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Abstract. We introduce a new iterative amalgamated free product construction
of II; factors, and use it to construct a separable II; factor which does not have
property Gamma and is not elementarily equivalent to the free group factor L(F,,),
for any 2 < n < oco. This provides the first explicit example of two non-elementarily
equivalent II; factors without property Gamma. Moreover, our construction also
provides the first explicit example of a II; factor without property Gamma that
is also not elementarily equivalent to any ultraproduct of matrix algebras. Our
proofs use a blend of techniques from Voiculescu’s free entropy theory and Popa’s
deformation /rigidity theory.

1 Introduction

The study of the continuous model theory of II; factors was initiated by Farah,
Hart and Sherman in [FHS14], who adapted the notion of elementary equivalence
(requiring that the objects considered satisfy the same first-order sentences) to the
context of II; factors. By the continuous version of the Keisler-Shelah theorem, two
II; factors M, N are elementarily equivalent if and only if they admit isomorphic
ultrapowers, MY = NV, for some ultrafilters U, V on arbitrary sets [FHS14, HI02].
Ultrapowers of II; factors have been a major tool in operator algebras since the works
of McDuff [McD70] and Connes [Con76] in the 1970s. In spite of this, proving that
two given II; factors have no isomorphic ultrapowers, and so are not elementarily
equivalent, remains a challenging task.

As shown in [FHS14] (see also [FGLO06]), for separable I1; factors, Murray and von
Neumann’s property Gamma [MvN43] and McDuff’s property [McD70] are axiom-
atizable and thus are remembered by ultrapowers. This implies that the hyperfinite
IT; factor R, the free group factor L(F3) and any separable non-McDuff 1I; factor
with property Gamma (see [DL69]) are not elementarily equivalent. It was then real-
ized by Goldbring and Hart that a II; factor introduced in [ZM69] provides a fourth
elementary equivalence class (see [GH17]). However, besides these examples, it was
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unclear how to find any additional elementary equivalence classes of 11y factors. This
problem was solved by Boutonnet and two of the authors in [BCI17] who proved
that the continuum of non-isomorphic separable Iy factors (Ma)aeqo,13 constructed
by McDuff in [McD69] are pairwise non elementarily equivalent. More precisely, the
main result of [BCI17] shows that M, and Mg do not admit isomorphic ultrapowers,
whenever a # (3. Subsequently, explicit sentences witnessing that M, and Mg are
not elementarily equivalent were given in [GH17, GHT18].

The proofs of the main result of [BCI17] and in fact of all of the existing results
providing non-elementarily equivalent II; factors are based on analyzing central
sequences. As a result, it remained a fundamental open question to find any non-
elementarily equivalent II; factors that do not have property Gamma and thus admit
no non-trivial central sequences.

We settle this question in the present work. A main novelty of our approach,
that allows us to bypass the above difficulty, is the use of 1-bounded entropy from
Voiculescu’s free probability theory. For a finite tuple X of self-adjoint operators in
a tracial von Neumann algebra (N, 7), one has the 1-bounded entropy h(X), implicit
in Jung’s work [Jun07] and defined explicitly by Hayes [Hay18], see Subsection 2.2.
This quantity, unlike Voiculescu’ free entropy dimension d(X) [Voi94], is known to
be an invariant of the von Neumann algebra generated by X as shown in [Hayl8,
Theorem A.9]. Hence, we have a well-defined notion of 1-bounded entropy h(N) for
a finitely generated tracial von Neumann algebra (N, 7). Moreover, h(IN) extends to
arbitrary, possibly non-separable, tracial von Neumann algebras (N, 7) by [Hay18,
Definition A.2].

The main result of this paper is the following:

Theorem A. There exists a separable II; factor M which does not have property
Gamma and is not elementarily equivalent to any tracial von Neumann algebra (N, T)
satisfying h(N) > 0. For instance, M is not elementarily equivalent to L(FF3).

Moreover, for any ultrafilters U,V on sets I, J, respectively, there does not exist
an embedding of MV into NV that contains the diagonal inclusion of N.

Examples of tracial von Neumann algebras (N, 7) with A(N) > 0 include the
interpolated free group factors L(IF;), for all 1 < ¢ < oo, and, more generally, any free
product Nj * Ny of two Connes-embeddable diffuse tracial von Neumann algebras
(N1,71) and (N2, 72). (Moreover, h(N) = oo for such N; for this and additional
examples, see Fact 2.7). By Theorem A, M is not elementarily equivalent to any
such N, including L(F2). This gives the first explicit example of two non-elementarily
equivalent non-Gamma II; factors, thus settling a problem posed at a 2018 workshop
at the American Institute of Mathematics [AIM, Problem 1.3], see also [IP] and [Pet,
Problem U.2].

It has been speculated for some time that free probability theory is likely to shed
light on the model-theoretic study of II; factors, see for instance Farah’s ICM survey
[Far14, Section 5] and [FGSW]. Offering positive evidence in this direction, Theorem
A represents an application of free probability to the model theory of II; factors.
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Now we describe the key facets of our construction that allows us to prove The-
orem A. The II; factor from Theorem A is built via a new iterative construction
involving amalgamated free products (see Sect. 4). By using techniques from Popa’s
deformation/rigidity theory, notably [IPP08], and the notion of property (T), we
are able to guarantee that M is indeed non-Gamma. The main property of our
construction is presented in our second main theorem below.

Theorem B. There exists a separable Iy factor M without property Gamma which
satisfies the following. For every countably cofinal ultrafilter U on a set I and uy,us €
U (MY) withu? = u3 =1 and {u1}" L {uz}", there exist Haar unitaries vy, vy € MY
such that [uy,v1] = [ug, v2] = [v1,v2] = 0.

Two von Neumann subalgebras P, @ of a tracial von Neumann algebra (M, 7) are
called orthogonal (written P L Q) if 7(xy) = 7(x)7(y), for every x € P,y € Q. For
the notion of a countably cofinal ultrafilter, see Definition 5.2. Here we only note
that every free ultrafilter on N is countably cofinal.

The construction in Theorem B is designed to imply the following estimate for
the 1-bounded entropy, which we present as our next main theorem.

Theorem C. Let M be any Il factor satisfying the properties of Theorem B. Then
h(MY) <0, for every ultrafilter U on a set I.

The above estimate allows us to prove the desired non-isomorphism of ultrapow-
ers. Indeed, let M be as in Theorem B. If (N, 7) is a tracial von Neumann algebra
which is elementarily equivalent to M, then MY = NV, for some ultrafilters U, V.
Properties of the 1-bounded entropy give that h(N) < h(NV) (see Facts 2.3 and
2.4). The conclusion of Theorem A then follows immediately. We refer the reader to
Remark 5.9, pointed out to us by I. Goldbring and D. Jekel, for an explicit sentence
which differentiates the elementary classes of M and N.

Note that if M is a II; factor with property Gamma, then h(MY) < 0, for every
ultrafilter U on a set I. Prior to the writing of this paper no explicit examples of
non-Gamma II; factors which satisfy this inequality were known. Hence, Theorem
C is also of independent interest.

A II; factor is called pseudocompact if it is elementarily equivalent to a matrix
ultraproduct (see [FHS14, Section 5]). Pseudocompact factors cannot have property
Gamma by [FH11, Section 4] and [FHS14, Theorem 5.1]. By combining Theorem
C with recent work of Jekel [Jek22] on matrix ultraproducts we obtain the first
example of a non-Gamma II; factor which is not pseudocompact.

Corollary D. There exists a separable Il factor M without property Gamma which
is not elementarily equivalent to [ [, My, (C), for any sequence (k,) C N and any
free ultrafilter U on N.

Remark 1.1. The Connes Embedding Problem (CEP) asks if every separable II;
factor embeds into RV, where U is a free ultrafilter on N [Con76]. A negative an-
swer to the CEP has been announced in the preprint [JNV+]. Assuming M is a
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non-Connes-embeddable separable II; factor, then M = My« L(Z) is a non-Gamma
separable II; factor which is still not embeddable. Any such M is neither elementarily
equivalent to any embeddable non-Gamma II; factor (e.g., L(IF2)) nor pseudocom-
pact. Moreover, assuming a negative answer to the CEP, [GH, Corollary 5.5] implies
the existence of infinitely many elementary equivalence classes of non-Gamma I1;
factors. In contrast, our construction of a non-Gamma II; factor which is not elemen-
tarily equivalent to L(F2) and not pseudocompact is explicit and does not depend
on the answer to the CEP, nor does it use techniques from [JNV+]. We note that
it is open whether the II; factor we construct is Connes-embeddable. As such, it
remains an open question to find examples of Connes-embeddable non-Gamma I1;
factors which are not elementarily equivalent.

Comments on the proofs of Theorems B and C. The proof of Theorem B
relies on a new construction of II; factors which is of independent interest and
is presented in Sect.4. This associates, via a 2-step amalgamated free product
procedure, to every II; factor M; and unitaries uq,us € Mj, a tracial von Neu-
mann algebra Ms generated by M; and Haar unitaries vi,vs € My satisfying
[ur,v1] = [ug,v2] = [v1,v2] = 0. When {u1}’ L {uz}”, we use deformation/rigidity
results from [IPP08] to deduce that My is a II; factor. Moreover, under this assump-
tion, we show that any irreducible subfactor Q C Mj is still irreducible in Ms, see
Theorem 4.2.

In Sect. 5, assuming that M; has property (T) and iterating the above construc-
tion, we get an increasing sequence of II; factors (M,),>1 whose inductive limit

M := (Up>1M,)" is non-Gamma and has the following property. For a countable
dense set of unitaries uj,us € M with u? = uj = 1 and {u;}" L {uz}” there are
Haar unitaries vi,ve € M such that [ug,v1] = [ug, v2] = [v1,v2] = 0. Using a result

which allows us to lift unitaries u1,us € MY with u? = u3 = 1 and {u1}" L {ug}”
to unitaries in M with the same properties (see Lemma 3.1) we conclude that MY
satisfies the conclusion of Theorem B. The restriction to unitaries u; and us of orders
2 and 3 is due to the fact that Lemma 3.1 only applies in this case.

The statement of Theorem B is partially inspired by [Hay18, Corollary 4.8]. This
shows that if a diffuse tracial von Neumann algebra (M, 1) has property (C') intro-
duced in [GP17, Definition 3.6], then h(M) < 0. In particular, [Hay18, Corollary
4.8] implies that (M) < 0, for any diffuse von Neumann algebra (M, 7) that is
generated by uq,...,u € % (M) so that there exist pairwise commuting Haar uni-
taries vq,...,v, € Z(MV) with [u;,v;] = 0, for any 1 < i < k. Property (C') is
an asymptotic commutativity property which weakens Popa’s property (C) [Pop84].
The latter, itself a weakening of property Gamma, was shown to fail for L(F,),
2 < n < oo, in [Dyk97].

To outline the proof of Theorem C, let M be as in Theorem B and U be a
countably cofinal ultrafilter on a set I. Using an observation made in the proof of
[Hay18, Corollary 4.8] (see Fact 2.9) we derive that h({u1,us}” : MY) <0, for any
uy,ug € % (MVY) with u? = u3 = 1 and {u1}” L {uz}”. Here, h(N : M) denotes
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the 1-bounded entropy of IV in the presence of M, see Subsection 2.2. On the other
hand, MY can be generated by a family of subalgebras of the form {uy,us}”, where
uy,ug € % (MVY) satisfy u? = u3 = 1and {u}" L {us}”, all containing a fixed diffuse
subalgebra. Using the behavior of the 1-bounded entropy with respect to joins (see
Facts 2.6 and 2.5), we conclude that h(MY) < 0, for any countably cofinal ultrafilter
U. Since h(M) < 0 and MV = M for any ultrafilter U that is not countably cofinal,
Theorem C follows.

2 Preliminaries

2.1 Tracial von Neumann algebras. Let (M, 7) be a tracial von Neumann
algebra, i.e., a pair consisting of a von Neumann algebra M and a faithful normal
tracial state 7 : M — C. We denote by % (M) the group of unitaries of M, by
M, the set of self-adjoint elements of M and by 2 (M) the center of M. Given a
self-adjoint set S C M, von Neumann’s bicommutant theorem implies that S” is
the smallest unital von Neumann subalgebra of M containing S. For von Neuman
subalgebras (M,,) of M, we will use the notation V.M, for (U, M,)".

For an ultrafilter U on a set I, we denote by MY the tracial ultraproduct: the
quotient ¢°°(I, M)/J by the closed ideal J C ¢>°(I, M) consisting of z = (x,,) with
Jg% |2n|l2 = 0. We have a natural diagonal inclusion M C MY given by z +— (z,,),

where x,, = =z, for all n € I. A separable 11y factor M has property Gamma if
M'NMY # C1, for a free ultrafilter U on N. For more details on tracial ultraproducts,
we refer the reader to [BO08, Appendix E| and [ADP, Section 5.

Two tracial von Neumann algebras (Mj,71) and (Ma,72) are said to be ele-
mentarily equivalent if there exist ultrafilters U,V on arbitrary sets I, J such that
MY = My. This is the semantic definition of elementary equivalence. The model
theoretic (sometimes called syntactic) definition for elementary equivalence will not
be stated in this paper, as it is equivalent to the semantic definition by deep results of
Keisler-Shelah adapted to the continuous setting, see [FHS14, Section 2] and [HI02,
Theorem 10.7].

A key tool in our work is the amalgamated free product construction for tracial
von Neumann algebras. Let (Mj, 1) and (Ma, 72) be tracial von Neumann algebras
with a common von Neumann subalgebra B such that 713 = 72)5. We denote by
M = Mj xp M the amalgamated free product with its canonical trace 7. See [Pop93]
and [VDN92] for more details on the construction.

To prove that the II; factors we construct do not have property Gamma, we will
use property (T) and Popa’s intertwining techniques.

A 11, factor has property (T) [CJ85] (see also [Pop06al) if for every € > 0, there
are F' C M finite and § > 0 such that for any Hilbert M-M-bimodule H and unit
vector £ € H with max,ep |2 — x| < §, there exists n € H satisfying ||[n — &|| < e
and zn = nx, for every x € M. Let I" be an icc countable group with property
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(T); for instance, take I' = SL3(Z) by [Kaz67]. Then M = L(I") is a II; factor with
property (T), see [CJ85, Theorem 2] and [Pop86, Theorem 4.1.7].

In this paper, we will use the well-known fact that II; factors with property (T)
have weak spectral gap (in the sense of [Pop12]) in any inclusion:

Proposition 2.1. Let M be a 11 factor and My C M be a subfactor with property
(T). Then M{ N MY = (M| N M)Y, for any ultrafilter U on a set I.

Conversely, if the equality M| N MY = (M{ N M)Y holds for every II; factor M
containing M; and every ultrafilter U on N, then M; must have property (T), as
shown recently in [Tan].

Theorem 2.2 (see [Pop06b]). Let (M, T) be a separable tracial von Neumann al-
gebra and let P C pMp,Q C M be von Neumann subalgebras. Then the following
conditions are equivalent:

(1) There exist projections py € P,qo € @, a x-homomorphism 0 : poPpy — qoQqo
and a non-zero partial isometry v € qoMpy such that (x)v = vz, for all
x € poPpo.

(2) There is no sequence u, € % (P) satisfying ||Eq(x*uny)|l2 — 0, for all x,y €
pM.

If one of these equivalent conditions holds, we write P <j; @, and say that a
corner of P embeds into Q inside M.

2.2 1-bounded entropy. We recall some background for 1-bounded entropy
theory (see [Hayl8], [Jun07]) and direct the reader to [HJNS21, Section 2.3] and
[HIKE21, Sections 2.2 and 2.3] for a more detailed exposition. For a tracial von
Neumann algebra (M,7) and X € MZ, the law of X is the linear functional £ :
C(t1,...,tq) — C given by £x(f) = 7(f(X)). Let X4 r be the set of all linear maps
¢:C(ty,...,t5) — C satisfying that there exists a finite von Neumann algebra (M, 7)
and X € M such that £ = £x and ||z|| < R for all z € X. We equip g r with the
weak™ topology.

We describe the orbital version of 1-bounded entropy (see Definition A.2 in
[Hay18]). Let (M, 7) be a diffuse tracial von Neumann algebra, and X, Y C Mg,
finite such that ||z|| < R for all x € X UY. Following [Voi94], for each weak®
neighborhood O of £xy in ¥4 g and n € N, we define

I'™(X . Y;0) = {A € M,(C)X : 3B € M,,(C)Y, | £aup € O, || As ], | By |
<RVreX,yeY}.

I

Given d,n € N, ¢ > 0 and Q,Z C M, (C)?, then Z is said to (g, || - [|2)-cover Q
if for every A € Q, there is B € Z with ||[A — B||2 < €. Define the covering number
K (9, - ||2) of @ € M, (C)? as the minimal cardinality of a set that (e,]| - ||2)-
covers §). We say that = orbitally (e, || - ||2)-covers § if for every A € €, there is a
B € = and an n X n unitary matrix V' so that ||A — VBV*||y < e. Define the orbital
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covering number K2™(Q, || - ||2) as the minimal cardinality of a set that orbitally
(g, - ||]2)-covers €.

Let Xo,Yy C Ms, not necessarily finite, satisfying X{| C Yy and ||z|| < R for
all z € XoUYy. Let X,Y be finite subsets of Xy, Yy respectively. For a weak™*-
neighborhood O of £xy, we define

1 n
he(X :Y;0) = limsup — log Ko (x :v;0)),

n—oo

he(X :Y):= '?f he(O),

Stlxuy

he(Xg:Yy):= su inf A (X:Y
6( 0 0) XCﬁniXoYCﬁmceYo E( )

h(Xo : Yp) = sup he(Xo : Yo)

Note that h(X; : Y1) = h(Xs : Y2) if X{ = XJ and Y] = Yy by [Hayls,
Theorem A.9]. Hence, given a von Neumann subalgebra N C M, we unambiguously
write h(N : M) (and call it the 1-bounded entropy of N in the presence of M) to be
h(X :Y) for some generating sets X of N and Y of M. We write h(M) = h(M : M)
and call it the 1-bounded entropy of M.

For the purposes of this article we recall the following facts about h:

Fact 2.3 (see [HJKE21, 2.3.3]). h(Ny : My) < h(Ng : My) if Ny C Ny C My C M,
and N, is diffuse.

Fact 2.4 (see [Hayl8, Proposition 4.5]). h(N : M) = h(N : MY) if N C M is
diffuse, and U is an ultrafilter on a set I. (Note that [Hayl8, Proposition 4.5] as-
serts this fact for free ultrafilters U. The fact is trivially true also for non-free (i.e.,
principal) ultrafilters.)

Fact 2.5 (see [Hayl8, Lemma A.12]). h(N1 V Ny : M) < h(Ny : M) + h(No : M) if
Ny, Ny C M and Ny N Ns is diffuse. In particular, h(N7 V No) < h(N7y) + h(N3).

Fact 2.6 (see [Hayl8, Lemma A.10]). Assume that (N, ), is an increasing chain of
diffuse von Neumann subalgebras of M. Then h(\/, Ny : M) = sup, h(Nq : M).

By [Jun07, Corollary 3.5] and [Hayl8, Proosition A.16], h(N) = oo whenever
(N, 7) is a tracial von Neumann algebra admitting a finite generating set X C Ng,
with dg(X) > 1, where d is Voiculescu’s modified free entropy dimension (see Section
6 of [Voi96]).

Fact 2.7. The following tracial von Neumann algebras (N, 7) satisfy A(/N) > 0. The
first five examples all arise from identifying generating sets X satisfying do(X) > 1,
and thus (V) = co.

(1) (see [Jun07, Lemma 3.7])) Ny * Ny where (N1,71) and (N2, 72) are Connes-
embeddable diffuse tracial von Neumann algebras.
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(2) The free perturbation algebras of Voiculescu (see Theorem 4.1 in [Bro05]).

(3) Many examples of amalgamated free products Ny xp No where B is amenable
(see Section 4 of [BDJO08] for precise examples).

(4) (see [Shl09], Theorem 3) Von Neumann algebras of Connes-embeddable nona-
menable groups I' admitting non inner cocycles ¢: I' — CI.

(5) (see [Hay20], [BCa], [BCb], [HIKE22]) Nonamenable von Neumann subalgebras
of L(FF;) for ¢ > 0.

(6) (see [Ela23]) Von Neumann algebras arising from a family of limit groups.

The following recent result of Jekel provides another family of examples:

Fact 2.8 (see [Jek22, Theorem 1.1]). Suppose that h(N) > c. Let {n;}32, be an
increasing sequence of natural numbers and U be a free ultrafilter on N. Let M =
[ Iy My, (C). Then there exists an embedding N < M such that h(N : M) > c. In
particular, A(M) = occ.

The following fact follows easily from Fact 2.5. This observation appears in the
proof of Corollary 4.8 in [Hay18]. For completeness, we include a proof here.

Fact 2.9. Assume that u;,uy € % (M) such that there are Haar unitaries vy, vy € M
satisfying [v1, u1] = [va, ua] = [v1,v2] = 0. Then h({ui,us}” : M) <O0.

Proof. Since {uy,v1}’,{v1,v2}", {va,us}’ are abelian, we get
h({u1,v1}") = h({v1, v2}") = h({v2, u2}") = 0.

Since {v1}” and {ve}" are diffuse, Fact 2.5 implies that

h({ul, ug, V1, 1)2}”) = h({ul, V1 }” \/{Ul, UQ}// \/{7)2, UQ}”) S 0.

Hence, using Fact 2.3 we see that
h({ur,ug}” : M) < h({ur,uz}"” : {ur, ug, v1,v2}") < h({ur,uz,v1,v2}") <0,

which proves the fact. ad

3 A lifting lemma

In this section, we establish a lifting result (Lemma 3.1), which will be used cru-
cially to analyze the II; factor M that we construct in Section 4. Specifically, our
construction guarantees that the property asserted in Theorem B holds for unitaries
uy,uy € % (M) belonging to a sequence which is dense in the set of all unitaries
uy,ug € % (M) with u? = u3 and {u1}” L {uz}”. Lemma 3.1 will allow us to deduce
that the desired property holds in fact all such unitaries uy,uy € Z (M U).
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Lemma 3.1. Let U an ultrafilter on a set I and (My)ner be a family of II; factors.
Consider projections p,q1,q2,q3 € [[y My such that ¢1 + g2 + g3 = 1 and {p}" L
{a1, 42,03}

Then we can represent p = (pp) and ¢; = (¢in), where pn,q¢in € My are pro-
jections such that qin + qan + q3n = 1 and {pp}" L {qin,q2n. 30}, for every
nel.

Lemma 3.1 is an immediate consequence of the following perturbation lemma.

Lemma 3.2. For every € > 0, there exists 6 = 0(¢) > 0 such that the following
holds.

Let M be a 1L, factor and e, f1, fo, f3 € M be projections such that f1+ fo+f3 =1
and we have |T(ef;)—7(e)T(fi)| < 0, for every 1 <1i < 3. Then there exist projections
P, q1,G2,q3 € M such that 1 + @2 +q3 = 1, [[p—eli < ¢, |lgi — filh < ¢ and
7(pgi) = 7(p)7(q:), for every 1 <i <3.

To deduce Lemma 3.1 from Lemma 3.2, note that if p, g are projections in a Iy
factor M, then |[p —qll2 = [[p(p — @) + (p — @)ql|2 < 2||p — ¢||1. This implies that the
statement of Lemma 3.2 still holds if we replace ||-||1 by ||||2. Using this observation,
it is standard to derive Lemma 3.1 from Lemma 3.2.

The proof of Lemma 3.2 is based on the next two lemmas.

Lemma 3.3. Let (M, 1) be a diffuse tracial von Neumann algebra, § > ¢ > 0 and
x =a* € M with |7(z)| < e and ||z||1 > 6. Then there is a projection p € M such
that T(zp) = 0 and T(p) > %'

Proof. Let x = y — z be the decomposition of x into its positive and negative parts
and ¢ € M be the support projection of y. Then y € ¢Mq and z € (1 —q)M(1 — q).
If 7(z) = 0, there is nothing to prove. We may assume that 7(z) > 0, since the case
7(z) < 0 is analogous.

Since 7(y) —7(2) = 7(2) < eand 7(y)+7(2) = ||z]1 > I, letting s = gﬁ € (0,1),
it follows that 27(y) < 6 + ¢ and 27(z) > § — &, hence 7(y)s < 7(z). Let v/ € ¢Mgq
be a self-adjoint operator with finite spectrum such that

2|y’ —ylh < 7(2) — 7(y)s. (3.1)

Since M is diffuse and 3’ has finite spectrum, we can find an increasing net of

projections (e¢)scpo,1) in ¢Mq such that eg = 0,e1 = ¢,7(er) = 7(q)t and 7(y'e;) =
7(y')t, for every ¢ € [0, 1]. Then for every ¢ € [0, 1], we have that

[
IT(yer) — T(W)t] < |7(yer) — 7(Wer)| + [(T(y) — (Nt < 2|y =y,

and thus 7(yet) < 7(y)t + 2|y’ — y|1-

Combining this inequality for ¢ = s with (3.1) gives that 7(yes) < 7(z). As
7(ye1) = 7(y) > 7(z) and the map t — 7(ye;) is continuous, we can find ¢ € (s,1)
such that 7(ye;) = 7(2).

Finally, let p = e;+(1—¢q). Then we have 7(xp) = 7(yp) —7(2p) = 7(yer) —7(2) =
0 and 7(p) = 7(et) + 7(1 —q) = t7(q) + 7(1 — q) > t > s, which finishes the proof. O
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Lemma 3.4. Let €,§ > 0 such that e < 6% and (M, 7) be a diffuse tracial von
Neumann algebra. Let p, f1, fo, f3 € M be projections such that fi + fo + f3 = 1,

IT(pfi) — T(p)7(fi)l < € and || fi(p — 7(p)) filL > 6, for every 1 <i < 2.
Then there exist projections qi,q2,q3 € M such that q1 + q2 + q3 = 1,7(pg;) =

T(p)1(qi) and ||g; — fillh < %, for every 1 <4 < 3.

Proof. Let 1 <i <2 and define x; = fi(p — 7(p)) fi- Then we have z; =z} € fiM f;
and |7(zi)| = [7(pfi) —7(p)7(fi)| < €. Since [|z;]ly > 6 and [|lzi[1 < 7(fi)[p—7(p)|| <
7(fi), we get that 7(f;) > d. Thus, ]T(f) $ and ﬂaéfu)l > ||z;|l1 > 0. Altogether, by
applying Lemma 3.3 to z; € f; M f;, we find a projection ¢; € f; M f; such that
A §—¢ 1- %

(a) | 0 =& >1—2—§.

Using (3.2) we get that 7((p — 7(p))qi) = 7(x;¢;) = 0 and thus 7(pg;) = 7(p)7(q;)-
Moreover,

7(z;q;) =0  and (3.2)

lgi — filh = 7(fi) — 7(q:) < (fz) < 52

Let g3 = 1 — q1 — g2. Then 7(pg3) = 7(p) — T(P‘h) —7(pg2) = 7(p)(1 — (@) —
7(q2)) = 7(p)7(g3). Moreover, since f3 =1-fi—f2 llas—fslh = (@1 +q2) = (1 +
)l < llen = filli + lla2 — f2ll1 < 35. This finishes the proof of the lemma. 0

Proof of Lemma 3.2. Assume that the conclusion of Lemma 3.2 fails. Then there is
e > 0 such that for every n € N we can find a II; factor (M,, 7,) and projections
ens fin, fan, fan € M, satisfying the following: fi, + fon + fan = 1, |Tn(enfin) —
Tn(en)Tu(fin)| < &, for every 1 <i <3, and |[pn — enllt + g1 — finlls + [lg2.n —
fonlli + g3 — f3nlli > e, for all projections pn,qin,q2,n,q3n € My, such that
din + 42.n + 43.n = 1 and Tn<ani,n) = Tn(pn)Tn(Qi,n)7 for every 1<4<3.

Let U be a free ultrafilter on N. Let 7 be the canonical trace of [ [, M,, given by
m(x) = J%Tn(ajn)v for every z = () € Hu Mp,. Then p = (en),q1 = (fl,n)7QQ =

(fom)sa3 = (fs;n) € 11, Mn are projections satisfying that ¢ + g2 + ¢3 = 1 and
{r}" L{q1, 2, 03}".

We will get a contradiction by analyzing two cases:

Case 1. The set {1 <i <3| qi(p—7(p))g; = 0} has at most one element.

Without loss of generality, assume that ¢;(p — 7(p))q; # 0, for all 1 <1 < 2.

For n € Nand 1 < ¢ < 2, define 6; = ||gi(p — 7())gill1,0in = ||fin(en —
Tn(en)) fi, = |Tn(enfin) — Tn(en)Tn(fin)|. Then é; > 0, JE% 0in = 0; and
0 < Kjpn < =, for every n € N. Let § = min{dy,d2}. Then the set J of n € N such

that 0;, > § and Kin < 6m, for every 1 < i < 2, belongs to .

By Lemma 3.4, for every n € J, we find projections ¢;,, € M, such that ¢1, +

4 l n
q2.n +q3,n = 17 Tn(enQi,n) - Tn<en)7n(Qi,n) and HCIin .fz n”l < < (52n2’
1 <i < 2. As J is infinite, we can find n € J such that 52n2 < £ 3. Put Pn = €n. Then

for every
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Ipn = enllt + [la1n — frnllt + a2 = f2nllt + g3 — f3nlli < €, contradicting the
first paragraph of the proof.

Case 2. The set {1 <i <3| qi(p—7(p))g: = 0} has at least two elements.

Without loss of generality, assume that ¢;(p — 7(p))g; = 0, for every 1 <i < 2.

We claim that @ := {p, ¢1,¢2,q3}" is a type I von Neumann algebra. Let 1 < i <
2. Since ¢;pq; = 7(p)qi, we get that v; := T(p)_%qip is a partial isometry. Thus, p; :=
ViU = 7(p)~'pg;p is a projection. Recall that any von Neumann algebra generated
by two projections is of type I, being a direct sum of type I; and I algebras (see for
instance [Tak79, Theorem V.1.41]). Since pQp = {pqip, pa2p, pasp}”’ = {p1,p2,p}”’
(here the bicommutants are taken inside B(L?(pMp)), where M = [[yM,) and
p1,p2 € p([ [y Mn)p are projections, p@p is of type I. Note that the equality pQp =
{pq1p, pg2p, pgsp}” uses the fact that p is a projection and qi,q2,q3 are pairwise
orthogonal projections. Since ¢;((1 —p) — 7(1 —p))g; = ¢:(7(p) — p)g; = 0, for every
1 < <2, we also get that (1 —p)Q(1 — p) is of type I. The last two facts imply the
claim.

Next, endow @ C []; M, with the restriction of 7 to Q. Since @ is of type
I, it is hyperfinite. If n € N, then using that M, is a II; factor we can find a
normal *-homomorphism m, : @ — M, such that 7,(m,(z)) = 7(z), for every
z € Q. Then the normal *-homomorphism m : Q@ — [[y;M, given by n(z) =
(mn(x)) satisfies that 7(w(z)) = 7}gr{ljm(ﬁn(ac)) = 7(x), for every z € Q. As is

well-known (see, e.g, [HS18, Theorem 1.1]), since ) is hyperfinite, any two trace-
preserving *-homomorphism from @ to [[, M, are unitarily conjugate. Thus, we
can find u,, € % (M,,), for every n € N, such that z = (upm,(z)u},), for every x € Q.
In particular, p = (p,) and ¢; = (g n), where p, = w7, (p)u;, and q; , = upmn (i) uy,,
for every n € N and 1 <4 < 3. Then g1, + q2,n + q3,n = 1, for every n € N, and
Jim ([lpn = enlli + lavn = fralh + 1920 = fonlls + lasn = fonlh) = 0. Moreover,

Tn(ani,n) = Tn(ﬂ-n(p(ﬁ)) = T(in) = T(p)T(Qi) = Tn(ﬂ-n(p))Tn(ﬂ'n(Qi)) = Tn(pn)Tn(Qi,n)

for every n € N and 1 < i < 3. Altogether, this also contradicts the first paragraph
of the proof. O

4 A construction of II; factors

In this section, we introduce a new construction of II; factors which we will use
iteratively to build the II; factor in Theorem B.

Definition 4.1. Let (M, ) be a tracial von Neumann algebra and A, Ay C M be
von Neumann subalgebras. We define a tracial von Neumann algebra ®(M, A;, As)
as follows. Put By = By = L(Z) and define

<I>(]\4, Al) = M*A1 (A1®B1) and
CI)(M, Al,Ag) = CI)(M, Al) *(A,\ By) ((AQ V Bl)@Bg).
Given ui,ug € U(M), we will use the notation ® (M, uy,ug) := ®(M, {u1}”, {uz}").
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More generally, given von Neumann subalgebras Aj,--- Ay C M one can define
(M, Ay, -, Ag) inductively by letting By = .-+ = B = L(Z) and for every
1<i<k

(I)(M,Ah--- ,Al) = (I:'(M7A1,-~~ ,AZ‘71) *(A;\V By VeV Bi_1) ((A»L VB V- \/Bz‘71)®Bi).

Here, we focus on the case k£ = 2 which suffices for the purpose of proving The-
orem B. The main result of this section gives sufficient conditions which guarantee
that ®(M, Ay, Ag) is a II; factor. Furthermore, we prove:

Theorem 4.2. Let (M, 7) be a tracial von Neumann algebra and Ay, Az C M be
von Neumann subalgebras such that Ay L Ay and M A A;, for every i = 1,2. Put
P =®(M, A, As).

Then P is a IL factor containing Haar unitaries vi,va € P so that vy € A} N
Pivg € AL N P and [v1,v2] = 0. Moreover, if Q C M is a von Neumann subalgebra
such that Q Ay A;, for every 1 <i <2, then Q' NP C M.

In the proof of Theorem B, we will use the following immediate corollary of Theorem
4.2

Corollary 4.3. Let (M, T) be a tracial von Neumann algebra having no type I direct
summand. Let uy,ug € % (M) such that {ui}" L {u2}" and put P = ®(M,uy,us).

Then P is a II; factor containing Haar unitaries vi,vy € P so that [uy,v1] =
[ug, va] = [v1,v9] = 0. Moreover, if @ C M is a von Neumann subalgebra such that
Q A {ui}’, for every 1 <i <2, then Q' NP C M.

Since w; is a unitary, the von Neumann algebra {u;}” is abelian (and hence of type
I), for every 1 < ¢ < 2. Since M has no type I direct summand, it follows that
M 4np {u;}”, for every 1 < < 2, and thus Corollary 4.3 follows from Theorem 4.2.

Remark 4.4. Let us argue that the condition that {u;}” L {us}” in Corollary 4.3
cannot be removed if we want M to be a II; factor. Thus, the condition that A7 L Ay
also cannot be removed from Theorem 4.2. In the context of Corollary 4.3, assume
that M is generated by uz and Eg, y/(u2). Denote N := ®(M, {u1}") = M g,y
({u1}"®L(Z)) and let v1 € L(Z) be a generating Haar unitary. By [IPP08, Theorem
1.1] we get that L(Z)' N N = {u; }"®L(Z). This gives that

Epzynn(u2) = Eg, paum (u2) = Eqy, ) (u2).

On the other hand, Er,z)~y(u2) is the || - [[2-limit of the sequence (A5, vFuputh),

and thus belongs to {ugz,v1}". The last two facts together imply that Eg, 1/ (u2) €
{ug,v1}". Since M is generated by us and Efy 3 (u2), we get that M C {ug,v1}".
Since N is generated by M and vy, we get that {ug,v1}” = N. Thus, ®(M, uq,u2) =
N®L(Z) is not a factor, so the conclusion of Corollary 4.3 does not hold.

Now, the existence of uy, us € % (M) such that {ug, Eg, 3~ (u2)}” = M, can be
checked whenever M is generated by two unitaries ui,ug such that {u;}” L {uz}”
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(e.g., if M = L(T"), for any 2-generated group I' = (g1, go) satisfying (g1) N (g2) =
{e}). To see this, write uz = exp(ih), where h € {uz}" is a self-adjoint element,
let n € N such that 7(exp()) # 0 and define us = uy exp(2). Then Efy,y(u2) =
T(exp(%))ul and thus {uz,E{ul}u(uQ)}” = {ul,exp(%)}” = {uy,uz}’ = M.

The proof of Theorem 4.2 relies on the main technical result of [IPP08]. To recall
the latter result, let (M;,71) and (Ma, 72) be tracial von Neumann algebras with a
common von Neumann subalgebra B such that 71|18 = T2|p- Let M = My xp My be
the amalgamated free product with its canonical trace 7. By [PV10, Section 5.1],
for 0 < p < 1 we have a unital tracial completely positive map m, : M — M such
that m,(b) = b, for every b € B, and my(z122---x,) = p'x122- - 2y, for every
x; € M;, © B, where i; € {1,2}, for every 1 < j < n, and i; # i;41, for every
1<j<n-—1.Then

lirr{ |lm,(x) — x||2 = 0, for every x € M. (4.1)
p—

The following is the main technical result of [IPP08], formulated here as in [PV10,
Theorem 5.4], see also [Hou09, Section 5].

Theorem 4.5. Let (My,71) and (Ms,12) be tracial von Neumann algebras with a
common von Neumann subalgebra B such that T1|B = T2|B- Let M = MyxpgM> be the
amalgamated free product with its canonical trace T. Let QQ C pMp be a von Neumann
subalgebra. Assume that there are 0 < p < 1 and ¢ > 0 such that ||m,(u)||2 > ¢, for
every u € % (Q).

Then Q <y My or Q < Ms.

As T(me (u)u*) = |[my(u)||3 > 2, for every u € % (Q), [PV10, Theorem 5.4] implies
Theorem 4.5.

Lemma 4.6. Let (My,71) and (M, 19) be tracial von Neumann algebras with a
common von Neumann subalgebra B such that T3 = T2|- Let M = My xp My be
the amalgamated free product with its canonical trace T. Fori € {1,2}, let A; C M; be
a von Neumann subalgebra with A; | B. Let Q C My be a von Neumann subalgebra
such that Q <y A1V Az and Q Ay, B.

Then Q <, Ax.

Proof. Denote A = A; V Ay. We first claim that A; and A, are freely independent
inside M and thus A = A;*Ay. Let a; € A;; ©Cl for i; € {1,2}, forevery 1 < j <n,
where i; # i1, for every 1 < j <mn — 1. Since A; L B, for every i € {1,2}, we get
that Ep(aj) =0, for every 1 < j < n. This implies that 7(ajaz - - a,) = 0, proving
the claim.

Since @ <ps A, we can find projections ¢ € QQ,p € A, a nonzero partial isometry
v € pMq and *-homomorphism ¢ : ¢QQq — pAp such that ¢(x)v = vz, for every
x € qQq. Moreover, we may assume that the support projection of E4(vv*) is equal
to p. O



1256 I. CHIFAN ET AL. GAFA

Claim 4.7. ¢(qQq) <4 A1 or p(qQq) <a As.

Proof of Claim 4.7. Since m,, is a unital tracial completely positive map, using (4.1)
and [Pop06a, Corollary, Section 1.1.2] we deduce that

sup |my(zv) —my(z)vlls — 0 and sup |m,(vzr) —vm,(z)||2 — 0, as p— 1.

(4.2)

Note that applying [Pop06a, Corollary, Section 1.1.2] implies that (4.2) holds if
v € M is a unitary. Since every element of M is a linear combination of four unitaries,
we get that (4.2) holds as stated.

Now, if 2 € My, then the definition of m, implies that m,(z) = Eg(x) + p(x —
Eg(z)) and thus |m,(z) — z|l2 = (1 — p)||lz — Eg(z)|2 < (1 — p)||z||2. In particular,
since () C M, we derive that

sup |lmp(z) — x| — 0, asp—1. (4.3)
2€(qQq)
By combining (4.2) and (4.3) and using that ¢(z)v = vz, for every x € ¢Qgq, it
follows that sup,c(4qq), Mp(p(2))v — vzl]2 — 0, as p — 1. Therefore, we can find
0 < p < 1such that ||m,(¢(z))v—vz|2 < ||v||2/2, for every x € (¢Qq)1. This implies
that

[[m, (o (w))ll2 = [lmy, (p(u))vll2 > flvfl2/2,  for every u € % (¢Qq).

In other words, ||m,(y)|| > ||v||2, for every y € % (¢(¢Qq)). Note that the restriction
of m, to A is equal to the map m, on A associated with the free product decom-
position A = Aj x Ay. Since ¢(qQq) C pAp, we can apply Theorem 4.5 to get the
claim. 0

By Claim 4.7, we have that (¢Qq) <4 A;, for some ¢ € {1,2}. Since the support
projection of E4(vv*) is equal to p, [Vae08, Remark 3.8] implies that Q@ <p; A;.
Finally, since ¢qQq C My, A; C M; and Q Ap;, B, applying [IPP08, Theorem 1.1]
gives that i = 1 and @ <, A;1.

Proof of Theorem 4.2. Let P = ®(M, A1, A2) = N *(a,vp,) (A2 V B1)®DB3), where
By = By = L(Z) and N = (I)(M,Al) = ]\J*A1 (A1®Bl) Let v1 € By and v € By be
generating Haar unitaries. Since [A;, Bi| = [A2, Bs] = [Bi, Ba] = {0}, we get that
V1 € All NPy e A’2 N P and [U1,U2] =0.

Next, we prove the moreover assertion. Let ) C M be a von Neumann subalgebra
such that Q@ A A;, for every 1 < i < 2. Since N = M x4, (A1®B1), Ay L Ay,
By L A and Q £ Aq, by Lemma 4.6 we conclude that

Q #An A2V By. (4.4)

Since P = N#*(4,vp,)((A2V B1)®Bs), using (4.4) and applying [IPP08, Theorem 1.1]
we get that @'NP C N. Since N = M x4, (A1®B1) and Q £y A1, applying [IPPOS,
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Theorem 1.1] again gives that @' N N C M. Altogether, we get that Q' NP C M,
which proves the moreover assertion.

Since M Ap; A;, for every 1 < i < 2. By applying the moreover assertion to
Q = M, we get that M' NP C M, hence Z(P) =P NM C Z(M). Thus, if M is
a II; factor, then P is a II; factor.

Finally, we prove that P is a II; factor in the general case when M is not necessar-
ily a factor. Note that [IPP08, Theorem 1.1] gives that BjNM = Ay and B,NM =
(BLNN)NM = (AaVBy)NM. Thus, Z(P) = PPNM C A1N(A2V By). We claim that
A1 L (AgV By). Assuming the claim, it follows that A; N (AzV By) = C1 and so P is
a II; factor. To justify the claim and finish the proof, denote My = M, My = A1®B1,
Cy = Ay, Cy = By and B = A;. Thus, N = M; xg My and the claim is equivalent
to B L (C1V(Cs). Let x € Band y € C1V Cs of the form y = y1y2 - - - yn, where
y; € C;, © C1 for some i; € {1,2}, for every 1 < j < n, such that i; # i;44, for
every 1 < j <n—1. Since C; L B, for every 1 < i < 2, we get that Eg(y;) = 0
and thus y; € M;, © B, for every 1 < j < n. Moreover, Eg(zy1) = 2Ep(y1) = 0 and
thus zy; € M;, © B. This implies that 7(zy) = 7((xy1)y2 - - - yn) = 0. Since C; and
Cy are freely independent, as shown in the proof of Lemma 4.6, the linear span of
elements y € C1 V Oy of the above form is dense in (C; V Cy) © C1. Thus, we get
that B L (Cy V Cq), proving the claim. 0

5 Proofs of main results
This section is devoted to the proofs of our main results.

5.1 Proof of Theorem B. We start by constructing the II; factor from The-
orem B by iterating the construction from Section 4.

For a II; factor M, we denote by ¥ (M) the set of pairs (u1,uz) € Z (M) x % (M)
such that u3 = uj = 1 and {u1}” L {u2}”. We endow % (M) x % (M) with the
product || - ||2-topology.

Definition 5.1. Let M; be a II; factor. We construct a new II; factor M which
contains M) and arises as the inductive limit of a sequence (M, )nen of 1I; factors
satisfying M,, C Mp4+1, for every n € N. Let 0 = (01,02) : N — N x N be a
bijection such that oi(n) < n, for every n € N. Assume that M, ..., M, have
been constructed, for some n € N. Let {(u}™", ud™)}ren C ¥ (M,) be a || - ||o-dense
sequence. We define

My = (M, u™ ug™).

Note that M, is well-defined since o1(n) < n and thus (u‘f("),ug(n)) € V(M,).
Then M, C M,+1 and Corollary 4.3 implies that M, is a II; factor. Thus, M
defined as follows is a II; factor:

M = (UnGNMTL)H'
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Convention. For the rest of this section, (M, )neny and M denote the II; factors
introduced in Definition 5.1.

Definition 5.2. An ultrafilter U on a set [ is called countably cofinal if there exists
a sequence {A, }ney C U with N, A, = 0.

Proposition 5.3. Let uj,us € % (MY) such that u? = w3 = 1 and {u1}" L {us}”,
where U is a countably cofinal ultrafilter on a set I.

Then there exist Haar unitaries vi,vo € MY such that [uy,v1] = [u2,ve] =
[1)1, 1)2] = 0

Proof. Let p, q1,q2,q3 € MY be projections such that u; = 2p—1 and us = q; +(qo+
(%q3, where ¢ = exp(%). We may clearly assume that uy # +1, so that p # 0, 1.

Since M = (UpenM,,)” and U is cofinal, [BCI17, Lemma 2.2] gives that p, ¢1, g2, g3
€ [1,,cu Mk, , for some (k,)ner € N. Moreover, the proof of [BCIL7, Lemma 2.2]
provides a function f : I — N such that 7}% f(n) = +oc.

Since {p}" L {q1,q2,q3}", by Lemma 3.1, we can represent p = (p,) and ¢; =
(¢in), where py,, gn ;i € My, are projections such that g1 ,+¢2n+¢3, = 1 and {p,}" L
{q1,n, @20, @30}, for every n € I. Let uy,, = 2p, — 1 and uz,, = q1.0 +Cq2.n + C2q37n.
Then w1 = (u1,) and uy = (uzy,). Since {u1,}" = {pu}” L {q1m: @20, Bn}" =
{uan}’, we get (uin,usn) € ¥ (My,), for every n € 1.

Since {(u}™7, ub™7)}jen is dense in ¥ (M, ), we can find j, € N such that

. . 1

llwim — u]f””J"Hg + [Juz,n — ug"’J"Hg < 7o) for every n € I. (5.1)
For n € I, let I, € N such that o(I,) = (kn,jn). Then M, )41 = (M., uy"’",
ug"’j"). Thus, by Corollary 4.3, we can find Haar unitaries v1 ,, v2n € % (Mg, )41) C

% (M) such that

[u’f“’l",vlm] = [ug”’l",vg,n] = [v1,n,v2,n] = 0, for every n € I. (5.2)

Finally, let v1 = (v1,),v2 = (v2,,) € % (MVY). Then vy, vy are Haar unitaries and as
hn{lJ f(n) = +o0, (5.1) and (5.2) together imply that [u1,vi] = [ug, va] = [v1,v2] = 0.
g

In order to prove Theorem B, we also need to find instances which guarantee
that M is full. This happens if M; has property (T):

Proposition 5.4. Assume that My has property (T). Then M does not have prop-
erty Gamma.

Proof. Let n € N. Recall that M, 11 = Lp(Mn,u(f(n),ug(n)) and M; C M,,. Since

M, is a II; factor, we have that M; A, {u‘ly(n)}” and My £, {ug(n)}”. By
applying Corollary 4.3 we derive that M| N My41 = M{ N M,. Thus, we get that
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M{NM, = % (M,) = C1. Since this holds for every n € N, we deduce that M]NM =
C1. Finally, since M; has property (T), by Proposition 2.1, we have that M NMY =
(M{ N M)Y = C1, where U is a free ultrafilter on N. Hence, M’ N MY = C1 and so
M does not have property Gamma. |

Proof of Theorem B. Let M; be a II; factor with property (T), e.g., take M; =
L(SL3(Z)). Let M be constructed as in Definition 5.1. The conclusion follows from
Propositions 5.3 and 5.4. O

5.2 Proof of Theorem C and its corollaries. In this subsection, we prove
that the II; factor M from Theorem B also satisfies the conclusion of Theorems C
and A and Corollary D. To this end, we first show the following:

Corollary 5.5. Let p, q1,qo,q3 € MY be projections such that g1 +qa+q3 = 1, where
U is a countably cofinal ultrafilter on a set I. Assume that {p}"" L {q1,q2,q3}".
Then h’({p7 q1, 42, Q3}N : MU) < 0.

Proof. Define u1,us € % (MY) by uy = 2p — 1 and uz = q1 + (g2 + (%q3, where
¢ = exp(%). Then u? = u3 = 1 and {uy,us2}” = {p, q1, q2, g3}". Thus, by combining
Fact 2.9 and Proposition 5.3 we get that h({p,q1,q2,q3}" : MY) = h({ug,us}" :

MY) <o. O
To prove that h(MVY) < 0, we will need an additional lemma:

Lemma 5.6. Let (A, 7) be a diffuse tracial von Neumann algebra and x € A such
that x = x* and 7(x) = 0. Let F be the set of projections p € A such that T(zp) = 0.
Then F" = A.

Proof. We first prove the conclusion under the assumption that A is abelian. Let
x = y — z be the decomposition of x into positive and negative parts. Let ¢ and r
be the support projections of y and z, respectively. Since 0 = 7(z) = 7(y) — 7(2),
we get that 7(y) = 7(2).

Let e € Aq be a projection. Since A is diffuse and 7(ye) < 7(y) = 7(2) = 7(2r),
we can find a projection f € Ar such that 7(zf) = 7(ye). Then we have that
e— f € F. Since ef = 0, we get that e + f = (e — f)? € F” and thus e € F”, for
every projection e € Aq. Thus, Aq C F”. Similarly, we conclude that Ar C F”. Since
(1 —q—r) =0, we also have that A(1 —¢q—r) C F”. Since A is abelian, it follows
that A C F” and thus F” = A.

For general A, let B C A be a diffuse abelian von Neumann subalgebra. Note
that 7(Ep(z)) = 0 and that if p € B is a projection with 7(Eg(x)p) = 0, then
7(xp) = 7(Ep(xz)p) = 0 and so p € F. By applying the above proof to B and
Ep(z) € B, we conclude that B C F”. Since this holds for every diffuse abelian von
Neumann subalgebra B C A, we conclude that F” = A. 0

Theorem 5.7. h(MVY) <0, for any ultrafilter U on any set I.
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Proof. 1f U is not countably cofinal, then MY = M by [BCI17, Lemma 2.3]. Thus,
if V is a free ultrafilter on N, then Facts 2.3 and 2.4 give that h(MY) = h(M) =
h(M : MV) < h(MV). This implies that in order to prove the conclusion, we may
assume that U is countably cofinal.

Assume that U is a countable cofinal ultrafilter and denote P = MY. Since P is a
I1; factor, we can find a unital, trace-preserving embedding of S := L(Z/2Z*Z/2Z)
into P. This follows because S is hyperfinite, being the von Neumann algebra of the
amenable group Z/2Z x Z/27. Let p,q € S be two projections with 7(p) = 7(q) = %
which generate the two canonical copies of L(Z/2Z) inside S.

Then ||g(2p — 1)ql2 = \/7(q(2p — 1)g(2p — 1)) = 5 and similarly ||(1 — ¢)(2p —
D(1—g)ll> = L. Let 2 = (1~q)(2p—1)(1—q) € (1~q)P(1—q). Then & = &*, 7(z) = 0
and z # 0. We define F to be the set of projections r € (1 — q)P(1 — ¢) such that
7(zr) = 0.

For r € F we define S, := {p,q,7,1—q—r}". Then 7((2p—1)q) = 0, 7((2p—1)r) =
r(or) = 0 and 7((2p — 1)(1 — g — 1)) = 7(2p — 1) — 7((2p — 1)g) — 7((2p — 1)r) = 0.
Thus, {p}" L {q,r,1 —q — r}". Altogether, we can apply Corollary 5.5 to deduce
that

h(S, : P) <0, for every r € F. (5.3)

Since S C S,, for all r € F, and S is diffuse, combining Facts (2.5) and (2.6) with
(5.3) we get that

h(\/ S :P)<o. (5.4)

reF

On the other hand, by Lemma 5.6 we have that F” = (1 — ¢q) P(1 — ¢). This implies
that

\ S =8\/(1-qP(1-q). (5.5)
rel
Combining (5.4) and (5.5) we get h(S'\/(1—¢q)P(1—¢q) : P) < 0. Similarly, h(S'\/ ¢Pq :
P) < 0. Using again that S is diffuse, Fact 2.5 implies that h(S\/¢Pq\/(1 —
q)P(1 —q) : P) < 0. Since the projections ¢ and 1 — ¢ are equivalent in S, we
get that S'\/qPq\/(1 — ¢)P(1 — q) = P, which implies the desired conclusion that
h(P) = h(P : P) <0. O

Although this is not needed to derive our main results, we mention an easy
consequence of the previous proof which seems of independent interest:

Corollary 5.8. Let M be a II; factor such that h(M) > 0. Let I’ = Z/2Z x Z/3Z.
Then there exists a homomorphism 7 : T' — % (M) such that h(w(T')" : M) > 0.

Proof. As M is a II; factor, we can find a unital, trace-preserving embedding of
S :=L(Z/2Z = Z/2Z) into M. Let p,q € S be two projections with 7(p) = 7(q) = 3
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which generate the two canonical copies of L(Z/27Z) inside S. Since h(M) > 0
and S\/gMq\/(1 — ¢q)M(1 — q) = M, Fact 2.5 gives that h(S\/ ¢Mq) > 0 or
h(S\(1—q)M(1—gq)) > 0. Assume, without loss of generality, that h(S\/ ¢Mq) > 0.
Given a projection r € gMgq, let S, = {p,r,q—r,1—q}". Since S'\/ ¢Mq is generated
by {S, | r € gMgprojection}, Fact 2.5 implies that h(S, : M) > 0, for some
projection r € gMgq. Since clearly S, = 7(I")”, for a homomorphism 7 : I' — % (M),
the conclusion follows. O

Proof of Theorem C. Let M; be a II; factor with property (T), e.g., take M =
L(SL3(Z)). Let M be constructed as in Definition 5.1. By Theorem 5.7 and Propo-
sition 5.4 we get that h(MVY) < 0, for every ultrafilter U, and M does not have
property Gamma.

Proof of Theorem A. Let N be a tracial von Neumann algebra with A(N) > 0 and
M be as in Theorem C. Suppose that for some ultrafilters U,V on sets I, J, there
exists an embedding of MY into NV that contains the diagonal inclusion of N. By
combining Theorem C and Facts 2.4 and 2.3 we get the following chain of inequali-
ties:

0<h(N)=h(N:NY)<h(N:MY)<hMY: MY)=hM"Y) <0,
which is a contradiction.

Proof of Corollary D. Let M be as in Theorem C. For a sequence (k) C N and free
ultrafilter U on N with 111% kn = 400, let M = [[; My, (C). Then Fact 2.8 implies
n—

that h(M) = co. By Theorem A, we deduce that M is not elementarily equivalent
to M.

The following remark was communicated to us separately by I. Goldbring and
D. Jekel.

Remark 5.9. We give an explicit sentence distinguishing up to elementary equiva-
lence any II; factor M satisfying the properties of Theorem B and any tracial von
Neumann algebra (NN, 7) with A(N) > 0, in particular L(IF3). This follows readily
from Lemma 3.2. For unitaries uy, us, v1,v2 € M, we define the formulae

P(ur,uz) = [luf — 2 + |luj — 1|2 + |7 (u1uz) — 7(u1)7(us)|
7 (uruz) — 7 ()T (u3)]

1/’(“1,”2,”1,@2) = ||lurvr — viur ]2 + |[ugve — vous||2 + [[v1ve — vaur||2
+ > 278 (b)) + [ (vh))]).
kez\{0}

Note that ¢(u1,u2) = 0 means that u? = u3 = 1 and {u1}” L {uy}”. We also
note that D. Jekel observed that Lemma 3.2 implies that the set {uj,ug € Z (M) |
¢(u1,u2) = 0} is a definable set over the theory of II; factors.
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Theorem B shows that M satisfies Supy, ,cu (m),6(u1,us)=0 (infvhvze%(M) Y(ug,
ug,vl,vg)) = 0. In combination with Lemma 3.2, we derive the existence of a
function § : [0,00) — [0,00) such that §(0) = 0, 6((0,00)) C (0,00) and for all
e > 0, the following implication holds for uj,up € Z (M): if ¢p(u1,u2) < d(e), then
@' (u1,ug) :=infy, e () P (U1, uz, v1,v2) < . Moreover, ¢ is independent of the IT;
factor M, and can be taken to be continuous and strictly increasing. Then we have
that §(¢(u1,u2)) < ¢(u1,us2), for every uy,ug € % (M), and we can thus write the
distinguishing sentence as follows:

sup  max(0,0(¢ (ur,uz)) — d(ur, uz)).
w1, u2 €% (M)
In fact, it is easy to see that a II; factor M satisfies this sentence if and only if
it satisfies the conclusion of Theorem B. Hence, if M satisfies this sentence, then
h(MV) = 0. Thus, L(F3) does not satisfy this sentence.
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