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AN EXOTIC II1 FACTOR WITHOUT PROPERTY GAMMA

Ionuţ Chifan, Adrian Ioana and
Srivatsav Kunnawalkam Elayavalli

Abstract. We introduce a new iterative amalgamated free product construction
of II1 factors, and use it to construct a separable II1 factor which does not have
property Gamma and is not elementarily equivalent to the free group factor L(Fn),
for any 2 ≤ n ≤ ∞. This provides the first explicit example of two non-elementarily
equivalent II1 factors without property Gamma. Moreover, our construction also
provides the first explicit example of a II1 factor without property Gamma that
is also not elementarily equivalent to any ultraproduct of matrix algebras. Our
proofs use a blend of techniques from Voiculescu’s free entropy theory and Popa’s
deformation/rigidity theory.

1 Introduction

The study of the continuous model theory of II1 factors was initiated by Farah,
Hart and Sherman in [FHS14], who adapted the notion of elementary equivalence
(requiring that the objects considered satisfy the same first-order sentences) to the
context of II1 factors. By the continuous version of the Keisler-Shelah theorem, two
II1 factors M, N are elementarily equivalent if and only if they admit isomorphic
ultrapowers, MU ∼= NV, for some ultrafilters U, V on arbitrary sets [FHS14, HI02].
Ultrapowers of II1 factors have been a major tool in operator algebras since the works
of McDuff [McD70] and Connes [Con76] in the 1970 s. In spite of this, proving that
two given II1 factors have no isomorphic ultrapowers, and so are not elementarily
equivalent, remains a challenging task.

As shown in [FHS14] (see also [FGL06]), for separable II1 factors, Murray and von
Neumann’s property Gamma [MvN43] and McDuff’s property [McD70] are axiom-
atizable and thus are remembered by ultrapowers. This implies that the hyperfinite
II1 factor R, the free group factor L(F2) and any separable non-McDuff II1 factor
with property Gamma (see [DL69]) are not elementarily equivalent. It was then real-
ized by Goldbring and Hart that a II1 factor introduced in [ZM69] provides a fourth
elementary equivalence class (see [GH17]). However, besides these examples, it was
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unclear how to find any additional elementary equivalence classes of II1 factors. This
problem was solved by Boutonnet and two of the authors in [BCI17] who proved
that the continuum of non-isomorphic separable II1 factors (Mα)α∈{0,1}N constructed
by McDuff in [McD69] are pairwise non elementarily equivalent. More precisely, the
main result of [BCI17] shows that Mα and Mβ do not admit isomorphic ultrapowers,
whenever α �= β. Subsequently, explicit sentences witnessing that Mα and Mβ are
not elementarily equivalent were given in [GH17, GHT18].

The proofs of the main result of [BCI17] and in fact of all of the existing results
providing non-elementarily equivalent II1 factors are based on analyzing central
sequences. As a result, it remained a fundamental open question to find any non-
elementarily equivalent II1 factors that do not have property Gamma and thus admit
no non-trivial central sequences.

We settle this question in the present work. A main novelty of our approach,
that allows us to bypass the above difficulty, is the use of 1-bounded entropy from
Voiculescu’s free probability theory. For a finite tuple X of self-adjoint operators in
a tracial von Neumann algebra (N, τ), one has the 1-bounded entropy h(X), implicit
in Jung’s work [Jun07] and defined explicitly by Hayes [Hay18], see Subsection 2.2.
This quantity, unlike Voiculescu’ free entropy dimension δ0(X) [Voi94], is known to
be an invariant of the von Neumann algebra generated by X as shown in [Hay18,
Theorem A.9]. Hence, we have a well-defined notion of 1-bounded entropy h(N) for
a finitely generated tracial von Neumann algebra (N, τ). Moreover, h(N) extends to
arbitrary, possibly non-separable, tracial von Neumann algebras (N, τ) by [Hay18,
Definition A.2].

The main result of this paper is the following:

Theorem A. There exists a separable II1 factor M which does not have property
Gamma and is not elementarily equivalent to any tracial von Neumann algebra (N, τ)
satisfying h(N) > 0. For instance, M is not elementarily equivalent to L(F2).

Moreover, for any ultrafilters U, V on sets I, J , respectively, there does not exist
an embedding of MU into NV that contains the diagonal inclusion of N .

Examples of tracial von Neumann algebras (N, τ) with h(N) > 0 include the
interpolated free group factors L(Ft), for all 1 < t ≤ ∞, and, more generally, any free
product N1 ∗ N2 of two Connes-embeddable diffuse tracial von Neumann algebras
(N1, τ1) and (N2, τ2). (Moreover, h(N) = ∞ for such N ; for this and additional
examples, see Fact 2.7). By Theorem A, M is not elementarily equivalent to any
such N , including L(F2). This gives the first explicit example of two non-elementarily
equivalent non-Gamma II1 factors, thus settling a problem posed at a 2018 workshop
at the American Institute of Mathematics [AIM, Problem 1.3], see also [IP] and [Pet,
Problem U.2].

It has been speculated for some time that free probability theory is likely to shed
light on the model-theoretic study of II1 factors, see for instance Farah’s ICM survey
[Far14, Section 5] and [FGSW]. Offering positive evidence in this direction, Theorem
A represents an application of free probability to the model theory of II1 factors.
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Now we describe the key facets of our construction that allows us to prove The-
orem A. The II1 factor from Theorem A is built via a new iterative construction
involving amalgamated free products (see Sect. 4). By using techniques from Popa’s
deformation/rigidity theory, notably [IPP08], and the notion of property (T), we
are able to guarantee that M is indeed non-Gamma. The main property of our
construction is presented in our second main theorem below.

Theorem B. There exists a separable II1 factor M without property Gamma which
satisfies the following. For every countably cofinal ultrafilter U on a set I and u1, u2 ∈
U (MU) with u2

1 = u3
2 = 1 and {u1}′′ ⊥ {u2}′′, there exist Haar unitaries v1, v2 ∈ MU

such that [u1, v1] = [u2, v2] = [v1, v2] = 0.

Two von Neumann subalgebras P, Q of a tracial von Neumann algebra (M, τ) are
called orthogonal (written P ⊥ Q) if τ(xy) = τ(x)τ(y), for every x ∈ P, y ∈ Q. For
the notion of a countably cofinal ultrafilter, see Definition 5.2. Here we only note
that every free ultrafilter on N is countably cofinal.

The construction in Theorem B is designed to imply the following estimate for
the 1-bounded entropy, which we present as our next main theorem.

Theorem C. Let M be any II1 factor satisfying the properties of Theorem B. Then
h(MU) ≤ 0, for every ultrafilter U on a set I.

The above estimate allows us to prove the desired non-isomorphism of ultrapow-
ers. Indeed, let M be as in Theorem B. If (N, τ) is a tracial von Neumann algebra
which is elementarily equivalent to M , then MU ∼= NV, for some ultrafilters U, V.
Properties of the 1-bounded entropy give that h(N) ≤ h(NV) (see Facts 2.3 and
2.4). The conclusion of Theorem A then follows immediately. We refer the reader to
Remark 5.9, pointed out to us by I. Goldbring and D. Jekel, for an explicit sentence
which differentiates the elementary classes of M and N .

Note that if M is a II1 factor with property Gamma, then h(MU) ≤ 0, for every
ultrafilter U on a set I. Prior to the writing of this paper no explicit examples of
non-Gamma II1 factors which satisfy this inequality were known. Hence, Theorem
C is also of independent interest.

A II1 factor is called pseudocompact if it is elementarily equivalent to a matrix
ultraproduct (see [FHS14, Section 5]). Pseudocompact factors cannot have property
Gamma by [FH11, Section 4] and [FHS14, Theorem 5.1]. By combining Theorem
C with recent work of Jekel [Jek22] on matrix ultraproducts we obtain the first
example of a non-Gamma II1 factor which is not pseudocompact.

Corollary D. There exists a separable II1 factor M without property Gamma which
is not elementarily equivalent to

∏
U Mkn

(C), for any sequence (kn) ⊂ N and any
free ultrafilter U on N.

Remark 1.1. The Connes Embedding Problem (CEP) asks if every separable II1
factor embeds into RU, where U is a free ultrafilter on N [Con76]. A negative an-
swer to the CEP has been announced in the preprint [JNV+]. Assuming M0 is a
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non-Connes-embeddable separable II1 factor, then M = M0 ∗ L(Z) is a non-Gamma
separable II1 factor which is still not embeddable. Any such M is neither elementarily
equivalent to any embeddable non-Gamma II1 factor (e.g., L(F2)) nor pseudocom-
pact. Moreover, assuming a negative answer to the CEP, [GH, Corollary 5.5] implies
the existence of infinitely many elementary equivalence classes of non-Gamma II1
factors. In contrast, our construction of a non-Gamma II1 factor which is not elemen-
tarily equivalent to L(F2) and not pseudocompact is explicit and does not depend
on the answer to the CEP, nor does it use techniques from [JNV+]. We note that
it is open whether the II1 factor we construct is Connes-embeddable. As such, it
remains an open question to find examples of Connes-embeddable non-Gamma II1
factors which are not elementarily equivalent.

Comments on the proofs of Theorems B and C. The proof of Theorem B
relies on a new construction of II1 factors which is of independent interest and
is presented in Sect. 4. This associates, via a 2-step amalgamated free product
procedure, to every II1 factor M1 and unitaries u1, u2 ∈ M1, a tracial von Neu-
mann algebra M2 generated by M1 and Haar unitaries v1, v2 ∈ M2 satisfying
[u1, v1] = [u2, v2] = [v1, v2] = 0. When {u1}′′ ⊥ {u2}′′, we use deformation/rigidity
results from [IPP08] to deduce that M2 is a II1 factor. Moreover, under this assump-
tion, we show that any irreducible subfactor Q ⊂ M1 is still irreducible in M2, see
Theorem 4.2.

In Sect. 5, assuming that M1 has property (T) and iterating the above construc-
tion, we get an increasing sequence of II1 factors (Mn)n≥1 whose inductive limit
M := (∪n≥1Mn)′′ is non-Gamma and has the following property. For a countable
dense set of unitaries u1, u2 ∈ M with u2

1 = u3
2 = 1 and {u1}′′ ⊥ {u2}′′ there are

Haar unitaries v1, v2 ∈ M such that [u1, v1] = [u2, v2] = [v1, v2] = 0. Using a result
which allows us to lift unitaries u1, u2 ∈ MU with u2

1 = u3
2 = 1 and {u1}′′ ⊥ {u2}′′

to unitaries in M with the same properties (see Lemma 3.1) we conclude that MU

satisfies the conclusion of Theorem B. The restriction to unitaries u1 and u2 of orders
2 and 3 is due to the fact that Lemma 3.1 only applies in this case.

The statement of Theorem B is partially inspired by [Hay18, Corollary 4.8]. This
shows that if a diffuse tracial von Neumann algebra (M, τ) has property (C′) intro-
duced in [GP17, Definition 3.6], then h(M) ≤ 0. In particular, [Hay18, Corollary
4.8] implies that h(M) ≤ 0, for any diffuse von Neumann algebra (M, τ) that is
generated by u1, . . . , uk ∈ U (M) so that there exist pairwise commuting Haar uni-
taries v1, . . . , vk ∈ U (MU) with [ui, vi] = 0, for any 1 ≤ i ≤ k. Property (C′) is
an asymptotic commutativity property which weakens Popa’s property (C) [Pop84].
The latter, itself a weakening of property Gamma, was shown to fail for L(Fn),
2 ≤ n ≤ ∞, in [Dyk97].

To outline the proof of Theorem C, let M be as in Theorem B and U be a
countably cofinal ultrafilter on a set I. Using an observation made in the proof of
[Hay18, Corollary 4.8] (see Fact 2.9) we derive that h({u1, u2}′′ : MU) ≤ 0, for any
u1, u2 ∈ U (MU) with u2

1 = u3
2 = 1 and {u1}′′ ⊥ {u2}′′. Here, h(N : M) denotes
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the 1-bounded entropy of N in the presence of M , see Subsection 2.2. On the other
hand, MU can be generated by a family of subalgebras of the form {u1, u2}′′, where
u1, u2 ∈ U (MU) satisfy u2

1 = u3
2 = 1 and {u1}′′ ⊥ {u2}′′, all containing a fixed diffuse

subalgebra. Using the behavior of the 1-bounded entropy with respect to joins (see
Facts 2.6 and 2.5), we conclude that h(MU) ≤ 0, for any countably cofinal ultrafilter
U. Since h(M) ≤ 0 and MU ∼= M for any ultrafilter U that is not countably cofinal,
Theorem C follows.

2 Preliminaries

2.1 Tracial von Neumann algebras. Let (M, τ) be a tracial von Neumann
algebra, i.e., a pair consisting of a von Neumann algebra M and a faithful normal
tracial state τ : M → C. We denote by U (M) the group of unitaries of M , by
Msa the set of self-adjoint elements of M and by Z (M) the center of M . Given a
self-adjoint set S ⊂ M , von Neumann’s bicommutant theorem implies that S′′ is
the smallest unital von Neumann subalgebra of M containing S. For von Neuman
subalgebras (Mα) of M , we will use the notation ∨αMα for (∪αMα)′′.

For an ultrafilter U on a set I, we denote by MU the tracial ultraproduct: the
quotient �∞(I, M)/J by the closed ideal J ⊂ �∞(I, M) consisting of x = (xn) with
lim
n→U

‖xn‖2 = 0. We have a natural diagonal inclusion M ⊂ MU given by x �→ (xn),

where xn = x, for all n ∈ I. A separable II1 factor M has property Gamma if
M ′∩MU �= C1, for a free ultrafilter U on N. For more details on tracial ultraproducts,
we refer the reader to [BO08, Appendix E] and [ADP, Section 5].

Two tracial von Neumann algebras (M1, τ1) and (M2, τ2) are said to be ele-
mentarily equivalent if there exist ultrafilters U, V on arbitrary sets I, J such that
MU

1
∼= MV

2 . This is the semantic definition of elementary equivalence. The model
theoretic (sometimes called syntactic) definition for elementary equivalence will not
be stated in this paper, as it is equivalent to the semantic definition by deep results of
Keisler-Shelah adapted to the continuous setting, see [FHS14, Section 2] and [HI02,
Theorem 10.7].

A key tool in our work is the amalgamated free product construction for tracial
von Neumann algebras. Let (M1, τ1) and (M2, τ2) be tracial von Neumann algebras
with a common von Neumann subalgebra B such that τ1|B = τ2|B. We denote by
M = M1∗B M2 the amalgamated free product with its canonical trace τ . See [Pop93]
and [VDN92] for more details on the construction.

To prove that the II1 factors we construct do not have property Gamma, we will
use property (T) and Popa’s intertwining techniques.

A II1 factor has property (T) [CJ85] (see also [Pop06a]) if for every ε > 0, there
are F ⊂ M finite and δ > 0 such that for any Hilbert M -M -bimodule H and unit
vector ξ ∈ H with maxx∈F ‖xξ − ξx‖ ≤ δ, there exists η ∈ H satisfying ‖η − ξ‖ ≤ ε
and xη = ηx, for every x ∈ M . Let Γ be an icc countable group with property
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(T); for instance, take Γ = SL3(Z) by [Kaž67]. Then M = L(Γ) is a II1 factor with
property (T), see [CJ85, Theorem 2] and [Pop86, Theorem 4.1.7].

In this paper, we will use the well-known fact that II1 factors with property (T)
have weak spectral gap (in the sense of [Pop12]) in any inclusion:

Proposition 2.1. Let M be a II1 factor and M1 ⊂ M be a subfactor with property
(T). Then M ′

1 ∩ MU = (M ′
1 ∩ M)U, for any ultrafilter U on a set I.

Conversely, if the equality M ′
1 ∩ MU = (M ′

1 ∩ M)U holds for every II1 factor M
containing M1 and every ultrafilter U on N, then M1 must have property (T), as
shown recently in [Tan].

Theorem 2.2 (see [Pop06b]). Let (M, τ) be a separable tracial von Neumann al-
gebra and let P ⊂ pMp, Q ⊂ M be von Neumann subalgebras. Then the following
conditions are equivalent:

(1) There exist projections p0 ∈ P, q0 ∈ Q, a ∗-homomorphism θ : p0Pp0 → q0Qq0
and a non-zero partial isometry v ∈ q0Mp0 such that θ(x)v = vx, for all
x ∈ p0Pp0.

(2) There is no sequence un ∈ U (P ) satisfying ‖EQ(x∗uny)‖2 → 0, for all x, y ∈
pM .

If one of these equivalent conditions holds, we write P ≺M Q, and say that a
corner of P embeds into Q inside M .

2.2 1-bounded entropy. We recall some background for 1-bounded entropy
theory (see [Hay18], [Jun07]) and direct the reader to [HJNS21, Section 2.3] and
[HJKE21, Sections 2.2 and 2.3] for a more detailed exposition. For a tracial von
Neumann algebra (M, τ) and X ∈ Md

sa, the law of X is the linear functional �X :
C〈t1, . . . , td〉 → C given by �X(f) = τ(f(X)). Let Σd,R be the set of all linear maps
� : C〈t1, . . . , td〉 → C satisfying that there exists a finite von Neumann algebra (M, τ)
and X ∈ Md

sa such that � = �X and ‖x‖ ≤ R for all x ∈ X. We equip Σd,R with the
weak∗ topology.

We describe the orbital version of 1-bounded entropy (see Definition A.2 in
[Hay18]). Let (M, τ) be a diffuse tracial von Neumann algebra, and X, Y ⊂ Msa

finite such that ‖x‖ ≤ R for all x ∈ X ∪ Y . Following [Voi94], for each weak∗

neighborhood O of �X	Y in Σd,R and n ∈ N, we define

Γ(n)
R (X : Y ; O) = {A ∈ Mn(C)X

sa : ∃B ∈ Mn(C)Y
sa | �A	B ∈ O, ‖Ax‖, ‖By‖

≤ R, ∀x ∈ X, y ∈ Y }.

Given d, n ∈ N, ε > 0 and Ω, Ξ ⊆ Mn(C)d, then Ξ is said to (ε, ‖ · ‖2)-cover Ω
if for every A ∈ Ω, there is B ∈ Ξ with ‖A − B‖2 < ε. Define the covering number
Kε(Ω, ‖ · ‖2) of Ω ⊆ Mn(C)d as the minimal cardinality of a set that (ε, ‖ · ‖2)-
covers Ω. We say that Ξ orbitally (ε, ‖ · ‖2)-covers Ω if for every A ∈ Ω, there is a
B ∈ Ξ and an n × n unitary matrix V so that ‖A − V BV ∗‖2 < ε. Define the orbital



GAFA AN EXOTIC II1 FACTOR WITHOUT PROPERTY GAMMA 1249

covering number Korb
ε (Ω, ‖ · ‖2) as the minimal cardinality of a set that orbitally

(ε, ‖ · ‖2)-covers Ω.
Let X0, Y0 ⊂ Msa not necessarily finite, satisfying X ′′

0 ⊂ Y ′′
0 and ‖x‖ ≤ R for

all x ∈ X0 ∪ Y0. Let X, Y be finite subsets of X0, Y0 respectively. For a weak∗-
neighborhood O of �X	Y , we define

hε(X : Y ; O) := lim sup
n→∞

1
n2

log Korb
ε (Γ(n)

R (X : Y ; O)),

hε(X : Y ) := inf
O
�X�Y

hε(O),

hε(X0 : Y0) := sup
X⊂finiteX0

inf
Y ⊂finiteY0

hε(X : Y )

h(X0 : Y0) := sup
ε>0

hε(X0 : Y0)

Note that h(X1 : Y1) = h(X2 : Y2) if X ′′
1 = X ′′

2 and Y ′′
1 = Y ′′

2 by [Hay18,
Theorem A.9]. Hence, given a von Neumann subalgebra N ⊂ M , we unambiguously
write h(N : M) (and call it the 1-bounded entropy of N in the presence of M) to be
h(X : Y ) for some generating sets X of N and Y of M . We write h(M) = h(M : M)
and call it the 1-bounded entropy of M .

For the purposes of this article we recall the following facts about h:

Fact 2.3 (see [HJKE21, 2.3.3]). h(N1 : M1) ≤ h(N2 : M2) if N1 ⊂ N2 ⊂ M2 ⊂ M1

and N1 is diffuse.

Fact 2.4 (see [Hay18, Proposition 4.5]). h(N : M) = h(N : MU) if N ⊂ M is
diffuse, and U is an ultrafilter on a set I. (Note that [Hay18, Proposition 4.5] as-
serts this fact for free ultrafilters U. The fact is trivially true also for non-free (i.e.,
principal) ultrafilters.)

Fact 2.5 (see [Hay18, Lemma A.12]). h(N1 ∨ N2 : M) ≤ h(N1 : M) + h(N2 : M) if
N1, N2 ⊂ M and N1 ∩ N2 is diffuse. In particular, h(N1 ∨ N2) ≤ h(N1) + h(N2).

Fact 2.6 (see [Hay18, Lemma A.10]). Assume that (Nα)α is an increasing chain of
diffuse von Neumann subalgebras of M . Then h(

∨
α Nα : M) = supα h(Nα : M).

By [Jun07, Corollary 3.5] and [Hay18, Proosition A.16], h(N) = ∞ whenever
(N, τ) is a tracial von Neumann algebra admitting a finite generating set X ⊂ Nsa

with δ0(X) > 1, where δ0 is Voiculescu’s modified free entropy dimension (see Section
6 of [Voi96]).

Fact 2.7. The following tracial von Neumann algebras (N, τ) satisfy h(N) > 0. The
first five examples all arise from identifying generating sets X satisfying δ0(X) > 1,
and thus h(N) = ∞.

(1) (see [Jun07, Lemma 3.7])) N1 ∗ N2 where (N1, τ1) and (N2, τ2) are Connes-
embeddable diffuse tracial von Neumann algebras.
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(2) The free perturbation algebras of Voiculescu (see Theorem 4.1 in [Bro05]).
(3) Many examples of amalgamated free products N1 ∗B N2 where B is amenable

(see Section 4 of [BDJ08] for precise examples).
(4) (see [Shl09], Theorem 3) Von Neumann algebras of Connes-embeddable nona-

menable groups Γ admitting non inner cocycles c : Γ → CΓ.
(5) (see [Hay20], [BCa], [BCb], [HJKE22]) Nonamenable von Neumann subalgebras

of L(Ft) for t > 0.
(6) (see [Ela23]) Von Neumann algebras arising from a family of limit groups.

The following recent result of Jekel provides another family of examples:

Fact 2.8 (see [Jek22, Theorem 1.1]). Suppose that h(N) > c. Let {nk}∞
k=1 be an

increasing sequence of natural numbers and U be a free ultrafilter on N. Let M =∏
U Mnk

(C). Then there exists an embedding N ↪→ M such that h(N : M) > c. In
particular, h(M) = ∞.

The following fact follows easily from Fact 2.5. This observation appears in the
proof of Corollary 4.8 in [Hay18]. For completeness, we include a proof here.

Fact 2.9. Assume that u1, u2 ∈ U (M) such that there are Haar unitaries v1, v2 ∈ M
satisfying [v1, u1] = [v2, u2] = [v1, v2] = 0. Then h({u1, u2}′′ : M) ≤ 0.

Proof. Since {u1, v1}′′, {v1, v2}′′, {v2, u2}′′ are abelian, we get

h({u1, v1}′′) = h({v1, v2}′′) = h({v2, u2}′′) = 0.

Since {v1}′′ and {v2}′′ are diffuse, Fact 2.5 implies that

h({u1, u2, v1, v2}′′) = h({u1, v1}′′ ∨{v1, v2}′′ ∨{v2, u2}′′) ≤ 0.

Hence, using Fact 2.3 we see that

h({u1, u2}′′ : M) ≤ h({u1, u2}′′ : {u1, u2, v1, v2}′′) ≤ h({u1, u2, v1, v2}′′) ≤ 0,

which proves the fact. ��

3 A lifting lemma

In this section, we establish a lifting result (Lemma 3.1), which will be used cru-
cially to analyze the II1 factor M that we construct in Section 4. Specifically, our
construction guarantees that the property asserted in Theorem B holds for unitaries
u1, u2 ∈ U (M) belonging to a sequence which is dense in the set of all unitaries
u1, u2 ∈ U (M) with u2

1 = u3
2 and {u1}′′ ⊥ {u2}′′. Lemma 3.1 will allow us to deduce

that the desired property holds in fact all such unitaries u1, u2 ∈ U (MU).
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Lemma 3.1. Let U an ultrafilter on a set I and (Mn)n∈I be a family of II1 factors.
Consider projections p, q1, q2, q3 ∈ ∏

U Mn such that q1 + q2 + q3 = 1 and {p}′′ ⊥
{q1, q2, q3}′′.

Then we can represent p = (pn) and qi = (qi,n), where pn, qi,n ∈ Mn are pro-
jections such that q1,n + q2,n + q3,n = 1 and {pn}′′ ⊥ {q1,n, q2,n, q3,n}′′, for every
n ∈ I.

Lemma 3.1 is an immediate consequence of the following perturbation lemma.

Lemma 3.2. For every ε > 0, there exists δ = δ(ε) > 0 such that the following
holds.

Let M be a II1 factor and e, f1, f2, f3 ∈ M be projections such that f1+f2+f3 = 1
and we have |τ(efi)−τ(e)τ(fi)| ≤ δ, for every 1 ≤ i ≤ 3. Then there exist projections
p, q1, q2, q3 ∈ M such that q1 + q2 + q3 = 1, ‖p − e‖1 ≤ ε, ‖qi − fi‖1 ≤ ε and
τ(pqi) = τ(p)τ(qi), for every 1 ≤ i ≤ 3.

To deduce Lemma 3.1 from Lemma 3.2, note that if p, q are projections in a II1
factor M , then ‖p − q‖2 = ‖p(p − q) + (p − q)q‖2 ≤ 2‖p − q‖1. This implies that the
statement of Lemma 3.2 still holds if we replace ‖·‖1 by ‖·‖2. Using this observation,
it is standard to derive Lemma 3.1 from Lemma 3.2.

The proof of Lemma 3.2 is based on the next two lemmas.

Lemma 3.3. Let (M, τ) be a diffuse tracial von Neumann algebra, δ > ε > 0 and
x = x∗ ∈ M with |τ(x)| ≤ ε and ‖x‖1 > δ. Then there is a projection p ∈ M such
that τ(xp) = 0 and τ(p) > δ−ε

δ+ε .

Proof. Let x = y − z be the decomposition of x into its positive and negative parts
and q ∈ M be the support projection of y. Then y ∈ qMq and z ∈ (1 − q)M(1 − q).
If τ(x) = 0, there is nothing to prove. We may assume that τ(x) > 0, since the case
τ(x) < 0 is analogous.

Since τ(y)−τ(z) = τ(x) ≤ ε and τ(y)+τ(z) = ‖x‖1 > δ, letting s = δ−ε
δ+ε ∈ (0, 1),

it follows that 2τ(y) < δ + ε and 2τ(z) > δ − ε, hence τ(y)s < τ(z). Let y′ ∈ qMq
be a self-adjoint operator with finite spectrum such that

2‖y′ − y‖1 < τ(z) − τ(y)s. (3.1)

Since M is diffuse and y′ has finite spectrum, we can find an increasing net of
projections (et)t∈[0,1] in qMq such that e0 = 0, e1 = q, τ(et) = τ(q)t and τ(y′et) =
τ(y′)t, for every t ∈ [0, 1]. Then for every t ∈ [0, 1], we have that

|τ(yet) − τ(y)t| ≤ |τ(yet) − τ(y′et)| + |(τ(y) − τ(y′))t| ≤ 2‖y′ − y‖1,
and thus τ(yet) ≤ τ(y)t + 2‖y′ − y‖1.

Combining this inequality for t = s with (3.1) gives that τ(yes) < τ(z). As
τ(ye1) = τ(y) > τ(z) and the map t �→ τ(yet) is continuous, we can find t ∈ (s, 1)
such that τ(yet) = τ(z).

Finally, let p = et+(1−q). Then we have τ(xp) = τ(yp)−τ(zp) = τ(yet)−τ(z) =
0 and τ(p) = τ(et) + τ(1 − q) = tτ(q) + τ(1 − q) ≥ t > s, which finishes the proof. ��
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Lemma 3.4. Let ε, δ ≥ 0 such that ε < δ2 and (M, τ) be a diffuse tracial von
Neumann algebra. Let p, f1, f2, f3 ∈ M be projections such that f1 + f2 + f3 = 1,
|τ(pfi) − τ(p)τ(fi)| ≤ ε and ‖fi(p − τ(p))fi‖1 > δ, for every 1 ≤ i ≤ 2.

Then there exist projections q1, q2, q3 ∈ M such that q1 + q2 + q3 = 1, τ(pqi) =
τ(p)τ(qi) and ‖qi − fi‖1 < 4ε

δ2 , for every 1 ≤ i ≤ 3.

Proof. Let 1 ≤ i ≤ 2 and define xi = fi(p − τ(p))fi. Then we have xi = x∗
i ∈ fiMfi

and |τ(xi)| = |τ(pfi)−τ(p)τ(fi)| ≤ ε. Since ‖xi‖1 > δ and ‖xi‖1 ≤ τ(fi)‖p−τ(p)‖ ≤
τ(fi), we get that τ(fi) > δ. Thus, | τ(xi)

τ(fi)
| ≤ ε

δ and ‖xi‖1

τ(fi)
≥ ‖xi‖1 > δ. Altogether, by

applying Lemma 3.3 to xi ∈ fiMfi, we find a projection qi ∈ fiMfi such that

τ(xiqi) = 0 and
τ(qi)
τ(fi)

>
δ − ε

δ

δ + ε
δ

=
1 − ε

δ2

1 + ε
δ2

> 1 − 2ε

δ2
. (3.2)

Using (3.2) we get that τ((p − τ(p))qi) = τ(xiqi) = 0 and thus τ(pqi) = τ(p)τ(qi).
Moreover,

‖qi − fi‖1 = τ(fi) − τ(qi) <
2ε

δ2
τ(fi) ≤ 2ε

δ2
.

Let q3 = 1 − q1 − q2. Then τ(pq3) = τ(p) − τ(pq1) − τ(pq2) = τ(p)(1 − τ(q1) −
τ(q2)) = τ(p)τ(q3). Moreover, since f3 = 1 − f1 − f2, ‖q3 − f3‖1 = ‖(q1 + q2) − (f1 +
f2)‖1 ≤ ‖q1 − f1‖1 + ‖q2 − f2‖1 < 4ε

δ2 . This finishes the proof of the lemma. ��
Proof of Lemma 3.2. Assume that the conclusion of Lemma 3.2 fails. Then there is
ε > 0 such that for every n ∈ N we can find a II1 factor (Mn, τn) and projections
en, f1,n, f2,n, f3,n ∈ Mn satisfying the following: f1,n + f2,n + f3,n = 1, |τn(enfi,n) −
τn(en)τn(fi,n)| ≤ 1

n , for every 1 ≤ i ≤ 3, and ‖pn − en‖1 + ‖q1,n − f1,n‖1 + ‖q2,n −
f2,n‖1 + ‖q3,n − f3,n‖1 > ε, for all projections pn, q1,n, q2,n, q3,n ∈ Mn such that
q1,n + q2,n + q3,n = 1 and τn(pnqi,n) = τn(pn)τn(qi,n), for every 1 ≤ i ≤ 3.

Let U be a free ultrafilter on N. Let τ be the canonical trace of
∏

u Mn given by
τ(x) = lim

n→U
τn(xn), for every x = (xn) ∈ ∏

u Mn. Then p = (en), q1 = (f1,n), q2 =

(f2,n), q3 = (f3,n) ∈ ∏
u Mn are projections satisfying that q1 + q2 + q3 = 1 and

{p}′′ ⊥ {q1, q2, q3}′′.
We will get a contradiction by analyzing two cases:
Case 1. The set {1 ≤ i ≤ 3 | qi(p − τ(p))qi = 0} has at most one element.
Without loss of generality, assume that qi(p − τ(p))qi �= 0, for all 1 ≤ i ≤ 2.
For n ∈ N and 1 ≤ i ≤ 2, define δi = ‖qi(p − τ(p))qi‖1, δi,n = ‖fi,n(en −

τn(en))fi,n‖1 and κi,n = |τn(enfi,n) − τn(en)τn(fi,n)|. Then δi > 0, lim
n→U

δi,n = δi and

0 ≤ κi,n ≤ 1
n , for every n ∈ N. Let δ = min{δ1, δ2}. Then the set J of n ∈ N such

that δi,n > δ
2 and κi,n < δ2i,n, for every 1 ≤ i ≤ 2, belongs to u.

By Lemma 3.4, for every n ∈ J , we find projections qi,n ∈ Mn such that q1,n +
q2,n + q3,n = 1, τn(enqi,n) = τn(en)τn(qi,n) and ‖qi,n −fi,n‖1 < 4κi,n

δ2
i,n

< 16
δ2n2 , for every

1 ≤ i ≤ 2. As J is infinite, we can find n ∈ J such that 16
δ2n2 < ε

3 . Put pn = en. Then
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‖pn − en‖1 + ‖q1,n − f1,n‖1 + ‖q2,n − f2,n‖1 + ‖q3,n − f3,n‖1 < ε, contradicting the
first paragraph of the proof.

Case 2. The set {1 ≤ i ≤ 3 | qi(p − τ(p))qi = 0} has at least two elements.
Without loss of generality, assume that qi(p − τ(p))qi = 0, for every 1 ≤ i ≤ 2.
We claim that Q := {p, q1, q2, q3}′′ is a type I von Neumann algebra. Let 1 ≤ i ≤

2. Since qipqi = τ(p)qi, we get that vi := τ(p)− 1
2 qip is a partial isometry. Thus, pi :=

v∗
i vi = τ(p)−1pqip is a projection. Recall that any von Neumann algebra generated

by two projections is of type I, being a direct sum of type I1 and I2 algebras (see for
instance [Tak79, Theorem V.1.41]). Since pQp = {pq1p, pq2p, pq3p}′′ = {p1, p2, p}′′

(here the bicommutants are taken inside B(L2(pMp)), where M =
∏

U Mn) and
p1, p2 ∈ p(

∏
U Mn)p are projections, pQp is of type I. Note that the equality pQp =

{pq1p, pq2p, pq3p}′′ uses the fact that p is a projection and q1, q2, q3 are pairwise
orthogonal projections. Since qi((1 − p) − τ(1 − p))qi = qi(τ(p) − p)qi = 0, for every
1 ≤ i ≤ 2, we also get that (1 − p)Q(1 − p) is of type I. The last two facts imply the
claim.

Next, endow Q ⊂ ∏
U Mn with the restriction of τ to Q. Since Q is of type

I, it is hyperfinite. If n ∈ N, then using that Mn is a II1 factor we can find a
normal ∗-homomorphism πn : Q → Mn such that τn(πn(x)) = τ(x), for every
x ∈ Q. Then the normal ∗-homomorphism π : Q → ∏

U Mn given by π(x) =
(πn(x)) satisfies that τ(π(x)) = lim

n→U
τn(πn(x)) = τ(x), for every x ∈ Q. As is

well-known (see, e.g, [HS18, Theorem 1.1]), since Q is hyperfinite, any two trace-
preserving ∗-homomorphism from Q to

∏
U Mn are unitarily conjugate. Thus, we

can find un ∈ U (Mn), for every n ∈ N, such that x = (unπn(x)u∗
n), for every x ∈ Q.

In particular, p = (pn) and qi = (qi,n), where pn = unπn(p)u∗
n and qi,n = unπn(qi)u∗

n,
for every n ∈ N and 1 ≤ i ≤ 3. Then q1,n + q2,n + q3,n = 1, for every n ∈ N, and
lim
n→U

(‖pn − en‖1 + ‖q1,n − f1,n‖1 + ‖q2,n − f2,n‖1 + ‖q3,n − f3,n‖1) = 0. Moreover,

τn(pnqi,n) = τn(πn(pqi)) = τ(pqi) = τ(p)τ(qi) = τn(πn(p))τn(πn(qi)) = τn(pn)τn(qi,n),

for every n ∈ N and 1 ≤ i ≤ 3. Altogether, this also contradicts the first paragraph
of the proof. ��

4 A construction of II1 factors

In this section, we introduce a new construction of II1 factors which we will use
iteratively to build the II1 factor in Theorem B.

Definition 4.1. Let (M, τ) be a tracial von Neumann algebra and A1, A2 ⊂ M be
von Neumann subalgebras. We define a tracial von Neumann algebra Φ(M, A1, A2)
as follows. Put B1 = B2 = L(Z) and define

Φ(M, A1) := M ∗A1 (A1⊗B1) and
Φ(M, A1, A2) := Φ(M, A1) ∗(A2

∨
B1) ((A2 ∨ B1)⊗B2).

Given u1, u2 ∈ U(M), we will use the notation Φ(M, u1, u2) := Φ(M, {u1}′′, {u2}′′).
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More generally, given von Neumann subalgebras A1, · · ·Ak ⊂ M one can define
Φ(M, A1, · · · , Ak) inductively by letting B1 = · · · = Bk = L(Z) and for every
1 ≤ i ≤ k

Φ(M,A1, · · · , Ai) := Φ(M,A1, · · · , Ai−1) ∗(Ai
∨

B1
∨···∨

Bi−1) ((Ai ∨ B1 ∨ · · · ∨ Bi−1)⊗Bi).

Here, we focus on the case k = 2 which suffices for the purpose of proving The-
orem B. The main result of this section gives sufficient conditions which guarantee
that Φ(M, A1, A2) is a II1 factor. Furthermore, we prove:

Theorem 4.2. Let (M, τ) be a tracial von Neumann algebra and A1, A2 ⊂ M be
von Neumann subalgebras such that A1 ⊥ A2 and M ⊀M Ai, for every i = 1, 2. Put
P = Φ(M, A1, A2).

Then P is a II1 factor containing Haar unitaries v1, v2 ∈ P so that v1 ∈ A′
1 ∩

P, v2 ∈ A′
2 ∩ P and [v1, v2] = 0. Moreover, if Q ⊂ M is a von Neumann subalgebra

such that Q ⊀M Ai, for every 1 ≤ i ≤ 2, then Q′ ∩ P ⊂ M .

In the proof of Theorem B, we will use the following immediate corollary of Theorem
4.2

Corollary 4.3. Let (M, τ) be a tracial von Neumann algebra having no type I direct
summand. Let u1, u2 ∈ U (M) such that {u1}′′ ⊥ {u2}′′ and put P = Φ(M, u1, u2).

Then P is a II1 factor containing Haar unitaries v1, v2 ∈ P so that [u1, v1] =
[u2, v2] = [v1, v2] = 0. Moreover, if Q ⊂ M is a von Neumann subalgebra such that
Q ⊀M {ui}′′, for every 1 ≤ i ≤ 2, then Q′ ∩ P ⊂ M .

Since ui is a unitary, the von Neumann algebra {ui}′′ is abelian (and hence of type
I), for every 1 ≤ i ≤ 2. Since M has no type I direct summand, it follows that
M ⊀M {ui}′′, for every 1 ≤ i ≤ 2, and thus Corollary 4.3 follows from Theorem 4.2.

Remark 4.4. Let us argue that the condition that {u1}′′ ⊥ {u2}′′ in Corollary 4.3
cannot be removed if we want M to be a II1 factor. Thus, the condition that A1 ⊥ A2

also cannot be removed from Theorem 4.2. In the context of Corollary 4.3, assume
that M is generated by u2 and E{u1}′′(u2). Denote N := Φ(M, {u1}′′) = M ∗{u1}′′

({u1}′′⊗L(Z)) and let v1 ∈ L(Z) be a generating Haar unitary. By [IPP08, Theorem
1.1] we get that L(Z)′ ∩ N = {u1}′′⊗L(Z). This gives that

EL(Z)′∩N (u2) = E{u1}′′⊗L(Z)(u2) = E{u1}′′(u2).

On the other hand, EL(Z)′∩N (u2) is the ‖·‖2-limit of the sequence ( 1
n

∑n
k=1 vk

1u2v
∗
1
k)n

and thus belongs to {u2, v1}′′. The last two facts together imply that E{u1}′′(u2) ∈
{u2, v1}′′. Since M is generated by u2 and E{u1}′′(u2), we get that M ⊂ {u2, v1}′′.
Since N is generated by M and v1, we get that {u2, v1}′′ = N . Thus, Φ(M, u1, u2) =
N⊗L(Z) is not a factor, so the conclusion of Corollary 4.3 does not hold.

Now, the existence of u1, u2 ∈ U (M) such that {u2, E{u1}′′(u2)}′′ = M , can be
checked whenever M is generated by two unitaries u1, ũ2 such that {u1}′′ ⊥ {ũ2}′′
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(e.g., if M = L(Γ), for any 2-generated group Γ = 〈g1, g2〉 satisfying 〈g1〉 ∩ 〈g2〉 =
{e}). To see this, write ũ2 = exp(ih), where h ∈ {ũ2}′′ is a self-adjoint element,
let n ∈ N such that τ(exp( ih

n )) �= 0 and define u2 = u1 exp( ih
n ). Then E{u1}′′(u2) =

τ(exp( ih
n ))u1 and thus {u2, E{u1}′′(u2)}′′ = {u1, exp( ih

n )}′′ = {u1, ũ2}′′ = M .

The proof of Theorem 4.2 relies on the main technical result of [IPP08]. To recall
the latter result, let (M1, τ1) and (M2, τ2) be tracial von Neumann algebras with a
common von Neumann subalgebra B such that τ1|B = τ2|B. Let M = M1 ∗B M2 be
the amalgamated free product with its canonical trace τ . By [PV10, Section 5.1],
for 0 < ρ < 1 we have a unital tracial completely positive map mρ : M → M such
that mρ(b) = b, for every b ∈ B, and mρ(x1x2 · · ·xn) = ρnx1x2 · · ·xn, for every
xi ∈ Mij � B, where ij ∈ {1, 2}, for every 1 ≤ j ≤ n, and ij �= ij+1, for every
1 ≤ j ≤ n − 1. Then

lim
ρ→1

‖mρ(x) − x‖2 = 0, for every x ∈ M. (4.1)

The following is the main technical result of [IPP08], formulated here as in [PV10,
Theorem 5.4], see also [Hou09, Section 5].

Theorem 4.5. Let (M1, τ1) and (M2, τ2) be tracial von Neumann algebras with a
common von Neumann subalgebra B such that τ1|B = τ2|B. Let M = M1∗BM2 be the
amalgamated free product with its canonical trace τ . Let Q ⊂ pMp be a von Neumann
subalgebra. Assume that there are 0 < ρ < 1 and c > 0 such that ‖mρ(u)‖2 ≥ c, for
every u ∈ U (Q).

Then Q ≺M M1 or Q ≺M M2.

As τ(mρ2(u)u∗) = ‖mρ(u)‖22 ≥ c2, for every u ∈ U (Q), [PV10, Theorem 5.4] implies
Theorem 4.5.

Lemma 4.6. Let (M1, τ1) and (M2, τ2) be tracial von Neumann algebras with a
common von Neumann subalgebra B such that τ1|B = τ2|B. Let M = M1 ∗B M2 be
the amalgamated free product with its canonical trace τ . For i ∈ {1, 2}, let Ai ⊂ Mi be
a von Neumann subalgebra with Ai ⊥ B. Let Q ⊂ M1 be a von Neumann subalgebra
such that Q ≺M A1 ∨ A2 and Q ⊀M1 B.

Then Q ≺M1 A1.

Proof. Denote A = A1 ∨ A2. We first claim that A1 and A2 are freely independent
inside M and thus A = A1∗A2. Let aj ∈ Aij �C1 for ij ∈ {1, 2}, for every 1 ≤ j ≤ n,
where ij �= ij+1, for every 1 ≤ j ≤ n − 1. Since Ai ⊥ B, for every i ∈ {1, 2}, we get
that EB(aj) = 0, for every 1 ≤ j ≤ n. This implies that τ(a1a2 · · · an) = 0, proving
the claim.

Since Q ≺M A, we can find projections q ∈ Q, p ∈ A, a nonzero partial isometry
v ∈ pMq and ∗-homomorphism ϕ : qQq → pAp such that ϕ(x)v = vx, for every
x ∈ qQq. Moreover, we may assume that the support projection of EA(vv∗) is equal
to p. ��
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Claim 4.7. ϕ(qQq) ≺A A1 or ϕ(qQq) ≺A A2.

Proof of Claim 4.7. Since mρ is a unital tracial completely positive map, using (4.1)
and [Pop06a, Corollary, Section 1.1.2] we deduce that

sup
x∈(M)1

‖mρ(xv) − mρ(x)v‖2 → 0 and sup
x∈(M)1

‖mρ(vx) − vmρ(x)‖2 → 0, as ρ → 1.

(4.2)

Note that applying [Pop06a, Corollary, Section 1.1.2] implies that (4.2) holds if
v ∈ M is a unitary. Since every element of M is a linear combination of four unitaries,
we get that (4.2) holds as stated.

Now, if x ∈ M1, then the definition of mρ implies that mρ(x) = EB(x) + ρ(x −
EB(x)) and thus ‖mρ(x) − x‖2 = (1 − ρ)‖x − EB(x)‖2 ≤ (1 − ρ)‖x‖2. In particular,
since Q ⊂ M1, we derive that

sup
x∈(qQq)1

‖mρ(x) − x‖2 → 0, as ρ → 1. (4.3)

By combining (4.2) and (4.3) and using that ϕ(x)v = vx, for every x ∈ qQq, it
follows that supx∈(qQq)1 ‖mρ(ϕ(x))v − vx‖2 → 0, as ρ → 1. Therefore, we can find
0 < ρ < 1 such that ‖mρ(ϕ(x))v−vx‖2 < ‖v‖2/2, for every x ∈ (qQq)1. This implies
that

‖mρ(ϕ(u))‖2 ≥ ‖mρ(ϕ(u))v‖2 > ‖v‖2/2, for every u ∈ U (qQq).

In other words, ‖mρ(y)‖ > ‖v‖2, for every y ∈ U (ϕ(qQq)). Note that the restriction
of mρ to A is equal to the map mρ on A associated with the free product decom-
position A = A1 ∗ A2. Since ϕ(qQq) ⊂ pAp, we can apply Theorem 4.5 to get the
claim. ��

By Claim 4.7, we have that ϕ(qQq) ≺A Ai, for some i ∈ {1, 2}. Since the support
projection of EA(vv∗) is equal to p, [Vae08, Remark 3.8] implies that Q ≺M Ai.
Finally, since qQq ⊂ M1, Ai ⊂ Mi and Q ⊀M1 B, applying [IPP08, Theorem 1.1]
gives that i = 1 and Q ≺M1 A1.

Proof of Theorem 4.2. Let P = Φ(M, A1, A2) = N ∗(A2∨B1) ((A2 ∨ B1)⊗B2), where
B1 = B2 = L(Z) and N = Φ(M, A1) = M ∗A1 (A1⊗B1). Let v1 ∈ B1 and v2 ∈ B2 be
generating Haar unitaries. Since [A1, B1] = [A2, B2] = [B1, B2] = {0}, we get that
v1 ∈ A′

1 ∩ P, v2 ∈ A′
2 ∩ P and [v1, v2] = 0.

Next, we prove the moreover assertion. Let Q ⊂ M be a von Neumann subalgebra
such that Q ⊀M Ai, for every 1 ≤ i ≤ 2. Since N = M ∗A1 (A1⊗B1), A2 ⊥ A1,
B1 ⊥ A1 and Q ⊀M A1, by Lemma 4.6 we conclude that

Q ⊀N A2 ∨ B1. (4.4)

Since P = N ∗(A2∨B1)((A2∨B1)⊗B2), using (4.4) and applying [IPP08, Theorem 1.1]
we get that Q′ ∩P ⊂ N . Since N = M ∗A1 (A1⊗B1) and Q ⊀M A1, applying [IPP08,
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Theorem 1.1] again gives that Q′ ∩ N ⊂ M . Altogether, we get that Q′ ∩ P ⊂ M ,
which proves the moreover assertion.

Since M ⊀M Ai, for every 1 ≤ i ≤ 2. By applying the moreover assertion to
Q = M , we get that M ′ ∩ P ⊂ M , hence Z (P ) = P ′ ∩ M ⊂ Z (M). Thus, if M is
a II1 factor, then P is a II1 factor.

Finally, we prove that P is a II1 factor in the general case when M is not necessar-
ily a factor. Note that [IPP08, Theorem 1.1] gives that B′

1 ∩M = A1 and B′
2 ∩M =

(B′
2∩N)∩M = (A2∨B1)∩M . Thus, Z (P ) = P ′∩M ⊂ A1∩(A2∨B1). We claim that

A1 ⊥ (A2∨B1). Assuming the claim, it follows that A1∩ (A2∨B1) = C1 and so P is
a II1 factor. To justify the claim and finish the proof, denote M1 = M, M2 = A1⊗B1,
C1 = A2, C2 = B1 and B = A1. Thus, N = M1 ∗B M2 and the claim is equivalent
to B ⊥ (C1 ∨ C2). Let x ∈ B and y ∈ C1 ∨ C2 of the form y = y1y2 · · · yn, where
yj ∈ Cij � C1 for some ij ∈ {1, 2}, for every 1 ≤ j ≤ n, such that ij �= ij+1, for
every 1 ≤ j ≤ n − 1. Since Ci ⊥ B, for every 1 ≤ i ≤ 2, we get that EB(yj) = 0
and thus yj ∈ Mij � B, for every 1 ≤ j ≤ n. Moreover, EB(xy1) = xEB(y1) = 0 and
thus xy1 ∈ Mi1 � B. This implies that τ(xy) = τ((xy1)y2 · · · yn) = 0. Since C1 and
C2 are freely independent, as shown in the proof of Lemma 4.6, the linear span of
elements y ∈ C1 ∨ C2 of the above form is dense in (C1 ∨ C2) � C1. Thus, we get
that B ⊥ (C1 ∨ C2), proving the claim. ��

5 Proofs of main results

This section is devoted to the proofs of our main results.

5.1 Proof of Theorem B. We start by constructing the II1 factor from The-
orem B by iterating the construction from Section 4.

For a II1 factor M , we denote by V (M) the set of pairs (u1, u2) ∈ U (M)×U (M)
such that u2

1 = u3
2 = 1 and {u1}′′ ⊥ {u2}′′. We endow U (M) × U (M) with the

product ‖ · ‖2-topology.

Definition 5.1. Let M1 be a II1 factor. We construct a new II1 factor M which
contains M1 and arises as the inductive limit of a sequence (Mn)n∈N of II1 factors
satisfying Mn ⊂ Mn+1, for every n ∈ N. Let σ = (σ1, σ2) : N → N × N be a
bijection such that σ1(n) ≤ n, for every n ∈ N. Assume that M1, . . . , Mn have
been constructed, for some n ∈ N. Let {(un,k

1 , un,k
2 )}k∈N ⊂ V (Mn) be a ‖ · ‖2-dense

sequence. We define

Mn+1 := Φ(Mn, u
σ(n)
1 , u

σ(n)
2 ).

Note that Mn+1 is well-defined since σ1(n) ≤ n and thus (uσ(n)
1 , u

σ(n)
2 ) ∈ V (Mn).

Then Mn ⊂ Mn+1 and Corollary 4.3 implies that Mn+1 is a II1 factor. Thus, M
defined as follows is a II1 factor:

M := (∪n∈NMn)′′.
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Convention. For the rest of this section, (Mn)n∈N and M denote the II1 factors
introduced in Definition 5.1.

Definition 5.2. An ultrafilter U on a set I is called countably cofinal if there exists
a sequence {An}n∈N ⊂ U with ∩nAn = ∅.

Proposition 5.3. Let u1, u2 ∈ U (MU) such that u2
1 = u3

2 = 1 and {u1}′′ ⊥ {u2}′′,
where U is a countably cofinal ultrafilter on a set I.

Then there exist Haar unitaries v1, v2 ∈ MU such that [u1, v1] = [u2, v2] =
[v1, v2] = 0.

Proof. Let p, q1, q2, q3 ∈ MU be projections such that u1 = 2p−1 and u2 = q1+ζq2+
ζ2q3, where ζ = exp(2πi

3 ). We may clearly assume that u1 �= ±1, so that p �= 0, 1.
Since M = (∪n∈NMn)′′ and U is cofinal, [BCI17, Lemma 2.2] gives that p, q1, q2, q3

∈ ∏
n∈U Mkn

, for some (kn)n∈I ⊂ N. Moreover, the proof of [BCI17, Lemma 2.2]
provides a function f : I → N such that lim

n→U
f(n) = +∞.

Since {p}′′ ⊥ {q1, q2, q3}′′, by Lemma 3.1, we can represent p = (pn) and qi =
(qi,n), where pn, qn,i ∈ Mkn

are projections such that q1,n+q2,n+q3,n = 1 and {pn}′′ ⊥
{q1,n, q2,n, q3,n}′′, for every n ∈ I. Let u1,n = 2pn − 1 and u2,n = q1,n + ζq2,n + ζ2q3,n.
Then u1 = (u1,n) and u2 = (u2,n). Since {u1,n}′′ = {pn}′′ ⊥ {q1,n, q2,n, q3,n}′′ =
{u2,n}′′, we get (u1,n, u2,n) ∈ V (Mkn

), for every n ∈ I.
Since {(ukn,j

1 , ukn,j
2 )}j∈N is dense in V (Mkn

), we can find jn ∈ N such that

‖u1,n − ukn,jn
1 ‖2 + ‖u2,n − ukn,jn

2 ‖2 ≤ 1
f(n)

, for every n ∈ I. (5.1)

For n ∈ I, let ln ∈ N such that σ(ln) = (kn, jn). Then Mσ(ln)+1 = Φ(Mσ(ln), u
kn,jn
1 ,

ukn,jn
2 ). Thus, by Corollary 4.3, we can find Haar unitaries v1,n, v2,n ∈ U (Mσ(ln)+1) ⊂

U (M) such that

[ukn,ln
1 , v1,n] = [ukn,ln

2 , v2,n] = [v1,n, v2,n] = 0, for every n ∈ I. (5.2)

Finally, let v1 = (v1,n), v2 = (v2,n) ∈ U (MU). Then v1, v2 are Haar unitaries and as
lim
n→U

f(n) = +∞, (5.1) and (5.2) together imply that [u1, v1] = [u2, v2] = [v1, v2] = 0.
��

In order to prove Theorem B, we also need to find instances which guarantee
that M is full. This happens if M1 has property (T):

Proposition 5.4. Assume that M1 has property (T). Then M does not have prop-
erty Gamma.

Proof. Let n ∈ N. Recall that Mn+1 = ϕ(Mn, u
σ(n)
1 , u

σ(n)
2 ) and M1 ⊂ Mn. Since

M1 is a II1 factor, we have that M1 ⊀Mn
{u

σ(n)
1 }′′ and M1 ⊀Mn

{u
σ(n)
2 }′′. By

applying Corollary 4.3 we derive that M ′
1 ∩ Mn+1 = M ′

1 ∩ Mn. Thus, we get that
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M ′
1∩Mn = Z (M1) = C1. Since this holds for every n ∈ N, we deduce that M ′

1∩M =
C1. Finally, since M1 has property (T), by Proposition 2.1, we have that M ′

1∩MU =
(M ′

1 ∩ M)U = C1, where U is a free ultrafilter on N. Hence, M ′ ∩ MU = C1 and so
M does not have property Gamma. ��
Proof of Theorem B. Let M1 be a II1 factor with property (T), e.g., take M1 =
L(SL3(Z)). Let M be constructed as in Definition 5.1. The conclusion follows from
Propositions 5.3 and 5.4. ��
5.2 Proof of Theorem C and its corollaries. In this subsection, we prove
that the II1 factor M from Theorem B also satisfies the conclusion of Theorems C
and A and Corollary D. To this end, we first show the following:

Corollary 5.5. Let p, q1, q2, q3 ∈ MU be projections such that q1+q2+q3 = 1, where
U is a countably cofinal ultrafilter on a set I. Assume that {p}′′ ⊥ {q1, q2, q3}′′.

Then h({p, q1, q2, q3}′′ : MU) ≤ 0.

Proof. Define u1, u2 ∈ U (MU) by u1 = 2p − 1 and u2 = q1 + ζq2 + ζ2q3, where
ζ = exp(2πi

3 ). Then u2
1 = u3

2 = 1 and {u1, u2}′′ = {p, q1, q2, q3}′′. Thus, by combining
Fact 2.9 and Proposition 5.3 we get that h({p, q1, q2, q3}′′ : MU) = h({u1, u2}′′ :
MU) ≤ 0. ��

To prove that h(MU) ≤ 0, we will need an additional lemma:

Lemma 5.6. Let (A, τ) be a diffuse tracial von Neumann algebra and x ∈ A such
that x = x∗ and τ(x) = 0. Let F be the set of projections p ∈ A such that τ(xp) = 0.
Then F′′ = A.

Proof. We first prove the conclusion under the assumption that A is abelian. Let
x = y − z be the decomposition of x into positive and negative parts. Let q and r
be the support projections of y and z, respectively. Since 0 = τ(x) = τ(y) − τ(z),
we get that τ(y) = τ(z).

Let e ∈ Aq be a projection. Since A is diffuse and τ(ye) ≤ τ(y) = τ(z) = τ(zr),
we can find a projection f ∈ Ar such that τ(zf) = τ(ye). Then we have that
e − f ∈ F. Since ef = 0, we get that e + f = (e − f)2 ∈ F′′ and thus e ∈ F′′, for
every projection e ∈ Aq. Thus, Aq ⊂ F′′. Similarly, we conclude that Ar ⊂ F′′. Since
x(1 − q − r) = 0, we also have that A(1 − q − r) ⊂ F′′. Since A is abelian, it follows
that A ⊂ F′′ and thus F′′ = A.

For general A, let B ⊂ A be a diffuse abelian von Neumann subalgebra. Note
that τ(EB(x)) = 0 and that if p ∈ B is a projection with τ(EB(x)p) = 0, then
τ(xp) = τ(EB(x)p) = 0 and so p ∈ F. By applying the above proof to B and
EB(x) ∈ B, we conclude that B ⊂ F′′. Since this holds for every diffuse abelian von
Neumann subalgebra B ⊂ A, we conclude that F′′ = A. ��
Theorem 5.7. h(MU) ≤ 0, for any ultrafilter U on any set I.
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Proof. If U is not countably cofinal, then MU = M by [BCI17, Lemma 2.3]. Thus,
if V is a free ultrafilter on N, then Facts 2.3 and 2.4 give that h(MU) = h(M) =
h(M : MV) ≤ h(MV). This implies that in order to prove the conclusion, we may
assume that U is countably cofinal.

Assume that U is a countable cofinal ultrafilter and denote P = MU. Since P is a
II1 factor, we can find a unital, trace-preserving embedding of S := L(Z/2Z ∗ Z/2Z)
into P . This follows because S is hyperfinite, being the von Neumann algebra of the
amenable group Z/2Z ∗ Z/2Z. Let p, q ∈ S be two projections with τ(p) = τ(q) = 1

2
which generate the two canonical copies of L(Z/2Z) inside S.

Then ‖q(2p − 1)q‖2 =
√

τ(q(2p − 1)q(2p − 1)) = 1
2 and similarly ‖(1 − q)(2p −

1)(1−q)‖2 = 1
2 . Let x = (1−q)(2p−1)(1−q) ∈ (1−q)P (1−q). Then x = x∗, τ(x) = 0

and x �= 0. We define F to be the set of projections r ∈ (1 − q)P (1 − q) such that
τ(xr) = 0.

For r ∈ F we define Sr := {p, q, r, 1−q−r}′′. Then τ((2p−1)q) = 0, τ((2p−1)r) =
τ(xr) = 0 and τ((2p − 1)(1 − q − r)) = τ(2p − 1) − τ((2p − 1)q) − τ((2p − 1)r) = 0.
Thus, {p}′′ ⊥ {q, r, 1 − q − r}′′. Altogether, we can apply Corollary 5.5 to deduce
that

h(Sr : P ) ≤ 0, for every r ∈ F. (5.3)

Since S ⊂ Sr, for all r ∈ F, and S is diffuse, combining Facts (2.5) and (2.6) with
(5.3) we get that

h(
∨

r∈F
Sr : P ) ≤ 0. (5.4)

On the other hand, by Lemma 5.6 we have that F′′ = (1 − q)P (1 − q). This implies
that

∨

r∈F
Sr = S

∨
(1 − q)P (1 − q). (5.5)

Combining (5.4) and (5.5) we get h(S
∨

(1−q)P (1−q) : P ) ≤ 0. Similarly, h(S
∨

qPq :
P ) ≤ 0. Using again that S is diffuse, Fact 2.5 implies that h(S

∨
qPq

∨
(1 −

q)P (1 − q) : P ) ≤ 0. Since the projections q and 1 − q are equivalent in S, we
get that S

∨
qPq

∨
(1 − q)P (1 − q) = P , which implies the desired conclusion that

h(P ) = h(P : P ) ≤ 0. ��
Although this is not needed to derive our main results, we mention an easy

consequence of the previous proof which seems of independent interest:

Corollary 5.8. Let M be a II1 factor such that h(M) > 0. Let Γ = Z/2Z ∗ Z/3Z.
Then there exists a homomorphism π : Γ → U (M) such that h(π(Γ)′′ : M) > 0.

Proof. As M is a II1 factor, we can find a unital, trace-preserving embedding of
S := L(Z/2Z ∗ Z/2Z) into M . Let p, q ∈ S be two projections with τ(p) = τ(q) = 1

2
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which generate the two canonical copies of L(Z/2Z) inside S. Since h(M) > 0
and S

∨
qMq

∨
(1 − q)M(1 − q) = M , Fact 2.5 gives that h(S

∨
qMq) > 0 or

h(S
∨

(1−q)M(1−q)) > 0. Assume, without loss of generality, that h(S
∨

qMq) > 0.
Given a projection r ∈ qMq, let Sr = {p, r, q−r, 1−q}′′. Since S

∨
qMq is generated

by {Sr | r ∈ qMqprojection}, Fact 2.5 implies that h(Sr : M) > 0, for some
projection r ∈ qMq. Since clearly Sr = π(Γ)′′, for a homomorphism π : Γ → U (M),
the conclusion follows. ��
Proof of Theorem C. Let M1 be a II1 factor with property (T), e.g., take M =
L(SL3(Z)). Let M be constructed as in Definition 5.1. By Theorem 5.7 and Propo-
sition 5.4 we get that h(MU) ≤ 0, for every ultrafilter U, and M does not have
property Gamma.

Proof of Theorem A. Let N be a tracial von Neumann algebra with h(N) > 0 and
M be as in Theorem C. Suppose that for some ultrafilters U, V on sets I, J , there
exists an embedding of MU into NV that contains the diagonal inclusion of N . By
combining Theorem C and Facts 2.4 and 2.3 we get the following chain of inequali-
ties:

0 < h(N) = h(N : NV) ≤ h(N : MU) ≤ h(MU : MU) = h(MU) ≤ 0,

which is a contradiction.

Proof of Corollary D. Let M be as in Theorem C. For a sequence (kn) ⊂ N and free
ultrafilter U on N with lim

n→U
kn = +∞, let M =

∏
U Mkn

(C). Then Fact 2.8 implies

that h(M) = ∞. By Theorem A, we deduce that M is not elementarily equivalent
to M.

The following remark was communicated to us separately by I. Goldbring and
D. Jekel.

Remark 5.9. We give an explicit sentence distinguishing up to elementary equiva-
lence any II1 factor M satisfying the properties of Theorem B and any tracial von
Neumann algebra (N, τ) with h(N) > 0, in particular L(F2). This follows readily
from Lemma 3.2. For unitaries u1, u2, v1, v2 ∈ M , we define the formulae

φ(u1, u2) = ‖u2
1 − 1‖2 + ‖u3

2 − 1‖2 + |τ(u1u2) − τ(u1)τ(u2)|
+|τ(u1u

2
2) − τ(u1)τ(u2

2)|
ψ(u1, u2, v1, v2) = ‖u1v1 − v1u1‖2 + ‖u2v2 − v2u2‖2 + ‖v1v2 − v2v1‖2

+
∑

k∈Z\{0}
2−k(|τ(vk

1 )| + |τ(vk
2 )|).

Note that φ(u1, u2) = 0 means that u2
1 = u3

2 = 1 and {u1}′′ ⊥ {u2}′′. We also
note that D. Jekel observed that Lemma 3.2 implies that the set {u1, u2 ∈ U (M) |
φ(u1, u2) = 0} is a definable set over the theory of II1 factors.
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Theorem B shows that M satisfies supu1,u2∈U (M),φ(u1,u2)=0

(
infv1,v2∈U (M) ψ(u1,

u2, v1, v2)
)

= 0. In combination with Lemma 3.2, we derive the existence of a
function δ : [0, ∞) → [0, ∞) such that δ(0) = 0, δ((0, ∞)) ⊂ (0, ∞) and for all
ε > 0, the following implication holds for u1, u2 ∈ U (M): if φ(u1, u2) < δ(ε), then
φ′(u1, u2) := infv1,v2∈U (M) ψ(u1, u2, v1, v2) < ε. Moreover, δ is independent of the II1
factor M , and can be taken to be continuous and strictly increasing. Then we have
that δ(φ′(u1, u2)) ≤ φ(u1, u2), for every u1, u2 ∈ U (M), and we can thus write the
distinguishing sentence as follows:

sup
u1,u2∈U (M)

max(0, δ(φ′(u1, u2)) − φ(u1, u2)).

In fact, it is easy to see that a II1 factor M satisfies this sentence if and only if
it satisfies the conclusion of Theorem B. Hence, if M satisfies this sentence, then
h(MU) = 0. Thus, L(F2) does not satisfy this sentence.
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