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Abstract

This article focuses on model-based clustering of subjects based on the shared re-
lationships of subject-specific networks and covariates in scenarios when there are dif-
ferences in the relationship between networks and covariates for different groups of
subjects. It is also of interest to identify the network nodes significantly associated
with each covariate in each cluster of subjects. To address these methodological ques-
tions, we propose a novel nonparametric Bayesian mixture modeling framework with
an undirected network response and scalar predictors. The symmetric matrix coef-
ficients corresponding to the scalar predictors of interest in each mixture component
involve low-rankness and group sparsity within the low-rank structure. While the low-
rank structure in the network coefficients adds parsimony and computational efficiency,
the group sparsity within the low-rank structure enables drawing inference on network
nodes and cells significantly associated with each scalar predictor. Being a principled

Bayesian mixture modeling framework, our approach allows model-based identification



of the number of clusters, offers clustering uncertainty in terms of the co-clustering ma-
trix and presents precise characterization of uncertainty in identifying network nodes
significantly related to a predictor in each cluster. Empirical results in various sim-
ulation scenarios illustrate substantial inferential gains of the proposed framework in
comparison with competitors. Analysis of a real brain connectome dataset using the
proposed method provides interesting insights into the brain regions of interest (ROIs)
significantly related to creative achievement in each cluster of subjects. Supplemen-
tary material shows the convergence rate for the posterior predictive density of the
proposed model, additional simulation examples with model mis-specification, full con-
ditional distributions to run the Markov Chain Monte Carlo (MCMC) algorithm and
also presents traceplots for various model parameters to demonstrate convergence of

the MCMC algorithm.

Keywords: Bayesian mixture modeling, Network clustering, Network node selection, Spike

and slab prior, Brain connectome data.

1 Introduction

In recent times, network data is regularly encountered in disciplines as diverse as neu-
roscience, genetics, finance and economics. This article is motivated by scenarios where an
undirected network and several scalar variables are available for each subject in a multi-
subject setting, and there are differences in the relationship between the network and co-
variates for different groups of subjects. In this context, we develop a novel non-parametric
Bayesian regression framework with the network serving as the response, and scalar predic-
tors. In particular, we focus on brain connectome data obtained using diffusion weighted
magnetic resonance imaging (AMRI). Here, the human brain is segmented into structural
regions of interest (ROIs), viewed as nodes of the brain network, and the number of fiber
bundles connecting any pair of regions (an edge connecting a pair of nodes) is estimated.
Thus the brain may be viewed as an undirected network expressed in the form of a symmetric
matrix. Along with the brain networks, we have information on a brain related phenotype
(creative achievement), as well as behavioral variables, for each subject, which serve as our

scalar predictors.



Our modeling endeavor primarily aims at achieving the following inferential objectives
simultaneously. First, we intend to cluster subjects into groups, with members in each
group sharing the same relationship between the undirected network response and scalar
covariates. The clustering endeavor aims at model-based determination of the number and
composition of clusters. Additionally, it offers clustering uncertainty in terms of the model-
based estimation of the probability of a pair of observations being part of the same cluster.
Second, inferential interest lies in identifying nodes and edges in the network significantly
impacted by each predictor of interest in each cluster. To this end, an important inferential
objective is to accurately characterize uncertainty in our inference on network nodes. For the
brain connectome data, the latter objective amounts to drawing inference on brain regions of
interest (ROIs) and their interconnections significantly associated with creative achievement
in each cluster. We also offer uncertainty in terms of estimated probability of a node being
identified as influential. Moreover, we would like to achieve these inferential goals with
parsimony in the fitted model and computational efficiency in the model fitting process.

An overwhelming literature in network analysis aims at understanding the topological
structure of a single network, rather than focusing on multiple network observations col-
lected for different individuals. Some notable examples of single-network models include
exponential random graph models (Frank and Strauss, 1986), social space models (Hoff,
2005) including random dot product graph (RDPG) models (Young and Scheinerman, 2007)
and stochastic block models (Nowicki and Snijders, 2001). In the context of developing a
regression /classification model with a network response, a possibility is to extract a few sum-
mary measures from the network to reshape the network object into a multivariate response
(e.g., see Bullmore and Sporns, 2009 and references therein). Clearly, the success of this ap-
proach is highly dependent on the choice of summary measures. Furthermore, this approach
cannot identify the impact of specific nodes on the predictor, which is of clear interest in
our setting. In a newer work, Wang et al., 2017 exploit the relational nature of the network
response, though their approach does not offer any clustering mechanism for the subjects and
is not designed to detect network nodes significantly related to a scalar predictor. Another
approach in the tensor regression literature, which assumes a general version of the tensor

and does not consider the symmetry constraint (inherent in an undirected network), applies



regression with a matrix/tensor response (Gahrooei et al., 2021; Guhaniyogi and Spencer,
2021). Some recent articles on supervised stochastic block models (Kim and Levina, 2019;
Pavlovié¢ et al., 2020) focus on clustering the nodes of the network into groups, which is
methodologically a different problem than ours, where the focus is on clustering subjects
into groups.

While our framework treats the network as a response, a few recent approaches (Guha
and Rodriguez, 2021; Relién et al., 2019) treat the network as a predictor to predict a scalar
response. This difference in the modeling approach leads to a different focus and interpreta-
tion. Network predictor regression focuses on understanding variations in a biological out-
come as the network image varies, while network response regression aims to study changes
in the network as predictors such as the creativity levels, age and sex vary. In a sense, their
difference is comparable to that of multi-response regression and multi-predictor regression
in the classical vector-valued regression context. Importantly, our network-response regres-
sion framework bypasses the need to invert any high dimensional matrix to draw Bayesian
inference, thereby adding substantial computational gains over Guha and Rodriguez, 2021,
especially in the analysis of networks with a moderately large to a large number of nodes,
when computation in Guha and Rodriguez, 2021 may become quite expensive. Note that
a recent approach (Guha and Guhaniyogi, 2021) discusses symmetric tensor-on-vector re-
gression models; however, both Guha and Guhaniyogi, 2021 and Guha and Rodriguez, 2021
tacitly assume that the same set of network nodes influence the regression function in a
similar manner for every subject.

The neuroscience literature provides substantial evidence of differences in the relationship
between brain connectivity networks and phenotypic traits for different groups of individuals
(Saad et al., 2012; Meskaldji et al., 2013, 2015). However, flexible statistical methods for
identifying such subgroups and ascertaining subgroup differences have somewhat lagged be-
hind the increasingly routine collection of such data. One possibility is to flatten the network
to a high dimensional multivariate vector and employ a mixture of multivariate regression
models. This idea can make use of the literature on mixtures of supervised parametric and
semi-parametric linear and generalized linear models with continuous, binary and categor-

ical responses and predictors (Miiller et al., 1996; Shahbaba and Neal, 2009; Duan et al.,



2007; Rodriguez et al., 2009; Amewou-Atisso et al., 2003; Hannah et al., 2011). These ap-
proaches are less suitable for our problem of interest since they ignore the network topology
in the model building process, and do not allow drawing inference on network nodes. In
this context, one may invoke the literature on clustering of matrices or tensors into multiple
groups (Huang et al., 2009; Lee et al., 2010; Chi and Lange, 2015; Chi et al., 2017; Li et al.,
2014; Cao et al., 2013; Wu et al., 2016), but this literature is more pertinent to unsupervised
clustering of networks, as opposed to our interest in supervised clustering of networks.

In this article, we propose a novel nonparametric Bayesian modeling approach to achieve
the aforementioned inferential objectives simultaneously. A Dirichlet process (DP) mixture
of network response regression models is developed and used to analyze the data, which leads
to clustering of subjects into groups signifying differential relationships between the network
response and scalar predictors. Further, the network valued coefficients corresponding to
the predictors of interest in each mixture component are assumed to have a low-rank for
parsimony and computational efficiency. We also impose a node-specific sparsity structure
using a Bayesian spike-and-slab variable selection prior for identifying network nodes signif-
icantly associated with the predictors. Being a Bayesian mixture modeling framework, our
method achieves model-based determination of the number of clusters and delivers model-
based estimation of clustering uncertainty. Specifically, clustering uncertainty is quantified
by estimating the posterior probability of any pair of observations being part of the same
cluster. Additionally, the proposed method identifies network nodes significantly related to
a predictor in each cluster, and characterizes uncertainty associated with identifying impor-
tant network nodes in each cluster. The uncertainty is quantified by model-based estimation
of posterior probability of a node being influentially related to a predictor. Unlike a frequen-
tist approach, both the uncertainty in clustering as well as the uncertainty in the inference
on nodes can be seamlessly estimated from the post burn-in Markov Chain Monte Carlo
(MCMC) iterates of the proposed Bayesian approach. Such uncertainty characterizations
are crucial in neuroscientific applications with a limited sample size, high dimensional pa-
rameters and low signal-to-noise ratio. Our framework does not involve any expensive matrix
manipulation, allowing efficient computation with a large number of network nodes.

Our approach is fundamentally different from regression with a covariance matrix out-



come and scalar predictors. These approaches tacitly use positive-definite property of the
outcome matrix (Hoff and Niu, 2012; Zou et al., 2017). A similar modeling framework
is developed by Zhao et al. (2021), wherein important principal components of covariance
matrix outcomes related to scalar covariates are identified. In contrast, we do not impose
any restrictions on our network matrix response matrix (e.g., positive definiteness) except
symmetry, which is directly motivated by the scientific problem at hand. Additionally, an
important modeling objective lies in identifying network nodes (with uncertainties) signif-
icantly related to scalar predictors. The aforementioned approaches are not designed to
deliver such inference.

The rest of this article progresses as follows. Sections 2 and 3 describe model develop-
ment and posterior computation, respectively. Empirical investigation of the model with
simulation studies and the brain connectome data analysis are presented in Sections 4 and
5, respectively. Finally, Section 6 concludes the paper with an eye towards future work.
Theoretical investigations of the model, showing convergence rate of the posterior predic-
tive distribution, are described in the supplementary material. Supplementary material
also shows simulation studies under model mis-specification, full conditional posterior dis-
tributions for running MCMC and convergence of MCMC chains for model estimation by

displaying traceplots of model parameters.

2 Supervised Clustering of Undirected Networks: Model
and Prior Formulation

2.1 Notations and Framework

Forv=1,...,n,let Y, € Y € RP*P denote the weighted undirected network response
with p nodes, ®; = (z1,...,2Zym) be m predictors of interest and z; = (z,...,24)" bel
auxiliary predictors corresponding to the ith individual. Mathematically, this amounts to
Y; being a p x p matrix, with the (ji,j2)-th entry of Y'; denoted by ;(;, j,) € R. In this
article, we focus on networks that contain no self relationship, i.e., y; j, j,) = 0 when j; = ja,
and are undirected (Vi (j, j») = Yi,(ja,j1))-

We assume that the relationship between the predictor vector of interest x; and the



response varies in every cell (i, j2). In contrast, an auxiliary predictor explains the response
in every cell identically. Let J = {J = (j1,72) : 1 < ji < ja < p} be aset of indices. Since Y;
is symmetric with 0 diagonal entries, it suffices to build a probabilistic generative mechanism
for y; j(j € J). This is a common practice in the modeling of undirected relational data
(Hoff et al., 2002; Hoff, 2005). Moreover, working with (y;,; : § € J) is fundamentally
different from the ordinary vectorization of Y'; for model fitting, since every element y; ; of
Y, keeps a tab on the cell index j = (j1,j2) of the entry (i.e., position of the entry in the

matrix), which will be crucial in the modeling development described below.

2.2 Model Development and Prior Distributions

To develop a sufficiently flexible relationship between Y'; and predictors x; and z;, we
propose to model the conditional distribution of Y, | x;, z;, 0%, denoted by f(Y|z;, z;,0?)

as a mixture model given by,

f(Yi|wiazi70_2) = /g<Yi’miazi>Bla .. -aBmafYOa oo a7l702)dG(B17 s 7Bm>’}/07717 s 7’}/1)7

(1)

where g(Y;|x;, zi, B1, ..., Bm,Y0, - - -,,0°) is suitably chosen from the class of exponential
family distributions depending on whether each y; ; is continuous, binary or categorical. In
this article, we focus on the case where each network edge y;; is continuous, and choose
g(+) such that each y; j(j € J) is normally distributed with its probabilistic generative

mechanism given by

! m
Yij = Yo+ Z%Zis + Z B jTis + e, €ij~ N(0,07). (2)

s=1 s=1
Supplementary material presents performance of (2) when it is mis-specified, e.g., the con-
tinuous edge effects y; ;’s are generated from a heavy-tailed t-distribution in the truth. The
coefficients By 4, ..., By, ; are the j-th cells of the symmetric matrix coefficients By, ..., B,
of order px p with zero diagonal entries, respectively. Here 7 is the intercept and 74, ...,7, € R
are coefficients corresponding to the auxiliary predictors. The model formulation implies a

similar effect of any of the auxiliary variables z;1, ..., z;; on all cells of the response tensor in



each mixture component. In contrast, B, ; determines the effect of x;5 on the j = (j1, j2)-th
cell of the response in any mixture component. Equations (1) and (2) together can be seen
as a mixture of undirected network response regression models with the mixing distribution
given by G(-). Note that (1) is markedly different from building an ordinary mixture of linear
regression models with vectorized network response Y'; and scalar predictors. Vectorization
of the Y; network matrix would have led to a long vector, which would be a collection of
network edges. But such a construction would lose the crucial information regarding the
pair of nodes that each edge is connected to. Since our interest lies in drawing inference on
network nodes significantly associated with a scalar predictor, such a vectorization strategy
is inadequate. In contrast, (2) develops a regression model for each edge on scalar predictors
while keeping a tab on the nodes, j; and j,, that the edge y;; is connected to. The edge
coeflicient B, ; in (2) is suitably modeled, exploiting this information, to draw inference on
network nodes significantly related to the predictors. It is important to note that the prior
literature on network data modeling and tensor regression models also use a similar strategy
(Hoff, 2005; Guhaniyogi et al., 2017; Guha and Guhaniyogi, 2021). We further elaborate on
this point as this section progresses.

The random probability measure G(-) is taken to be a discrete distribution of the form
G = 3,0 widay, with atoms A}, = (B, ., By Yo Vins - Vin) ~ Go. Here Gy is the
base measure and dax corresponds to the Dirac-delta function at Aj. Such a specification
contains a broad class of species sampling priors, including the Dirichlet process (DP) prior
and the Pitman-Yor process prior through the popular stick breaking construction (Sethura-
man, 1994). In this work, we adopt the stick breaking construction to jointly model cluster

inclusion probabilities. More precisely, for h=1,..., H — 1, and a > 0,

H-2 H-1
wy =0, wg =vs(1 —v]),..,wg_1 =V}, H(l —y), wy = H(l —y), vy ~ Beta(l, o),
h=1 h=1

(3)

where H is an upper bound on the number of clusters. As H — oo, this choice leads to the
classical Dirichlet process prior (Ishwaran and James, 2002). The parameter « is crucial in

determining the number of clusters and it is assigned a Gamma(a,, b, ) prior distribution.



From (1) and the discrete prior on G imposed by the stick breaking construction, the

conditional distribution of Y; can be written as

H
f(Y |z, zi,0%) = thg(YZ-|wi, 2o, Bl B Yon s Viws o?). (4)
h=1
The mixture components signify different relationships between the network response and
scalar predictors in H different clusters. We introduce a cluster index ¢; € {1, .., H} corre-
sponding to the individual 4, Y|, 25, ¢;, 0> ~ g(Yil®i, 2o, BY oy, By o Ve Ve 00)s
with P(¢; = h) = wp, for h = 1,..., H. This conditional independence structure, given the
cluster indices of the individuals, facilitates computation, while still allowing a flexible de-
pendence structure among the different components marginally. Additionally, inference on
cluster indices determine the number of clusters and constitution of each cluster.

In order to identify network nodes in different clusters significantly associated with
predictors of interest, we first introduce a low-rank structure of the coefficient BY, =
((B% ;)5 jo=1 corresponding to the sth predictor of interest in the hth cluster as

R
Bli= Aawstinul) o h=1,_ H; s=1,..m, 1<ji<js<p. (5)

r=1
Here ug ) = (ugl})m, ,ugi)k)’ € RE for k = 1,...,p, is a collection of R-dimensional h-
th mixture specific latent variables, one for each node and each predictor of interest, such
that w,p corresponds to node k and predictor z, in the h-th mixture component, and
Ashr € {—1,0,1} determines if the rth summand in (5) is relevant in model fitting in the hth
mixture component. Setting Uy, as a p x R matrix with the k-th row as us ., (K =1,...,p),
and Ay, a R x R diagonal matrix with the r-th diagonal entry as Agj,, (5) represents a
low-rank decomposition of the symmetric matrix coefficient B}, = U,y A, U, ;. Since the
choice of R is arbitrary, allowing A, 5, to be 0 protects the model from over-fitting. The low-
rank formulation of B, is motivated by several considerations simultaneously. In practice,
the matrix of coefficients By is expected to exhibit transitivity effects, i.e., we expect that
if the interactions between nodes j; and 7, and between nodes j5 and j3 are both influentially

related to the sth predictor of interest, the interaction between nodes j; and j3 is likely to



be influential as well (e.g., see Li et al., 2013). Such an effect is a natural outcome of the
low-rank formulation of Bf . Second, the low-rank formulation allows inference on network
nodes through the node-specific latent vectors wsp 1, ..., Usnp, Which can be interpreted as
the positions of the nodes in a latent space, with the strength of the association B, being
controlled by the inner product or the angular distance between the vectors. The assumed
low-rank structure on B, ..., B, ; additionally offers parsimony by reducing the number
of estimable parameters from mHp(p — 1)/2 to mH Rp, typically with R < p.

Depending on the structure of A, the node specific latent variables u, j, ’s may become
unidentifiable. For example, when A,;, = Ig, By) = Us,hA&hU;h = U, ,0A;,(U;,,0),
for any orthogonal matrix O. While this implies that posterior inference on w,j x’s (without
any constraint imposed on w5 x’s) may not always be meaningful, our focus is on the event
{us 1, = 0} for each k, which is indeed identifiable (since 0-valued latent vectors are invariant
to orthogonal transformation) and is critical to drawing inference on the nodes related to the
s-th predictor of interest, as we describe next. To infer on the network nodes significantly
related to the predictors of interest in each cluster, we assign a spike-and-slab prior on node
specific latent variables as below,
w4 N OMan) k=1 (o), M~ IW(, I), o ~ Beta(a,b).

do, if &spp=0
(6)

where M, is a covariance matrix of order R x R. The parameter (,j corresponds to the
probability of the nonzero mixture component in (6). Importantly, &, = 0 implies that
the kth network node in the response is not related to the sth predictor in the hth cluster of
subjects. In order to learn how many summands in (5) are informative, we draw inference

on Repps = Zle |As.hr| by assigning a hierarchical prior

07 W.D. Ts hr1,

)\s,h,r ~ 1, W.D. Ts hr,2, (ﬂ-s,h,r,lv Ts,h,r,25 7Ts,h,7",3) ~ Dirichlet(r”, ]-7 1)7 n > 1.

_17 Wp WS,h,T,?)?

10



The choice of hyper-parameters of the Dirichlet distribution is crucial. In particular, note
that (i) E[[Aen,]] =2/(2+77) — 0 as 7 — oo and that (i) 370, Var(|Ae,]) =

Zle[(rnig’;{r? = T (Tﬁfg;(t 71,)+ 4)] < 00 as R — oo. Property (i) provides (weak) identifiability

of the different latent dimensions, while property (ii) ensures that limp_,o var(Refrs) < 00.
The parameters g, 71 p, -, V75 are assigned standard normal distributions and the error
variance o2 is assigned I1G(a,, b, ) a-priori. With the construction specified above, the form of
the base measure G can be expressed as Go(A}|0?) = [T\_, Goi(vinlo?) TTisy Goa( B2 ,l0?),

where Go1(7:,|0%) = N(0,1), and G (B} ,|0°) is expressed as follows:

p

p R R
GO,Q(B:JL |U2) - / H 7T(’u’s,hJc |€s,h7k7 Ms,ha gs,h)dMs,ths,h H 7T()\s,h,r) H d)\s,h,r H W(gs,h,k)dgs,Mk-
k=1 r=1 r=1 k

=1

The model and prior specifications allow clustering of individuals into a number of groups
less than or equal to H. In each group, the network response and scalar predictors share
separate regression structures, and thus subjects belonging to different clusters may have

different sets of network nodes significantly related to the predictors of interest, as desired.

3 Posterior Computation

While fitting our proposed mixture model, we adopt a moderately large choice of H
following the strategy in Rousseau and Mengersen (2011). If a specific choice of H leads to
all of the clusters being occupied, then the analysis should be repeated for a larger H until
there is at least one unoccupied cluster. Since all parameters except a have full conditional
posterior distributions belonging to standard families, Gibbs sampling with Metropolis is
implemented to empirically estimate posterior distributions. Details of the Markov chain
Monte Carlo algorithm are presented in the supplementary material. We have implemented
our code in R (without using any C++, Fortran or Python interface) on a cluster computing
environment with three interactive analysis servers, 56 cores each with the Dell PE R820:
4x Intel Xeon Sandy Bridge E5-4640 processor, 16GB RAM and 1TB SATA hard drive.

Indicators to assess clustering performance. To assess inference from the proposed

mixture model, we investigate (i) a point estimate of clustering denoted by ¢, (ii) a heatmap

of the posterior probabilities of pairs of samples belonging to the same cluster, i.e., P(¢; =

11



¢j|Y1,...,Y,) (which provides a measure of the uncertainty associated with the clustering),
and (iii) a histogram of the posterior distribution of the number of identified clusters. The
point estimate ¢ is obtained by minimizing (using iterative component-wise optimization)

the expected loss function discussed in Lau and Green, 2007,

. n n X R 02
F(e) = 1(¢; = ¢; —P(c;=c¢i|Y1,....Y,)|, 7
@=3 3 1e=6) |2 - Pla=c Vi ¥ )
where the ratio 0;/0s controls the relative loss due to incorrect clustering or separation of
a pair of samples. Without any prior knowledge, we assume the loss due to incorrectly

clustering and separating any pair of samples is the same, by setting 0y /0y = 1.

4 Simulation Studies

This section studies the relative performance of our proposed network response mixture
model (NRMM) vis-a-vis its competitors. To study all competitors under various data
generation schemes, we simulate the network response Y;, depending on the predictors x;

and z;, from the finite mixture model given by

Ho
Y|z, z; ~ thvog(Yﬂwi, Zi, B s B0y Yohos - Vim0, 00)s i =1,...,n+ng. (8)
h=1
The first n observations {(Y;, @;,2;) : ¢ = 1,...,n} are used for model fitting and the rest
no observations are used for out-of-sample inference. Here g(-) is as described in equation
(2), and Bj; 4, s =1,...,m, h=1,..., Hy are mixture specific coefficients for z;,. Section
3 of the supplementary material shows performance of the proposed approach and its com-
petitors under model mis-specification, i.e., when each y; ; is generated from a heavy-tailed
t-distribution. The parameter 73, o is the hth mixture specific intercept and v; ;, o, .-,V 10
are the hth mixture specific coefficients corresponding to z;1, ..., 2y, respectively. We set
m = 1 and [ = 2 for the simulations, which mimics the real data application scenario. Since
m = 1, the subscript s will be omitted from variables related to the predictor of interest
hereon. The predictors x; , z;; and z; are simulated i.i.d. from N(0,1).

To simulate the coefficients By, ,, we draw p latent variables wy, ko, each of dimension R,,

12



from a mixture distribution given by

Up k0 ™~ WONRg(uh,m,ga ui,v,gIRg) + (1 — 7T0)50; ke {1, ...,p}, (9)

where Np g(uhmy, ufw’gI R q) represents an R -variate normal distribution with mean vector
Up,m,g and covariance matrix ufw gI R, Also, (1 — mp) is the probability of any wy, ko being
zero in the truth, h = 1, ..., Hy, and is referred to as the network node sparsity. We consider
10 simulation cases as following:
Cases 1-8: In Cases 1-8, the j = (ji,j2)th element (j1 < j») of B}, corresponding to
the h-th mixture component is constructed using a low-rank approach Bj ;= uj, ; oUnj» 0,
accounting for the interaction between the j;th and joth network nodes, for all h =1, ..., Hy.
The diagonal entries of By, are set to zero, and the lower triangular part of Bj , is a
mirror image of the upper triangular part. The 8 different cases are obtained by varying the
number of true mixture components (Hy), number of network nodes (p), sample size (n),
true dimension of latent variables (R,), fitted dimension of latent variables (R) and network
node sparsity (1 — mp), as summarized in Table 1.
Case 9: In Case 9, we consider Hy = 2, wio = 0.4,w39 = 0.6, and Bj, and B are
simulated using two different strategies as following:
Simulating BT 5: The 3 = (j1, jo)th element (j; < j) of B]  is constructed using a low-rank
approach Bf, ; = u} j oU1 j, 0, Where the sparsity (1 — ) in generating the latent variables
is set at 0.6. The diagonals of B, are set to zero and the lower triangular part is a mirror
image of the upper triangular part.
Simulating B ,: Randomly set (1 — mp) = 0.6 proportion of upper triangular elements in
B3 to zero, while the rest are simulated from N (0, 1). The diagonals of B;  are set to zero
and the lower triangular part is a mirror image of the upper triangular part.
Case 10: Case 10 uses an identical construct as Case 9, except that (1 — mp) is set at 0.3.
The intercept 77,0, b = 1,..., Hy, s = 1,2 in each mixture component is drawn from
N(—2,2), while 2 is fixed at 0.5.
In all cases, each component of the mean vector wy,,, is randomly generated to lie

between (—2,2) and the standard deviation wuy, , is set randomly at a number between 0.3
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Table 1: Table presents specifications of Cases 1-8 in the simulation study. The parameter
Hy refers to the true number of mixture components in the Bayesian network response
mixture model (NRMM). Different cases present various combinations of the number of
network nodes p, fitted sample size n, number of subjects ny for out-of-sample inference,
network node sparsity (1 — mp), true (R,) and fitted (R) dimensions of the node specific
latent variables.

Cases p n ng R, R (1—m) H
1 30 100 20 2 5 0.6 3
2 30 100 20 2 5 0.3 3
3 30 100 20 3 5 0.6 4
4 80 100 20 2 5 0.6 3
5 80 100 20 2 5 0.3 3
6 80 100 20 3 5 0.6 2
7 30 100 20 2 5 0.6 1
8 30 100 20 2 5 0.3 1

and 2.

Notably, Cases 1-6 represent scenarios with heterogeneous settings where Hy > 1, i.e.,
the true data generating model is a mixture of more than one network response regression
model. In contrast, Cases 7 and 8 correspond to the homogeneous setting with Hy = 1, i.e.,
the true model constitutes a single network response regression model. Also, it is important
to note that Cases 1-8 represent the true model being included in the class of fitted models.
In contrast, Cases 9 and 10 show departure of the true model from the fitted models. In
particular, the last two cases include specifications where the network coefficient in a cluster
is full rank, whereas the fitted model assumes a low-rank structure for network coefficients
in all the clusters. This will allow assessing the performance of our approach under model
mis-specification. Notably, for any p (i.e., the number of network nodes), the model needs
to estimate mH Rp parameters, so that even moderately large values of p in Cases 1-10 lead
to high dimensional regression settings. In all simulations, we set p < n, which is a sufficient
condition for convergence of the fitted predictive density to the true predictive density (see

Theorem 1.1 in the Supplementary Material).

4.1 Choice of Hyper-parameters

All simulation settings and the real data analysis are presented with the hyper-parameters

chosen asa =1,b=1,a, = 1,b, = 1 and v = 20. The choice of a, = b, = 1 ensures that
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2 is sufficiently flat with an infinite mean. The choice of a = b = 1 leads to a-

the prior on o
priori uniform distribution on the number of network nodes related to each predictor in each
cluster. Setting v = 20 implies that the prior distribution of M, is concentrated around a
scaled identity matrix. Since the model is invariant to rotations of the latent positions wy, ,
the prior on uy, ;s should ideally be invariant under rotation. Centering M, around a matrix
that is proportional to the identity satisfies such a requirement. Finally, we choose a,, b,
following Escobar and West (1995) such that the mean number of clusters is approximately
2.5 a-priori. Since in most applications of the mixture model, the true number of clusters

is small, our choice of a, and b, represent a reasonable prior belief. Moderately perturbing

hyper-parameters yields practically identical inference, as described in Section 4.5.

4.2 Competitors and Metrics of Evaluation

NRMM is fitted in all simulations with H = 15 mixture components and it is allowed to
identify the unknown and true number of mixtures from the data. As a competitor to our
model, we employ the network response regression (NRR), which is essentially our proposed
framework with only one mixture component, i.e., H = 1. Thus NRR assumes (a) the same
set of network nodes is significantly related to the predictors of interest for every individual,
and, (b) normality for the distribution of each cell in the network response. Comparison
with NRR will highlight any relative advantages of NRMM when these assumptions do not
hold true. However, we also include simulation cases 7 and 8 where data are simulated from
the NRR model (i.e., there is only one mixture component), and hence data are likely to
favor NRR over NRMM. Additionally, we compare our approach with a frequentist higher
order low-rank regression (HOLRR) method (Rabusseau and Kadri, 2016) popularly used
in machine learning. This approach also assumes a homogeneous setting and a low-rank
decomposition for matrix coefficients without the ability of identifying influential network
nodes with uncertainties.

The competitors are assessed based on their ability to estimate the true regression mean
function Eyly; j|@i, 2] = ZhHil Wh,0 (75‘7h70 + 215:1 Vi hoZis + > Bj7h707jxis) for both in-
sample and out-of-sample observations. In particular, the mean squared error (MSE) of

estimating the true regression mean function over the in-sample fitted data and out-of-sample
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observations are given by,

9 n ——
MSE = —— E Y7, xTr;, Z; —E1}/Z r;, z; 2,
oo =) 2o Bl o] - BlY fewz)|
2 n+ng e
MSE(out) = ———— E Yz T, zZ; —EYZ T, zZ; 2, 10
o) = o=y 2 IEalY ] = EIYife. =1l (10)

where E [Y/l|a3\2, z;] denotes the posterior mean of the regression function for a competing
method. While MSE offers an evaluation of the point estimation by competitors in-sample,
MSE(out) evaluates the point estimation by competitors out-of-sample. The uncertainty
in estimating the true regression mean function in-sample is measured using the coverage
and length of 95% credible intervals obtained from NRMM and NRR. HOLRR being a
frequentist method, coverage and length of 95% confidence intervals from HOLRR are not
readily available. Thus, we invoke normal approximation wherein the 95% confidence inter-
val for Eyly; j|;, z;] is constructed by (E[yz/ﬂac\z, z;] — 1.96 se(Ely; j|xi, zi]), E[yl/ﬂw\l, z) +
1.96 se(Ely; j|x;, zi]), where se(E[y; j|x;, z;]) denotes the standard error of estimating the
regression mean function in-sample.

In addition to reporting the posterior distribution of the number of clusters and the
uncertainty associated with clustering through P(c¢; = ¢;|Y1,...,Y ), we also evaluate the
ability of the models to identify clusters using the Adjusted Rand Index (ARI) (Hubert
and Arabie, 1985) of the posterior cluster configurations with respect to the known cluster
configuration. The ARI evaluates the agreement in cluster assignment between two cluster
configurations. ARI is upper bounded by 1, with values close to 1 indicating more agreement

between cluster configurations.

4.3 Simulation Results

All model parameters show excellent convergence with fairly uncorrelated post burn-in
samples to draw posterior inference. To demonstrate this, we present the effective sample
size (ESS) corresponding to 10000 post burn-in samples from NRMM for all simulation
examples (see Table 2). Section 4 of the supplementary material shows traceplots for a few

parameters, and demonstrate excellent convergence. Table 2 and Figure 1 provide insights
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into the estimates of the cluster structure and associated uncertainty by displaying the
discrepancy between the true and estimated number of clusters and heat maps of posterior
probabilities of pairs of subjects belonging to the same cluster. To facilitate visualization in
Figure 1, subjects are ordered according to their true cluster configurations in the heatmap.
In all cases, the model successfully recovers the true cluster structure, with little uncertainty
associated with the estimator. Importantly, the mixture model also successfully identifies
only one cluster when the true data generation setting is homogeneous (cases 7-8). The most
challenging cases among all are cases 9 and 10, which correspond to model mis-specification.
Even with model mis-specification, there is a minor deterioration in the performance, with
ARI dropping to around 0.93 in case 9 and 0.95 in case 10. It appears from Figure 1 that the
clustering performance improves nominally with decreasing sparsity of Bj, ,, the impact of
sparsity being a little more prominent under model mis-specification (compare cases 9 and
10). The uncertainty in clustering for a few individuals also appears to be higher in case 8,
where the true data generating model is homogeneous with Hy = 1.

The posterior distributions of the number of identified clusters are also presented in the
form of barplots in Figure 2. The posterior distribution of the number of clusters appears
to concentrate around the true number of clusters Hy in all cases except case 9, where the
model mildly overestimates the number of clusters. Notably, case 9 corresponds to model mis-
specification with a higher node sparsity parameter (1 —mg). As the node sparsity parameter
(1—m) decreases, the posterior distribution of the number of clusters concentrates around H
even under model mis-specification (case 10). The results also reveal a somewhat bi-modal
structure of the posterior distribution of the number of clusters under cases 3 (with Hy = 4)
and 8 (with Hy = 1). Importantly, out of H assigned clusters, most are not populated in
each case, justifying the choice of H = 15 in each case.

Table 2 presents in-sample MSE and out-of-sample MSE(out) for estimating the regres-
sion mean function for all competitors. Further, coverage and average length of 95% credible
intervals for NRMM and NRR, and 95% confidence intervals for HOLRR are provided to
assess uncertainty quantification for regression mean functions in-sample. A few interesting
observations emerge from Table 2. Comparing cases 1 and 2 (and also comparing cases

4 and 5), it turns out that NRMM yields marginally lower MSE with increased values of
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Figure 1: Plots showing uncertainty in estimating clusters in simulation cases 1-10. Boldfaced
horizontal and vertical lines indicate the true clustering.
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Table 2: The first column presents Effective sample size (ESS) for NRMM corresponding
to the 10000 post burn-in iterations to assess the convergence of the MCMC sampler for
NRMM. The second column presents ARI values to assess the clustering accuracy of NRMM.
The next two columns present True Positive Rates (TPR) and False Positive Rates (FPR) in
identifying network nodes related to the predictor of interest in NRMM. MSE and MSE(out)
for NRMM, NRR and HOLRR are presented for cases 1-10. The lowest MSE in each case is
boldfaced. Coverage and length of 95% credible interval are provided for NRMM, NRR and
HOLRR.

NRMM Competitors
Case | ESS | ARI [ TPR | FPR NRMM | NRR | HOLRR
MSE(out) 0.07 0.47 0.10
MSE 0.02 0.40 0.08
1 8006 | 0.99 | 0.87 | 0.08 | Coverage of 95% CI 0.89 0.02 0.99
Length of 95% CI 0.54 0.22 3.67
MSE(out) 0.12 0.61 0.26
MSE 0.03 0.54 0.14
2 7985 | 0.99 | 0.90 | 0.05 | Coverage of 95% CI 0.96 0.05 0.98
Length of 95% CI 0.58 0.44 4.12
MSE (out) 0.23 0.42 0.51
MSE 0.14 0.32 0.44
3 7942 | 0.98 | 0.71 0.00 | Coverage of 95% CI 0.69 0.29 0.98
Length of 95% CI 0.64 0.39 4.67
MSE(out) 0.05 0.09 0.12
MSE 0.01 0.07 0.09
4 7235 | 0.99 | 0.95 0.02 | Coverage of 95% CI 0.99 0.15 0.99
Length of 95% CI 0.47 0.15 3.64
MSE (out) 0.09 0.16 0.18
MSE 0.04 0.06 0.11
5 7451 | 0.99 | 0.93 | 0.02 | Coverage of 95% CI 0.93 0.44 0.98
Length of 95% CI 0.55 0.34 3.92
MSE(out) 0.09 0.58 0.22
MSE 0.05 0.30 0.17
6 7324 | 0.99 | 1.00 | 0.00 | Coverage of 95% CI 0.99 0.10 0.99
Length of 95% CI 0.61 0.28 4.05
MSE(out) 0.17 0.06 0.33
MSE 0.12 0.008 0.32
7 8106 | 0.97 | 0.92 0.00 | Coverage of 95% CI 0.86 0.97 0.96
Length of 95% CI 0.37 0.07 2.86
MSE(out) 0.19 0.07 0.38
MSE 0.14 0.02 0.36
8 8390 | 1.00 0.89 0.02 Coverage of 95% CI 0.84 0.95 0.96
Length of 95% CI 0.40 0.06 2.74
MSE (out) 0.16 1.33 0.19
MSE 0.10 1.30 0.13
9 8195 | 0.93 - - Coverage of 95% CI 0.84 0.07 0.96
Length of 95% CI 0.51 0.36 3.69
MSE (out) 0.20 0.69 0.21
MSE 0.17 0.54 0.19
10 7839 | 0.95 - - Coverage of 95% CI 0.74 0.09 0.97
Length of 95% CI 0.70 0.39 3.81
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the sparsity parameter (1 — mp). Results from cases 9 and 10 present a similar trend, even
under model mis-specification. Also, keeping n fixed and increasing p moderately does not
have any significant impact on MSE. Increasing the number of true mixture components Hy
has an adverse effect on the performance of NRMM, which becomes evident by comparing
results from case 3 with cases 1 and 2. The out-of-sample inference on regression mean
function follow very similar trends as suggested by the MSE(out) values. As expected, out-
of-sample MSE values are always higher than in-sample MSE values. Additionally, in most
cases, NRMM shows higher coverage levels, often close to nominal coverage, compared to
NRR. The less than nominal coverage in cases 9 and 10 can be attributed to model mis-
specification, whereas the under-coverage in case 3 could be due to the larger number of
mixture components, which presents obstacles in model estimation. Note that under cases
7 and 8, only one mixture component (homogeneous setting) is used to simulate the data,
and so the data favors NRR over NRMM. Consequently, NRR yields smaller MSE and close
to nominal coverage in this case. Under all other cases with Hy > 1, NRR demonstrates
inferior performance to NRMM with a higher MSE and considerable under-coverage of the
mean function. HOLRR offers a higher MSE compared to NRMM under all simulation sce-
narios. The construction of 95% confidence intervals for HOLRR based on the asymptotic
normal approximation result in much wider intervals with coverage close to 1.

Note that inference on each cluster is not readily available from the mixture model due
to the clusters not being identifiable. Thus, to draw inference on which network nodes are
influential in each cluster, we fix the cluster membership indicator ¢; for the ith sample at ¢;
(the estimated cluster indicator) and run the model once more without updating the cluster
membership indicator ¢; at any MCMC iteration. With the clusters remaining fixed in every
iteration, it is possible to draw inference on the influential network nodes in each cluster. In
particular, the kth node is deemed influential for the hth cluster, if the empirically estimated
posterior probability of the event {u, ) # 0} exceeds 0.5. As demonstrated in Figures 1
and 2, for cases 1-8, our proposed model correctly identifies each cluster in every simulation,
and hence inference on influential network nodes in each cluster as mentioned above can be
directly compared to the truly influential nodes in each cluster for these simulation cases

(i.e., under no model mis-specification). In this regard, Table 2 presents the True Positive
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Table 3: Computation time (in seconds) per MCMC iteration of the NRMM model with
H = 15 mixture components. The number of network nodes (p) and the sample size (n) are
varied.

p 20 40 80 160 200 250
n=>50 017 032 1.08 3.63 597 7.63
n=100 0.26 043 1.14 4.10 6.41 13.40
n=150 040 0.72 1.70 6.08 9.49 16.31

Rates (TPR)= %JSE‘P and False Positive Rates (FPR)= % of identifying influential
network nodes over all clusters, where TP, FP and TN denote the total number of true
positives, false positives and true negatives, respectively. The results indicate high TPR and
low FPR in all cases, except in case 3, which shows a comparatively lower TPR than the
rest, but still a very low FPR. This observation may be attributed to a higher number of

true clusters, where the model detects some influential nodes as uninfluential, resulting in

decrease of TPR. Overall, the simulation studies indicate good performance of NRMM.

4.4 Computational Complexity and Time

In our framework, the Gibbs sampler for model estimation does not involve any expensive
matrix inversion or multiplication, leading to fast computation. In fact, the Gibbs sampler
can be suitably parallelized since the updates of u,, ; can be performed over different pro-
cessors in parallel. Computation times (in seconds) per MCMC iteration for the NRMM
model (for varying number of network nodes, p, and sample size n) without parallelization
are provided in Table 3. The entries in the table are recorded corresponding to H = 15

mixture components fitted to the data.

4.5 Sensitivity Analysis

To check sensitivity of inference to the choice of hyper-parameters, we consider a repre-
sentative case (case 2) and re-analyze the same simulated data with different combinations
of hyper-parameters. In particular, we consider three different hyper-parameter settings
for case 2 and compare the inference with the results on case 2 presented earlier. The
three combinations are given by, (i) a = 1,b = 5,v = 20; (ii) a = 5,b = 1,v = 20; (iii)
a=1,b=1v="50. Note that (i) presents a low prior mean of 0.2 for each &, encourag-

ing less number of activated nodes a-priori, whereas (ii) presents a higher prior mean of 5
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Table 4: Sensitivity Analysis: ARI, MSE, MSE(out), coverage of 95% CI and length of 95%
CI for NRMM in Case 2 with different hyper-parameter combinations are provided.
Combinations ()a=1,b=5,v=20 (ii)a=5b=1,vr=20 (ii)a=1,b=1,v=>50

ARI 0.99 0.99 0.99

MSE 0.08 0.03 0.05

MSE (out) 0.15 0.12 0.15
Coverage of 95% CI 0.93 0.96 0.95
Length of 95% CI 0.61 0.57 0.50

for &, r which encourages a higher number of activated nodes. Combination (iii) presents a
variation of the hyperparameter v in the Inverse-Wishart distribution of M. Table 4 shows
the posterior mean of ARI in case 2 under the three different hyper-parameter settings. We
additionally present MSE, MSE(out), coverage and length of 95% credible intervals for these
hyper-parameter combinations and compare these results with the result presented for case
2 in Table 2. Of all the parameters, only variations in a and b seem to have an effect on the
inference, but this effect is found to be very small. More specifically, when the prior mean of
the number of activated nodes is small (combination (i)), both MSE and MSE(out) are found
to be a little higher than what is presented in Table 2 under case 2. Similarly, the coverage
is found to be a little lower and length little higher as compared to case 2 in Table 2. In
contrast, combinations (ii) and (iii) yield practically identical results when compared with
case 2 in Table 2. The clustering accuracy is found to be unaffected by the perturbation in
hyper-parameters, with all three combinations resulting in similar values of ARI. The results

are also found not to be sensitive to moderate perturbations of hyper-parameters a, and b,.

5 Brain Connectome Dataset with the Creative Achieve-

ment Questionnaire (CAQ)

Our dataset of interest consists of brain connectome information on several subjects col-
lected using a brain imaging technique called Diffusion Weighted Magnetic Resonance Imag-
ing (AMRI). It is openly available in the Templeton 114 repository at https://neurodata.
io/mri. Note that dMRI is a magnetic resonance imaging technique that measures the re-
stricted diffusion of water in brain tissues in order to produce neural tract images which

are then pre-processed using the NDMG pre-processing pipeline (Kiar et al., 2016). In the
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context of AMRI, the human brain is divided according to the Desikan atlas (Desikan et al.,
2006) that identifies 34 cortical regions of interest (ROISs) in each of the left and the right
hemispheres of the human brain, implying 68 cortical ROIs in all. These 68 ROIs are con-
tained in 6 lobes each in the left and the right hemispheres, namely the temporal, frontal,
occipital, parietal, cingulate and insula lobes.

Using dMRI, a brain network for each subject is constructed as a symmetric matrix
with row and column indices corresponding to different ROIs, and entries corresponding to
the estimated number of ‘fibers’ connecting pairs of brain regions. Thus, for each subject,
representing the brain network, is a symmetric matrix of dimension 68 x 68, with the (j1, j»)th
off-diagonal entry being the estimated number of fibers connecting the jith and the jsth
brain ROIs, and diagonal entries set to zero. For each subject, information on creativity as
measured by the Creative Achievement Questionnaire (CAQ) is also available, which we treat
as a feature of interest. Creative achievement can be perceived as an aggregate of creative
products of an individual during his/her lifetime (Carson et al., 2005). CAQ), in particular, is
a self-reported measure of creative achievement that assesses achievement across ten domains
of creativity. To obtain the CAQ, each subject is given a questionnaire to complete, which
is then used to form a comprehensive measure of creative productivity across ten domains,
including visual arts, music, creative writing, dance, drama, architecture, humor, scientific
discovery, invention and culinary arts. As a measure of creativity, CAQ has been recognized
in the literature to be both reliable and valid (Jung et al., 2010). Along with brain network
information and CAQ), age and sex are also available and are treated as auxiliary features for
n = 73 subjects in our dataset of interest. While there is earlier literature suggesting an effect
of age on brain connectivity (Baum et al., 2017), all subjects in our dataset belong to the
age group of 18-29 years with very little variation, which prompts us to ignore ROI specific
age effects. We also find in the analysis in Section 5.1 that the age effects are practically
insignificant in almost all the clusters, which further justifies our argument.

The main objective of the data analysis lies in supervised clustering of brain networks
of the 73 subjects. The Bayesian mixture model of network objects proposed in this article
achieves clustering of subjects into different groups, each group having a different regres-

sion relationship of the brain connectome on CAQ, age and sex. The model offers inference
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Figure 3: QQ-plot of residuals corresponding to linear regression fitted on three representa-
tive cells (edges in the brain network) with n = 73 subjects of the CAQ dataset.

on influential network nodes related to CAQ in different clusters, allowing for the scientific
understanding of the relationship between creativity and the brain connectome with char-
acterization of uncertainty in different groups/clusters of subjects. As a byproduct of our
clustering exercise using the network mixture model, the normality assumption on the errors
of the network response matrix is automatically relaxed. This is deemed appropriate for
this dataset, since after fitting linear regression models independently on each cell of the
network response matrix with CAQ), age and sex as predictors, we have observed visible non-
normality in the standardized residuals (refer to the QQ plots of the standardized residuals

for three representative cells in Figure 3).

5.1 Findings from CAQ Brain Connectome Data

We fit NRMM with H = 20. NRMM, on the CAQ dataset, identifies 7 clusters with 25,
13, 6, 6, 7, 8 and 8 subjects in the clusters, respectively. The uncertainty in clustering is
measured by the posterior probability of pairs of subjects lying in the same cluster, which
is displayed through a heatmap in Figure 4(a). The figure indicates three distinct cluster
assignments, with a somewhat higher degree of uncertainty among the pairs lying outside
these three clusters. The posterior distribution of the number of clusters (see Figure 4(b))
demonstrates some bimodality with modes at 6 and 7. There is no posterior probability of
having more than 9 clusters, suggesting that H = 20 is appropriate for this analysis.

In the absence of any ground truth, we compare the performances of NRMM and NRR
with respect to the Posterior Predictive Loss Criterion (Gelfand and Ghosh, 1998), which is

25



Color Koy

0 04 o8 nE
Value

< T T 1 T Tt T T T T T 7 1
123466789 N 13 15 17 19

(a) Uncertainty in Clustering (b) Posterior Dist. of no. of Clusters
Figure 4: CAQ Data: Figure (a) shows the uncertainty in estimating the clusters. Figure

(b) shows the barplot corresponding to the posterior distribution of the estimated number
of clusters. The inference is presented for H = 20.

Table 5: Model fitting statistics for NRMM and NRR.

Competing Models G P D
NRMM 101921 99711 201632
NRR 101727 101734 203461

calculated as D = G'+ P, such that a model corresponding to a lower value of D is preferred.
Referring to Table 5, the model fitting statistic D shows a better performance of NRMM
over NRR. HOLRR, being a frequentist method, is not included in this comparison. We also
compute leave-one-out of sample MSPE for the three competitors and they turn out to be
0.64,0.73,0.71 for NRMM, NRR and HOLRR, respectively.

Similar to the simulation studies, we supply the model with the estimated cluster indica-
tors and run it again to draw further inference on the influential nodes in the seven clusters.
Notably, Cluster 3 includes individuals who are all male. Hence analysis of Cluster 3 does not
include gender as a variable. To assess the model fit in each cluster, we calculate the mean
squared prediction error (MSPE), average coverage of 95% predictive intervals and average
length of 95% predictive intervals averaged over all cells of the network response matrix and
all subjects in a cluster. Table 6 depicts satisfactory point prediction along with an excellent
characterization of predictive uncertainty. Referring to the high degree of non-normality in

the error distributions discussed in Section 5, it is instructive to see if the mixture modeling
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Figure 5: Plots of age coefficient in each cluster. The 95% posterior credible intervals are
shown through the space between the two dotted lines.

framework justifies the normality assumption on the error distribution in each cluster. To
check this, cell by cell Kolmogorov-Smirnov tests are conducted by comparing the discrep-
ancy between the posterior mean of residuals and the normal distribution. Out of 2278
network matrix cells in each cluster, residuals in 51%, 62%, 18%, 96%, 91%, 89% and 97%
cells in clusters 1 — 7, respectively, show statistically significant normality. Therefore, the
normality assumption on the errors in each cluster is reasonable except for Cluster 3.
Figure 5 displays posterior densities of the age coefficients for all seven clusters. Except
for Clusters 2 and 6, all other age coefficients turn out to be significant. Digging a bit
deeper, we find that Clusters 2 and 6 show significantly lower variability in the ages of

the subjects included, compared to the other clusters, which explains the age coefficient
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Table 6: MSPE, average coverage of 95% predictive intervals and average length of 95%
predictive intervals for the seven clusters are provided.
Cluster size 25 13 6 6 7 8 8
MSE 0.66 043 0.28 0.92 0.64 083 0.54
Coverage of 95% CI  0.95 0.97 097 0.94 0.95 0.94 0.96
Length of 95% CI ~ 3.02 3.02 3.03 3.03 3.04 3.03 3.02

being statistically insignificant in these clusters. Also, except for Cluster 5, the posterior
mean of the age coefficients are found to be negative in all other clusters, implying a negative
association between creativity and age. In all six clusters where gender is added as a variable,

it is found to be significantly related to creativity (see Figure 6).
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Figure 6: Plots of sex coefficient in each cluster. The 95% posterior credible intervals are
shown through the space between the two dotted lines.

To assess which nodes are related to creativity (as measured by CAQ) in each cluster,
we run the analysis in each cluster 10 times and report the nodes which have posterior
probability of being greater than 0.5 for at least five of the replications. Figure 7 records
the 10, 40, 30, 37, 41, 49 and 15 ROIs significantly related to CAQ in the 7 clusters. A

considerable proportion of ROIs detected in each cluster are part of the frontal, cingulate
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and temporal lobes in both hemispheres. The frontal lobe has been scientifically associated
with divergent thinking, problem solving ability, spontaneity, memory, language, judgement
and social behavior (Stuss et al., 1985; Razumnikova, 2007; Miller and Milner, 1985; Kolb
and Milner, 1981). Prior scientific studies also suggest that increased cortical volume of
the superior frontal gyrus, and ventromedial prefrontal cortex, and decreased volume of the
dorsal and rostral anterior cingulate cortex are associated with CAQ (Chen et al., 2014).
Finkelstein et al., 1991 also report de nowvo artistic expression to be associated with the
frontal and temporal regions. Our identification of the middle frontal gyrus and the inferior
occipital gyrus being associated with CAQ is also supported by earlier scientific studies (e.g.,
Shi et al., 2017). Additionally, CAQ being related to the medial superior frontal gyrus and

orbitofrontal insula have also been supported by previous studies (Chen et al., 2014).

Ih-infer
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Ih-bankssts
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Figure 7: CAQ Data: Figure plots a 68 x 7 matrix with the rows and columns corresponding
to the ROIs and clusters, respectively. A green cell in the (k, h)th entry of the matrix implies
that the kth ROI in the hth cluster is not significantly related to creativity. Prefix ‘lh-’ and
‘rh-" in the ROI names on the y-axis denote their positions in the left and right hemispheres
of the brain, respectively. The ROI names are color-coded according to the lobes they belong
to. From bottom to top, the group of ROIs under the same color correspond to the temporal,
cingulate, frontal, occipital, parietal and insula lobes.
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6 Conclusion and Future Work

This article is motivated by the need to develop a flexible relationship between the brain
network and creativity from subjects in a brain connectome dataset. Viewing the brain image
for each subject as an undirected network, we propose a Bayesian mixture of regression
models with a network response and scalar predictors. Our proposed framework clusters
subjects into groups, with individuals in the same group sharing an identical relationship
between the network response and scalar predictors. A spike-and-slab variable selection prior
is assigned on the network node specific latent variables in each mixture component to deliver
inference on network nodes significantly related to a predictor. Empirical investigations
validate our NRMM framework and yield superior inference over relevant competitors. The
NRMM framework finds clusters of individuals sharing similar relationships between their
brain networks and creativity, identifying brain ROIs significantly related to creativity in
each cluster. As part of future work, we envision investigating the performance of our model

with a more flexible non-local prior structure on the node-specific latent variables.
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Narrative supplement. The narrative supplementary material discusses convergence
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