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Abstract

The modified Poisson-Boltzmann (MPB) equations are often used to describe the equilib-
rium particle distribution of ionic systems. In this paper, we propose a fast algorithm to
solve the MPB equations with the self Green’s function as the self-energy in three dimen-
sions, where the solution of the self Green’s function poses a computational bottleneck due
to the requirement of solving a high-dimensional partial differential equation. Our algo-
rithm combines the selected inversion with hierarchical interpolative factorization for the
self Green’s function, building upon our previous result of two dimensions. This approach
yields an algorithm with a complexity of O(N log N) by strategically leveraging the locality
and low-rank characteristics of the corresponding operators. Additionally, the theoretical
O(N) complexity is obtained by applying cubic edge skeletonization at each level for thor-
ough dimensionality reduction. Extensive numerical results are conducted to demonstrate
the accuracy and efficiency of the proposed algorithm for problems in three dimensions.
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1 Introduction

Electrostatic interactions play a crucial role in various systems at the nano-/micro-scale
such as biomolecules, supercapacitors, and charged soft matter [2, 8, 19, 34]. To pro-
vide a continuum description of charged systems, the Poisson-Boltzmann (PB) theory
[5, 13], based on the mean-field assumption, is a typical implicit solvent model for
describing the distribution of ions. However, this theory falls short in capturing many-
body characteristics that are essential for describing electrostatic many-body behaviors
in various systems, such as ion correlation and dielectric fluctuation.

Various modified theories have been proposed [1, 3, 25] to incorporate many-body
effects, along with many numerical methods [23, 24, 40]. The Gaussian variational field
theory [30, 32] presents a promising approach to account for long-range Coulomb corre-
lation, including dielectric variation [27, 29, 31]. This theory considers the self-energy
of a test ion as a correction to the mean-field potential energy, which is described by
the self Green’s function. By taking into account the self-energy correction, the effect
of dielectric inhomogeneity can be incorporated [7, 17, 28, 36]. The self Green’s func-
tion used in the field theory satisfies the generalized Debye-Hiickel (GDH) equation.
However, the numerical solution of the GDH equation is computationally expensive
due to its high spatial dimensions. Based on the finite-difference discretization, the self
Green’s function corresponds to the diagonal of the inverse of the discrete elliptic differ-
ential operator in the GDH equation. The aim of our study is to calculate the self-energy
in the GDH equation. This procedure serves to accelerate the numerical solution of the
modified Poisson-Boltzmann (MPB) equations. To achieve this, an efficient algorithm is
necessary for determining the diagonal elements of the matrix inverse.

One straightforward method for extracting the diagonal of the matrix inverse is to
initially compute the entire matrix and then simply extract the diagonal. However, this
naive inversion approach has a computational complexity of O(N?), which is equivalent
to that of matrix factorization. In the realm of electronic structure and electrostatic cor-
relation, significant efforts are dedicated to devising efficient methods for obtaining the
diagonal of the matrix inverse. A promising approach involves the utilization of spar-
sity and low-rankness of the matrix, leading to the development of fast algorithms. The
selected inversion method, introduced by Lin et al. [20-22], offers an algorithm with
a computational complexity of O(N3/?) for 2D problems and O(N?) for 3D problems.
This method involves a hierarchical decomposition of the computational domain Q and
consists of two phases. Constructing the hierarchical Schur complements of the interior
points for the blocks of the domain in a bottom-up pass, and then extracting the diago-
nal entries efficiently in a top-down pass by taking advantage of the hierarchical local-
ity of the inverse matrices. To enhance the efficiency of this method, Lin et al. [21, 22]
exploited a supernode left-looking LDL factorization of the matrix, which significantly
reduces the prefactor in computational complexity. Additionally, Xia et al. [38] applied
structured multifrontal LDL factorizations to achieve O(Npoly(log N)) complexity.

Recently, the hierarchical interpolative factorization (HIF) [15, 16] has been pro-
posed, combining multifrontal [4, 9, 10, 26] with recursive dimensional reduction
through frontal skeletonization. This approach aims to generate an approximate general-
ized LU/LDL decomposition with a linear or quasi-linear estimated computational cost.
In contrast to previous methods [11, 12, 14, 33, 37] that utilize fast structured meth-
ods to work implicitly with entire fronts while keeping them implicitly, the HIF offers
the advantage of explicit front reduction. Consequently, the HIF provides significant
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savings in terms of computational resources required for solving 3D problems, making
it well-suited for large-scale problems.

A more recent development in this area is the selected inversion with hierarchical inter-
polative factorization (SellnvHIF) [35]. In the SellnvHIF, the supernode left-looking LDL
factorization is replaced with the hierarchical interpolative factorization, and the extraction
phase is modified to approximate the diagonal of the matrix inverse with O(N) operations
for 2D problems. In this work, we further extend the SellnHIF to 3D problems with the
O(N log N) complexity by face skeletonization and the theoretical O(N) complexity using
skeletonizing cubic faces and then edges. We remark that, in 3D problems, the increase in
the number of degrees of freedom (DOFs) is significant, resulting in more complex interac-
tions compared to 2D problems. Moreover, the numerical method of the PB equations for
3D problems is more practical for various applications in biophysics and materials science.
For convenience, the former algorithm is still referred to as the SellnvHIF, while the latter is
named “SellnvHIF with edge skeletonization”. To demonstrate the computational complex-
ity of the algorithm, we provide comprehensive theoretical derivations and present various
numerical examples. In the following section, we introduce the MPB equation, as it serves
as a suitable problem for testing the scaling of the algorithm in the context of 3D problems.

The remaining sections of the paper are organized as follows. Section 2 introduces
the concept of skeletonization in matrix factorization and provides a detailed presenta-
tion of the SellnvHIF algorithm and the SellnvHIF with edge skeletonization. Section 3
focuses on the MPB equation and the corresponding iterative method. Section 4 performs
numerical results to demonstrate the performance of the SellnvHIF algorithm for 3D prob-
lems. Finally, we conclude the paper and discuss future work in Sect. 5.

2 The SelinvHIF Algorithm

In this section, we provide a detailed explanation of the SellnvHIF algorithm, followed by
the introduction of the SellnvHIF with edge skeletonization in Sect. 2.3. The SellnvHIF
algorithm consists of two main steps. In the first step, hierarchical Schur complements are
constructed for the diagonal blocks of the matrix A, which is discretized uniformly from
the differential operator on a rectangular domain Q. In the subsequent step, the diagonal
elements of the inverse matrix A~! are extracted from the constructed hierarchy of Schur
complements. Before the introduction of the formal description of the SellnvHIF algo-
rithm, we give a brief overview of the skeletonization of matrix factorization.

To establish the foundation for our algorithm, let us introduce some fundamental symbols
and present the necessary theorems. Given a matrix A, A, or A/, J) is a submatrix with
restricted rows and columns, where the p, g, r, I, and J denote the ordered sets of indices. For
the sake of simplicity, the matrix A is assumed to be symmetric and nonsingular, given by

A=|A_A AT | (1)

which is defined over the indices (p, ¢, r). In this matrix structure, p is related to the DOFs
of the interior points on domain D (which is a subdomain of Q), g to the DOFs on the
boundary 9D, and r to the external domain Q/D. Typically, the DOFs ¢ separates p from
r which is often very large. Let G = A~'and G, = AI". Here, G, represents the submatrix
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of G corresponding to the row and column index set p, and A, is the Schur complement of

App, ie.,
A, —A ATIAT AT
A= 94 4P "pp”ap " rq
rq AI“I‘

It is noted that one can also discretize the operator on an irregular domain using the finite
element method. The points in each subdomain correspond to a small matrix and form a
stiffness matrix through the relationship of the nodes. The stiffness matrix is similar to (1),
and our method can be also employed to solve it.

A crucial observation in the selected inversion method [20], which is employed as
a preliminary tool in the SellnvHIF, is based on the fact that to compute G,,,, only the
values of G, involving interactions with the direct matrix A, (Gl)qq, are required instead
of the entire inverse of the Schur complement. This implies that the determination of
G, relies on (Gy)yq- Furthermore, the diagonal entry (Gy)yq can be calculated by uti-
lizing a diagonal block of the inverse of the Schur complement of a submatrix of A;.
By recursively applying this approach, an efficient algorithm for computing G,, can be
derived. Essentially, one can compute a diagonal block of A~! by using a diagonal block
of the inverse of the Schur complement of a submatrix of A. By repeatedly applying this
observation, a recursive algorithm is developed to compute the diagonal entries of A~!
efficiently.

The interpolative decomposition (ID) [6] for low-rank matrices, based on Lemma 1
below, is the second frequently used tool in the SellnvHIF. Suppose a disjoint partition
of g = qU g with |§| = k is used. The sets ¢ and ¢ are referred to as the skeleton and
redundant indices, respectively.

Lemma 1 Assume A € R™" with rank k < min(m, n) and q be the set of all column indices
of A. Then there exists a matrix T, € R0=D) sych that A.,=A,T,

Specifically, the redundant columns of the matrix A can be represented by the skel-
eton columns and the associated interpolation matrix from Lemma 1, and the following
formula holds:

I L | B () o

Equation (2) indicates that the sparsification of the matrix A is feasible by multiplying a
triangular matrix formed from the interpolation matrix 7, in Lemma 1.

The utilization of (2) facilitates the elimination of redundant DOFs of a dense matrix
featuring low-rank off-diagonal blocks, resulting in a structured matrix of the form (1). This
idea is referred to as block inversion with skeletonization and is discussed in Lemma 2,
where one uses A. T, to approximate A. , for the purpose. It is worth noting that the idea
of skeletonization was originally introduced in the HIF method [15].

Lemma 2 Let the symmetric matrix A have the following form:

A AT
A= | "o
o)

ap " 4qq
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where A, is numerically low-rank. Let the interpolation matrix T,, satisfy Az ~ A T, with

p = p U p. Without loss of generality, one can approximately rewrite
T AT
Ao Ay Agp
A= T
App App Ags
Aqﬁ Aqﬁ Aqq

and define

LetA 2 QZAQP. Then one has

T
o Aﬁﬁ Ap 3)

qp Aqq

. _ T T T _
with Bﬁ[3 = Aﬁﬁ - Tp A[,ﬁ - Aﬁi)TP + Tp AﬁﬁTp and Bﬁﬁ = Aﬁﬁ - Ai,ﬁTp.

Further suppose that Bi)iﬂ is nonsingular. Let G = AL G=A", G, = GpquUq’ and Al
be the Schur complement of Bﬁ“’ ie.,

PPpp " pp

qu Aqq

- [A BBV}BTVATA]
A =

and G, = f_\l‘l. Then, by (3) the following formulas hold:

~ —1 -1 QT ~ —1 T T

G[’i’ = Gw = Bw —+ I:—BWBM 0] G1 I:—Bi’i’Bﬁlv’ 0] s
—1 T 1T —17T

Glz[ BT ] [TBﬁ)Bﬁﬁ+l ]Gl[Bﬁi,BﬁﬁTp+II .

Lemma 2 demonstrates that computing G; only requires the values of G, associated
with row and column indices in p, rather than the entire inverse of the Schur comple-
ment. Consequently, Gy is determined by (G, );5, a diagonal block of A7!, which has a
smaller size than the original matrix A. Despite A; may be dense if it has low-rank oft-
diagonal blocks, then the same approach used in (3) can be applied to compute a diago-
nal block of G,, resulting in a recursive algorithm that efficiently computes the diagonal
blocks of G.

This skeletonization technique was proposed by Ho and Ying [15] and is based on
the observation that the Schur complements have specific low-rank structures. Specifi-
cally, A;pl, obtained from a local differential operator, often features low-rank off-diagonal
blocks. Additionally, numerical experiments illustrate that the Schur complement inter-
action A, — A, A 1AT also possesses the same rank structure. This observation may be
comprehended through the interpretation of the matrix A~! as the discrete Green’s function
associated with the elliptic PDE. Due to the locality property, it is well established that
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such a Green’s function tends to exhibit off-diagonal blocks of low rank in numerical anal-
ysis. Furthermore, this analogous rank structure effectively extends to the Schur comple-
ment B,,. In the following subsection, we employ Lemma 2 to generate hierarchical Schur
complements for diagonal blocks of A.

2.1 Hierarchy of Schur Complements

To achieve a hierarchical disjoint partition for the differential operator in domain
Q, bipartitioning is performed in each dimension, resulting in leaf domains of
size ryXryXr, and a total integer level L. Domain Q is defined by a grid size of
VN x VN x V/N = r2-"! X ry2L=1 x r)2E~! and is associated with a matrix A of size
N X N. Furthermore, to take advantage of the low-rankness of the matrix A, L — 1 frac-
tional levels are introduced between L integer levels. The hierarchy construction of Schur
complements is carried out at levels 1, 3/2, 2, 5/2, -+, and L.

Let us consider the case of ry = 6 and L = 3 to describe the process in detail without loss
of generality. Initially, the entire domain is regarded as the top level (Level 3) and is par-
titioned into eight blocks at the next level (Level 2). Each block is further partitioned into
eight sub-blocks at a lower level (Level 1), resulting in a total of 257! x 2171 x 21-1 = 64
blocks at the bottom level, as illustrated in Fig. 1. In addition, one fractional level is consid-
ered between two consecutive integer levels, and the low-rank matrices that represent the
fronts between domain blocks are reduced into skeletons by this level.

2.1.1 BottomLevelZ =1

The initial index set J, follows the row-major ordering, while domain Q is hier-
archically partitioned into disjoint blocks at level # = 1. Each block has a size of
2L=¢ x 2170 x 2% = 4 x 4 x 4. All points within each block are classified into interior
and boundary points. The interior points, denoted as /;,;; (shown in light blue in Fig. 1), are
not related to the points in other blocks. On the other hand, the boundary points, denoted
as Jy.;» are connected to neighboring points in other blocks. Here, i,j, k = 1,2, 3,4 are the
indices of the blocks in each dimension. The differential operators have a locality property,
which implies that A(Z ., Iy j0) = 0 (or AUy, Iy i) = 0) if (i, k) # (@] K.

The interior points are removed using the block inversion. One can then focuses the
problem on the boundary points. To achieve this, one uses the proper row and column per-
mutations to the matrix A defined with the index set J;, to place all of the interior points in

Fig. 1 The DOFs in the bottom
level. In this level, the domain is
divided into 64 blocks. The inte-
rior points are indicated by light
blue, while the boundary points
are indicated by black (blue or
gray). Note that the prefactor is
reduced due to the share faces
(edges)
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front of the boundary points. The matrix A can be permuted into a new matrix by a permu-
tation matrix P, as follows:

“4)

with the index set (1, |J)), U, = A,(,,1)),V, =A,(J,.1,), and W, = A,(J,,J,). Here I, rep-
resents the indices of all interior points, denoted as Iy = 11,111,101 -+ I}.444, and J; repre-
sents the indices of all boundary points, denoted as J; = Jy.111J1.101 *** J1.444-

Due to the locality property, both U, and V, are block diagonal matrices. Figure 1
shows that interior points in different blocks are not connected. Boundary points in
each block are only connected to the interior points in the same block. Furthermore, U,
and V| are of the following form:

Urin Vi
U \%4
_ ;121 _ 1121
U= . V=
Ut.aaa Va4

with Uy = Al(llgiik’ll;ijk) and Vi = Al(Jl;l_-]-k, Il;l_-]-k) fori,j,k=1,2,3,4.
Using the Gaussian elimination, one can obtain

u;! 1
1 _ 4T 1 . _
Al _Ll (“71 _ Vllrl_lvl'r)_l ]Ll with Ll = |:—V1[71_1 I:| (5)

Since Uy is a block diagonal matrix with each diagonal block of a size (r, — 2)* X (r, — 2)°,
its inverse can be computed directly.

By using the block diagonal matrices V; and Ul‘l, Vi U]‘1 is also a block diagonal
matrix and can be computed independently within each block,

VllllUl 111

Vl U?l — Vl 121U1 121

Vi, ;444 U1 1444

Similarly, the block diagonal matrix V, U 1‘1 VlT is expressed as

Vl 111U1 111 1 111
VUV = Vii21 Ut Vi
4F ;444 U1 1444 Vl 1444
Combining (4) and (5), one has
G=PAT'PT =P LT oy LP!
— 1Y 1 — 1™ Gl 141 > (6)

where G, = (W, -V, Ul‘l\/lT)_1 is the inverse of the Schur complement of U,. Conse-
quently, by removing interior points from the matrix A, one is able to simplify the problem.
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2.1.2 Fractional Level# = 3/2

At this level, the objective is to obtain G, as defined in (6), for the index set J;, which
corresponds to the boundary points of the domain blocks at the first level. The domain
Qs divided into 64 blocks, resulting in a total of 384 faces in this example where L =3
(refer to Fig. 2a). In Fig. 2, one chooses all the skeleton points as separators as a general
rule to clearly illustrate the concept of method. Note that in practical applications the
distribution of skeleton points depends on the error tolerance of the ID approximation.
A greater number of interior points as skeleton points are needed for higher accuracy in
the ID. Each face consists of the DOFs within its corresponding area, as well as some
DOFs located on its boundary. Moreover, a face not only interacts within its own block
but also interacts with faces in neighboring blocks. The resulting matrix exhibits low-
rank off-diagonal blocks since the DOFs of a face only interact with a limited number of
neighboring blocks. Furthermore, Lemma 2 is applied to skeletonize the DOFs on the
faces in each block. An ID can be implemented to approximately select the redundant
and skeleton DOFs within each block, and the resulting interpolation matrix is recorded
as specified in Lemma 1. Additionally, the redundant DOFs are denoted by I3/,,, the
skeleton DOFs are represented by J3,,;, and the associated interpolation matrix is indi-
cated by T3 ,.;.

Similar to the bottom level, an appropriate permutation matrix Py, is designed to
move all of the redundant points in front of the skeleton points and reindex J, by the
permutation matrix. Furthermore, the matrix W, — V, Ul‘l VlT can be permuted into a new
matrix by the permutation matrix P;, as follows:

©

Fig.2 a The DOFs in the level # = 3/2. The domain is divided into 384 faces of 64 blocks. b The DOFs
in the level Z = 2 after elimination. The domain is divided into 8 blocks. ¢ The DOFs in the level £ = 5/2
after skeletonization. d The DOFs in the level £ = 3. This is the top level
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Us VI
A 3

_ p-1 ~1yT\p. —
_P% W, -V U; Vl)P% = lvj Wzi
2 2

3
2

with the index set (I3, |J3/2), Us o = Az o(L32.132), V32 = A3 y(J3)2. 13 ), and the dense
matrix Wy, = Az,,(J35,J3/,). Here I3, represents the indices of all redundant points,
denoted as I3 5113 5,5 -+ I35.334, and J3 ; represents the indices of all skeleton points, such
that it can be denoted as J3 5,13 /5,5 ** J3/2:384-

Denote 75, by a block diagonal matrix

=Ts.
5l
and arrange a|J,;| X |/, | matrix

Thus, the new matrix is updated

A

1w

Uy V]
=01A:0: = _* 2|,
2 22 2
where U, /2 and 1A /2 are block diagonal matrices with
s (1;.,1;.) -0, ¥ (J;‘,,Ig.) =0, Vi#j.
2 2’1 ZJ 2 2’l ZJ

Similarly, one can obtain the following inverse by Gaussian elimination:

-
G: | 2

I -1
| - _ . -1pT
L% = l_Vstl I]’ G% <Wz V%U% Vz)

A7l =L

1w =

P |

with

as in Lemma 2. Since —V; /2 U; /2 and V, 2 U3 /2 V3T /o are block diagonal matrices, they can be

computed independently within each block. Thus,

2 2

U7t
G, ~P:0:L| > L; Q1P
272 3 G 275 35

Therefore, the inversion problem is reduced to a smaller matrix W, — v, /2 U3 /2 V3 /2 by
eliminating the redundant DOFs as in Lemma 2.
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2.1.3 Middle Level Z = 2

At Level # = 2, the domain Q is divided into 2577 x 2574 x 2L7¢ = 2 x 2 x 2 blocks, each
consisting of interior and boundary points. Similar to the previous integer level, a permuta-
tion matrix P, is used to reindex the points in J; , into 1, and J,,

PZ
J%—’(12;1112;1212;2112;22|J2;11J2;12J2;21J2;22) = (L)

Use the same strategy as at Level 1 and denote

with
U, =A,,1,), V,=A,y,1,), and W, =A,(,,J,).

It can be observed that matrices U, and V, possess a block diagonal structure. Thus,

U;! -
G~=P2LT[ ? Gz]szzl’

1 —17,Ty—1
L, = [—V2U2‘1 1], and G, =W, =WV, U; V).

Finally, by removing the interior points, the problem can be simplified to a smaller matrix
W, =V, Uy 1V2T . The DOFs remaining after elimination at Level £ =2 are depicted in
Fig. 2b.

2.1.4 Fractional? =5/2

At Level £ = 5/2, the objective is to find G, indexed by J,. Similarly to Level £ = 3/2, the
domain Q is divided into 8 blocks with 48 faces. By employing the ID, one can distinguish
the redundant DOFs I5 ,; and the skeleton DOFs Js ,,; in the ith face, and record the inter-
polation matrix 75 ,,;. Furthermore, a permutation matrix Ps, is used to reindex J, such
that

Ps
2
D= (Isalsalsals sl sl sd 50 ) 1= (13103).

Denote

and a|J,| X |J,| matrix
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1
Os=|r,
2
Then
1 -1 T Us V;
A% =Q% s (W, — V )Pst = ‘_/; Wzg
2 2
with
U;(Ig,-,]s >=0, V;(Jg s )=0, Vi#j
2 2’1 J 2 2l J
Therefore,
U;!
G,~PsQsLY| : LsQ} P‘
S Gs | 373
2
with

eIy

I o ~ -1
l VsU ] and G§= <W;—V;U§1V§> .

2

It is worth noting that Us /2 and Vs /2 are block diagonal matrices. As a result, the matrix

inversion problem has now been reduced to Ws,, — Vs 2 U5 1 V5 /o The DOFs remaining

after skeletonization at Level # = 5/2 are shown in Fig. 2c.
2.1.5 Top Level# =3

At this level, the domain Q is partitioned into a single block. This means there is no partition
at this level, as shown in Fig. 2d. Similarly, the index set J5, is reindexed by partitioning it
into the union of an interior index set /; and a boundary index set J5. This reindexing is accom-
plished using a permutation matrix P; as follows:

Py
Js—(5]J3).
2

Thus, one has
with

I -
L3—[ v I]and Gy =(W; = VU7V

In this top level, the inverse of G; can be computed directly because of its small size.
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2.1.6 The Algorithm for the Hierarchy of Schur Complements

In this section, one aims to construct a hierarchical structure of Schur complements for the
matrix A is constructed on an W X W X W grid. The construction process involves divid-
ing the points in each block at each integer level into interior and boundary points. Specifi-
cally, the interior points are only involved in interactions with other points within the same
block, prompting a reindexing and subsequent elimination of the interior points. At each frac-
tional level, face skeletonization is considered, and an ID approach is applied to distinguish
redundant and skeleton points. Here, the redundant points only interact with other points in the
same cell, leading to reindexing and elimination of the redundant points.
The relationships between levels are defined as follows:

AL £=0
G, =3 W, - VKUEIV;)_I, ¢ is an integer; @)
W, -V, f/;l‘_/;)*l, ¢ is a fractional.

Based on (7), it follows the recursive relation with the integer Z,

-1

-1 T -1
G, ,~P, . LT 2 L, P,
-1 R P10 -1 G, 1 ’/”‘iQf—% =

U—l

— T -1
G,_ —PKLZ,[ ¢ GK]LKPL,.

=

Therefore, the hierarchy of Schur complements can be constructed from Level 1. One
describes the steps in Algorithm 1. Note that the reindexing is implicitly included in Algo-
rithm 1, when one uses the index sets 1,,;; and J,,;; or I,; and J,; for A,.

2.2 Extracting the Diagonals of the Matrix Inverse

Once the hierarchy of Schur complements is constructed, the next step is to extract the diago-
nals of the matrix G. It is important to note that computing the entire Schur complement G, is
not required. This is based on the following observations:

G, (If;iijf;ijk,If;iijf;ijk> is determined by Gﬁ% (Jf;,-jk, Jf;ijk), )
G,_: (If_g,iJf_l,i,I[_l.ilf_l.i) is determined by G, <Jf—l'i"]f—l‘i)'
2 2’ 2’ 27 27 2’ 27

For the purpose of extracting relevant information, we begin with considering the top level
¢ = L = 3. G5, can be calculated using the following formula with given Gj:

-1 -1y T -1 —1y,T
G =P3[U3 +U;'VIG VU - U V3G3]P3_1.

_G3 V3 1]3_1 G3

S

The submatrices enclosed in the bracket are indexed by (/5|/3), while Gs, is indexed by
Jspo =Jspds 00 Js pas @S @ result of the permutation matrix P;. However, it suffices
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Algorithm 1: Constructing the hierarchy of Schur complements of A

1 Determine £y« and decompose the domain hierarchically

2 Generate index sets Iy,;;% and Jy,
3 A] — A

4 for £ =1 to lyax do

5 A[Jré — A[(JZ,JZ)

6 for (i,j,k)e {block index at level £} do
7 Ugij < Ae(Toijn, Teiji)
8 Viijk < Ae(Jej, Leije)
—1
9 Calculate Ul;ijk
10 Calculate Ky,jz —Vg;iij[};k
11 Caleulate Ay, 1 (Jeijhs Jeigh) < Agy 1 (Jeighs Jeign) + Keiih Vil
12 end
13 if { < lpax then
14 Skeletonize cubic faces at level £ + %
15 for s € {block indez at level £ + 1} do
16 Use ID to compute TH%:S, IH%:S and JH%;S
17 Uit = A1 Iy 1)
18 ‘/Z'F%;S %Aé+%(']l+%:s7lé+%:s)
7 T
19 Calculate £Z+%;s — Vu%;sTH%;s
20 Caleulate Vi1 < Vi no = A1 (et Jor 10Ty 1
- _ i
21 Calculate Uf+é;s — UHé;s 7€£+%;s — TH%;SVH%;S
22 end
23 Appr = A1 (T 1y Joy 1)
24 for s € {block indez at level £ + 1} do
25 Calculate U[ll
.+§:s
7 o -1
26 Calculate KZ+%;S — —w+%;SUH%;S
27 Caleulate Ap1(Jpy 1,0 Jpp1) ¢ Aepr (o1 Jpp1,) + KH%;SVZ%;S
28 end
29 Construct Ip41 and Jyyq
30 end
31 end
32 Calculate Gy, A;l 1
max+3
Output:

—1 rr—1
Iy, Jg, [l+§7 Je+%v UZ:ijk’ UH%

g7 Ké;ijkv K[+%;S, G[max, for each Z, i,j, k‘, S

to focus on Gs ,(J5 ., J5 ;) instead of the off-diagonal blocks to extract the diagonal ele-

ments of Gs,. As a consequence, we can represent Gs  as

Gs, * * * *

2
¥ Gs, * * *

EE
* ¥ Gs, %
Gs = 2’
3 * * * Gs, *
3

* * * * Gs.g
Ev
* * * * *
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with G5/2;i = GS/Z(‘IS/2;i’ J5/2;i)’ i= 1, 2, cee, 48.
One recovers the elements of diagonal blocks for the matrix Gs,, in the previous layer.
Furthermore, the diagonal blocks of the following G, are acquired based on the observation

of (8):

H, —U;WVIGs + H,TT
~ _ 2 2 ¢ > |p-t
G~ Py ~Gs Vs Uy +TsH, 9, i ©)
with
H, = 5/2 + U5/2V5/2G5/2V5/2U5/2
and

sz—TstT —GsVsU TT—Ts VTG5+Gs

2
All matrices in the bracket of (9) are indexed by (/5 s [Js /2). G, is indexed by
Iy = handaanhaonaoianindaintaindron

due to the permutation matrix Ps ,.
Recalling the construction process, one can assert that 75 ,, U;! s/ and Vs , are block diago-

nal matrices and the diagonal blocks of the following matrices are both obtained:

i1—1 T 7. -1
Ué.]véng;lvg;lUéq %
_ . 2° 2 2
U;'WIGsvsU;! = : : ,
Py 5 2 2 5 Y — T
22 2 * Uil VT Gs 48V5 48U l
348 348
2 2
Gs‘l‘_/s,ll-]:l T;r *
20 2 b
GsVsU;'T; = : :
22 3 3 i - T
2 * - Gs Vs, U T
7487 248 248" 248

This means that only block-block multiplication is needed to get the elements of the diago-
nal blocks H, and §,. The computational complexity is then greatly reduced. Additionally,
the diagonal blocks G,(J,,, Jo,;) are obtained directly.

At Level 2, one has

-1 —1yT -1 —1yT
U+ U VG,V Us ! = U5 VIG, |

G -G,\,U;! G,

=P, (10)

(ST

Similarly, the submatrices in the bracket of (10) are indexed by (1, |J,). G5, is indexed by
J32 = 3051+ J3 01384 With the permutation matrix P,. Moreover, one just needs to com-
pute G35(J32,55 J32,;) in this step.

At Level 3/2, one has

H, - U;'VIG: + M\ T;
2

~ _ 2 7 2 —1
GI¥P G707 4 ToH, ®, i (11)
3 2

SIS

3
2

Riw
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with

and

9, =T:H,TT - G:V:U'TT - T3 U;'VIGs 4+ Gs.
2 5 2 2 5 5 2 5 S 2

2 2 2

(ST

The diagonal blocks of H, and $, can be efficiently computed using block-block mul-
tiplication, just like Level £ = 5/2. The index of the submatrices in the bracket of
(11) is (I35|J3 ). Due to the permutation the matrix P;,, the matrix G, is indexed by
Ji =JmJ121 + J14aq and all elements needed are the diagonal blocks G (J ), Jy,40)-

At the bottom level £ = 1, one applies the same procedure as at Level 2 and Level 3.
Specifically, one obtains G;(Jy,;, ;) from Level 3/2, while G(Jo,, Jo,) 1s computed
directly. Consequently, the diagonal elements of G can be obtained by combining the
diagonal elements of each level.

Finally, a quasilinear scaling algorithm can be implemented to recursively extract
the diagonal elements of G. Algorithm 2 outlines the organized procedure for this pur-
pose. It is important to note that the reindexing process is implicitly incorporated within
Algorithm 2 through the use of index sets J,.;; or J,,; for G,.

2.3 The SelinvHIF with Edge Skeletonization

In Sect. 2.1, the construction step of the SellnvHIF is characterized by its incorporation
of interior points elimination and face skeletonization. The SellnvHIF with edge skel-
etonization further advances this approach by introducing additional edge skeletoniza-
tion, enabling complete dimensionality reduction. To recall the construction step in the
SellnvHIF, the hierarchy construction of Schur complements is systematically performed
at levels 1, 3/2, 2, 5/2, ---, and L. In contrast, the construction step of the SellnvHIF with
edge skeletonization is carried out at levels 1, 4/3, 5/3, 2, 7/3, -, and L. Specifically, at
each integer level, the points are reindexed and the interior points are eliminated accord-
ingly. Additionally, the face skeletonization is performed at level £ + 1/3, and the edge
skeletonization is performed at level £ + 2/3. Precisely, the relationships between levels
are defined the same as (7). Furthermore, one obtains the following recursive relation
with the integer £:

U,
~ T ‘-3 T —1
Coot ®Pes0rily s l "G, ]Lf—iQf—EPf—i’

U—l

-1 T -1
G, : =P, LT 3 L, 1 P
=3 f‘ng—E ¢-1 G, f—SQt’—% =

G, . =pt| V7 L.P;'
-1 T Pety G, e

Similar to Sect. 2.2, one can extract the diagonals of the matrix G based on the hierarchy of
Schur complements. The following observations shows that computing the entire G, is not
required:
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Algorithm 2: Extracting the diagonals of A~1

Input:
Output of Algorithm 1
1 for ¢ = lypax to 1 do
2 for (i,j,k)e {block index at level ¢} do

3 Calculate G27% (IZ;ijIm Ig;ijk-) — UFTz;k + K[T;;jng(.]g;ijk, JZ;ijk)K(;z‘jk

4 Caleulate Gy 1 (Jesighs Leijn) < Ge(Jeijhs Jeign) Keij

5 Gp1 (Teijhs Jesijr) < Gp1 (Jesijns Tosijn)T

6 Gp1 (Jeijis Jeijie) < Ge(Jeijrs Jeijn)

7 end

8 if £ > 1 then

9 for s € {block index at level £ — l} do B
10 Caleulate Go—1(I,_1.,. 1y 1,) < U, 11 AR G (o e K

5 ; ;

11 Calculate Wy_ I(JZ—— 571277 5) G’[ 1K[ L

12 G- 1(]/—- A Lis )« Wi 1(]/_-.e71/—- s) +Tz—%;sG#l(Iz—%;svIz-%;s)

13 G[ 1(1577 s"Jéfé s) <_Gl 1( 00— S/Ilfi;s)T

14 G[—l(]l—i;s/ Il—%:s) <

Gl’,—l(']z—é;sv Iz-%;s)TlT,%:s + Tz-%;sWéfl(Jz—%;sv Il—%;s) + Gz_é (Jz—g;s» Jl—%;s)

15 end

16 end

17 end

G, (If;ijklf;ijk, If;y»k]f;ijk) is determined by G)/,,_% (J/;ijk,lf;ijk)

Gz (2 idy2plp2id, 2y is determined by G, 1 (J,_2,0d,2,)s (12)
3 37 37 37 37 3 37 3’

G,_1 (If_%;iJf_%;i,If_%;ijf_ﬁ;i) is determined by G, <Jf_%;i,Jf_§;i>

3

Based on (12), the recovery process for G can be carried out as in Sect. 2.2. Hence, the
construction step and extracting step of the SellnvHIF with edge skeletonization can be
described in Algorithms 3 and 4.

2.4 Computational Complexity

In this section, we analyze the computat10nal c lexity of the SellnvHIF algorithm.
Assume that the domain consists of N = \/_P \/ﬁ points and set \/N = 2L with
¢ nax < L. The number of blocks at level f is deﬁned as ng(¢), and the following formula
holds:

ng(?) = 0(23(fmax_f)).

The number of points in each block, whether it is a cubic face or a cubic edge, is denoted
as np(?). It is important to note that the interior or redundant points from the previous level
are not included in np(¢) because they have already been eliminated in previous levels.
To estimate np(Z), we rely on the assumption made in [15] regarding the skeletonization.
According to this assumption, the typical size of the skeleton is given by
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Algorithm 3 The hierarchy of Schur complements of A with edge skeletonization

1
2
3
4
5
6
7

13
14
15
16

17
18

24

28
29
30
31

32
33

35
36

37
38
39

if ¢ <l then
Skeletonize cubic faces at level ¢ + %
for s € {block index at level £ + %} do

Use ID to compute Ty, 1., [, 1..and Jy 1
T g T3 T3

U€+%;s = A5+é (I€+é;s7lé+é;s)’ ‘/H»és = Aé+é(‘]é+é;57[€+é;s)
- - / T

Calculate ZH%;S “— Vm%;sTH%;s

Calculate Vvl#»é;s A V'lJré;s - AZJr%(JZJr%;s’ JZJré;s)TH»%:s

7 _7 _ 7T
Calculath“%;seUH%:s E(-;—%;s TH%;SVH-%;S

end

2 Aé+%(<]z+§v J1€+§)

for s € {block index at level £ + %} do

Calculate U1, | R’M%:s — 7‘7“ Ut

l+é;s %;S l+%;s

7 T
Calculate AZ+1(‘]Z+%;37 JZ+%;S) — A5+1(‘72+§;57 JZ+%;S) + KZJF%;SV[JF%;S

end

if { < £.x then
Skeletonize cubic edges at level £ + %
for s € {block index at level { + 2} do

Use ID to compute Tl+§;sv Iz+§;s,and J“_%;s

Uppzs ’i‘ﬁ+§(Ie+§;svlz+§;s)v Virzs & AH%(‘]H%-,SJH%S)
Calculate [H%;s — Vg’i%;sTH%s

Calculate VH%:,S “Virzs = A2 U2 Jiy 20Ty 2

_TT
T[+%;S‘/v£+§:s

Calculate Uz+§;s — UZ+§;s 7£[+%;S

end
Al+1 « A(+§(‘][+§a Jé+%)
for s € {block index at level £ + %} do

7—1 ” 7—1
Calculate ng;s’ KH%;S — _VH%;sng;s
Caleulate Ap1(Jpy 2.0 Jpp2.) < Arpr(Jpp2,0 Jpp2,) + KH%SVZEQ.S

end

. -1 -1 Fr—1 I —1
Output.[[,Jg,IéJr%,J[Jr%,IFr%,J[Jr%,UMjk,U U %;37I([ﬂ]k,I([Jr%;s,f(“_%;‘5

Z+%;s’ £+

Determine £iayx, the hierarchical structure of domain, and index sets Iy,;; and Jy,5%
for £ =1 to {.x do
Apy1 = AlJes Je)
for (i,7,k)€ {block index at level £} do
Upijic < Ac(Tgijis Teijn)s Vaijre < Aed(Jeijies Teijr)
Calculate U/TL_][k Ké;i]‘k — _Véﬂijﬁ;ﬁljk
Caleulate Ay, 1 (Jeijhs Jeijh) < Agy 1 (Jesighs Jeij) + ek Vil

X) Gfmax

_J O¢) for edges;
np(?) = { 0(2%) for faces.
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Algorithm 4 Extracting the diagonals of A~! with edge skeletonization

Input:
Output of Algorithm 3
1 for { = lhax to 1 do
2 for (i,7,k) € {block index at level £} do

3 Calculate G_1 (I/.ijjm Tpiji) < U[i;’k + K}ijkG/( Jeijks Jijr) Kesiji
4 Calculate G[ 1 (Jg vijks Iy, z]k) — G[(J[ qijks Jy. l]k)Kg sijk

5 G 1ijh, J; i) Go1 (Jejns Tesijn) "

6 Gg,%(fz,uk,7 Joijk) Ge(fz,uk, Je.ijk)

7 end

8 if /> 1 then

9 for s € {block index at level ¢ — 3} do

10 Caleulate G,z (I, 1.1, 1. 5) — U[1 + K] o Lis (CPREY C/RSVRP/SETN ) (VRETN
11 Calculate W[ 2(]5 1 svll—- s — Gy 1K27_
12 GZ 2(‘]6 1 1[7 ) (— Wg 1((]@7_ s?Ié—— S) +T[ 1 G[ 2(1[7 Igi%;s)
13 é 2(171 JZ 1 )HG[ 2(JZ 757[[7?5)"[‘
14 G,_ z(Jlf_ S7J[ ) &
Gz—-(lz—- bvlz—- ST %‘S+Tz—§; U (et I ) + G (0 Je 1)
15 end
16 end
17 if £> 1 then
18 for s € {block index at level { — 2} do
19 Caleulate Ge—1(Iy_z,,,1;_2,,) + U, 12 + K}:%;SGZ%(JL%;S, T2 ) 2,
20 Calculate Wlfl(Jé—%;SV{é—g;s) — GéféKﬁfg;s
21 Gl—l(‘]éfé;y I[,%;s) — W[—l(J(,%;S; Ilfg;s) + T57%;501_1(157%:37 IZ*%;S)
22 G[*l(]éfg;sv Jg,%;s) « GZ—](Jp%;S:Ief%;.s)T
23 Ggfl(sz%;s,Jk;%;s) — B
Gf—l(Jlfg;y Il*%;s)z?‘_g;s + TZ*%;SWZ—l(‘Jlf%;y 157%;5) + Gé—%(‘&*%ﬁ’ JZ*%;S)
24 end
25 end
26 end

Remark 1 From the complexity analysis, the size of the skeleton is independent of the tol-
erance of the ID approximation. In fact, the rank of the ID step should not be excessively
large relative to the matrix size N. A large rank is equivalent to retaining a large number
of redundant points rather than skeleton points. In such case, only the operations of integer
levels are effective and the operations of fraction levels are skipped, leading to a computa-
tional complexity of O(N?). That is, the SellnvHIF tends to the original selected inversion
[20] for which the solution is exact.

Remark 2 In 3D problems, the DOFs naturally have more interactions than those in 2D
problems. Dimensionality affects the typical skeleton size in each level and thus the overall
computational complexity. The typical skeleton size of 2D problems is O(¢), resulting in
a linear computational complexity. In 3D problems, the typical skeleton size is O(27) with
face skeletonization, leading to the quasi-linear computational complexity.
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Let us examine the construction step of the SellnvHIF, which involves the following
steps in Algorithm 1. At the integer level £, one computes U;}Uk (Line 9) for each block.
One then multiplies the inverse with V., to obtain K, (Line 10) and update the new
Api1 o pjiks Jpp) (Line 11). At the fractional level £ + 1/2, the T,/ is recorded by
ID for each cell (Line 16). The cost for this step is O(np(¢ )%) since each cell only inter-
acts with a constant number of cells. Then, one applies it (Lines 19, 20, and 21) and
multiplies the inverse of l_]f+1/2;k (Line 25) with Vf+1/2;k to obtain I_(fﬂ/z;k (Line 26).
Finally, one update A, (Jy1 04> J41/04) (Line 27). Thus, the computational cost for
these steps at each level is O(np(£)3). The total computational complexity is

max

fmax
D npEnp(¢) < C Y 23w < CyNlogN,
=1 =1

where C and C, are constant. The total computational cost for the construction step is
O(NlogN)with ,, = O(L).

Furthermore, the extraction phase is considered, and the following steps are out-
lined in Algorithm 2. At the integer level £, one can calculate G pUp i Lpiin) (Line
3) and G,_y ;o(J g jixs L) (Line 4) for each block. At the fractional level 2 — 1/2, G,_,
Tp—1 200 Lo1/24) (Line 10), Gy (S jogr Ty y250) (Line 12), and Gy (Jpy jops Jo—1/2:4)
(Line 14) are calculated for each cell. The computational cost for these steps at each
level is O(np(f)3). Remarkably, it turns out that the complexity for the extraction
phase is also O(N log N).

As for the computational complexity of the SellnvHIF with edge skeletonization, the
cost for each step at each level remains nz(Z)np(£)3. Consequently, the total computa-
tional complexity is determined by summing the cost over all levels:

s £
Y ng@np(€)* < C Y 2w L3 L O,
=1 =1

where C and C,, are constant. That is, the total computational cost is O(N) with ,,,, = O(L).

Finally, the quasi-linear scaling of the SellnvHIF and the linear scaling of the SellnvHIF
with edge skeletonization are demonstrated. While the SellnvHIF with edge skeletoniza-
tion can achieve the theoretical O(N) complexity, there is some fill-in generated after edge
skeletonization, leading to additional computational cost. This indicates that the optimal
complexity can be achieved only if N is sufficiently large, which presents challenge in
directly applying it to the MPB equation of interest. As a result, only the SellnvHIF with-
out edge skeletonization is employed in all subsequent numerical examples.

3 Numerical Method for MPB Equations

In this section, the iterative solver is proposed to solve the MPB equations with the effect
of Coulomb correlation [39]. The governing equations for the whole space are obtained by
the Gaussian variational field theory [30, 32] and expressed by

V1)V — yAeE0O 2 sinh § = ~2p,(r),
[V - 0@V = xAe =072 cosh | G(r,r') = —4xs(r ') (13)
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with the potential ¢, the relative dielectric function #(r), the density of fixed charge pf(r),
and the Green’s function G(r, r ) The coupling parameter E and the rescaled fugacity A are
given for specific problems. The function y(r) is defined as 1 to represent the region that
is accessible for ions, while it is defined as 0 elsewhere. The correlation function c(r) reads

o) =1im [G(r.r’) = 1/n@)|r = '|].

To solve the partial differential equations (13), a self-consistent iterative scheme is
employed, following [39]. This scheme consists of two alternating steps: first, given a c(r),
the MPB equation (the first equation) is solved to obtain the potential ¢ with given bound-
ary conditions. Second, for a given c(r) and ¢, the GDH equation (the second equation)
is solved to determine the G and obtain a new c(r). These two steps are iterated until the
solution reaches the desired convergence criteria. The iterative scheme is mathematically
expressed [30, 31]:

=0
V- n()Vp*tD — Ae™ 72 sinh ¢p%*+h = —2Pf(")’
=K

V-1V — Ae” 7 cosh g® D [GHD = —4rs(r —r'), (14)

D) = lim [G("“)(r, r’) - 1/;1(r)|r—r’|],
r—r

where the superscript k = 0, 1, ---, K indicates the kth iteration step.

In addition, the PB steps can be efficiently solved using standard direct solvers. How-
ever, the key to solving a self-consistent equation lies in the GDH equation, which can
be reformulated during a self-consistent iteration. In three dimensions, a finite difference
approximation of the equation is employed to obtain the following algebraic equation:

AG =1, (15)
where the matrix A is given by

/’l3
T 4n

A [DHD" + diag{P}], (16)
with P being the vector of function p(r), G representing the lattice Green’s function, D
being the difference matrices of operators V, and I being the unit matrix. It can be observed
that solving for the Green’s function is equivalent to performing matrix inversion, G = A7l
However, directly computing the inverse of the matrix is computationally complex and
unnecessary. In this case, only diag(G) is needed to obtain the self-energy c(r). Thus, the
SellnvHIF is employed to efficiently extract the diagonals of the inverse.

4 Numerical Results

To assess the effectiveness of the SellnvHIF, we present numerical results for the MPB
equations in three dimensions. The scaling of the computational time is of particular inter-
est. We set the coupling parameter 2 = 1 and the uniform fugacity parameter A = 0.05. For
both the PB and the self-consistent iterations, the error criteria are set at 1073, The initial
value for the potential in the iteration is always constant in our instances with ¢© = 0. It is
important to note that the choice regarding the ID step depends on the problem specified.
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Table 1 The CPU time and accuracy as function of the matrix size. The SellnvHIF time means the execu-
tion time spent for one step SellnvHIF. The rank in the ID step is 37

\‘/ﬁ SellnvHIF time (s) E E,

48 2.0E+3 6.5E-3 2.7E-2
64 4.8E+3 8.1E-3 3.4E-2
80 1.0E+4 9.2E-3 3.8E-2
96 2.5E+4 9.8E-3 4.0E-2
128 5.8E+4 - -

Both the PB and the GDH stages make use of Dirichlet boundary conditions. The calcula-
tion is executed on a machine with Intel Xeon 2.2 GHz and 2.2 TB memory. All experi-
ments are performed in Matlab with the FLAM package [18] for hierarchical matrices.
Prior to resolving the MPB equation, we begin by demonstrating an illustrative case of
evaluating the diagonal elements of an elliptic differential operator. The statistical compu-
tation time is computed as the average of five measurements.

Example 1 (The discrete elliptic differential operator) In our examination of 3D prob-
lems, we first explore the diagonals of the inverse of a discrete elliptic differential operator.
This is achieved through the implementation of a seven-point stencil discretization. Sub-
sequently, one computes the diagonals of the inverse matrix utilizing both the SellnvHIF
method and the exact approach as described in [20]. The diagonals of the inverse of the
discrete operator are set as d, and d,, respectively. Table 1 presents the absolute L? error
E,=4/X.(d,—d,)*/N between the numerical results and the reference solution, which
corresponds to the matrix size as determined by the exact method. Additionally, Table 1
highlights the relative L? errors E, = ||d, — d, ||,/lld,ll,, serving to validate the accuracy
of the SellnvHIF. Furthermore, the computational time of the algorithm is displayed in
Table 1, while Fig. 3 confirms the quasi-linear scaling of the SellnvHIF. Table 2 illustrates
the relationship between the rank of the ID step and the numerical error. This relation-
ship demonstrates that the error can be effectively controlled as the rank of the ID step
increases.

Example 2 (The charge density with a delta function) In this example, we consider dis-
continuous charged distribution in a region [0, L]> with L = 32. Let the fixed charge density
be a face charge:

pp(x) = 8(x — L/2).

The results of the MPB equations are calculated using the SellnvHIF algorithm. Fig-
ure 4 visualizes the distribution of the potential in this system at z = L/2 with different
matrix sizes N = 163,323,483, and 643, The potential with respect to x = L/2 and y = L/2
remains symmetric due to the symmetry of the fixed charge and is most pronounced
at x = L/2 due to the presence of the charge. Table 3 shows the accuracy of the whole
algorithm to compute the potential ¢ compared to a reference potential computed with a
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Factorization time (s)
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Fig.3 One step time for the SellnvHIF. The solid lines represent the computational time for the factoriza-
tion step (a) and the extracting step (b). The dash lines represent the reference scalings

Table 2 Numerical errors for different ranks of the ID step

The rank of ID step E, E,

32 3.5E-3 9.5E-2
128 6.5E—4 8.1E-3
256 7.2E-8 9.2E-7
512 5.3E-16 9.8E—-15

sufficiently large grid size N = 643, which verifies the approximate accuracy of first order
due to the discontinuous of the derivative of the potential at y = z = L/2. Additionally,
the table includes the computational time of the algorithm, demonstrating the quasi-linear
scaling of the SellnvHIF.

Example 3 (The charge density with continuous function) In this example, we consider
discontinuous charged distribution in a region [0, L]? with L = 32. Let the fixed charges
density be

pr(x) = sin(mx/L).

The results of the MPB equations are then computed using the SellnvHIF, where the preci-
sion of the ID step is set to be 1078, Figure 5 visualizes the distribution of the potential in
this system at x = L/2 with different matrix sizes N = 16,323,483, and 643, which dis-
plays the convergence. The potential is most evident at x = L/2 due to the dense charge.
Table 4 shows the accuracy of the whole algorithm to compute the potential ¢ compared
to a reference potential computed with a sufficiently large grid size N = 643, which verifies
the convergence of our algorithm. Furthermore, Table 4 also shows the computational time
of the algorithm to verify the quasilinear scaling of the SellnvHIF.
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Fig.4 Potential distributions with different matrix sizes at z=L/2. a N=16; b N=32; ¢ N =48;
dN =64

Table 3 The CPU time and accuracy as function of the matrix size. The total time and the SellnvHIF time
mean the execution time spent for one step iteration in the whole program and the time for one step Selln-
VHIF, respectively

W Total time (s) SellnvHIF time (s) L,

16 4.02E+0 2.83E+0 5.56E—1
32 2.12E+2 1.89E+2 3.23E-1
48 2.08E+3 1.95E+3 1.33E-1
64 7.74E+3 6.92E+3 -

5 Conclusions
This paper develops the SellnvHIF, a fast algorithm to solve the MPB equations with the

effect of Coulomb correlation. The SellnvHIF effectively integrates hierarchical interpola-
tive factorization and selected inverse techniques to achieve the O(N log N) computational
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Fig.5 Potential distributions with different matrix sizes at z=L/2. a N=16; b N=32; ¢ N=48; d
N =064

Table 4 The CPU time and accuracy as function of the matrix size. The total time and the SellnvHIF time
mean the execution time spent for one step iteration in the whole program and the time for one step Selln-
VHIF, respectively

W Total time (s) SellnvHIF time (s) L,

16 2.75E+1 2.35E+1 2.12E-2
32 3.06E+2 2.47E+2 3.84E-3
48 2.80E+3 2.40E+3 1.92E-3
64 1.06E+4 8.37E+3 -

complexity and the theoretical O(N) computational complexity with edge skeletonization,
in terms of operations and memory, necessary for computing the diagonal of the inverse
of a sparse matrix discretized from an elliptic differential operator. The proposed algo-
rithm was applied to 3D MPB problems, demonstrating impressive performance in terms
of both accuracy and efficiency. We remark that the proposed algorithm also permits its
application to discretized integral operators. More precisely, since the discretization matrix
from an integral operator is dense, one can skeletonize the interior points on integer levels
and apply the skeletonization similar to the SellnvHIF on fractional levels. This process
leads to the corresponding factorization form of a matrix, followed by the utilization of an
extraction method to obtain the diagonal part of the matrix inverse. This will be our future
work. Moreover, we plan to develop parallel implementations of the SellnvHIF algorithm
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to tackle larger-scale problems. This development will open up possibilities for simulating
and analyzing complex systems at a larger scale, further advancing our understanding of
electrostatic interactions in various applications.

Acknowledgements Y. T. and Z. X. acknowledge the financial support from the National Natural Science
Foundation of China (Grant Nos. 12071288 and 12325113), the Science and Technology Commission of
Shanghai Municipality of China (Grant No. 21JC1403700), and Strategic Priority Research Program of Chi-
nese Academy of Sciences (Grant No. XDA25010403). H. Y. thanks the support of the US National Science
Foundation under awards DMS-2244988 and DMS-2206333.

Data Availability The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Declarations
Conflict of Interest The authors state that there is no conflict of interest.

Ethical Statement This manuscript complies with all ethical standards for scientific publishing.

References

1. Bazant, M.Z., Storey, B.D., Kornyshev, A.A.: Double layer in ionic liquids: overscreening versus
crowding. Phys. Rev. Lett. 106(4), 046102 (2011)

2. Boroudjerdi, H., Kim, Y.-W., Naji, A., Netz, R.R., Schlagberger, X., Serr, A.: Statics and dynamics
of strongly charged soft matter. Phys. Rep. 416, 129-199 (2005)

3. Borukhov, I., Andelman, D., Orland, H.: Steric effects in electrolytes: a modified Poisson-Boltz-
mann equation. Phys. Rev. Lett. 79(3), 435-438 (1998)

4. Brandt, D.: Multi-level adaptive solutions to boundary-value problems. Math. Comput. 138, 333—
390 (1977)

5. Chapman, D.L.: A contribution to the theory of electrocapillarity. Phil. Mag. 25, 475-481 (1913)

6. Cheng, H., Gimbutas, Z., Martinsson, P., Rokhlin, V.: On the compression of low rank matrices.
SIAM J. Sci. Comput. 26(4), 1389-1404 (2005)

7. Corry, B., Kuyucak, S., Chung, S.H.: Dielectric self-energy in Poisson-Boltzmann and Poisson-
Nernst-Planck models of ion channels. Biophys. J. 84(6), 3594-3606 (2003)

8. Daiguji, H., Yang, P., Majumdar, A.: Ion transport in nanofluidic channels. Nano Lett. 4(1), 137-
142 (2004)

9. Duff, I.S., Reid, J.K.: The multifrontal solution of indefinite sparse symmetric linear. ACM Trans.
Math. Softw. 9(3), 302-325 (1983)

10. George, A.: Nested dissection of a regular finite element mesh. SIAM J. Numer. Anal. 10(2), 345—
363 (1973)

11. Gillman, A., Martinsson, P.G.: A direct solver with O(N) complexity for variable coefficient elliptic
PDEs discretized via a high-order composite spectral collocation method. SIAM J. Sci. Comput.
36(4), 2023-2046 (2013)

12. Gillman, A., Martinsson, P.G.: An O(N) algorithm for constructing the solution operator to 2D
elliptic boundary value problems in the absence of body loads. Adv. Comput. Math. 40(4), 773-796
(2014)

13. Gouy, G.: Constitution of the electric charge at the surface of an electrolyte. J. Phys. 9, 457468
(1910)

14. Grasedyck, L., Kriemann, R., Borne, S.L.: Domain-decomposition based H-LU preconditioners.
Numer. Math. 112(4), 565-600 (2009)

15. Ho, K.L., Ying, L.: Hierarchical interpolative factorization for elliptic operators: differential equa-
tions. Comm. Pure Appl. Math. 69(8), 1415-1451 (2016)

16. Ho, K.L., Ying, L.: Hierarchical interpolative factorization for elliptic operators: integral equations.
Comm. Pure Appl. Math. 69(7), 1314-1353 (2016)

17. Ji, L., Liu, P, Xu, Z., Zhou, S.: Asymptotic analysis on dielectric boundary effects of modified
Poisson-Nernst-Planck equations. SIAM J. Appl. Math. 78, 1802-1822 (2018)

@ Springer



Communications on Applied Mathematics and Computation

18. Kenneth, L.H.: FLAM: fast linear algebra in MATLAB—algorithms for hierarchical matrices. J.
Open Source Softw. 5, 1906 (2020)

19. Liljestrom, V., Seitsonen, J., Kostiainen, M.: Electrostatic self-assembly of soft matter nanoparticle
cocrystals with tunable lattice parameters. ACS Nano 9(11), 11278-11285 (2015)

20. Lin, L., Lu, J., Ying, L., Car, R., E, W.: Fast algorithm for extracting the diagonal of the inverse
matrix with application to the electronic structure analysis of metallic systems. Commun. Math.
Sci. 7(3), 755-777 (2009)

21. Lin, L., Yang, C., Lu, J., Ying, L., E, W.: A fast parallel algorithm for selected inversion of struc-
tured sparse matrices with application to 2D electronic structure calculations. SIAM J. Sci. Com-
put. 33(3), 1329-1351 (2011)

22. Lin, L., Yang, C., Meza, J.C,, Lu, J., Y, L., E, W.: Sellnv—an algorithm for selected inversion of a
sparse symmetric matrix. ACM Trans. Math. Softw. 37(4), 1-19 (2011)

23. Liu, C., Wang, C., Wise, S., Yue, X., Zhou, S.: A positivity-preserving, energy stable and con-
vergent numerical scheme for the Poisson-Nernst-Planck system. Math. Comput. 90, 2071-2106
(2021)

24. Liu, H., Wang, Z.: A free energy satisfying finite difference method for Poisson-Nernst-Planck
equations. J. Comput. Phys. 268(2), 363-376 (2014)

25. Liu, J.-L., Eisenberg, R.S.: Molecular mean-field theory of ionic solutions: a Poisson-Nernst-
Planck-Bikerman model. Entropy 22(5), 550 (2020)

26. Liu, JJW.H.: The multifrontal method for sparse matrix solution: theory and practice. STAM Rev.
34(1), 82-109 (1992)

27. Liu, P, Ji, X., Xu, Z.: Modified Poisson-Nernst-Planck model with accurate Coulomb correlation in
variable media. SIAM J. Appl. Math. 78, 226-245 (2018)

28. Ma, M., Xu, Z.: Self-consistent field model for strong electrostatic correlations and inhomogeneous
dielectric media. J. Chem. Phys. 141(24), 244903 (2014)

29. Ma, M., Xu, Z., Zhang, L.: Modified Poisson-Nernst-Planck model with Coulomb and hard-sphere
correlations. SIAM J. Appl. Math. 81, 1645-1667 (2021)

30. Netz, R.R., Orland, H.: Beyond Poisson-Boltzmann: fluctuation effects and correlation functions.
Eur. Phys. J. E 1(2), 203-214 (2000)

31. Netz, R.R., Orland, H.: Variational charge renormalization in charged systems. Eur. Phys. J. E
11(3), 301-311 (2003)

32. Podgornik, R.: Electrostatic correlation forces between surfaces with surface specific ionic interac-
tions. J. Chem. Phys. 91, 5840-5849 (1989)

33. Schmitz, P.G., Ying, L.: A fast direct solver for elliptic problems on general meshes in 2D. J. Com-
put. Phys. 231(4), 1314-1338 (2012)

34. Schoch, R.B., Han, J., Renaud, P.: Transport phenomena in nanofluidics. Rev. Mod. Phys. 80, 839—
883 (2008)

35. Tu, Y., Pang, Q., Yang, H., Xu, Z.: Linear-scaling selected inversion based on hierarchical inter-
polative factorization for self Green’s function for modified Poisson-Boltzmann equation in two
dimensions. J. Comput. Phys. 461, 110893 (2022)

36. Wang, Z.-G.: Fluctuation in electrolyte solutions: the self energy. Phys. Rev. E 81, 021501 (2010)

37. Xia, J., Chandrasekaran, S., Gu, M., Li, X.: Superfast multifrontal method for large structured lin-
ear systems of equations. SIAM J. Matrix Anal. Appl. 31(3), 1382-1411 (2009)

38. Xia, J., Xi, Y., Cauley, S., Balakrishnan, V.: Fast sparse selected inversion. STAM J. Matrix Anal.
Appl. 36(3), 1283-1314 (2015)

39. Xu, Z., Maggs, A.C.: Solving fluctuation-enhanced Poisson-Boltzmann equations. J. Comput. Phys.
36(3), 310-322 (2014)

40. Xu, Z., Ma, M,, Liu, P.: Self-energy-modified Poisson-Nernst-Planck equations: WKB approximation
and finite-difference approaches. Phys. Rev. E 90(1), 013307 (2014)

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

@ Springer



