H(ξ), U(ξ)) corresponding to
two cases for the plug flow model and two cases for the laminar flow model:

(a) Plug flow: a = 0.2, b = 10, c = 1 with travelling speed s = 1.396
(b) Plug flow: a = 0.4, b = 12, c = 3 with travelling speed s = 2.517;
(c) laminar flow a = 1.5, b = 13, c = 4 with travelling speed s = 1.482;
(d) laminar flow a = 0.1, b = 11, c = 4 with travelling speed s = 0.1.

The choices of the parameters a, b, and c for these cases correspond to the typical
traveling waves simulated and discussed in [27]. These parameter values result
in typical traveling wave solutions for both plug flow and laminar flow models of
varying magnitudes. A fixed domain size L = 20 and mass constraint M = 84.8 are
set for all cases. The profiles are shifted so that the maximum of the droplet peaks
are located at ξ = L/2. This comparison shows that in a fixed domain with equal
volumes, the travelling waves for the plug flow model have more prominent peaks
and higher velocity magnitude than those obtained from the laminar flow model.

Next, we study the transient PDE solutions of the governing model (6) – (9) and
verify the derived energy and entropy estimates in previous sections. To numeri-
cally solve the coupled fourth-order PDEs, we use the Keller box method [20] to
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Figure 2. Typical travelling wave profiles (left) H(ξ) and (right)
U(ξ) for two plug flow cases ((a) and (b)) and two laminar flow
cases ((c) and (d)).

decompose the model into a system of first-order differential equations,

k = hx, p = kx, w = ux,

ut + a

(
u2

2

)
x

+ b
[
f(k)h−1 − f3(k)p

]
x
= c

[(h2 − 1)w]x
h2 − 1

+ 1− u

g(h)
,

2hht + a[u(h2 − 1)]x = 0.

(86)

Starting from the initial fluid film radius and the initial velocity

h(x, 0) = h0 + 0.1 sin(2πx/L), u(x, 0) = g(h(x, 0)), (87)

we solve the system (86) using fully implicit second-order centered finite differences
over the domain 0 ⩽ x ⩽ L, with periodic boundary conditions imposed on both u
and h. Here, we follow the work of Ruan et al. [27], using the axial velocity profile
g(h(x, 0)) as the initial velocity profile. For all PDE simulations, we keep the domain
size L = 20 and h0 = 2.29, so that the mass M = 84.8. The values chosen for h0
and L correspond to those used in a experimental comparison conducted in [27].

The top two plots in Figure 3 show the dynamics of (h(x, t), u(x, t)) for the
plug flow case, where the PDE solution converges to a travelling wave solution
(H(ξ), U(ξ)) that satisfies the ODE system (70) – (71) with the velocity s = 1.396.
The solution profiles are shifted by x → x − xmax(t) + L/2, where xmax(t) is the
location of the peaks of the travelling waves in time, so that the peaks are aligned
as the wave evolves and travels to the right. The system parameters are given by
a = 0.2, b = 10, c = 1 with g(h) = h2−1 in (4), and the traveling wave corresponds
to the case (a) presented in Fig. 2.

We also numerically verify the analytically derived energy and entropy estimates.
In Figure 3 (bottom left), we show that the energy estimate (18)

E(t) + I(t) < C0(t)

is satisfied as the transient PDE solution approaches the travelling wave profile in
time, where I(t) = c

∫∫
Qt

vu2x dxdt+
∫∫
Qt

u2v
g(h) dxdt. Fig. 3 (bottom right) presents the

numerically approximated integral
L∫
0

v2
x

v dx and the upper bound C3(t) defined in
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Figure 3. Dynamics of plug flow with (top left) h(x, t) and (top
right) u(x, t) starting from initial profiles (87) with h0 = 2.29,
showing that the PDE solution approaches a travelling wave solu-
tion (H(ξ), U(ξ)) satisfying equations (70) – (71) with the velocity
s = 1.396. The solutions are shifted so that the maximums are
aligned. The corresponding energy (bottom left) satisfies the es-
timate (18), E(t) + I(t) < C0(t), where I(t) = c

∫∫
Qt

vu2x dxdt +∫∫
Qt

u2v
g(h) dxdt. The entropy (bottom right) satisfies the estimate

(23),
∫ L

0
v2x/v dx < C3(t). The system parameters are L = 20,

a = 0.2, b = 10, c = 1 with g(h) = h2 − 1.

(24) for the dynamic PDE solution, indicating that the entropy estimate (23),

L∫
0

v2
x

v dx < C3(t)

is also satisfied in time. Here, we set ϵ = 0.5 in the definition of C3(t) in (24), and
this estimate holds for any ϵ ∈ (0, 1).

Figure 4 shows a similar numerical study for the laminar flow case with the
system parameters a = 0.1, b = 11, and c = 4, and the function g(h) is given by (5).
In this case, the laminar flow fluid radius h(x, t) and velocity u(x, t) starting from
identical initial data used in Fig. 3 converge to a slowly-moving travelling wave
parametrized by (H(ξ), U(ξ)) with the speed of propagation s = 0.1 (see Fig. 4
(top panel)). The obtained travelling wave corresponds to the case (d) presented
in Fig. 2. Similar to the plug-flow case shown in Fig. 3, the laminar flow solution
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Figure 4. Dynamics of laminar flow (top left) h(x, t) and (top
right) u(x, t) starting from initial profiles (87) with h0 = 2.29,
showing that the PDE solution approaches a travelling wave solu-
tion (H(ξ), U(ξ)) satisfying equations (70) - (71) with the veloc-
ity s = 0.1. The solutions are shifted so that the maximums are
aligned. Again, the corresponding energy plot (bottom left) shows
that the energy satisfies the estimate (18), E(t) + I(t) < C0(t),
where I(t) = c

∫∫
Qt

vu2x dxdt +
∫∫
Qt

u2v
g(h) dxdt. The entropy (bottom

right) satisfies the estimate (23),
∫ L

0
v2x/v dx < C3(t). The system

parameters are L = 20, a = 0.1, b = 11, c = 4, g(h) = I(h)/(h2−1).

also satisfies the energy and entropy estimates, as demonstrated in Fig. 4 (bottom
panel).

6. Conclusions. The main contribution of this paper is the proof of the existence
of weak solutions to the coupled PDE system (6)–(7) for the control-volume fibre
coating model. This result establishes the analytical foundation for the control-
volume model in real-world applications. The a priori energy-entropy functional
estimates used in the proof also provide a possible pathway for showing the reg-
ularity of solutions in similar coupled PDE systems in other fibre coating models
[29, 17]. In contrast to the work of Bresch et al. [6] and Kitavtsev et al. [21], for
the proof of existence, we use another approximation of the continuity equation by
the family of thin film equations (see (32)). This new idea can be applied for the
analysis of other systems with the same structure. Typical numerical simulations
of the PDE model are presented to support the analytical results, with a focus on
the travelling wave solutions. For future studies, it would be interesting to further
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investigate the convergence criteria of PDE solutions to travelling wave solutions
and other coherent structures.
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