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Abstract

The modified Poisson-Boltzmann (MPB) equations are often used to describe the equilib-

rium particle distribution of ionic systems. In this paper, we propose a fast algorithm to 

solve the MPB equations with the self Green’s function as the self-energy in three dimen-

sions, where the solution of the self Green’s function poses a computational bottleneck due 

to the requirement of solving a high-dimensional partial differential equation. Our algo-

rithm combines the selected inversion with hierarchical interpolative factorization for the 

self Green’s function, building upon our previous result of two dimensions. This approach 

yields an algorithm with a complexity of O(N log N) by strategically leveraging the locality 

and low-rank characteristics of the corresponding operators. Additionally, the theoretical 

O(N) complexity is obtained by applying cubic edge skeletonization at each level for thor-

ough dimensionality reduction. Extensive numerical results are conducted to demonstrate 

the accuracy and efficiency of the proposed algorithm for problems in three dimensions.
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1 Introduction

Electrostatic interactions play a crucial role in various systems at the nano-/micro-scale 

such as biomolecules, supercapacitors, and charged soft matter [2, 8, 19, 34]. To pro-

vide a continuum description of charged systems, the Poisson-Boltzmann (PB) theory 

[5, 13], based on the mean-field assumption, is a typical implicit solvent model for 

describing the distribution of ions. However, this theory falls short in capturing many-

body characteristics that are essential for describing electrostatic many-body behaviors 

in various systems, such as ion correlation and dielectric fluctuation.

Various modified theories have been proposed [1, 3, 25] to incorporate many-body 

effects, along with many numerical methods [23, 24, 40]. The Gaussian variational field 

theory [30, 32] presents a promising approach to account for long-range Coulomb corre-

lation, including dielectric variation [27, 29, 31]. This theory considers the self-energy 

of a test ion as a correction to the mean-field potential energy, which is described by 

the self Green’s function. By taking into account the self-energy correction, the effect 

of dielectric inhomogeneity can be incorporated [7, 17, 28, 36]. The self Green’s func-

tion used in the field theory satisfies the generalized Debye-Hückel (GDH) equation. 

However, the numerical solution of the GDH equation is computationally expensive 

due to its high spatial dimensions. Based on the finite-difference discretization, the self 

Green’s function corresponds to the diagonal of the inverse of the discrete elliptic differ-

ential operator in the GDH equation. The aim of our study is to calculate the self-energy 

in the GDH equation. This procedure serves to accelerate the numerical solution of the 

modified Poisson-Boltzmann (MPB) equations. To achieve this, an efficient algorithm is 

necessary for determining the diagonal elements of the matrix inverse.

One straightforward method for extracting the diagonal of the matrix inverse is to 

initially compute the entire matrix and then simply extract the diagonal. However, this 

naive inversion approach has a computational complexity of O(N3) , which is equivalent 

to that of matrix factorization. In the realm of electronic structure and electrostatic cor-

relation, significant efforts are dedicated to devising efficient methods for obtaining the 

diagonal of the matrix inverse. A promising approach involves the utilization of spar-

sity and low-rankness of the matrix, leading to the development of fast algorithms. The 

selected inversion method, introduced by Lin et  al. [20–22], offers an algorithm with 

a computational complexity of O(N3∕2) for 2D problems and O(N2) for 3D problems. 

This method involves a hierarchical decomposition of the computational domain � and 

consists of two phases. Constructing the hierarchical Schur complements of the interior 

points for the blocks of the domain in a bottom-up pass, and then extracting the diago-

nal entries efficiently in a top-down pass by taking advantage of the hierarchical local-

ity of the inverse matrices. To enhance the efficiency of this method, Lin et al. [21, 22] 

exploited a supernode left-looking LDL factorization of the matrix, which significantly 

reduces the prefactor in computational complexity. Additionally, Xia et al. [38] applied 

structured multifrontal LDL factorizations to achieve O(Npoly(log N)) complexity.

Recently, the hierarchical interpolative factorization (HIF) [15, 16] has been pro-

posed, combining multifrontal [4, 9, 10, 26] with recursive dimensional reduction 

through frontal skeletonization. This approach aims to generate an approximate general-

ized LU/LDL decomposition with a linear or quasi-linear estimated computational cost. 

In contrast to previous methods [11, 12, 14, 33, 37] that utilize fast structured meth-

ods to work implicitly with entire fronts while keeping them implicitly, the HIF offers 

the advantage of explicit front reduction. Consequently, the HIF provides significant 
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savings in terms of computational resources required for solving 3D problems, making 

it well-suited for large-scale problems.

A more recent development in this area is the selected inversion with hierarchical inter-

polative factorization (SelInvHIF) [35]. In the SelInvHIF, the supernode left-looking LDL 

factorization is replaced with the hierarchical interpolative factorization, and the extraction 

phase is modified to approximate the diagonal of the matrix inverse with O(N) operations 

for 2D problems. In this work, we further extend the SelInHIF to 3D problems with the 

O(N log N) complexity by face skeletonization and the theoretical O(N) complexity using 

skeletonizing cubic faces and then edges. We remark that, in 3D problems, the increase in 

the number of degrees of freedom (DOFs) is significant, resulting in more complex interac-

tions compared to 2D problems. Moreover, the numerical method of the PB equations for 

3D problems is more practical for various applications in biophysics and materials science. 

For convenience, the former algorithm is still referred to as the SelInvHIF, while the latter is 

named “SelInvHIF with edge skeletonization”. To demonstrate the computational complex-

ity of the algorithm, we provide comprehensive theoretical derivations and present various 

numerical examples. In the following section, we introduce the MPB equation, as it serves 

as a suitable problem for testing the scaling of the algorithm in the context of 3D problems.

The remaining sections of the paper are organized as follows. Section  2 introduces 

the concept of skeletonization in matrix factorization and provides a detailed presenta-

tion of the SelInvHIF algorithm and the SelInvHIF with edge skeletonization. Section 3 

focuses on the MPB equation and the corresponding iterative method. Section 4 performs 

numerical results to demonstrate the performance of the SelInvHIF algorithm for 3D prob-

lems. Finally, we conclude the paper and discuss future work in Sect. 5.

2  The SelInvHIF Algorithm

In this section, we provide a detailed explanation of the SelInvHIF algorithm, followed by 

the introduction of the SelInvHIF with edge skeletonization in Sect. 2.3. The SelInvHIF 

algorithm consists of two main steps. In the first step, hierarchical Schur complements are 

constructed for the diagonal blocks of the matrix A, which is discretized uniformly from 

the differential operator on a rectangular domain � . In the subsequent step, the diagonal 

elements of the inverse matrix A
−1 are extracted from the constructed hierarchy of Schur 

complements. Before the introduction of the formal description of the SelInvHIF algo-

rithm, we give a brief overview of the skeletonization of matrix factorization.

To establish the foundation for our algorithm, let us introduce some fundamental symbols 

and present the necessary theorems. Given a matrix A, Apq, or A(I, J) is a submatrix with 

restricted rows and columns, where the p, q, r, I, and J denote the ordered sets of indices. For 

the sake of simplicity, the matrix A is assumed to be symmetric and nonsingular, given by

which is defined over the indices (p, q, r) . In this matrix structure, p is related to the DOFs 

of the interior points on domain D (which is a subdomain of � ), q to the DOFs on the 

boundary �D , and r to the external domain �∕D . Typically, the DOFs q separates p from 

r which is often very large. Let G = A
−1 and G

1
= A

−1

1
 . Here, Gpp represents the submatrix 

(1)A =

⎡
⎢
⎢
⎣

App AT

qp

Aqp Aqq AT

rq

Arq Arr

⎤
⎥
⎥
⎦
,
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of G corresponding to the row and column index set p, and A
1
 is the Schur complement of 

App , i.e.,

It is noted that one can also discretize the operator on an irregular domain using the finite 

element method. The points in each subdomain correspond to a small matrix and form a 

stiffness matrix through the relationship of the nodes. The stiffness matrix is similar to (1), 

and our method can be also employed to solve it.

A crucial observation in the selected inversion method [20], which is employed as 

a preliminary tool in the SelInvHIF, is based on the fact that to compute Gpp , only the 

values of G
1
 involving interactions with the direct matrix A, (G

1
)qq , are required instead 

of the entire inverse of the Schur complement. This implies that the determination of 

Gpp relies on (G
1
)qq . Furthermore, the diagonal entry (G

1
)qq can be calculated by uti-

lizing a diagonal block of the inverse of the Schur complement of a submatrix of A
1
 . 

By recursively applying this approach, an efficient algorithm for computing Gpp can be 

derived. Essentially, one can compute a diagonal block of A−1 by using a diagonal block 

of the inverse of the Schur complement of a submatrix of A . By repeatedly applying this 

observation, a recursive algorithm is developed to compute the diagonal entries of A
−1 

efficiently.

The interpolative decomposition (ID) [6] for low-rank matrices, based on Lemma 1 

below, is the second frequently used tool in the SelInvHIF. Suppose a disjoint partition 

of q = q̂ ∪ q̌ with |q̂| = k is used. The sets q̂ and q̌ are referred to as the skeleton and 

redundant indices, respectively.

Lemma 1 Assume A ∈ ℝ
m×n with rank k ⩽ min(m, n) and q be the set of all column indices 

of A. Then there exists a matrix Tq ∈ ℝ
k×(n−k) such that A

∶,q̌ = A
∶,q̂Tq.

Specifically, the redundant columns of the matrix A can be represented by the skel-

eton columns and the associated interpolation matrix from Lemma 1, and the following 

formula holds:

Equation (2) indicates that the sparsification of the matrix A is feasible by multiplying a 

triangular matrix formed from the interpolation matrix Tq in Lemma 1.

The utilization of (2) facilitates the elimination of redundant DOFs of a dense matrix 

featuring low-rank off-diagonal blocks, resulting in a structured matrix of the form (1). This 

idea is referred to as block inversion with skeletonization and is discussed in Lemma 2, 

where one uses A
∶,q̂Tq to approximate A

∶,q̌ for the purpose. It is worth noting that the idea 

of skeletonization was originally introduced in the HIF method [15].

Lemma 2 Let the symmetric matrix A have the following form:

A
1
=

[

Aqq − AqpA−1

pp
AT

qp
AT

rq

Arq Arr

]

.

(2)A

[

I

−Tq I

]

=

[

A
∶,q̌ A

∶,q̂

]

[

I

−Tq I

]

=

[

0 A
∶,q̂

]

.

A =

[

App AT

qp

Aqp Aqq

]

,
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where Aqp is numerically low-rank. Let the interpolation matrix Tp satisfy Aqp̌ ≈ Aqp̂Tp with 

p = p̂ ∪ p̌ . Without loss of generality, one can approximately rewrite

and define

Let Ā ≜ QT

p
AQp . Then one has

with Bp̌p̌ = Ap̌p̌ − TT

p
Ap̂p̌ − AT

p̂p̌
Tp + TT

p
Ap̂p̂Tp and Bp̂p̌ = Ap̂p̌ − Ap̂p̂Tp.

Further suppose that Bp̌p̌ is nonsingular. Let G = A
−1 , Ḡ = Ā

−1 , G1 = Gp̂∪q,p̂∪q , and Ā
1
 

be the Schur complement of Bp̌p̌ , i.e.,

and Ḡ
1
= Ā

−1

1
 . Then, by (3) the following formulas hold:

Lemma 2 demonstrates that computing Gp̌p̌ only requires the values of Ḡ
1
 associated 

with row and column indices in p̂ , rather than the entire inverse of the Schur comple-

ment. Consequently, Gp̌p̌ is determined by (Ḡ
1
)p̂p̂ , a diagonal block of Ā

−1

1
 , which has a 

smaller size than the original matrix A. Despite Ā
1
 may be dense if it has low-rank off-

diagonal blocks, then the same approach used in (3) can be applied to compute a diago-

nal block of Ḡ
1
 , resulting in a recursive algorithm that efficiently computes the diagonal 

blocks of G.

This skeletonization technique was proposed by Ho and Ying [15] and is based on 

the observation that the Schur complements have specific low-rank structures. Specifi-

cally, A−1

pp
 , obtained from a local differential operator, often features low-rank off-diagonal 

blocks. Additionally, numerical experiments illustrate that the Schur complement inter-

action Aqq − AqpA−1

pp
AT

qp
 also possesses the same rank structure. This observation may be 

comprehended through the interpretation of the matrix A−1

pp
 as the discrete Green’s function 

associated with the elliptic PDE. Due to the locality property, it is well established that 

A =

⎡
⎢
⎢
⎢
⎣

Ap̌p̌ AT

p̂p̌
AT

qp̌

Ap̂p̌ Ap̂p̂ AT

qp̂

Aqp̌ Aqp̂ Aqq

⎤
⎥
⎥
⎥
⎦

Qp =

⎡
⎢
⎢
⎣

I

−Tp I

I

⎤
⎥
⎥
⎦
.

(3)Ā =

⎡
⎢
⎢
⎣

Bp̌p̌ BT

p̂p̌

Bp̂p̌ Ap̂p̂ AT

qp̂

Aqp̂ Aqq

⎤
⎥
⎥
⎦

Ā1 =

[

Ap̂p̂ − Bp̂p̌B−1

p̌p̌
BT

p̂p̌
AT

qp̂

Aqp̂ Aqq

]

,

Gp̌p̌ = Ḡp̌p̌ = B−1

p̌p̌
+

[

−B−1

p̌p̌
BT

p̂p̌
0

]

Ḡ1

[

−B−1

p̌p̌
BT

p̂p̌
0

]T

,

G1 =

[

TpB−1

p̌p̌
TT

p

0

]

+

[

TpB−1

p̌p̌
BT

p̂p̌
+ I

I

]

Ḡ1

[

Bp̂p̌B−1

p̌p̌
TT

p
+ I

I

]

.
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such a Green’s function tends to exhibit off-diagonal blocks of low rank in numerical anal-

ysis. Furthermore, this analogous rank structure effectively extends to the Schur comple-

ment Bqq . In the following subsection, we employ Lemma 2 to generate hierarchical Schur 

complements for diagonal blocks of A.

2.1  Hierarchy of Schur Complements

To achieve a hierarchical disjoint partition for the differential operator in domain 

� , bipartitioning is performed in each dimension, resulting in leaf domains of 

size r
0
× r

0
× r

0
 and a total integer level L. Domain � is defined by a grid size of 

3
√

N ×
3
√

N ×
3
√

N = r
0
2

L−1
× r

0
2

L−1
× r

0
2

L−1 and is associated with a matrix A of size 

N × N . Furthermore, to take advantage of the low-rankness of the matrix A, L − 1 frac-

tional levels are introduced between L integer levels. The hierarchy construction of Schur 

complements is carried out at levels 1, 3/2, 2, 5/2, ⋯ , and L.

Let us consider the case of r
0
= 6 and L = 3 to describe the process in detail without loss 

of generality. Initially, the entire domain is regarded as the top level (Level 3) and is par-

titioned into eight blocks at the next level (Level 2). Each block is further partitioned into 

eight sub-blocks at a lower level (Level 1), resulting in a total of 2L−1
× 2

L−1
× 2

L−1
= 64 

blocks at the bottom level, as illustrated in Fig. 1. In addition, one fractional level is consid-

ered between two consecutive integer levels, and the low-rank matrices that represent the 

fronts between domain blocks are reduced into skeletons by this level.

2.1.1  Bottom Level � = 1

The initial index set J
0
 follows the row-major ordering, while domain � is hier-

archically partitioned into disjoint blocks at level � = 1 . Each block has a size of 

2
L−�

× 2
L−�

× 2
L−�

= 4 × 4 × 4 . All points within each block are classified into interior 

and boundary points. The interior points, denoted as I1;ijk (shown in light blue in Fig. 1), are 

not related to the points in other blocks. On the other hand, the boundary points, denoted 

as J1;ijk , are connected to neighboring points in other blocks. Here, i, j, k = 1, 2, 3, 4 are the 

indices of the blocks in each dimension. The differential operators have a locality property, 

which implies that A(I1;ijk, I1;i�j�k� ) = 0 (or A(I1;ijk, J1;i�j�k� ) = 0 ) if (i, j, k) ≠ (i�, j�, k�).

The interior points are removed using the block inversion. One can then focuses the 

problem on the boundary points. To achieve this, one uses the proper row and column per-

mutations to the matrix A defined with the index set J
0
 to place all of the interior points in 

Fig. 1  The DOFs in the bottom 

level. In this level, the domain is 

divided into 64 blocks. The inte-

rior points are indicated by light 

blue, while the boundary points 

are indicated by black (blue or 

gray). Note that the prefactor is 

reduced due to the share faces 

(edges)
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front of the boundary points. The matrix A can be permuted into a new matrix by a permu-

tation matrix P
1
 as follows:

with the index set (I
1
|J

1
) , U1 = A1(I1, I1) , V1 = A1(J1, I1) , and W1 = A1(J1, J1) . Here I

1
 rep-

resents the indices of all interior points, denoted as I1 = I1;111I1;121 ⋯ I1;444 , and J
1
 repre-

sents the indices of all boundary points, denoted as J1 = J1;111J1;121 ⋯ J1;444.

Due to the locality property, both U
1
 and V

1
 are block diagonal matrices. Figure 1 

shows that interior points in different blocks are not connected. Boundary points in 

each block are only connected to the interior points in the same block. Furthermore, U
1
 

and V
1
 are of the following form:

with U1;ijk = A1(I1;ijk, I1;ijk) and V1;ijk = A1(J1;ijk, I1;ijk) for i, j, k = 1, 2, 3, 4.

Using the Gaussian elimination, one can obtain

Since U
1
 is a block diagonal matrix with each diagonal block of a size (r

0
− 2)3 × (r

0
− 2)3 , 

its inverse can be computed directly.

By using the block diagonal matrices V
1
 and U−1

1
 , V

1
U

−1

1
 is also a block diagonal 

matrix and can be computed independently within each block,

Similarly, the block diagonal matrix V
1
U

−1

1
V

T

1
 is expressed as

Combining (4) and (5), one has

where G
1
= (W

1
− V

1
U

−1

1
V

T

1
)
−1

 is the inverse of the Schur complement of U
1
 . Conse-

quently, by removing interior points from the matrix A, one is able to simplify the problem.

(4)A
1
= P

−1

1
AP

1
=

[

U
1

V
T

1

V
1

W
1

]

U1 =

⎡
⎢
⎢
⎢
⎣

U1;111

U1;121

⋱

U1;444

⎤
⎥
⎥
⎥
⎦

, V1 =

⎡
⎢
⎢
⎢
⎣

V1;111

V1;121

⋱

V1;444

⎤
⎥
⎥
⎥
⎦

(5)A
−1

1
= L

T

1

[

U
−1

1

(W
1
− V

1
U

−1

1
V

T

1
)−1

]

L
1

with L
1
=

[

I

−V
1
U

−1

1
I

]

.

V1U
−1

1
=

⎡
⎢
⎢
⎢
⎢
⎣

V1;111U
−1

1;111

V1;121U
−1

1;121

⋱

V1;444U
−1

1;444

⎤
⎥
⎥
⎥
⎥
⎦

.

V1U
−1

1
V

T

1
=

⎡
⎢
⎢
⎢
⎢
⎣

V1;111U
−1

1;111
V

T

1;111

V1;121U
−1

1;121
V

T

1;121

⋱

V1;444U
−1

1;444
V

T

1;444

⎤
⎥
⎥
⎥
⎥
⎦

.

(6)G = P1A
−1

1
P
−1

1
= P1L

T

1

[

U
−1

1

G1

]

L1P
−1

1
,
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2.1.2  Fractional Level � = 3∕2

At this level, the objective is to obtain G
1
 , as defined in (6), for the index set J

1
 , which 

corresponds to the boundary points of the domain blocks at the first level. The domain 

� is divided into 64 blocks, resulting in a total of 384 faces in this example where L = 3 

(refer to Fig. 2a). In Fig. 2, one chooses all the skeleton points as separators as a general 

rule to clearly illustrate the concept of method. Note that in practical applications the 

distribution of skeleton points depends on the error tolerance of the ID approximation. 

A greater number of interior points as skeleton points are needed for higher accuracy in 

the ID. Each face consists of the DOFs within its corresponding area, as well as some 

DOFs located on its boundary. Moreover, a face not only interacts within its own block 

but also interacts with faces in neighboring blocks. The resulting matrix exhibits low-

rank off-diagonal blocks since the DOFs of a face only interact with a limited number of 

neighboring blocks. Furthermore, Lemma 2 is applied to skeletonize the DOFs on the 

faces in each block. An ID can be implemented to approximately select the redundant 

and skeleton DOFs within each block, and the resulting interpolation matrix is recorded 

as specified in Lemma 1. Additionally, the redundant DOFs are denoted by I3∕2;i , the 

skeleton DOFs are represented by J3∕2;i , and the associated interpolation matrix is indi-

cated by T3∕2;i.

Similar to the bottom level, an appropriate permutation matrix P
3∕2

 is designed to 

move all of the redundant points in front of the skeleton points and reindex J
1
 by the 

permutation matrix. Furthermore, the matrix W
1
− V

1
U

−1

1
V

T

1
 can be permuted into a new 

matrix by the permutation matrix P
3∕2

 as follows:

Fig. 2  a The DOFs in the level � = 3∕2 . The domain is divided into 384 faces of 64 blocks. b The DOFs 

in the level � = 2 after elimination. The domain is divided into 8 blocks. c The DOFs in the level � = 5∕2 

after skeletonization. d The DOFs in the level � = 3 . This is the top level
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with the index set (I
3∕2

|J
3∕2

) , U3∕2 = A3∕2(I3∕2, I3∕2), V3∕2 = A3∕2(J3∕2, I3∕2) , and the dense 

matrix W3∕2 = A3∕2(J3∕2, J3∕2) . Here I
3∕2

 represents the indices of all redundant points, 

denoted as I3∕2;1I3∕2;2 ⋯ I3∕2;384 , and J
3∕2

 represents the indices of all skeleton points, such 

that it can be denoted as J3∕2;1J3∕2;2 ⋯ J3∕2;384.

Denote T
3∕2

 by a block diagonal matrix

and arrange a |J
1
| × |J

1
| matrix

Thus, the new matrix is updated

where Ū
3∕2

 and V̄
3∕2

 are block diagonal matrices with

Similarly, one can obtain the following inverse by Gaussian elimination:

with

as in Lemma 2. Since −V̄
3∕2

Ū
−1

3∕2
 and V̄

3∕2
Ū

−1

3∕2
V̄

T

3∕2
 are block diagonal matrices, they can be 

computed independently within each block. Thus,

Therefore, the inversion problem is reduced to a smaller matrix W
3∕2

− V̄
3∕2

Ū
−1

3∕2
V̄

T

3∕2
 by 

eliminating the redundant DOFs as in Lemma 2.

A 3

2

= P
−1
3

2

(W
1
− V

1
U

−1

1
V

T

1
)P 3

2

=

[

U 3

2

V
T
3

2

V 3

2

W 3

2

]

T 3

2

=

⎡
⎢
⎢
⎢
⎣

−T 3

2
;1

⋱

− T 3

2
;384

⎤
⎥
⎥
⎥
⎦

Q 3

2

=

[

I

T 3

2

I

]

.

Ā 3

2

= QT
3

2

A 3

2

Q 3

2

=

[

Ū 3

2

V̄T
3

2

V̄ 3

2

W 3

2

]

,

Ū 3

2

(

I 3

2
;i
, I 3

2
;j

)

= 0, V̄ 3

2

(

J 3

2
;i
, I 3

2
;j

)

= 0, ∀i ≠ j.

Ā
−1
3

2

= L
T
3

2

[

Ū
−1
3

2

G 3

2

]

L 3

2

L 3

2

=

[

I

−V̄ 3

2

Ū
−1
3

2

I

]

, G 3

2

=

(

W 3

2

− V̄ 3

2

Ū
−1
3

2

V̄
T
3

2

)

−1

G
1
≈ P 3

2

Q 3

2

LT
3

2

[

Ū−1
3

2

G 3

2

]

L 3

2

QT
3

2

P−1
3

2
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2.1.3  Middle Level � = 2

At Level � = 2 , the domain � is divided into 2L−�
× 2

L−�
× 2

L−�
= 2 × 2 × 2 blocks, each 

consisting of interior and boundary points. Similar to the previous integer level, a permuta-

tion matrix P
2
 is used to reindex the points in J

3∕2
 into I

2
 and J

2
,

Use the same strategy as at Level 1 and denote

with

It can be observed that matrices U
2
 and V

2
 possess a block diagonal structure. Thus,

Finally, by removing the interior points, the problem can be simplified to a smaller matrix 

W
2
− V

2
U

−1

2
V

T

2
 . The DOFs remaining after elimination at Level � = 2 are depicted in 

Fig. 2b.

2.1.4  Fractional � = 5∕2

At Level � = 5∕2 , the objective is to find G
2
 indexed by J

2
 . Similarly to Level � = 3∕2 , the 

domain � is divided into 8 blocks with 48 faces. By employing the ID, one can distinguish 

the redundant DOFs I5∕2;i and the skeleton DOFs J5∕2;i in the ith face, and record the inter-

polation matrix T5∕2;i . Furthermore, a permutation matrix P
5∕2

 is used to reindex J
2
 such 

that

Denote

and a |J
2
| × |J

2
| matrix

J 3

2

P2

⟶(I2;11I2;12I2;21I2;22|J2;11J2;12J2;21J2;22) ∶= (I2|J2).

A
2
= P

−1

2

(

W 3

2

− V̄ 3

2

Ū
−1
3

2

V̄
T
3

2

)

P
2
=

[

U
2

V
T

2

V
2

W
2

]

U2 = A2(I2, I2), V2 = A2(J2, I2), and W2 = A2(J2, J2).

G 3

2

= P2L
T

2

[

U
−1

2

G2

]

L2P
−1

2
,

L2 =

[

I

−V2U
−1

2
I

]

, and G2 = (W2 − V2U
−1

2
V

T

2
)−1.

J2

P 5
2

⟶

(
I 5

2
;1

I 5

2
;2

I 5

2
;3

I 5

2
;48
|J 5

2
;1

J 5

2
;2

J 5

2
;3

J 5

2
;48

)
∶=

(
I 5

2

|J 5

2

)
.

T 5

2

=

⎡
⎢
⎢
⎢
⎣

−T 5

2
;1

⋱

− T 5

2
;48

⎤
⎥
⎥
⎥
⎦
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Then

with

Therefore,

with

It is worth noting that Ū
5∕2

 and V̄
5∕2

 are block diagonal matrices. As a result, the matrix 

inversion problem has now been reduced to W
5∕2

− V̄
5∕2

Ū
−1

5∕2
V̄

T

5∕2
 . The DOFs remaining 

after skeletonization at Level � = 5∕2 are shown in Fig. 2c.

2.1.5  Top Level � = 3

At this level, the domain � is partitioned into a single block. This means there is no partition 

at this level, as shown in Fig. 2d. Similarly, the index set J
5∕2

 is reindexed by partitioning it 

into the union of an interior index set I
3
 and a boundary index set J

3
 . This reindexing is accom-

plished using a permutation matrix P
3
 as follows:

Thus, one has

with

In this top level, the inverse of G
3
 can be computed directly because of its small size.

Q 5

2

=

[

I

T 5

2

I

]

.

Ā 5

2

= QT
5

2

P−1
5

2

(W
2
− V

2
U−1

2
VT

2
)P 5

2

Q 5

2

=

[

Ū 5

2

V̄T
5

2

V̄ 5

2

W 5

2

]

Ū 5

2

(

I 5

2
;i
, I 5

2
;j

)

= 0, V̄ 5

2

(

J 5

2
;i
, I 5

2
;j

)

= 0, ∀i ≠ j.

G
2
≈ P 5

2

Q 5

2

LT
5

2

[

Ū−1
5

2

G 5

2

]

L 5

2

QT
5

2

P−1
5

2

L 5

2

=

[

I

−V̄ 5

2

Ū
−1
5

2

I

]

and G 5

2

=

(

W 5

2

− V̄ 5

2

Ū
−1
5

2

V̄
T
5

2

)

−1

.

J 5

2

P3

⟶(I
3
|J

3
).

G 5

2

= P
3
L

T

3

[

U
−1

3

G
3

]

L
3
P
−1

3

L
3
=

[

I

−V
3
U

−1

3
I

]

and G
3
= (W

3
− V

3
U

−1

3
V

T

3
)−1
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2.1.6  The Algorithm for the Hierarchy of Schur Complements

In this section, one aims to construct a hierarchical structure of Schur complements for the 

matrix A is constructed on an 
3
√

N ×
3
√

N ×
3
√

N grid. The construction process involves divid-

ing the points in each block at each integer level into interior and boundary points. Specifi-

cally, the interior points are only involved in interactions with other points within the same 

block, prompting a reindexing and subsequent elimination of the interior points. At each frac-

tional level, face skeletonization is considered, and an ID approach is applied to distinguish 

redundant and skeleton points. Here, the redundant points only interact with other points in the 

same cell, leading to reindexing and elimination of the redundant points.

The relationships between levels are defined as follows:

Based on (7), it follows the recursive relation with the integer �,

Therefore, the hierarchy of Schur complements can be constructed from Level 1. One 

describes the steps in Algorithm 1. Note that the reindexing is implicitly included in Algo-

rithm 1, when one uses the index sets I
�;ijk and J

�;ijk or I
�;i

 and J
�;i

 for A
�
.

2.2  Extracting the Diagonals of the Matrix Inverse

Once the hierarchy of Schur complements is constructed, the next step is to extract the diago-

nals of the matrix G. It is important to note that computing the entire Schur complement G
�
 is 

not required. This is based on the following observations:

For the purpose of extracting relevant information, we begin with considering the top level 

� = L = 3 . G
5∕2

 can be calculated using the following formula with given G
3
:

The submatrices enclosed in the bracket are indexed by (I
3
|J

3
) , while G

5∕2
 is indexed by 

J5∕2 = J5∕2;1J5∕2;2 ⋯ J5∕2;48 , as a result of the permutation matrix P
3
 . However, it suffices 

(7)G
�
=

⎧
⎪
⎨
⎪
⎩

A
−1, � = 0;

(W
�
− V

�
U

−1
�

V
T
�
)−1, � is an integer;

(W
�
− V̄

�
Ū

−1
�

V̄
T
�
)−1, � is a fractional.

G
�−1 ≈ P

�−
1

2

Q
�−

1

2

LT

�−
1

2

[

Ū−1

�−
1

2

G
�−

1

2

]

L
�−

1

2

QT

�−
1

2

P−1

�−
1

2

,

G
�−

1

2

= P
�
LT

�

[

U−1

�

G
�

]

L
�
P−1

�
.

(8)

⎧
⎪⎨⎪⎩

G
�−1

�
I
�;ijkJ

�;ijk, I
�;ijkJ

�;ijk

�
is determined by G

�−
1

2

�
J
�;ijk, J

�;ijk

�
,

G
�−

1

2

�
I
�−

1

2
;iJ�− 1

2
;i, I

�−
1

2
;iJ�− 1

2
;i

�
is determined by G

�

�
J
�−

1

2
;i, J

�−
1

2
;i

�
.

G 5

2

= P
3

[

U
−1

3
+ U

−1

3
V

T

3
G

3
V

3
U

−1

3
− U

−1

3
V

T

3
G

3

−G
3
V

3
U

−1

3
G

3

]

P
−1

3
.
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to focus on G5∕2(J5∕2;i, J5∕2;i) instead of the off-diagonal blocks to extract the diagonal ele-

ments of G
5∕2

 . As a consequence, we can represent G
5∕2

 as

G 5

2

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

G 5

2
;1

∗ ∗ ∗ ∗ ∗

∗ G 5

2
;2

∗ ∗ ∗ ∗

∗ ∗ G 5

2
;3

∗ ∗ ∗

∗ ∗ ∗ G 5

2
;4

∗ ∗

∗ ∗ ∗ ∗ G 5

2
;5

∗

∗ ∗ ∗ ∗ ∗ G 5

2
;48

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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with G5∕2;i = G5∕2(J5∕2;i, J5∕2;i), i = 1, 2,⋯ , 48.

One recovers the elements of diagonal blocks for the matrix G
5∕2

 in the previous layer. 

Furthermore, the diagonal blocks of the following G
2
 are acquired based on the observation 

of (8):

with

and

All matrices in the bracket of (9) are indexed by (I
5∕2

|J
5∕2

) . G
2
 is indexed by

due to the permutation matrix P
5∕2

.

Recalling the construction process, one can assert that T
5∕2

 , U−1

5∕2
 , and V

5∕2
 are block diago-

nal matrices and the diagonal blocks of the following matrices are both obtained:

This means that only block-block multiplication is needed to get the elements of the diago-

nal blocks H
2
 and ℌ

2
 . The computational complexity is then greatly reduced. Additionally, 

the diagonal blocks G2(J2;ijk, J2;ijk) are obtained directly.

At Level 2, one has

Similarly, the submatrices in the bracket of (10) are indexed by (I
2
|J

2
) . G

3∕2
 is indexed by 

J3∕2 = J3∕2;1 ⋯ J3∕2;384 with the permutation matrix P
2
 . Moreover, one just needs to com-

pute G3∕2(J3∕2;i, J3∕2;i) in this step.

At Level 3/2, one has

(9)G
2
≈ P 5

2

⎡
⎢
⎢
⎣

H
2

− Ū
−1
5

2

V̄
T
5

2

G 5

2

+ H
2
T

T
5

2

−G 5

2

V̄ 5

2

Ū
−1
5

2

+ T 5

2

H
2

ℌ
2

⎤
⎥
⎥
⎦
P
−1
5

2

H
2
= Ū

−1

5∕2
+ Ū

−1

5∕2
V̄

T

5∕2
G

5∕2
V̄

5∕2
Ū

−1

5∕2

ℌ
2
= T 5

2

H
2
T

T
5

2

− G 5

2

V̄ 5

2

Ū
−1
5

2

T
T
5

2

− T 5

2

Ū
−1
5

2

V̄
T
5

2

G 5

2

+ G 5

2

.

J2 = J2;111J2;121J2;211J2;221J2;112J2;122J2;212J2;222

Ū
−1
5

2

V̄
T
5

2

G 5

2
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2

Ū
−1
5

2
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⎢
⎣
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2
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Ū
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;48
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2
;48
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;48
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2
;48

Ū
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5

2
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⎤
⎥
⎥
⎥
⎦

,
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2
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2

Ū
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5

2
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5
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⎢
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⎢
⎣
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Ū
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5

2
;1
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⎥
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⎦
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(10)G 3

2

= P
2

[

U
−1

2
+ U

−1

2
V

T

2
G

2
V

2
U

−1

2
− U

−1

2
V

T

2
G

2

−G
2
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2
U

−1

2
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2
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P
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(11)G
1
≈ P 3
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⎡
⎢
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⎣

H
1
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3
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with

and

The diagonal blocks of H
1
 and ℌ

1
 can be efficiently computed using block-block mul-

tiplication, just like Level � = 5∕2 . The index of the submatrices in the bracket of 

(11) is (I
3∕2

|J
3∕2

) . Due to the permutation the matrix P
3∕2

 , the matrix G
1
 is indexed by 

J1 = J1;111J1;121 ⋯ J1;444 and all elements needed are the diagonal blocks G1(J1;ijk, J1;ijk).

At the bottom level � = 1 , one applies the same procedure as at Level 2 and Level 3. 

Specifically, one obtains G1(J1;ijk, J1;ijk) from Level 3/2, while G(J0;ijk, J0;ijk) is computed 

directly. Consequently, the diagonal elements of G can be obtained by combining the 

diagonal elements of each level.

Finally, a quasilinear scaling algorithm can be implemented to recursively extract 

the diagonal elements of G. Algorithm 2 outlines the organized procedure for this pur-

pose. It is important to note that the reindexing process is implicitly incorporated within 

Algorithm 2 through the use of index sets J
�;ijk or J

�;i
 for G

�
.

2.3  The SelInvHIF with Edge Skeletonization

In Sect. 2.1, the construction step of the SelInvHIF is characterized by its incorporation 

of interior points elimination and face skeletonization. The SelInvHIF with edge skel-

etonization further advances this approach by introducing additional edge skeletoniza-

tion, enabling complete dimensionality reduction. To recall the construction step in the 

SelInvHIF, the hierarchy construction of Schur complements is systematically performed 

at levels 1, 3/2, 2, 5/2, ⋯ , and L. In contrast, the construction step of the SelInvHIF with 

edge skeletonization is carried out at levels 1, 4/3, 5/3, 2, 7/3, ⋯ , and L. Specifically, at 

each integer level, the points are reindexed and the interior points are eliminated accord-

ingly. Additionally, the face skeletonization is performed at level � + 1∕3 , and the edge 

skeletonization is performed at level � + 2∕3 . Precisely, the relationships between levels 

are defined the same as  (7). Furthermore, one obtains the following recursive relation 

with the integer �:

Similar to Sect. 2.2, one can extract the diagonals of the matrix G based on the hierarchy of 

Schur complements. The following observations shows that computing the entire G
�
 is not 

required:

H
1
= Ū

−1
3

2

+ Ū
−1
3

2

V̄
T
3

2

G 3

2

V̄ 3

2

Ū
−1
3

2

ℌ
1
= T 3

2

H
1
T

T
3

2

− G 3

2

V̄ 3

2

Ū
−1
3

2

T
T
3

2

− T 3

2

Ū
−1
3

2

V̄
T
3

2

G 3

2

+ G 3

2

.
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2

3

Q
�−
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3
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�−
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3
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Ū−1

�−
2

3

G
�−

2

3

]

L
�−

2

3
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�−
2

3

P−1

�−
2

3

,
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�−

2

3
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�−

1

3
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�−

1

3
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�−
1

3

[

Ū−1

�−
1

3

G
�−

1

3

]

L
�−

1

3

QT

�−
1

3

P−1

�−
1

3

,

G
�−

1

3

= P
�
LT

�

[

U−1

�

G
�

]

L
�
P−1

�
.
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Based on (12), the recovery process for G can be carried out as in Sect. 2.2. Hence, the 

construction step and extracting step of the SelInvHIF with edge skeletonization can be 

described in Algorithms 3 and 4.

2.4  Computational Complexity

In this section, we analyze the computational complexity of the SelInvHIF algorithm. 

Assume that the domain consists of N =
3
√

N ×
3
√

N ×
3
√

N points and set 
3
√

N = 2
L with 

�
max

< L . The number of blocks at level � is defined as n
B
(�) , and the following formula 

holds:

The number of points in each block, whether it is a cubic face or a cubic edge, is denoted 

as n
P
(�) . It is important to note that the interior or redundant points from the previous level 

are not included in n
P
(�) because they have already been eliminated in previous levels. 

To estimate n
P
(�) , we rely on the assumption made in [15] regarding the skeletonization. 

According to this assumption, the typical size of the skeleton is given by

(12)

⎧⎪⎪⎨⎪⎪⎩

G
�−1

�
I
�;ijkJ

�;ijk, I
�;ijkJ

�;ijk

�
is determined by G

�−
2

3

�
J
�;ijk, J

�;ijk

�
,

G
�−

2

3

�
I
�−

2

3
;iJ�− 2

3
;i, I

�−
2

3
;iJ�− 2

3
;i

�
is determined by G

�−
1

3

�
J
�−

2

3
;i, J

�−
2

3
;i

�
,

G
�−

1

3

�
I
�−

1

3
;iJ�− 1

3
;i, I

�−
1

3
;iJ�− 1

3
;i

�
is determined by G

�

�
J
�−

1

3
;i, J

�−
1

3
;i

�
.

n
B
(�) = O(23(�

max
−�)).
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n
P
(�) =

{

O(�) for edges;

O(2�) for faces.
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Remark 1 From the complexity analysis, the size of the skeleton is independent of the tol-

erance of the ID approximation. In fact, the rank of the ID step should not be excessively 

large relative to the matrix size N. A large rank is equivalent to retaining a large number 

of redundant points rather than skeleton points. In such case, only the operations of integer 

levels are effective and the operations of fraction levels are skipped, leading to a computa-

tional complexity of O(N2) . That is, the SelInvHIF tends to the original selected inversion 

[20] for which the solution is exact.

Remark 2 In 3D problems, the DOFs naturally have more interactions than those in 2D 

problems. Dimensionality affects the typical skeleton size in each level and thus the overall 

computational complexity. The typical skeleton size of 2D problems is O(�) , resulting in 

a linear computational complexity. In 3D problems, the typical skeleton size is O(2�) with 

face skeletonization, leading to the quasi-linear computational complexity.
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Let us examine the construction step of the SelInvHIF, which involves the following 

steps in Algorithm 1. At the integer level � , one computes U−1

�;ijk
 (Line 9) for each block. 

One then multiplies the inverse with V
�;ijk to obtain K

�;ijk (Line 10) and update the new 

A
�+1∕2(J�;ijk, J

�;ijk) (Line 11). At the fractional level � + 1∕2 , the T
�+1∕2;k is recorded by 

ID for each cell (Line 16). The cost for this step is O(n
P
(�)3) since each cell only inter-

acts with a constant number of cells. Then, one applies it (Lines 19, 20, and 21) and 

multiplies the inverse of Ū
�+1∕2;k (Line 25) with V̄

�+1∕2;k to obtain K̄
�+1∕2;k (Line 26). 

Finally, one update A
�+1(J�+1∕2;k, J

�+1∕2;k) (Line 27). Thus, the computational cost for 

these steps at each level is O(n
P
(�)3) . The total computational complexity is

where C and C
0
 are constant. The total computational cost for the construction step is 

O(N log N) with �
max

= O(L).

Furthermore, the extraction phase is considered, and the following steps are out-

lined in Algorithm 2. At the integer level � , one can calculate G
�−1∕2(I�;ijk, I

�;ijk) (Line 

3) and G
�−1∕2(J�;ijk, I

�;ijk) (Line 4) for each block. At the fractional level � − 1∕2 , G
�−1

(I
�−1∕2;k, I

�−1∕2;k) (Line 10), G
�−1(J�−1∕2;k, I

�−1∕2;k) (Line 12), and G
�−1(J�−1∕2;k, J

�−1∕2;k) 

(Line 14) are calculated for each cell. The computational cost for these steps at each 

level is O(n
P
(�)3) . Remarkably, it turns out that the complexity for the extraction 

phase is also O(N log N).

As for the computational complexity of the SelInvHIF with edge skeletonization, the 

cost for each step at each level remains n
B
(�)n

P
(�)3 . Consequently, the total computa-

tional complexity is determined by summing the cost over all levels:

where C and C
0
 are constant. That is, the total computational cost is O(N) with �

max
= O(L).

Finally, the quasi-linear scaling of the SelInvHIF and the linear scaling of the SelInvHIF 

with edge skeletonization are demonstrated. While the SelInvHIF with edge skeletoniza-

tion can achieve the theoretical O(N) complexity, there is some fill-in generated after edge 

skeletonization, leading to additional computational cost. This indicates that the optimal 

complexity can be achieved only if N is sufficiently large, which presents challenge in 

directly applying it to the MPB equation of interest. As a result, only the SelInvHIF with-

out edge skeletonization is employed in all subsequent numerical examples.

3  Numerical Method for MPB Equations

In this section, the iterative solver is proposed to solve the MPB equations with the effect 

of Coulomb correlation [39]. The governing equations for the whole space are obtained by 

the Gaussian variational field theory [30, 32] and expressed by

�max
∑

�=1

n
B
(�)n

P
(�)3 ⩽ C

�max
∑

�=1

23�max−3�23�
⩽ C0N log N,

�max
∑

�=1

n
B
(�)n

P
(�)3 ⩽ C

�max
∑

�=1

2
3�max−3�

�
3
⩽ C0N,

(13)

{

∇ ⋅ �(r)∇� − �Λe−Ξc(r)∕2 sinh� = −2�f (r),
[

∇ ⋅ �(r)∇ − �Λe−Ξc(r)∕2 cosh�
]

G
(

r, r
�
)

= −4π�
(

r − r
�
)
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with the potential � , the relative dielectric function �(r) , the density of fixed charge �f (r) , 

and the Green’s function G
(

r, r
′
)

 . The coupling parameter Ξ and the rescaled fugacity Λ are 

given for specific problems. The function �(r) is defined as 1 to represent the region that 

is accessible for ions, while it is defined as 0 elsewhere. The correlation function c(r) reads

To solve the partial differential equations (13), a self-consistent iterative scheme is 

employed, following [39]. This scheme consists of two alternating steps: first, given a c(r) , 

the MPB equation (the first equation) is solved to obtain the potential � with given bound-

ary conditions. Second, for a given c(r) and � , the GDH equation (the second equation) 

is solved to determine the G and obtain a new c(r) . These two steps are iterated until the 

solution reaches the desired convergence criteria. The iterative scheme is mathematically 

expressed [30, 31]:

where the superscript k = 0, 1,⋯ , K indicates the kth iteration step.

In addition, the PB steps can be efficiently solved using standard direct solvers. How-

ever, the key to solving a self-consistent equation lies in the GDH equation, which can 

be reformulated during a self-consistent iteration. In three dimensions, a finite difference 

approximation of the equation is employed to obtain the following algebraic equation:

where the matrix A is given by

with P being the vector of function p(r) , G representing the lattice Green’s function, D 

being the difference matrices of operators ∇ , and I being the unit matrix. It can be observed 

that solving for the Green’s function is equivalent to performing matrix inversion, G = A
−1 . 

However, directly computing the inverse of the matrix is computationally complex and 

unnecessary. In this case, only diag(G ) is needed to obtain the self-energy c(r) . Thus, the 

SelInvHIF is employed to efficiently extract the diagonals of the inverse.

4  Numerical Results

To assess the effectiveness of the SelInvHIF, we present numerical results for the MPB 

equations in three dimensions. The scaling of the computational time is of particular inter-

est. We set the coupling parameter Ξ = 1 and the uniform fugacity parameter Λ = 0.05 . For 

both the PB and the self-consistent iterations, the error criteria are set at 10
−8 . The initial 

value for the potential in the iteration is always constant in our instances with �(0) = 0 . It is 

important to note that the choice regarding the ID step depends on the problem specified. 

c(r) = lim
r
�
→r

[
G
(
r, r

�
)
− 1∕�(r)||r − r

�||
]
.

(14)

⎧⎪⎪⎨⎪⎪⎩

∇ ⋅ �(r)∇�(k+1) − Λe
−

Ξc(k)

2 sinh�(k+1) = −2�f (r),�
∇ ⋅ �(r)∇ − Λe

−
Ξc(k)

2 cosh�(k+1)

�
G(k+1) = −4π�

�
r − r

�
�
,

c(k+1)(r) = lim
r→r

�

�
G(k+1)

�
r, r

�
�
− 1∕�(r)�r − r

���,

(15)AG = I,

(16)A =
h

3

4π

[

DHD
T + diag{P}

]

,
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Both the PB and the GDH stages make use of Dirichlet boundary conditions. The calcula-

tion is executed on a machine with Intel Xeon 2.2 GHz and 2.2 TB memory. All experi-

ments are performed in Matlab with the FLAM package [18] for hierarchical matrices. 

Prior to resolving the MPB equation, we begin by demonstrating an illustrative case of 

evaluating the diagonal elements of an elliptic differential operator. The statistical compu-

tation time is computed as the average of five measurements.

Example 1 (The discrete elliptic differential operator) In our examination of 3D prob-

lems, we first explore the diagonals of the inverse of a discrete elliptic differential operator. 

This is achieved through the implementation of a seven-point stencil discretization. Sub-

sequently, one computes the diagonals of the inverse matrix utilizing both the SelInvHIF 

method and the exact approach as described in [20]. The diagonals of the inverse of the 

discrete operator are set as d
s
 and d

e
 , respectively. Table 1 presents the absolute L2 error 

E
a
=
√

∑

(d
s
− d

e
)2∕N between the numerical results and the reference solution, which 

corresponds to the matrix size as determined by the exact method. Additionally, Table 1 

highlights the relative L
2 errors E

r
= ‖d

s
− d

e
‖

2
∕‖d

e
‖

2
 , serving to validate the accuracy 

of the SelInvHIF. Furthermore, the computational time of the algorithm is displayed in 

Table 1, while Fig. 3 confirms the quasi-linear scaling of the SelInvHIF. Table 2 illustrates 

the relationship between the rank of the ID step and the numerical error. This relation-

ship demonstrates that the error can be effectively controlled as the rank of the ID step 

increases.

Example 2 (The charge density with a delta function) In this example, we consider dis-

continuous charged distribution in a region [0, L]3 with L = 32 . Let the fixed charge density 

be a face charge:

The results of the MPB equations are calculated using the SelInvHIF algorithm. Fig-

ure 4 visualizes the distribution of the potential in this system at z = L∕2 with different 

matrix sizes N = 163, 323, 483, and 64
3 . The potential with respect to x = L∕2 and y = L∕2 

remains symmetric due to the symmetry of the fixed charge and is most pronounced 

at x = L∕2 due to the presence of the charge. Table  3 shows the accuracy of the whole 

algorithm to compute the potential � compared to a reference potential computed with a 

�f (x) = �(x − L∕2).

Table 1  The CPU time and accuracy as function of the matrix size. The SelInvHIF time means the execu-

tion time spent for one step SelInvHIF. The rank in the ID step is 37

3
√

N SelInvHIF time (s) E
a

E
r

48 2.0E+3 6.5E−3 2.7E−2

64 4.8E+3 8.1E−3 3.4E−2

80 1.0E+4 9.2E−3 3.8E−2

96 2.5E+4 9.8E−3 4.0E−2

128 5.8E+4 − −
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sufficiently large grid size N = 64
3 , which verifies the approximate accuracy of first order 

due to the discontinuous of the derivative of the potential at y = z = L∕2 . Additionally, 

the table includes the computational time of the algorithm, demonstrating the quasi-linear 

scaling of the SelInvHIF.

Example 3 (The charge density with continuous function) In this example, we consider 

discontinuous charged distribution in a region [0, L]3 with L = 32 . Let the fixed charges 

density be

The results of the MPB equations are then computed using the SelInvHIF, where the preci-

sion of the ID step is set to be 10
−8 . Figure 5 visualizes the distribution of the potential in 

this system at x = L∕2 with different matrix sizes N = 163, 323, 483, and 64
3 , which dis-

plays the convergence. The potential is most evident at x = L∕2 due to the dense charge. 

Table 4 shows the accuracy of the whole algorithm to compute the potential � compared 

to a reference potential computed with a sufficiently large grid size N = 64
3 , which verifies 

the convergence of our algorithm. Furthermore, Table 4 also shows the computational time 

of the algorithm to verify the quasilinear scaling of the SelInvHIF.

�f (x) = sin(πx∕L).

Fig. 3  One step time for the SelInvHIF. The solid lines represent the computational time for the factoriza-

tion step (a) and the extracting step (b). The dash lines represent the reference scalings

Table 2  Numerical errors for different ranks of the ID step

The rank of ID step E
a

E
r

32 3.5E−3 9.5E−2

128 6.5E−4 8.1E−3

256 7.2E−8 9.2E−7

512 5.3E−16 9.8E−15
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5  Conclusions

This paper develops the SelInvHIF, a fast algorithm to solve the MPB equations with the 

effect of Coulomb correlation. The SelInvHIF effectively integrates hierarchical interpola-

tive factorization and selected inverse techniques to achieve the O(N log N) computational 
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Fig. 4  Potential distributions with different matrix sizes at z = L∕2 . a N = 16 ; b N = 32 ; c N = 48 ;  

d N = 64

Table 3  The CPU time and accuracy as function of the matrix size. The total time and the SelInvHIF time 

mean the execution time spent for one step iteration in the whole program and the time for one step SelIn-

vHIF, respectively

3
√

N Total time (s) SelInvHIF time (s) L
∞

16 4.02E+0 2.83E+0 5.56E−1

32 2.12E+2 1.89E+2 3.23E−1

48 2.08E+3 1.95E+3 1.33E−1

64 7.74E+3 6.92E+3 –
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complexity and the theoretical O(N) computational complexity with edge skeletonization, 

in terms of operations and memory, necessary for computing the diagonal of the inverse 

of a sparse matrix discretized from an elliptic differential operator. The proposed algo-

rithm was applied to 3D MPB problems, demonstrating impressive performance in terms 

of both accuracy and efficiency. We remark that the proposed algorithm also permits its 

application to discretized integral operators. More precisely, since the discretization matrix 

from an integral operator is dense, one can skeletonize the interior points on integer levels 

and apply the skeletonization similar to the SelInvHIF on fractional levels. This process 

leads to the corresponding factorization form of a matrix, followed by the utilization of an 

extraction method to obtain the diagonal part of the matrix inverse. This will be our future 

work. Moreover, we plan to develop parallel implementations of the SelInvHIF algorithm 
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Fig. 5  Potential distributions with different matrix sizes at z = L∕2 . a N = 16 ; b N = 32 ; c N = 48 ; d 

N = 64

Table 4  The CPU time and accuracy as function of the matrix size. The total time and the SelInvHIF time 

mean the execution time spent for one step iteration in the whole program and the time for one step SelIn-

vHIF, respectively

3
√

N Total time (s) SelInvHIF time (s) L
∞

16 2.75E+1 2.35E+1 2.12E−2

32 3.06E+2 2.47E+2 3.84E−3

48 2.80E+3 2.40E+3 1.92E−3

64 1.06E+4 8.37E+3 −
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to tackle larger-scale problems. This development will open up possibilities for simulating 

and analyzing complex systems at a larger scale, further advancing our understanding of 

electrostatic interactions in various applications.
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