
A mononuclear, and terminal titanium(III) imido

Jacob S. Mohar,^a Anders Reinholdt,^a Taylor M. Keller,^a Patrick J. Carroll,^a Joshua Telser,^{b,*} and Daniel J. Mindiola^{a,*}

We report the first mononuclear Ti^{III} complex possessing a terminal imido ligand. Complex $[Tp^{tBu,Me}Ti\{≡NSi(CH_3)_3\}(THF)]$ (2) ($Tp^{tBu,Me}$ = hydridotris(3-tert-butyl-5-methylpyrazol-1-yl)borate) is prepared by reduction of $[Tp^{tBu,Me}Ti\{≡NSi(CH_3)_3\}(Cl)]$ (1) with KC_8 in high yield. The connectivity and metalloradical nature of 2 were confirmed by single crystal X-ray diffraction studies (scXRD), Q- and X-band EPR as well as UV-Vis and 1H NMR spectroscopies. The d^1 complex $[(Tp^{tBu,Me}TiCl(OEt_2)][B(C_6F_5)_4]$ (3), was prepared in order to spectroscopically compare it to 2. Electrochemical studies of 1 and 2 reveal a reversible $1e^-$ process, whereas chemical oxidants $ClCPH_3$ or $\frac{1}{2}$ eq. XeF_2 cleanly yield 1 or the fluoride derivative $[Tp^{tBu,Me}Ti\{≡NSi(CH_3)_3\}(F)]$ (4), respectively, with the latter being fully characterized including a scXRD study.

Early transition metal (group III-VI) imidos (RN^{2-}) have been studied extensively for the past 60 years due to their utility in stoichiometric¹ and catalytic reactions.² Specifically, titanium imidos have shown great utility in Ziegler-Natta polymerization,^{2b,3} cycloaddition,⁴ group transfer,^{1b,5} hydroamination,^{5b,6} C-H bond activation,⁷ carboamination,⁸ and hydrogenation reactions.^{7b,9} The earliest reports of Ti^{IV} imidos, by Bradley *et al.*, date back to 1963 followed by the first structural characterization of a polymeric Ti^{IV} imido complex containing bridging imido and chloride ligands, $[Ti\{μ-NSi(CH_3)_3\}(μ-Cl)Cl]_n$, reported by Alcock *et al.* in 1974.¹⁰ Not until 1990 when Hill *et al.* reported a terminal, mononuclear Ti^{IV} imido did two distinct classes of Ti imidos displaying either bridging or terminal coordination emerge.^{9b,11} Both coordination modes of Ti imidos are dominated by diamagnetic, Ti^{IV} centers with mononuclear and terminal Ti^{III} imidos entirely eluding isolation, in spite of being isoelectronic with the ubiquitous vanadyl ion, $\{V≡O\}^{2+}$, a system which helped establish the present-day understanding of metal-ligand

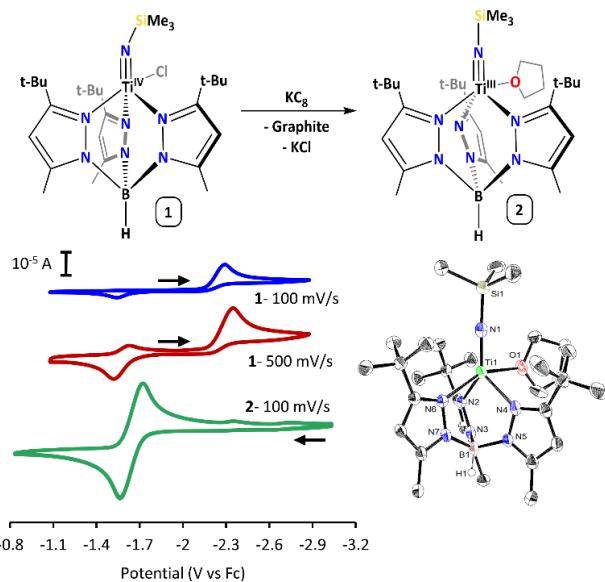

multiple bonds.^{9b,12} Dinuclear Ti^{III} imido systems, however, have been reported in both coordination modes. Cummins *et al.* showed the reduction of complex $[(^tBu_3SiNH)(THF)(R)Ti\{≡NSi^tBu_3\}]$ ($R = Me, ^tBu$) with H_2 yielded $[(^tBu_3SiNH)Ti\{μ-NSi^tBu_3\}]_2$, **Fig 1A**, representing the first example of $Ti_2^{III,III}$ bridging imidos.^{7b} Later, Bai *et al.* reported the ligand fragmentation product $K_2\{η^2-ArNC(CH_3)CHC(CH_3)\}(ArN)Ti(μ-H)\}_2$ ($Ar = 2,6-iPr_2C_6H_3$, **Fig 1B**), representing a $Ti_2^{III,III}$ complex containing terminal imidos.¹³ Other examples include the mixed valence $Ti_2^{III,IV}$ complex $[CoCp_2][(C_5R_5)Ti(Cl)\{μ-NAr\}]_2$ ($R = H, Me; Ar = 3,5-(CF_3)_2C_6H_3$) by Tsurugi *et al.* containing two bridging imidos (**Fig 1C**),¹⁴ and, more recently, the $Ti_2^{III,III}$ complex $[K(18-crown-6)(THF)_2][(NIm^{Ar})(NAd)Ti(μ-NAd)_2Ti(NIm^{Ar})(K)]$ ($NIm^{Ar} = 1,3$ -bis(Ar)imidazolin-2-iminato; $Ar = 2,6-iPr_2C_6H_3$; $Ad = adamantly$) containing one terminal and two bridging imidos by Gómez-Torres, *et al* (**Fig 1D**).¹⁵ Inspired by these advances, and given our recent success in isolating a pseudo-tetrahedral Ti^{II} center,¹⁶ we sought to expand the chemistry of Ti imidos by synthesizing and fully characterizing a mononuclear and terminal Ti^{III} imido as described herein.

Fig 1. Left: Previous examples of isolated and structurally characterized dinuclear Ti^{III} imido complexes A-D. Cations for C ($CoCp_2^+$), and D ($K(18-crown-6)(THF)_2^+$) are omitted for clarity. Right: This work: a mononuclear, terminal Ti^{III} imido displaying redox reactivity.

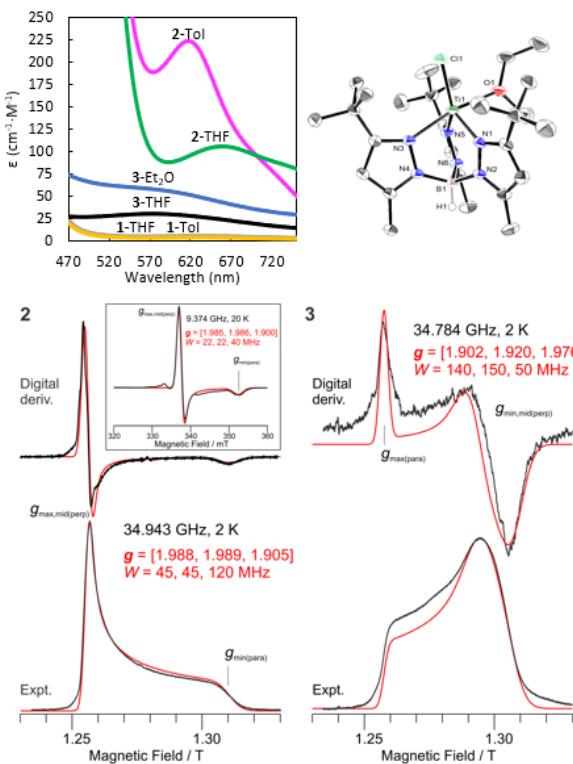
^a Department of Chemistry, University of Pennsylvania, 231 S 34th Street
Philadelphia, Pennsylvania, United States

*Corresponding Authors: mindiola@sas.upenn.edu; jtelsler@roosevelt.edu

Fig 2. Top: Reduction of **1** to **2**. Bottom Left: CV of **1** (3.0 mM **1**, 0.215 M [$^n\text{Bu}_4\text{N}$] $[\text{PF}_6]$) in THF) collected at various scan rates and **2** (3.4 mM **2**, 0.271 M [$^n\text{Bu}_4\text{N}$] $[\text{PF}_6]$) in THF) collected at a scan rate of 100 mV/s. All referenced to $\text{Fc}^{+/0}$ couple at 0.0 V. Bottom Right: Thermal ellipsoid plot of **2** (50% probability level) with hydrogen atoms (except for H1) and residual Et_2O omitted for clarity.

Previously, our group reported the Ti^{IV} imido complex $[(\text{Tp}^{\text{tBu},\text{Me}})\text{Ti}\{\equiv\text{NSi}(\text{CH}_3)_3\}(\text{Cl})]$ (**1**) ($\text{Tp}^{\text{tBu},\text{Me}}$ = hydridotris(3-*tert*-butyl-5-methylpyrazol-1-yl)borate) formed upon deazotation of $(\text{CH}_3)_3\text{SiN}_3$ by $[(\text{Tp}^{\text{tBu},\text{Me}})\text{TiCl}]$.¹⁶ Cyclic voltammetry studies (CV) of **1** at slow scan rates (50 and 100 mV/s) revealed an irreversible reduction event at -2.32 V as well as an irreversible oxidation event at -1.53 V vs $\text{Fc}^{+/0}$, **Fig 2** (blue trace). The latter oxidation feature becomes quasi-reversible at faster scan rates (≥ 150 mV/s, $E_{1/2\text{red}} = -1.61$ V, $E_{1/2\text{ox}} = -1.53$ V, **Fig 2**, red trace). These quasi-reversible features are dependent on the reduction event at -2.32 V and thus not observed in CV scans sweeping potentials >-1.9 V (see SI for details). We initially assigned the reduction event at -2.32 V to a $[(\text{Tp}^{\text{tBu},\text{Me}})\text{Ti}\{\equiv\text{NSi}(\text{CH}_3)_3\}(\text{Cl})]^{0/-}$ redox couple, for which a subsequent chloride dissociation step leads to electrochemical irreversibility and the quasi-reversible features at -1.61/-1.53 V to a $[(\text{Tp}^{\text{tBu},\text{Me}})\text{Ti}\{\equiv\text{NSi}(\text{CH}_3)_3\}(\text{THF})]^{+/0}$ redox couple. To probe this, 1-4 eq. [$^n\text{Bu}_4\text{N}$] $[\text{Cl}]$ were added to the electrolyte solution causing the quasi-reversible reduction event (-1.61 V) to disappear. This suggests a hypothetical cationic species such as $[(\text{Tp}^{\text{tBu},\text{Me}})\text{Ti}\{\equiv\text{NSi}(\text{CH}_3)_3\}(\text{THF})]^{+}$ to rapidly associate with Cl^- to form complex **1** with high concentrations of Cl^- and with PF_6^- under low concentrations of chloride (See SI and discussion below for details). It also suggests that the PF_6^- coordinated $[(\text{Tp}^{\text{tBu},\text{Me}})\text{Ti}\{\equiv\text{NSi}(\text{CH}_3)_3\}(\text{THF})]^{+}$ is easier to reduce than **1** (*vide infra*). In any case, the reduction event at -2.32 V suggested the possibility of chemical reduction of **1** to a Ti^{III} species, which under electrochemical conditions seemed unstable.

Accordingly, chemical reduction of **1** with one equivalent of KC_8 in THF yielded a yellow-brown microcrystalline material in 91% yield after work-up, identified as $[(\text{Tp}^{\text{tBu},\text{Me}})\text{Ti}\{\equiv\text{NSi}(\text{CH}_3)_3\}(\text{THF})]$ (**2**), **Fig 2**, on the basis of structural and spectroscopic studies (*vide infra*). Room temperature ^1H -


NMR spectroscopy revealed significantly broadened and paramagnetic shifts for the pyrazolyl, B-H, and trimethylsilyl resonances (ESI, Fig S3.1.1). Solution state magnetometry determined *via* Evans method¹⁷ (300 K in benzene- d_6) revealed $\mu_{\text{eff}} = 1.85 \mu_{\text{B}}$ consistent with a spin-only d^1 system.

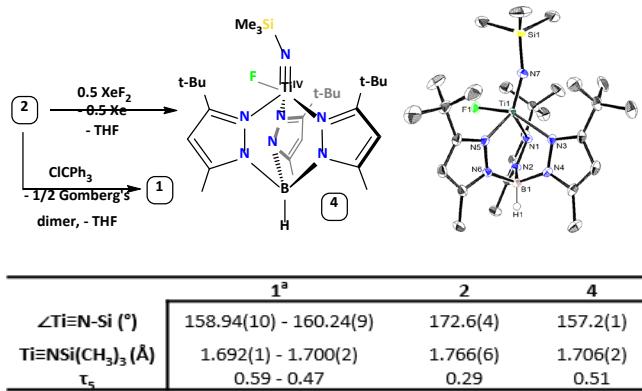
Single crystal X-ray diffraction studies (scXRD) of **2**, **Fig 2**, revealed an unprecedented, terminally-bound, and mononuclear Ti^{III} imido with a short $\text{Ti}\equiv\text{NR}$ length of 1.766(6) Å. The $\text{Ti}\equiv\text{NR}$ bond length is only ~ 0.06 Å longer than the same metrical parameter found in the Ti^{IV} precursor **1**, 1.692(1)-1.700(2) Å,^{16,18} in line with the larger ionic radius of Ti^{III} versus the Ti^{IV} ion (0.67 vs 0.42 Å, respectively).¹⁹ The $\text{Ti}\equiv\text{NR}$ bond distance in **2** is in good agreement with the $\text{Ti}\equiv\text{NR}$ bond distance of 1.770(4) Å in the $\text{Ti}_{2}^{\text{III},\text{III}}$ terminal imido and the difference from its Ti^{IV} analogue (~ 0.04 Å) reported by Bai *et al.*, **Fig 1B**.¹³ The $\text{Ti}\equiv\text{NR}$ bond length in complex **2** is however, longer than the terminal $\text{Ti}\equiv\text{NR}$ bond distance of 1.729(3) Å reported recently by Gomez-Torres *et. al.*¹⁵ Additionally, the $\angle\text{Ti}\equiv\text{N}-\text{Si}$ in **2** was found to be 172.6(4)°, which is more obtuse than the same angles of 158.94(10)-160.24(9)° found in precursor **1**.^{16,18} We attribute the near-linear topology of the $\{\text{Ti}\equiv\text{N}-\text{Si}\}$ core in **2** to the increase in the size of and change of geometry (**1**: $\tau_5 = 0.47-0.59$, **2**: $\tau_5 = 0.29$) about the Ti-center which lies an average of 0.17 Å further from the tris-pyrazole (NNN) plane (see SI for details)^{16,18} and enables the imido ligand to minimize steric repulsion with the bulky $\text{Tp}^{\text{tBu},\text{Me}}$ ligand and become almost perfectly linear in **2**.

To better understand why **1** gave rise to two separate redox events and to determine if indeed the Cl^- was interfering with reversibility, we collected CV data for **2**. We found that **2** possesses a fully reversible redox event at $E_{1/2} = -1.64$ V vs $\text{Fc}^{0/+}$, which we attribute to the $\text{Ti}^{\text{III}}/\text{Ti}^{\text{IV}}$ redox couple, **Fig 2** (green trace in Figs 2 and S7.2.2). No significant features were observed around -2.3 V (Fig S7.2.3). The reversible feature at -1.64 V for **2** coincides with the irreversible oxidation/reduction peaks observed at -1.53/-1.61 V for **1** (*vide supra*), which suggests that one-electron oxidation of **2** to form a hypothetical $[\mathbf{2}^+][\text{PF}_6^-]$ salt becomes reversible when chloride ions are absent and a background of $[\text{PF}_6^-]$ is present and suggests that $[(\text{Tp}^{\text{tBu},\text{Me}})\text{Ti}\{\equiv\text{NSi}(\text{CH}_3)_3\}(\text{THF})]^{+}$ is more easily reduced than **1** (see SI for details). This feature also suggests that one-electron oxidation of **2** at the electrode surface to form hypothetical $[\mathbf{2}^+][\text{PF}_6^-]$ involves minimal reorganization energy due to the weakly coordinating nature of PF_6^- unlike with Cl^- (*vide supra*).

To better understand the electronic structure of **2**, we prepared a close structural and electronic analogue $[(\text{Tp}^{\text{tBu},\text{Me}})\text{TiCl}(\text{OEt}_2)][\text{B}(\text{C}_6\text{F}_5)_4]$ (**3**^{Et₂O}) independently from oxidation of $[(\text{Tp}^{\text{tBu},\text{Me}})\text{TiCl}]^{16}$ with $[\text{Ti}][\text{B}(\text{C}_6\text{F}_5)_4]$ in Et_2O in 65.7% yield (ESI, Section 2.3). The THF complex, $[(\text{Tp}^{\text{tBu},\text{Me}})\text{TiCl}(\text{THF})][\text{B}(\text{C}_6\text{F}_5)_4]$, (**3**^{THF}), was analogously prepared but proved more challenging to purify. These cationic chloride complexes were chosen as close structural analogues of **2** to assess the perturbation of the electronic structure of the d^1 ion caused by the multiple bond character of the imido group and to assess the role of a dative ligand such as THF. Akin to **2**, the solution magnetic susceptibility measurement of **3**^{Et₂O} yielded

$\mu_{\text{eff}} = 1.86 \mu_{\text{B}}$ at 300 K in THF- d_8 in good agreement with a spin-only d^1 species. To further probe the electronic structure of **2**, we turned to UV-vis spectroscopy, **Fig 3**. The d^0 precursor, **1**, unsurprisingly, displays no absorption bands in the range 500–750 nm (THF or toluene solvent). In contrast, **2** and **3** (**3^{THF}**) each display a low-intensity feature consistent with a $d-d$ transition: **2**: 618 nm ($\epsilon = 225 \text{ cm}^{-1} \cdot \text{M}^{-1}$) in toluene and 659 nm ($\epsilon = 110 \text{ cm}^{-1} \cdot \text{M}^{-1}$) in THF (pink and green traces in **Fig 3** respectively); **3** (**3^{THF}**): 574 nm ($\epsilon = 30 \text{ cm}^{-1} \cdot \text{M}^{-1}$) in THF and (**3^{Et₂O}**): 584 nm ($\epsilon = 56 \text{ cm}^{-1} \cdot \text{M}^{-1}$) in Et_2O (black and blue trace in **Fig 3** respectively).

Fig 3: Top left: UV-vis spectrum of **1**, **2**, and **3** in solvents listed (Tol = toluene). Top right: X-ray structure of **3^{Et₂O}** (50% probability level) with H atoms (except for H1), residual Et_2O , and $[\text{B}(\text{C}_6\text{F}_5)_4]^-$ omitted for clarity. Bottom Left: EPR spectra of **2** in Tol/THF frozen solution (black traces; simulations as red traces with $S = 1/2$ parameters as shown). Main figure: Q-band (34.943 GHz, 2 K) spectrum. Experimental spectrum is in absorption mode due to rapid passage effects and is shown with a digital derivative above for comparison with conventional (first derivative) EPR. Inset: X-band (9.374 GHz, 20 K) spectrum in first derivative (slow passage) mode. Features not reproduced in the simulations are due to $^{47,49}\text{Ti}$ hyperfine coupling (See SI for details). Bottom right: EPR spectrum of **3^{Et₂O}** in Tol frozen solution.


The solvent-dependence in the intensity and absorption energy for electronic transitions in complex **2** are consistent with dissociation of the THF ligand in toluene to form a putative four-coordinate Ti^{IV} imido $[(\text{Tp}^{\text{tBu},\text{Me}})\text{Ti}\{\equiv\text{NSi}(\text{CH}_3)_3\}]$. In a previous study, it was found that an isoelectronic V^{IV} nitrido complex, $[(\text{Tp}^{\text{tBu},\text{Me}})\text{V}\equiv\text{N}\}(\text{THF})]$, readily expels THF in weakly coordinating solvents.²⁰ The near order of magnitude increase in molar absorptivity between **3** and **2** reflects the forbidden nature of $d-d$ transitions occurring in **3** (selection rule for orbital quantum number: $\Delta l = \pm 1$), versus the more allowed $d_{xy} \rightarrow \pi^*_{\text{Ti}\equiv\text{N}}$ transitions in **2** (excitations to molecular orbitals with titanium

and nitrogen parentage), which is consistent with the bonding and spectroscopic properties for a d^1 systems having metal-ligand multiple bonds developed by Ballhausen and Gray for the isoelectronic vanadyl ion, $\{\text{V}\equiv\text{O}\}^{2+}$.¹²

Further spectroscopic evidence for the presence of a Ti-centric radical in **2** was obtained through continuous wave (CW) X- and Q-band EPR spectroscopy. Surprisingly, **2** exhibited an axial $S = 1/2$ spectrum ($g_{x(\text{max})} \approx g_{y(\text{mid})} \approx g_{\perp} > g_{z(\text{min})} = g_{\parallel}$) in toluene and toluene/THF glasses, **Fig 3**, (X-band, $g_{x,y,z} = [1.985, 1.986, 1.900; g_{\text{avg}} = 1.957]$, 20 K; Q-band, $g_{x,y,z} = [1.988, 1.989, 1.905]$, 2 K) despite its low symmetry observed in the solid state by scXRD. This axial EPR, as would be expected for a trigonally symmetric four-coordinate complex, is however consistent with the results of UV-Vis spectroscopy (*vide supra*). The g values observed for **2** display a pattern similar to $\{\text{V}\equiv\text{O}\}^{2+}$, in which g_{\perp} is closer to g_e (2.00) than g_{\parallel} due to the energetic ordering of the V 3d orbitals in triply-bonded $\{\text{V}\equiv\text{O}\}^{2+}$, and in line with the electronic structure of **2** being strongly defined by $\{\text{Ti}\equiv\text{NSiMe}_3\}$ bonding.^{12,24} In contrast to UV-vis spectral studies (*vide supra*), there is no change in the g -values when CW-X-band EPR was collected using 1:1 THF:toluene glass or toluene glass. Hence, the periphery of the $\{\text{Ti}\equiv\text{NR}\}^+$ fragment have minimal effect on the magnetic properties of **2**. No hyperfine coupling to the imido nitrogen was detected by EPR indicating that the unpaired electron is metal centered and in a d_{xy} orbital orthogonal to the $\text{Ti}\equiv\text{NR}$ bond. In comparison, the EPR spectrum of **3^{Et₂O}** is also roughly axial, but with ($g_{x(\text{min})} \approx g_{y(\text{mid})} \approx g_{\perp} < g_{z(\text{max})} = g_{\parallel}$; Q-band, $g_{x,y,z} = [1.902, 1.920, 1.976]$, 2 K) and is thus similar, albeit less rhombic, to the neutral, five-coordinate complex $[\text{Tp}^{\text{tBu},\text{Me}}\text{Ti}^{IV}\text{Cl}_2]$ reported previously.¹⁶ We propose the EPR differences between **2** and **3** to result from the stronger π -donation of the imido compared to the chloride.²¹ Further comparisons among EPR spectra of **3** as a function of temperature and solvent are given in the SI.

Taking advantage of the radical nature of **2**, we chemically probed its electrochemical features (*vide supra*); oxidation of **2** with ClCPH_3 quantitatively formed **1** along with Gomberg's dimer as evidenced by $^1\text{H-NMR}$ spectroscopy (Fig S3.2.1).²² In an attempt to desilylate **2** with 0.5 equivalents of XeF_2 , we instead observed the formation of the imido-fluoride $[(\text{Tp}^{\text{tBu},\text{Me}})\text{Ti}\{\equiv\text{NSi}(\text{CH}_3)_3\}(\text{F})]$, **4**, in 86% yield, **Fig 4**. Complex **4** is resistant to FSiMe_3 elimination even under forcing conditions (70 °C, 18 hrs) and metrically, the structures of **1** and **4** are quite similar with a short $\text{Ti}\equiv\text{NSiMe}_3$ bond distance and slightly bent $\angle\text{Ti}\equiv\text{N}-\text{Si}$ (Table in **Fig 4**). The geometries at Ti are also quite similar when judged by their τ_5 values (Table in **Fig 4**). The room temperature $^{19}\text{F-NMR}$ spectrum of **4** exhibits one sharp resonance at +131.4 ppm, and unlike **1**, complex **4** undergoes rapid Berry pseudo-rotation on the NMR time scale (300 K) resulting in equivalent pyrazolyl moieties in solution (ESI, Fig S3.4.1).²³ Unsurprisingly and akin to **1**, complex **4** displays no absorption bands in the 500–750 nm range (Fig S5.4.1).

We have provided conclusive evidence for the synthesis of the first mononuclear, Ti^{IV} complex containing a terminal imido ligand, $\{\text{Ti}\equiv\text{NR}\}^+$. Electrochemical and chemical reversibility of the interconversion between Ti^{IV} imido **1** and Ti^{III} imido **2** were probed electrochemically (CV) and chemically *via* reduction

Figure 4: Top left: Reactivity of **2** with ClCPPh_3 and XeF_2 to form **1** and **4** respectively. Bottom Top right: Thermal ellipsoid plot of **4** (50% probability level) with hydrogen atoms (except for H1) and residual Et_2O omitted for clarity. Bottom: Table of the structural parameters of compounds **1**, **2**, and **4**. ^aPreviously reported.¹⁶

(oxidation) with potassium graphite (trityl chloride). We observed no evidence for desilylation of the imido upon treatment of the Ti^{III} center with an electrophilic fluoride source (XeF_2) and instead form a $\{\text{Ti}-\text{F}\}$ bond, **4**. In probing the radical nature of **2**, we provided evidence from EPR of $\{\text{Ti} \equiv \text{NSiMe}_3\}$ bonding of a Ti-centered radical having axial symmetry, where the unpaired electron resides in a d-orbital perpendicular to the orbitals involved in π -donation from the imido ligand $\{\text{V} \equiv \text{NR}\}^{2+}$ and resembling the well-known vanadyl unit, $\{\text{V}=\text{O}\}^{2+}$.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

The authors wish to acknowledge Amy Metlay and Dr. Rolando Aguilar for helpful discussions surrounding the structure and electrochemistry of **2**. D.J.M. thanks the U.S. NSF; Grants CHE-0848248 and CHE-1152123) and the University of Pennsylvania. J.T. also thanks the NSF (Grant MCB-1908587). We thank Prof. Brian M. Hoffman (Northwestern University, Evanston, IL) for use of EPR spectrometers, supported by the NIH (grant GM-111097).


Notes and references

- (a) P. J. Walsh, F. J. Hollander and R. G. Bergman, *J. Am. Chem. Soc.*, **1988**, *110*, 8729-8731. (b) E. W. Harlan and R. H. Holm, *J. Am. Chem. Soc.*, **1990**, *112*, 186-193. (c) P. Legzdins, E. C. Phillips, S. J. Rettig, J. Trotter, J. E. Veltheer and V. C. Yee, *Organometallics*, **1992**, *11*, 3104-3110. (d) V. C. Gibson, C. Redshaw, W. Clegg and M. R. J. Elsegood, *J. Chem. Soc., Chem. Commun.*, **1994**, 2635. (e) D. L. Morrison and D. E. Wigley, *Inorg. Chem.*, **1995**, *34*, 2610-2616. (f) J. I. Fostvedt et al., *Chem. Sci.*, **2020**, *11*, 11613-11632.
- (a) W. A. Nugent and B. L. Haymore, *Coord. Chem. Rev.*, **1980**, *31*, 123-175. (b) S. M. Rocklage, R. R. Schrock, M. R. Churchill and H. J. Wasserman, *Organometallics*, **1982**, *1*, 1332-1338. (c) T. R. Cundari, *J. Am. Chem. Soc.*, **1992**, *114*, 7879-7888. (d) R. R. Schrock and A. H.

Hoveyda, *Angew. Chem., Int. Ed.*, **2003**, *42*, 4592-4633. (e) K. Kawakita, B. F. Parker, Y. Kakiuchi, H. Tsurugi, K. Mashima, J. Arnold and I. A. Tonks, *Coord. Chem. Rev.*, **2020**, *407*, 213118.

- (a) G. Tejeda, D. S. Belov, D. A. Fenoll, K. L. Rue, C. Tsay, X. Solans-Monfort and K. V. Bukhryakov, *Organometallics*, **2022**, *41*, 361-365. (b) Y. Jin, Y. Yang, C. Su, J. Wang, Y. Wang and B. Liu, *Macromol. React. Eng.*, **2022**, *16*, 2200025. (c) N. A. H. Male, et al., *Inorg. Chem.*, **2000**, *39*, 5483-5491. (d) N. Adams et al., *Chem. Commun.*, **2004**, 434-435. (e) J. Jin, W. R. Mariott and E. Y. X. Chen, *J. Polym. Sci., Part A: Polym. Chem.*, **2003**, *41*, 3132-3142.
- (a) S. M. Pugh, et al., *Organometallics*, **2000**, *19*, 3205-3210. (b) A. E. Guiducci, C. L. Boyd and P. Mountford, *Organometallics*, **2006**, *25*, 1167-1187. (c) A. J. Blake, J. M. McInnes, P. Mountford, G. I. Nikonov, D. Swallow and D. J. Watkin, *J. Chem. Soc., Dalton Trans.*, **1999**, 379-392.
- (a) S. P. Heins, P. T. Wolczanski, T. R. Cundari and S. N. Macmillan, *Chem. Sci.*, **2017**, *8*, 3410-3418. (b) P. L. McGrane and T. Livinghouse, *J. Am. Chem. Soc.*, **1993**, *115*, 11485-11489. (c) T. E. Hanna, I. Keresztes, E. Lobkovsky, W. H. Bernskoetter and P. J. Chirik, *Organometallics*, **2004**, *23*, 3448-3458.
- Y. Li, Y. Shi and A. L. Odom, *J. Am. Chem. Soc.*, **2004**, *126*, 1794-1803.
- (a) M. Fischer, M. Manßen, M. Schmidtmann, T. Klüner and R. Beckhaus, *Chem. Sci.*, **2021**, *12*, 13711-13718. (b) C. C. Cummins, C. P. Schaller, G. D. Van Duyne, P. T. Wolczanski, A. W. E. Chan and R. Hoffmann, *J. Am. Chem. Soc.*, **1991**, *113*, 2985-2994.
- (a) Z. W. Davis-Gilbert, L. J. Yao and I. A. Tonks, *J. Am. Chem. Soc.*, **2016**, *138*, 14570-14573. (b) Z. W. Gilbert, R. J. Hue and I. A. Tonks, *Nat. Chem.*, **2016**, *8*, 63-68.
- (a) B. M. Hoffman, D. Lukyanov, Z.-Y. Yang, D. R. Dean and L. C. Seefeldt, *Chem. Rev.*, **2014**, *114*, 4041-4062. (b) C. Lorber, *Coord. Chem. Rev.*, **2016**, *308*, 76-96. (c) N. Hazari and P. Mountford, *Acc. Chem. Res.*, **2005**, *38*, 839-849.
- (a) D. C. Bradley and E. G. Torrible, *Can. J. Chem.*, **1963**, *41*, 134-138. (b) N. W. Alcock, M. Pierce-Butler and G. R. Willey, *J. Chem. Soc., Chem. Commun.*, **1974**, 627a-627a.
- J. E. Hill, R. D. Profleet, P. E. Fanwick and I. P. Rothwell, *Angew. Chem., Int. Ed.*, **1990**, *29*, 664-665.
- C. J. Ballhausen and H. B. Gray, *Inorg. Chem.*, **1962**, *1*, 111-122.
- G. Bai, P. Wei and D. W. Stephan, *Organometallics*, **2006**, *25*, 2649-2655.
- H. Tsurugi, H. Nagae and K. Mashima, *Chem. Commun.*, **2011**, *47*, 5620-5622.
- A. Gómez-Torres, N. Mavragani, A. Metta-Magaña, M. Murugesu and S. Fortier, *Inorg. Chem.*, **2022**, *61*, 16856-16873.
- A. Reinholdt et al., *Inorg. Chem.*, **2020**, *59*, 17834-17850.
- (a) D. F. Evans, *J. Chem. Soc.*, **1959**, 2003-2005. (b) S. K. Sur, *J. Mag. Res. (1969)*, **1989**, *82*, 169-173. (c) G. A. Bain and J. F. Berry, *J. Chem. Ed.*, **2008**, *85*, 532.
- A range for the Ti-imido bond distances in **1** is presented as three inequivalent molecules of **1** make up the unit cell of **1** as previously reported.
- R. D. Shannon, *Acta Cryst. A*, **1976**, *32*, 751-767.
- M. G. Jafari, et al., *J. Am. Chem. Soc.*, **2022**, *144*, 10201-10219.
- V. C. Gibson, *J. Chem. Soc., Dalton Trans.*, **1994**, 1607-1618.
- M. Gomberg, *J. Am. Chem. Soc.*, **1900**, *22*, 757-771.
- (a) C. Serre, T. Corbière, C. Lorentz, F. Taulelle and G. Férey, *Chem. Mater.*, **2002**, *14*, 4939-4947. (b) R. S. Berry, *J. Chem. Phys.*, **1960**, *32*, 933-938.
- D. Baute, D. Goldfarb, *J. Phys. Chem. A*, **2005**, *109*, 7865-7871

TOC Graphic

