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Abstract. Problem definition: Uncrewed aerial vehicles (UAVs) are transforming emer
gency service logistics applications across sectors, offering easy deployment and rapid 
response. In the context of emergency medical services (EMS), UAVs have the potential to 
augment ambulances by leveraging bystander assistance, thereby reducing response times 
for delivering urgent medical interventions and improving EMS outcomes. Notably, the 
use of UAVs for opioid overdose cases is particularly promising as it addresses the chal
lenges faced by ambulances in delivering timely medication. This study aims to optimize 
the integration of UAVs and bystanders into EMS in order to minimize average response 
times for overdose interventions. Methodology/results: We formulate the joint operation of 
UAVs with ambulances through a Markov decision process that captures random emer
gency vehicle travel times and bystander availability. We apply an approximate dynamic 
programming approach to mitigate the solution challenges from high-dimensional state 
variables and complex decisions through a neural network-based approximation of the 
value functions (NN-API). To design the approximation, we construct a set of basis func
tions based on queueing and geographic properties of the UAV-augmented EMS system. 
Managerial implications: The simulation results suggest that our NN-API policy tends to 
outperform several noteworthy rule- and optimization-based benchmark policies in terms 
of accumulated rewards, particularly for situations that are primarily characterized by 
high request arrival rates and a limited number of available ambulances and UAVs. The 
results also demonstrate the benefits of incorporating UAVs into the EMS system and the 
effectiveness of an intelligent real-time operations strategy in addressing capacity 
shortages, which are often a problem in rural areas of the United States. Additionally, the 
results provide insights into specific contributions of each dispatching or redeployment 
strategy to overall performance improvement.

Funding: This work was supported by the National Science [Grant 1761022]. 
Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2022.0166 
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1. Introduction
1.1. Motivation
The United States is facing a severe opioid crisis, with 
over 210 opioid overdose deaths reported each day (Cen
ters for Disease Control and Prevention National Center 
for Health Statistics 2022). Opioid overdoses can lead to 
respiratory depression and cardiac arrest, and without 
timely intervention, the chances of survival decrease by 
up to 10% per minute (Cao 2005). Brain damage can 
occur after four minutes, and death can occur within six 
to eight minutes later (Doe-Simkins et al. 2009). In many 
cases, trained first responders are unable to reach the 
patient in time to administer naloxone, typically admin
istered as a nasal spray, and provide ventilation to 

prevent death. The bystander-enabled uncrewed aerial 
vehicle (UAV) delivery system is one potential approach 
to mitigate this problem. In such a UAV-augmented 
emergency medical service (EMS) system, 911 dispatch
ers can dispatch a UAV and direct a bystander to render 
an emergency response to the patient while EMS person
nel are en route.

UAV use, as pilotless aircraft, has seen a rapid expan
sion of applications in recent years. In the United States, 
this is largely facilitated by the increasingly specified 
guidelines and relaxed regulations of the U.S. Federal 
Aviation Administration (FAA) on UAV airspace and 
operations. For example, Amazon Prime Air, Amazon’s 
special service that delivers packages within 30 minutes, 
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was granted operation by the FAA in mid-2020 to test 
order delivery via UAVs (Reuters 2020). In addition to 
parcel delivery, UAV use has a wide range of appli
cations, including land surveillance, wildlife tracking, 
search and rescue operations, disaster response, and bor
der patrol (Everaerts et al. 2008). UAVs are particularly 
well suited for these tasks because of their ability to cover 
large areas quickly and efficiently, as well as their ability 
to access areas that may be difficult or dangerous for 
humans to reach. Since 2016, a number of east and central 
African countries have collaborated with Zipline, the 
world’s largest automated delivery system designer, 
manufacturer, and operator, to deliver blood supplies, 
reducing the delivery time from four hours to 15 minutes 
in some cases (World Health Organization 2019). 
With state-of-the-art technologies, UAVs designed for 
on-demand commodity delivery can fly up to an hour 
and reach distances of up to 45 miles while carrying nec
essary payloads for emergency responses, such as auto
mated external defibrillators (AEDs) for out-of-hospital 
cardiac arrests (Boutilier et al. 2017), blood transfusion 
tool kits for trauma injuries (Ling and Draghic 2019), and 
naloxone nasal spray for opioid overdoses (Ornato et al. 
2020). All of these recent developments, including the 
improvement of technology, decreases in cost, and chang
ing regulations, will enhance the potential use of UAVs in 
EMS delivery.

This technology is especially promising given the 
inherent need for a rapid response to enhance patient 
outcomes, particularly in remote or hard-to-reach areas. 
For example, UAVs can respond faster in urban en
vironments that present barriers to emergency services, 
such as heavy traffic congestion. Additionally, the scar
city of ambulances in many U.S. rural counties can lead 
to extremely long response times, with 1 in 10 patients 
waiting nearly 30 minutes for EMS arrival (Mell et al. 
2017). Compared with increasing the number of ambu
lances and corresponding medical personnel, incorpo
rating UAVs for medical delivery is a more realistic and 
cost-effective approach to optimize medical resources. 
For emergencies such as opioid overdoses and out- 
of-hospital cardiac arrests, it is expected that UAV- 
delivered medical interventions can significantly save 
critical response times and avert life-threatening condi
tions. In practice, medical UAVs will be equipped with 
audio or video assistance devices, such as cameras, to 
help bystanders quickly assess the situation and follow 
instructions. For example, Zipline and Intermountain 
Healthcare have implemented drone deliveries in the 
Salt Lake Valley to reach patients and deliver medication 
faster without requiring patients to travel to a clinic or 
hospital (Gereau 2022). In the realm of EMS delivery, 
there have been ongoing efforts to encourage bystander 
intervention, such as educational campaigns (Lockey 
et al. 2021), training programs (Clark et al. 2014), and lia
bility protection laws (Latimore and Bergstein 2017). 

More recently, mobile phone applications (e.g., Unity
Philly) (Schwartz et al. 2020) have focused on connecting 
layperson first responders with people experiencing 
overdoses. Furthermore, research has demonstrated the 
benefit of layperson-initiated overdose reversal through 
the administration of naloxone before the arrival of an 
ambulance or first responders (Schwartz et al. 2020).

The main objectives of our work are twofold: first, to 
demonstrate the benefits of using UAVs to deliver life
saving medication and second, to provide guidance for 
EMS agencies on how to incorporate UAVs into their 
operations. By highlighting the potential advantages of 
using UAVs, we hope to encourage their wider adoption 
in the EMS field. At the same time, our work aims to pro
vide practical guidance for how to effectively incorpo
rate UAVs into EMS operations, including strategies for 
dispatching and redeployment.

In the United States, 911 calls are typically received by 
a public safety answering point (PSAP), which deter
mines the nature of the emergency and next, decides 
either to dispatch responders immediately or transfer 
the call to a specialized secondary PSAP. We assume that 
both UAVs and ambulances are managed in a central
ized scheme and aim to improve EMS outcomes through 
the joint operation of both types of vehicles, including 
dispatching and redeployment. We develop a Markov 
decision processes (MDP) framework to capture the 
interplay between these decisions, spatially distributed 
stochastic arrivals of requests, and the state of the EMS 
system involving the concurrent use of UAVs and ambu
lances. The process flow is shown in Figure 1. When a 
witness calls 911 to report a case, a request enters the 
EMS system. During the call, the dispatcher will ask 
about the presence of bystanders nearby in addition to 
following the current protocol. Based on the status of the 
system, a dispatching decision is made, which may 
include the dispatch of an ambulance or a UAV followed 
by an ambulance and the specific ambulance (and UAV) 
to be dispatched. When the UAVs or ambulances have 
completed their service, they are redeployed to one of 
their bases to be better prepared for upcoming requests. 
Note that UAV dispatching is helpful if and only if at 
least one bystander is willing to help when the UAV 
arrives at the emergency scene. The probability that at 
least one bystander is willing to help is estimated based 
on the number of bystanders acquired during the call 
and the likelihood that one of them is willing to retrieve 
and administer the EMS tool kit.

The most straightforward dispatching strategy is to 
dispatch the UAV closest to the request in order to mini
mize the response time and maximize the chance of sur
vival (Kim et al. 2009). However, this myopic strategy is 
typically suboptimal, and a more sophisticated strategy 
would improve outcomes (Jagtenberg et al. 2015). Be
cause ambulance and UAV resources are limited, mini
mization of response time for the current requests may 
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lead to a much longer response time for future requests 
(i.e., a nuanced balance should be considered between 
current and future requests). Additionally, we consider 
redeployment decisions for UAVs and ambulances. Rede
ploying UAVs and ambulances to one of their bases 
allows for charging, replenishment, and personnel rest. 
Proper redeployment decisions aim to balance the distri
bution of available UAVs and ambulances over the bases 
for time-varying demand. On top of this delicate trade- 
off, uncertainties in travel time, bystander willingness to 
assist, and emergency request volume and their locations 
should be modeled explicitly in the MDP framework.

In summary, the integration of UAVs and ambulances 
brings increased flexibility to EMS delivery but also intro
duces unique challenges in making intelligent operational 
decisions in real time. The operational strategy/policy 
suggested by our model and algorithm addresses the fun
damental trade-off between response times for current 
and future requests while taking into account various 
uncertainties and the use of heterogeneous servers (am
bulances and UAVs).

1.2. Main Contributions and Results
1. We extend the MDP-based analytics framework 

to consider a range of real-time operational decisions in 
a dynamic, coordinated logistics system with both con
ventional (ambulances) and augmenting (UAVs) deliv
ery vehicles. Given the two types of delivery vehicles, 
we consider two types of requests that can be answered 
in the logistic system, differing in the use of UAVs. Our 
approach also accounts for additional sources of uncer
tainty. In addition to uncertain request arrival times 
and locations, we use a delayed reward function to 
reflect the uncertainty of UAV and ambulance travel 
times. Yet, we preserve the model’s high fidelity, in
cluding the presence of bystanders.

2. We apply an approximate dynamic programming 
(ADP) approach and design a tractable approximate 
policy iteration (API) algorithm for the complex sto
chastic dynamic optimization problem, which employs 
value function approximation (VFA) via neural net
works. Based on the spatial and temporal characteristics 
of the EMS system, we design a set of effective basis 

functions to enhance the algorithm’s performance. Our 
basis functions are novel and distinct from the literature 
in three aspects. (a) We consider the heterogeneous 
nature of the ambulance-UAV system and approximate 
coverage accordingly, especially on the future missed 
call rate; (b) we approximate the average response time 
to adapt to the objective of minimizing response times, 
beyond maximizing the number of requests served; and 
(c) we consider not only spatial features but also tempo
ral features of the system (i.e., availability reduction). 
Additionally, the neural network representation of the 
value function offers a much richer class of nonlinear 
functions and can be trained iteratively.

3. We acquire important managerial implications 
about real-time operations for coordinated EMS logis
tics. Our case studies are based on historical data from 
the state of Indiana for emergency naloxone adminis
tration for opioid overdoses and the National EMS 
Information System (NEMSIS) database. Simulation re
sults suggest that our policy consistently outperforms 
several noteworthy rule- and optimization-based bench
mark policies in terms of accumulated rewards. This 
superiority is particularly pronounced when the request 
arrival rate is high and the availability of ambulances 
and UAVs is limited. Our results also highlight the ben
efits of using UAVs in the EMS system and the effective
ness of an intelligent real-time operations strategy in 
addressing capacity shortages, which are common chal
lenges in rural areas of the United States. Additionally, 
our results provide valuable insights into the contribu
tions made by each dispatching or redeployment strat
egy. We also identify scenarios where the use of the 
neural network-based approximation of the value func
tions (NN-API) is strongly recommended, as it signifi
cantly outperforms benchmark policies, and situations 
where a simple static policy can perform comparably to 
the NN-API.

2. Literature Review
To the best of our knowledge, our work is the first that 
combines the real-time operations of UAVs and ambu
lances for time-sensitive logistics. Previous research has 

Figure 1. (Color online) An Illustration of a UAV-Based EMS Process Timeline 
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primarily focused on individual aspects of the problem, 
such as ambulance dispatching and redeployment using 
static and dynamic policies, optimization models for 
vehicle mix in EMS, and the use of UAVs for emergency 
response. Our research builds upon these efforts by 
also considering the coordination optimization between 
UAVs and ambulances.

There is a wealth of literature on ambulance operations 
management, with many studies focusing on minimizing 
average response time, as in our research. Early work in 
this area primarily utilized static policies, including 
threshold-based policies and policies derived through inte
ger programming (IP) or mixed IP. For example, Daskin 
(1983) and Marianov and ReVelle (1996) used an IP-based 
approach and generalized the maximal expected covering 
location problem (MEXCLP) for public service facility loca
tion analysis. Alternatively, the threshold-based policy is 
also widely used in ambulance dispatching and redeploy
ment. One representation of the threshold policy is the 
“preparedness” measure proposed by Andersson and 
Värbrand (2007), which is used to evaluate the ability of an 
EMS system to serve potential patients.

In the EMS system, patient numbers are highly uncer
tain, and so, preplanned scheduling or operation solutions 
may not optimally respond to fluctuating situations. There
fore, real-time decision making is required, which con
siders systems dynamics, such as time-varying demand 
(emergency calls), time-varying traffic, and different inter
vention times required by patients. As a result, several 
researchers have explored the benefit of dynamic dispatch
ing and redeployment optimization using assumptions 
such as exponential service time and no-buffer request 
queue. McLay and Mayorga (2013a, b) and Jagtenberg et al. 
(2017) built several MDP models and solved them to op
timality for small-scale instances. These exactly solved 
MDPs highlighted the value and suboptimality of the clos
est idle dispatching policy and how various equity formu
lations affect the underlying dispatching policies. Recent 
advances in ADP have improved our ability to solve large- 
scale problems efficiently. For example, Schmid (2012) and 
Jenkins et al. (2020) approximated value functions with tab
ular ADP. Among previous work using ADP, our work is 
most closely related to Maxwell et al. (2010) and Nasrollah
zadeh et al. (2018), which proposed novel basis functions 
based on the underlying problem structure to approximate 
value functions. Our work differs in that we consider the 
joint operation of two delivery modes for EMS logistics. 
The joint operation requires the consideration of additional 
novel basis functions for heterogeneous service providers. 
We refer to two review papers—Aringhieri et al. (2017) 
and Bélanger et al. (2019)—for comprehensive discussions 
on optimizing location, redeployment, and dispatching 
decisions for emergency medical vehicles.

Another stream of literature relates to vehicle mix and 
response to multiple requests for EMS. Similar to our 
work, most of these papers differentiate vehicles by their 

service capability for different types of patients. Previous 
papers consider multiple responses in the context of 
deterministic and probabilistic maximal covering ambu
lance location problems (Schilling et al. 1979, ReVelle 
and Marianov 1991). McLay (2009) proposed the 
MEXCLP with two types of servers to efficiently deploy 
two types of medical units (i.e., advanced life support 
(ALS) and basic life support (BLS)) to serve multiple 
types of customers. For UAV-ambulance coordination, 
Shin et al. (2022) developed a modeling framework to 
optimize a network of drones, bystanders, and ambu
lances for cardiac arrest response, taking into account the 
availability of bystanders. In addition to location pro
blems, researchers have also worked on dispatching 
and redeployment problems involving multiple types of 
ambulances with stochastic programming (SP) and 
MDP. Boujemaa et al. (2020) addressed the ambulance 
redeployment planning problem in a two-tiered EMS 
using a two-stage SP model, with the first stage addres
sing redeployment decisions and the second stage 
addressing dispatching decisions. Similarly, Yoon et al. 
(2021) formulated a two-stage SP problem for location 
and dispatching decisions considering prioritized em
ergency patients and also extended the model to in
corporate nontransport vehicles, similar to UAVs in our 
model. For real-time operations, Chong et al. (2016) and 
Yoon and Albert (2020, 2021) constructed MDP models 
to optimize the dispatching of multiple types of vehicles 
to (prioritized) patients, demonstrating structural prop
erties. For example, the optimal policy is a control-limit 
policy, which is more likely to send an ALS unit to calls 
when more ALS units are available. However, to make 
the MDP tractable, the authors only decided whether to 
dispatch an ALS or a BLS but not which specific unit to 
dispatch. With ADP-based solution techniques, we are 
able to model and improve upon dispatching and rede
ployment decisions with greater specificity, including 
the specific UAV and ambulance to dispatch and the spe
cific base to redeploy the UAV or ambulance to.

Unlike previous work on vehicle mix, we model the 
information of bystanders for UAV dispatch, which is 
unique. Additionally, to our best knowledge, among 
studies of multiple types of ambulances, only Park and 
Lee (2019) considered the real-time dispatching that 
makes specific dispatching and redeployment decisions. 
The authors leveraged ADP with state aggregation and 
monotonicity-preserving projection operators to solve 
the complex MDP model. In our work, we maintain a 
high level of fidelity without using state aggregation and 
address the curse of dimensionality through neural 
network-based VFA. We capture differences between 
UAVs and ambulances by using different transition 
dynamics and integrating them into the VFA using a 
queueing model of heterogeneous servers.

Recent studies have explored the feasibility of deliver
ing medical equipment via UAVs, including flotation 
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devices (Claesson et al. 2017b), AEDs (Boutilier et al. 
2017, Claesson et al. 2017a), and blood products (Amu
kele et al. 2017). In addition to strategic decisions, Chu 
et al. (2021) developed UAV dispatching rules based on 
the difference between predicted ambulance response 
time and calculated UAV response time for each out-of- 
hospital cardiac arrest. There are two categories of exist
ing literature that investigate the joint optimization of 
UAV planning and operations management. The first 
category concerns situations where UAVs are carried by 
truck and dispatched from the truck near the service 
location. Typical applications include precision agricul
ture, package delivery, oceanographic sampling, forest 
fire, or oil spill monitoring (Tokekar et al. 2016, Fawaz 
et al. 2017, Jia and Zhang 2017). The second category of 
studies considers cases where UAVs and ground vehi
cles perform independent tasks, similar to the situation 
in our work. However, most previous studies in this cat
egory only consider facility locations at the strategic level 
and UAV allocation at the tactical level (Dorling et al. 
2016, Agatz et al. 2018). The studies most similar to ours 
are Ulmer and Thomas (2018) and Chen et al. (2019). 
Ulmer and Thomas (2018) explored the addition of 
UAVs to conventional vehicles for the same-day delivery 
problem. Using an MDP model, the authors presented a 
dynamic vehicle routing problem with heterogeneous 
fleets, where the decisions were to reject an order and 
assign a UAV or a ground vehicle. To address the curse 
of dimensionality, the authors adopted policy function 
approximation based on the insight that distant custo
mers should generally be served by UAVs and that 
closer customers should be served by conventional vehi
cles. Chen et al. (2019) extended the work to include 
additional information on resource availability and 
demand as well and implemented a deep Q�learning. 
However, only the acceptance and general assignment 
decisions were made in both studies (i.e., the 
order/request should either be served by UAVs or 
be served by conventional vehicles). An important dif
ference in our work is that we seek to optimize the dis
patching and redeployment decisions of UAVs and 
ambulances with potentially multiple responses to each 
EMS request. This difference in the decisions signifi
cantly expands our MDP model, making it very difficult 
to parameterize the policy function directly and use the 
value function of state-action pairs. Additionally, our 
application emphasizes the “time criticality” of the ser
vice, with emergency response time being the key objec
tive. Therefore, the objective function is different, and 
different basis functions are required to approximate the 
value function.

3. MDP Model
This section presents an infinite-horizon average-cost 
MDP formulation. We adopt event-driven modeling to 

incorporate on-demand UAV and ambulance dispatch
ing and redeployment decisions in the model and 
capture the EMS system evolution. Events are triggered 
by changes in the status of UAVs, ambulances, and 
requests. Let N :� {1, 2, : : : , N} be the set of demand 
nodes, Mu :� {1, 2, : : : , Mu} be the set of UAV charging 
stations, and Ma :� {1, 2, : : : , Ma} be the set of ambulance 
bases (e.g., hospitals or bases of private EMS agencies). 
We consider a total of Lu UAVs and La ambulances. The 
home base of UAV l is denoted by hu

l ∈ {1, 2, : : : , Mu}, 
and the home base of ambulance l is denoted by 
ha

l ∈ {1, 2, : : : , Ma}. Let Au(s) be the set of available UAVs 
(i.e., Au(s) :� {l : ru

l � 0}, where ru
l is the remaining time 

in its current status of UAV l); similarly, let Aa(s) be the 
set of available ambulances (i.e., Aa(s) :� {l : ra

l � 0}, 
where ra

l is the remaining service time in its current status 
of ambulance l).

We divide 911 requests into two types based on 
whether UAVs can be of help. (1) Type 1 includes 
requests for which UAVs can serve as the first response, 
such as opioid overdose and out-of-hospital cardiac 
arrest. (2) Type 2 includes requests that only ambulances 
can help, such as massive hemorrhage. We assume that 
arrivals of EMS requests of type 1 and type 2 follow Pois
son processes with rates λu and λa, respectively. We 
make dispatching decisions for both types of requests. 
For type 1 requests, we need to choose between a single- 
ambulance response and a UAV-ambulance sequence 
response. For type 2 requests, we only consider which 
ambulance to dispatch. We also make redeployment 
decisions each time a UAV or ambulance finishes the 
current emergency response task and returns to a base 
for replenishment, recharging, and personnel rest. In the 
following model description, we assume that all the 
information obtained from the 911 call, such as request 
location, request type, and bystander information, is 
accurate.

3.1. State Space
The state space is composed of five parts: vectors 
Bu � (bu

1, bu
2, : : : , bu

Lu ), Ba � (ba
1, ba

2, : : : , ba
La ), C � (c1, c2, : : : , cJ), e, 

and τ, where bu
l , l � 1, : : : , Lu contains information about 

the state of the lth UAV; ba
l , l � 1, : : : , La contains informa

tion about the state of the lth ambulance; cj, j � 1, : : : , J 
contains information about the jth request; e denotes the 
event type; and τ corresponds to the current time. There
fore, the state space of the system is represented by 
S :� {s � (τ, e, Bu, Ba, C)}.

The status of UAV l is given by bu
l � (du

l , ru
l , f u

l ), 
l � 1, : : : , Lu, where du

l ∈ {1, 2, : : : , N} is the destination of 
each UAV. For this work, it is sufficient to consider four 
possibilities for the status of UAVs (i.e., f u

l ∈ {0, 1, 2, 3}, 
where 0 indicates that the UAV is available at the base, 1 
indicates that the UAV is going to a request location, 2 
indicates that the UAV is serving a request on the scene, 
and 3 indicates that the UAV is returning to a base).
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The state of ambulance l is given by ba
l � (da

l , ra
l , f a

l ), 
l � 1, : : : , La, where da

l ∈ {1, 2, : : : , N} is the destination of 
each ambulance. Assume that all the opioid-overdosed 
patients require transport to hospitals and that all other 
patients require transporting to hospitals with probabil
ity pt. For this work, it is sufficient to consider five possi
bilities for the status of an ambulance (i.e., f u

l ∈ {0, 1, 
2, 3, 4}, where 0 indicates that the ambulance is available 
at the base, 1 indicates that the ambulance is going to a 
request location, 2 indicates that the ambulance is serv
ing a request on the scene, 3 indicates that the ambulance 
is going to the hospital, and 4 indicates that the ambu
lance is returning to a base).

A request j is represented by cj � (gj, qj, oj,ωj), j � 1, 
: : : , J, where gj ∈ {1, 2, : : : , N} is the request location and 
qj is the arrival time of the request. For this work, oj ∈

{1A, 1B, 2} denotes the type and status of the request, 
where oj � 1A (oj � 1B) implies that UAVs are qualified 
for the first response and the request is waiting for the 
first (follow-up) response and oj � 2 implies that only 
ambulances are qualified for serving the request. If 
request j is finished, it would be marked as “served” and 
immediately removed from the request set. In addition, 
ωj represents bystander helping probability at request j. 
Specifically, ωj � 1 � (1 � pb)

Nb 
is the probability that at 

least one bystander is willing to help when the UAV 
arrives, where Nb is the estimated total number of 
bystanders and pb is the probability that each bystander 
is still willing to help when the UAV arrives. The 
bystander willingness pb can be estimated through inter
views (Lankenau et al. 2013).

An event is represented by e, e ∈ E, where E is the set of 
all possible event types. Without loss of generality, we 
assume that decisions are made at transition times. In 
our model, transition times are associated with the fol
lowing events: (1) request j arrives; (2) ambulance l is in 
transit to request j; (3) ambulance l arrives at the location 
of request j and starts service; (4) ambulance l finishes 
serving request j at the scene; (5) ambulance l finishes 
serving request j at a hospital; (6) ambulance l arrives at a 
base; (7) UAV l is in transit to request j; (8) UAV l arrives 
at the location of request j and starts service; (9) UAV l 
finishes serving request j at the scene and is in transit to a 
base; and (10) UAV l arrives at a base.

3.2. Action Space
We consider a loss system without request queues (i.e., a 
request will be outsourced to a nearby EMS agency if 
there are no available UAVs and ambulances in our sys
tem). Another option is to place requests in a queue 
when all servers are busy. Bandara et al. (2014) showed 
that the strategy performance relationship remains the 
same for systems allowing and not allowing request 
queueing, but the overall system performance with 
queuing is lower because of increased vehicle utilization. 
Therefore, we consider outsourcing requests that arrive 

when no ambulance is available. The action space is 
described with three event-based cases based on the type 
of actions required.

Case 1. If request j arrives (e � 1), the decision maker 
has three types of decisions: (1) whether to outsource 
the request; (2) which ambulance to immediately dis
patch to serve the request; and (3) which UAV to 
immediately dispatch and which ambulance to dis
patch as a follow-up.

Define Xu
l, j � 1 if UAV l is dispatched to request j 

and Xu
l, j � 0 otherwise. Also, define Xa

l, j � 1 if ambu
lance l is dispatched to request j and Xa

l, j � 0 other
wise. Therefore, if event e � 1, the action space is 
given by

A1(s) :� (Xu
l, j, Xa

l, j) :
X

l∈Aa(s)

Xa
l, j ≤ 1,

8
<

:

X

l∈Au(s)

Xu
l, j ≤

X

l∈Aa(s)

Xa
l, j,

Xu
l, j, Xa

l, j ∈ {0, 1}

)

, 

where the first constraint states that for each request, at 
most one ambulance is dispatched and the second con
straint states that the number of UAVs dispatched 
should not exceed the number of ambulances dis
patched. The two constraints together limit the dispatch
ing decisions into three types: (1) dispatching one UAV 
and one ambulance, (2) dispatching only one ambulance, 
and (3) dispatching no UAV or ambulance (i.e., outsour
cing the request).

Case 2. If event e ∈ {5, 9}, the decision is to determine 
to which base to redeploy the ambulance/UAV.

If event e � 5 (i.e., an ambulance finishes service), 
let Za

l, b � 1 if ambulance l is redeployed to base b and 
Za

l, b � 0 otherwise. Then, the action space is given by

A2(s) :� (Za
l, b) :

X

b∈Ma
Za

l, b � 1
( )

, 

which ensures that ambulance l is redeployed to only 
one base.

If event e � 9 (i.e., a UAV finishes service), let Zu
l, b �

1 if UAV l is redeployed to base b and Zu
l, b � 0 other

wise. Then, the action space is given by

A3(s) :� (Zu
l, b) :

X

n∈Mu
Zu

l, b � 1
( )

, 

which ensures that UAV l is redeployed to only one base.

Case 3. If the event e ∈ {2, 3, 4, 6, 7, 8}, we set A(s) � ∅

(i.e., no action will be taken).
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3.3. Transitions
Let sk be the state of the system when the kth event hap
pens. The evolution of state sk can be characterized by 
action ak, random element ω(sk, ak), and a function F (i.e., 
sk+1 � F(sk, ak,ω(sk, ak))). We assume that the on-scene 
time follows a lognormal distribution (Ingolfsson et al. 
2008).

3.4. One-Step Reward Function
We consider maximizing the average health outcome 
as the primary objective function in our optimization 
framework. The health outcome is modeled as a decreas
ing function of the response time because the likelihood 
of survival decreases with the time it takes to receive 
medical treatment (Blackwell and Kaufman 2002, Wilde 
2013), especially in cases of opioid overdose where every 
minute is critical. Let h(sk, ak, sk+1) denote the cost or 
reward of a transition from sk to sk+1, when action ak is 
taken. The system only incurs a cost or gains a reward at 
event e ∈ {1, 3, 8}.

When e � 1 (i.e., request j arrives), a penalty will be 
incurred if the request is outsourced, specifically

h(sk, ak, sk+1) �

Co if
X

l∈Au(s)

Xu
l, j � 0,

X

l∈Aa(s)

Xa
l, j � 0;

0 otherwise,

8
<

:

(1) 

where Co is the penalty for health outcome decrease from 
delay in response time caused by outsourcing request j.

When e � 8 (i.e., a UAV arrives at the scene),

h(sk, ak, sk+1) �
g1(τ� qj) · 1{Nj≥1} if oj � 1A;

0 otherwise,

(

(2) 

where τ� qj represents the first response time of request 
j; g1(·) denotes the reward function with respect to the 
response time for opioid overdoses (e.g., g1(t) � [T1�t]+

T1
), 

where T1 is the response time threshold (e.g., T1 � 8 min
utes); and random variable Nj ~ Binom(Nb, pb) is the 
number of willing bystanders when a UAV arrives at 
the scene. If oj ≠ 1A, then the UAV arrives later than the 
ambulance, or the UAV is dispatched for a request of 
type 2. In this case, the UAV dispatching becomes 
redundant.

When e � 3 (i.e., an ambulance arrives at the scene),

h(sk, ak, sk+1) �

g1(τ� qj) if oj � 1A;

g2(τ� qj) if oj � 2;

0 if oj � 1B,

8
><

>:
(3) 

where g2(·) denotes the reward function with respect to 
the response time for general (e.g., g2(t) � [T2�t]+

T2
), with T2 

being the response time threshold (e.g., T2 � 12 minutes). 
Let oj � 1A and oj � 2 denote the cases where the ambu
lance serves as the first response; let oj � 1B denote the 

case where the ambulance serves as the follow-up 
response.

3.5. Optimality Criterion
The expected average reward value of a policy π is 
defined for all s0 ∈ S as

vg(π, s0) :� lim
T→∞

1
T Est, at, st+1

"
XT�1

t�0
h(st, at, st+1) |s0,π

#

, (4) 

where h(st, at, st+1) is the one-step cost/reward, which is 
defined in Section 3.4. The limit in Equation (4) exists for 
a stationary policy when the MDP is unichained (Puter
man 2014, section 8.3.3). Assuming that the Markov 
chain under the policy π is unichain, we have vg(π, s0) �

vg(π), ∀s0 ∈ S: Then, the optimal policy π∗ is the policy 
that satisfies the average-reward Bellman optimality 
equation,

vb(π∗,s)+vg(π∗)�max
a∈A

X

s′∈S

p(s′ |s,a)[h(s,a,s′)+vb(π∗,s′)],

∀s∈S, (5) 

where vb(·) is the optimal relative value function, 
h(s, a, s′) is the one-step cost/reward, and p(s′ |s, a) is the 
transition probability. For notational simplicity, we omit 
π∗ and denote the optimal average reward as vg in the fol
lowing sections. We refer to Cavazos-Cadena (1991) and 
Cavazos-Cadena and Sennott (1992) for summaries of 
results on existence conditions for discrete-time average 
cost MDPs with countable state space and finite action 
sets.

4. Approximate Solutions
A conventional method to solve Equation (5) is through 
policy iteration (PI). The PI algorithm starts with a ran
dom policy, computes the value function of that policy 
(step 1: policy evaluation), and then, determines a new 
and improved policy based on the previous value func
tion (step 1: policy improvement). These two steps are 
repeated iteratively until the policy converges. However, 
to perform steps 1 and 2, it is first necessary to parameter
ize the associated transition matrix S × A × S → R and 
reward matrix S × A → R. In our MDP model, the state 
space |S | is unbounded as the time variable τ is continu
ous. Even without τ, the dimension of the state space 
grows exponentially with the number of UAVs and 
ambulances. This makes it infeasible to store all 
vb(s), s ∈ S, not to mention enumerating the state space to 
solve the Bellman Equation (5) to optimality. To tackle 
the curse of dimensionality resulting from the need to 
enumerate the state space, we conduct a simulation- 
based API. The main framework of the API algorithm is 
described in Section 4.1.

To represent value functions of the high-dimensional 
state space, we approximate the relative value function 
(i.e., vb(s), s ∈ S) with a neural network model of a finite 
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set of basis functions (or features). That is, for each s ∈ S,
vb(s) ≈ Z(F(s)) � Z(φ1(s),φ2(s), : : : ,φf (s)): (6) 

Here, F(s) � (φ1(s),φ2(s), : : : ,φf (s)) is the set of f basis 
functions, and Z(·) is a model mapping basis functions to 
the relative value function. In our algorithm, Z(·) repre
sents a neural network model. Using Equation (6), the 
approximate relative value function is determined by 
the neural network model Z(·) and a set of prespecified 
basis functions, which are described in detail in Sections 
4.1 and 4.2, respectively.

4.1. Approximate Policy Iteration
The NN-API algorithm is extended from the basic PI 
algorithm and adapted in the following four aspects.

4.1.1. Simulation-Based Policy Evaluation. The core 
concept of approximate dynamic programming is to fol
low a sample path rather than enumerating the state 
space to update value functions. In NN-API, sample 
paths are generated based on the current policy and pre
defined distributions of randomness. Only rewards 
from the states visited on the sample paths would be 
used to update Z(·).

4.1.2. Postdecision State Variable. A postdecision state 
variable is the state of the system after we have made a 
decision but before any new information has arrived 
(Powell 2007). Rather than estimating the expectation of 
the value around the next predecision state sk+1, we 
directly estimate V(sa

k) for the postdecision state sa
k. That 

is, we make decisions by optimizing v̂n
k � minak (C(sn

k , ak)

+γVn�1
k (SM, a(sk, ak))) instead of estimating the expecta

tion and optimizing ṽn
k � minak (C(sn

k , ak) + γE{Vn�1
k+1 

(SM, W(sn
k , ak, Wk+1))}). Here, M and W represent our 

model and the uncertainty in the model, respectively; 
SM, a denotes the system state immediately after decision 
a, and SM, W denotes the system state after the uncertainty 
W is realized.

4.1.3. Average Reward Computation. For the average 
reward vg computation, instead of solving the Poisson 
Equation (5), NN-API estimates vg iteratively with 
vg ← vg + βg∆g, where βg � 1

nu+1 (nu is the number of 
updates of vg so far) and ∆g � r(s, a) � vg.

4.1.4. Value Function Representation. We use a feed- 
forward neural network to approximate the value func
tion rather than using a tabular form. The neural net
work consists of three layers: an input layer, a hidden 
layer, and an output layer. The information provided to 
the input layer is a set of |f | basis functions associated 
with a postdecision state sa. The hidden layer consists of 
a set of nonlinear activation units, and the size of this 
layer is a tunable parameter. The output layer produces 

a single scalar output by applying the activation func
tion, which is the final approximation for the value func
tion with respect to the input. For more information on the 
design and training of the neural network, see section 1 in 
the online appendix.

The four solution ideas help alleviate the curse of 
dimensionality and are incorporated into the framework 
of the Neural Network-based Approximate Policy Itera
tion (NN-API) (Algorithm 1) by using temporal differ
ence learning.

Algorithm 1 (NN-API: Neural Network-Based Approx
imate Policy Iteration)

Result: A trained neural network whose input is 
basis functions and output is an approximate value 
function.

Construct the basis functions F � (φ1,φ2, : : : ,φf )
′;

Initialize the neural network Z0(F) using a myopic 
policy. Initialize the average reward v̂1, 1

g � 0.
for n � 1, 2, : : : , N do

Policy evaluation starts.
Sample an initial state Sn, 1 and choose a sample 
path ωn;
for m � 1, 2, : : : , M do

Compute an, m � arg mina∈An,m (C(sn, m, a) + Zn�1 
(Φn, m(SM, a(Sn, m, a))));
Compute Sn, m+1 � SM(Sn, m, an, m, Wm(ωn));
Compute v̂n, m+1

g � v̂n, m
g + βg(C(sn, m, a) � C(sn, m, a)), 

βg � 1=((n � 1)M + m + 1); 
end
Let Cn be an M × F matrix where the (i, k)th entry 
is given by φn, i

k ;
Let V̂ n be a vector of M dimensions with elements, 
v̂n, m

� C(sn, m, an, m) � v̂n, M
g + Zn�1(Φn, m(SM, an,m

(Sn, m, an, m))), 
m� 1,…, M;
Policy evaluation ends.
Retrain the neural network model with feature 
Cn and label V̂ n. Denote the updated neural net
work model with Zn; Policy improvement.

end

4.2. Basis Functions
A key difficulty in the design of value function approxi
mation is to select a set of basis functions that enable us 
to approximate the downstream costs. Based on the 
problem property, we conjecture the following basis 
functions (Sections 4.2.1–4.2.6). We adopt an iterative 
process of testing and refining to identify effective basis 
functions for our ADP implementation. Although 
simulation-based comparison would need to verify the 
effectiveness of these basis functions, we ensure that 
the constructed basis functions have the same monoto
nicity as the optimal value function at the design phase. 
Specifically, the optimal value function is monotone 
with bystander helping probability and availability of 
ambulances/UAVs, as stated in Proposition 1.
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Proposition 1. The optimal value function for the average- 
reward MDP described in Section 3 has the following 
properties. 

1. It increases with an increase in the bystander helping 
probability wj given the assumption that the on-scene time of 
the UAV is insignificant.

2. It increases when the system has one additional avail
able UAV or ambulance.

The proof of Proposition 1 is based on the coupling 
arguments between the systems under optimal and sub
optimal policies; see section 2 in the online appendix for 
details. To further refine the design of basis functions, we 
follow Nasrollahzadeh et al. (2018) by approximating 
the system dynamics by constructing a queueing model. 
We use an M=G=c=c queue to approximate our system 
because we do not consider putting 911 requests in the 
queue as reasonable. Another adaptation is from the fact 
that we cannot treat UAVs and ambulances as homoge
neous servers with the same service time distribution. 
Thus, based on the approximations provided by Fakinos 
(1980), we construct basis functions by dealing with the 
queueing system with heterogeneous servers. In Sections 
4.2.1–4.2.6, when mentioning “server,” we refer to both 
UAVs and ambulances for type 1 requests and ambu
lances for type 2 requests.

4.2.1. Expected Delayed Rewards. When dispatching 
decisions are made (i.e., e � 1), the immediate reward 
only includes the penalty for outsourcing requests. The 
reward for serving the request is not realized until a 
UAV or ambulance arrives at the scene (i.e., e � 8 or e �
3). To reflect the direct impact of the dispatching decision 
on the reward, we include the expected reward as one of 
the basis functions. We denote the expected travel time 
for UAVs to travel between locations d1 and d2 as 
t̂u

(d1, d2) and the expected travel time for ambulances 
as t̂a

(d1, d2).
If both a UAV and an ambulance are dispatched (i.e., 

Xu
l1, j � 1, Xa

l2, j � 1),

φ1(s) �

ωj ·g1(t̂u
(du

l1 ,gj)) if oj �1A, t̂u
(du

l1 ,gj)< t̂a
(da

l2 ,gj),

g1(t̂a
(da

l1 ,gj)) if oj �1A, t̂u
(du

l1 ,gj)≥ t̂a
(da

l2 ,gj),

g2(t̂a
(da

l2 ,gj)) otherwise,

8
>><

>>:

(7) 

where oj � 1A, t̂u
(du

l1 , gj) < t̂a
(da

l2 , gj) refers to the scenario 
where UAVs are eligible for the first response and the 
dispatched UAV is expected to arrive earlier than the dis
patched ambulance. Here, g(t̂u

(du
l1 , gj)) represents the 

reward from UAV’s first response time if there is more 
than one willing bystander (with probability ωj); oj �

1A, t̂u
(du

l1 , gj) ≥ t̂a
(da

l2 , gj) refers to the scenario where 
UAVs are eligible for the first response, but the dis
patched ambulance is expected to be the first response. 

Otherwise, oj � 2 (i.e., the dispatched ambulance) would 
serve as the first response.

If only an ambulance is dispatched (i.e., 
P

lXu
l, j � 0, 

Xa
l2, j � 1), a delayed reward from ambulance response is 

expected: that is,

φ1(s) �
g1(t̂a

(da
l2 , gj)) if oj � 1A,

g2(t̂a
(da

l2 , gj)) if oj � 2:

(

(8) 

If the request is outsourced (i.e., 
P

lXu
l, j � 0,

P
lXa

l, j � 0), 
the penalty for outsourcing would be incurred immedi
ately when the dispatching decision is made so that there 
would not be any delayed rewards: that is,

φ1(s) � 0: (9) 

4.2.2. Uncovered Request Rate. This basis function 
captures the rate of request arrivals that cannot be 
reached within the response time threshold by any of the 
available servers. Let Au(s) and Aa(s) be the set of avail
able UAVs and the set of ambulances, respectively, 
when the system state is s. Specifically, Au(s) � {l | f u

l � 0}, 
and Aa(s) � {l | f a

l � 0}. Then, the coverage of demand 
node i can be written as

Ni(s) �
X

l∈Au(s)

1{d(du
l (s), i)≤∆} +

X

l∈Aa(s)

1{d(da
l (s), i)≤∆}: (10) 

We can then compute the rate of request arrivals that are 
not covered by any available servers with

φ2(s) �
X

i∈N

λi1{Ni(s)�0}: (11) 

Note that a type 1 request is considered as covered either 
when (i) an ambulance is expected to reach it within time 
TA or when (ii) a UAV is expected to reach it within TA 
and an ambulance is expected to reach it within TB.

4.2.3. Future Uncovered Request Rate. When making 
redeployment decisions, the state where the redeployed 
server reaches its new base is more important than the 
current state. This basis function is parallel to the second 
basis function, but it replaces the current location of rede
ployed servers by its destination if we are making rede
ployment decisions (i.e., e ∈ {5, 9}). Denote the future 
state with the redeployed server arriving at the base by 
s′. Then, the future uncovered rate can be written as

φ3(s′) �
X

i∈N

λi1{Ni(s′)�0}, (12) 

where the coverage Ni(s′) is defined in the same way as 
in (10) except that s is replaced by s′. When making dis
patching decisions, we do not perform the replacement 
because the server will still be unavailable when it 
arrives at its destination. In other words, with the 
“future uncovered request rate,” we would like to 
maximize the future coverage when the redeployed 
server becomes available.
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4.2.4. Future Missed Call Rate. This basis function cap
tures the rate that a request is outsourced or delayed 
because all the servers are busy with other requests, 
which is represented as

φ4(s) �
XN

i�1
λiPi(s), (13) 

where Pi(s) is the probability that all servers that can 
reach a request at demand node i are busy with other 
requests. We estimate {Pi(s), i � 1, : : : , N} by treating the 
request service processes in different demand areas as 
Erlang loss systems. In an Erlang loss system with arrival 
rate λ, service rate µ, and n servers, the steady-state prob
ability of losing a request is given by ψ(λ, µ, n) �

(λ=µ)
n
=n!Pn

k�0
(λ=µ)

k
=k!

. In an EMS system, arrivals follow a Poisson 

distribution, which satisfies the assumptions of Erlang 
loss systems. Service times include response time (base 
to the scene), on-scene time, transport time (scene to hos
pital), and transition time (hospital to base). However, in 
our model, service time distributions for ambulances 
and UAVs are not identical. Fakinos (1980) generalized 
the Erlang B formula for the case of heterogeneous ser
vers. Specifically, for an M=G=k=k blocking system with 
heterogeneous servers, denote the arrival rate at demand 
node i with λi, average service time βi, j, j � 1, : : : , k, and 
their product ρi, j � λiβj, j � 1, : : : , k. Then, the probability 
of blocking is

Pi(s) � Bi,k(ρi,1, : : : ,ρi,k) �

1
k!
ρi,1ρi,2 ⋯ρi,k

Pk
v�0

(k�v)!

k!

P
j1<⋯<jnρi,j1ρi,j2 ⋯ρi, jk

, 

where j1 < j2 <⋯< jv is a permutation of v servers in 
{1, 2, : : : , k}. To estimate parameters in the generalized 
Erlang B formula, we let Li be the set of available servers 
that can serve a request in each demand node i within 
the threshold response time so that Li(s) � {l ∈ A(s) :

d(da=u
l , i) ≤ ∆}. Then, we use k � |Li(s) | as the number of 

servers in the Erlang loss system for demand area i.

4.2.5. Average Response Time. This basis function 
captures the average response time of the two closest 
servers to each request. We only count the number of 
servers satisfying certain conditions in the previous three 
basis functions. With “average response time,” we 
emphasize the exact distance, directly affecting the 
response time. Denote by ρli the probability that server l 
is dispatched to the request at node i (Chelst and Jarvis 
1979). Then, the average travel time to each demand 
node is

Ti �

P
lρlitli

P
lρli

, 

where tli is the average travel time from l to i. The dis
patching probability is estimated by the hypercube 

queueing model developed by Larson (1974), which 
characterizes the operations of an EMS system with a 
multiserver-queuing system comprising distinguishable 
servers. Additionally, we estimate the dispatching 
probability following the approximation procedures 
described in Larson (1975). Thus, the demand-weighted 
average response time can be written as

φ5(s) �
X

i∈N

λiTi �
X

i∈N

λi

P
lρlitli

P
lρli

: (14) 

4.2.6. Availability Reduction. The previous five basis 
functions capture the spatial features of the system, 
whereas this one captures the temporal aspect of avail
ability reduction associated with the traveling of UAVs 
and ambulances. The travel time matters because UAVs 
and ambulances are unavailable to serve requests during 
the travel. For example, consider a scenario where an 
ambulance can be redeployed to two bases, A and B. 
Redeployment to A results in a slightly higher coverage 
but requires a much longer travel time. Without this 
basis function, we will choose to redeploy the ambulance 
to base A, but it may not always be the optimal choice. 
Therefore, we represent availability reduction caused by 
the travel time of UAVs and ambulance redeployment 
with the following basis function:

φ6(s) �

t(dl(s), dl(s′)) e ∈ {5, 9} and
X

b∈Ma
Za

l, b � 1 or

X

b∈Mu
Zu

l, b � 1,

0 otherwise:

8
>>>>><

>>>>>:

(15) 
5. Numerical Experiments
In this section, we present a simulation-based compara
tive study with realistic UAV design parameters and real 
EMS data from the NEMSIS database and naloxone 
administration heat map in the state of Indiana. We start 
by introducing the experimental setup and benchmark 
policies. Then, we compare the policies’ performance in 
scenarios with varying numbers of UAVs, service areas, 
and base locations. When we investigate the influence of 
one factor, everything else is fixed to ensure a fair com
parison. Next, in Sections 5.6 and 5.7, we analyze the 
underlying mechanism behind the superior perfor
mance of NN-API and provide insights into situations 
where a simpler approach, such as the static ad hoc pol
icy, exhibits comparable performance with the NN-API.

5.1. Experimental Setup
In this section, we present an overview of our experi
mental setup and the calibration criteria employed for 
the determination of base locations, bystander willing
ness, EMS demands, performance metrics, and valida
tion of results. For a comprehensive understanding of 
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the estimation and evidential support for other para
meters, such as fleet sizes and time parameters, please 
refer to section 3 in the online appendix. To ensure statis
tical confidence in our comparisons, we set the simulation 
time horizon to one day and conducted 400 replications 
for each case.

5.1.1. Base Locations and Initial Layouts. To evaluate 
the efficiency of dynamic operations of the joint EMS sys
tem, we consider the home bases and initial layouts of 
UAVs and ambulances as predetermined. We leverage a 
status quo layout. Ambulance bases are located at hospi
tals, police stations, and fire departments; bases of UAVs 
are located at low-ambulance coverage areas. Initially, 
numbers of ambulances and UAVs located at each base 
are proportional to the demand density of the base loca
tion. We investigate the impact of optimizing base loca
tions in Section 5.5.

5.1.2. Bystander Willingness. The willingness of bystan
ders to provide assistance in emergency situations exhi
bits significant variation, as reported in the literature, 
with estimates ranging from 27% to 76% (Strang et al. 
2000, Kerr et al. 2009, Barbic et al. 2020). This variability 
can be attributed to several factors, including sociodemo
graphic characteristics, prior witnessing experience, 
prior overdose experience, perceived risk of arrest, and 
the specific location of the overdose incident (Tobin et al. 
2005, Burn 2017). Considering the wide range of esti
mates, we model bystander willingness using a uniform 
distribution within the interval of [0:2, 0:8].

5.1.3. EMS Demands. For our case studies, we extract 
EMS request distribution from the naloxone administra
tion heat map in the state of Indiana, with the assump
tion that opioid overdose requests share the same 
distribution with other EMS requests. The geographic 
distribution of these request incidences (measured by 

the centrality of the distribution) is consistent with the 
rural-urban area classification (Figure 2). Accordingly, 
we consider three catchment areas based on their geo
graphic delineation: Marion County (urban), Tippecanoe 
County (semiurban), and Marshall County (rural).

5.1.4. Performance Metrics. We calculate six metrics: 
accumulated total rewards, average response time for all 
requests and for opioid overdose requests, fraction of 
calls served within the response time threshold for all 
requests and for opioid overdose requests, and fraction 
of outsourced requests.

5.1.5. Results Validation. The response time of the 
practical policy is in line with the performance of the cur
rent EMS system. Specifically, median EMS arrival times 
for all call types are between seven and eight minutes 
(Mell et al. 2017). In rural, remote, geographically chal
lenging, or high-traffic urban areas, this response time 
can average more than 14 minutes (Hanna 2018).

5.2. Benchmark Policies
In this section, we introduce several policies that are 
used as benchmarks in our study.

5.2.1. Static Ad Hoc Policy. In current practice, experi
enced dispatchers make ambulance dispatching deci
sions in the following ad hoc manner (Schmid 2012). 
They can view a dashboard with a regional map that 
shows the position and status of each server. In case of an 
emergency, the closest available server is usually dis
patched. Servers will return to their home bases after 
serving a request.

5.2.2. Dynamic Heuristic Policy. When an EMS request 
is received, the closest available server is dispatched. The 
redeployment policy uses the heuristic developed by 
Jagtenberg et al. (2015), which is based on solving the 

Figure 2. (Color online) Spatial Distribution of Naloxone Administration for Opioid Overdose 

Notes. In panels (a)–(c), the dotted areas represent regions with medium-to-high incident arrival rates (In colored version, purplish and yellowish 
colors represent medium and high incident arrival rates, respectively). Panel (d) shows the probability of an incident occurring in each grid based 
on the incident arrival probability distribution heat map for Tippecanoe County. For example, the value “0.270” in the center grid indicates that 
there is a 0.27 probability of the next incident occurring in that grid in Tippecanoe County. (a) Marion. (b) Tippecanoe. (c) Marshall. (d) Extracted 
distribution.
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MEXCLP. This heuristic is easy to implement and has 
shown good performance for instances considered by 
the authors. When a server finishes its current task, it 
will be redeployed to a base that results in the largest 
marginal contribution to coverage according to the 
MEXCLP model.

5.2.3. Maxwell ADP. Maxwell et al. (2010) and Nasrol
lahzadeh et al. (2018) proposed two ADP-based policies 
for optimal ambulance redeployment decisions and/or 
dispatching decisions. We regard them as predecessors 
of our solution methodology and thus, use them as 
benchmark policies. We employ the basis functions and 
coefficient training algorithms proposed by Maxwell 
et al. (2010) and Nasrollahzadeh et al. (2018) while keep
ing our modeling framework, which includes the system 
dynamics and the objective function.

5.2.4. L-ADP. In this ADP-based benchmark, we employ 
the basis functions developed in Section 4.2. However, for 
feature combination and ADP training, we adopt a linear 
representation for the value function approximation and 
choose the coefficient training algorithms in Maxwell et al. 
(2010) and Nasrollahzadeh et al. (2018).

5.3. Benefit of Introducing UAVs
In this section, we explore the benefit of the joint opera
tion of UAVs with ambulances. The comparison is based 
on the arrival profile in Tippecanoe County. We consider 
three settings of the fleet size (i.e., no UAVs, 8 UAVs, and 
16 UAVs). Table 1 suggests that the NN-API policy 
achieves a shorter response time than the benchmark in 
all the tested scenarios (the complete comparison results 
can be found in section 4.1 in the online appendix).

Table 1 demonstrates that the incorporation of UAVs 
into an EMS system can significantly reduce the response 

time, especially for opioid overdose requests. The 
response time reduction is more significant in rural 
areas, where ambulance resources are typically limited. 
For both counties, the response times can be reduced by 
over 30% with the use of UAVs, even when using a sim
ple operational strategy. With our proposed strategy, 
response times could be reduced by as much as 50%. 
This magnitude of reduction in response time could 
potentially save more lives, as UAVs would be able to 
arrive at the scene faster and provide lifesaving treat
ment in a timely manner. This could be especially benefi
cial for opioid overdose victims who might not have 
survived without prompt medical intervention. More
over, Table 1 also demonstrates comparable perfor
mances between the NN-API policy with no UAV and 
the static policy with eight UAVs in Tippecanoe County 
(semiurban). This suggests that intelligent real-time 
operations can compensate for the lack of EMS resources. 
In general, the addition of UAVs to the EMS system can 
improve the overall performance and efficiency of emer
gency response.

5.4. Sensitivity Analysis on Service Areas
In this section, we investigate the sensitivity of the policy 
performances with respect to the urban-rural delineation 
of the service areas. As shown in Figure 3, a service area 
that is more urban (e.g., Marion County) tends to have a 
higher volume of requests and more pockets of spatially 
concentrated requests, whereas a service area that is 
more rural (e.g., Marshall County) tends to be the 
reverse. Table 2 summarizes our results, suggesting that 
the NN-API policy performs consistently better than the 
benchmarks in terms of accumulated rewards. The com
plete comparison results can be found in section 4.2 in 
the online appendix.

Table 2 suggests that in areas with high demand, such 
as Marion County, more requests arrived continuously. 
Hence, ADP-based policies take advantage of considering 
future requests and lead to significantly better perfor
mance, as indicated by a p-value of less than 0.01 in a 
paired t-test. In low-demand cases, like Marshall County, 
the intervals between requests were longer, making the 
decision process more similar to a one-shot decision. In 
these cases, there is barely any benefit from sacrificing 
current rewards to prepare for future demand, resulting 
in similar performances between the NN-API policy and 
the static policy, as indicated by a p-value of 0.12 in a 
paired t-test.

5.5. Performance Improvement with Optimized 
Base Locations

In this section, we investigate the impact of the optimiza
tion of the home base locations on the policy perfor
mance. We use a maximal coverage location problem 
(MCLP) to jointly optimize the locations of ambulance 
and UAV bases for maximum coverage. More details 

Table 1. Average Response Time (Minutes) Comparison 
(95% Confidence Interval) Among Different Numbers of 
UAVs in Tippecanoe County (Semiurban) and Marshall 
County (Rural)

General Opioid

Tippecanoe County
0 UAV

NN-API 10.8 6 0.3 8.3 6 0.4
Static 13.7 6 0.3 12.8 6 0.5

8 UAVs
NN-API 9.1 6 0.4 5.7 6 0.3
Static 10.3 6 0.2 7.7 6 0.4

Marshall County
0 UAV

NN-API 12.6 6 0.5 10.8 6 0.5
Static 13.5 6 0.6 11.5 6 0.7

8 UAVs
NN-API 7.8 6 0.3 5.4 6 0.3
Static 9.3 6 0.4 7.9 6 0.5
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about this location model can be found in section 4.3.1 
in the online appendix. We compare the performance 
of our NN-API policy with the benchmark policies 
under four different sets of base locations in Tippecanoe 
County (Figure 4): (a) both random, where both ambu
lance and UAV bases are randomly located across the 
service area; (b) status quo supplementary (the baseline 
setting used in the previous two sections), where ambu
lance bases are located at hospitals, fire departments, 
and police stations, whereas UAV bases are located in 
low-ambulance coverage areas; (c) status quo optimized, 
where ambulance bases are fixed at status quo locations 
and only UAV bases are optimized using an MCLP; and 
(d) both optimized, where both ambulance and UAV 
bases are jointly optimized using a larger-scale MCLP.

To simplify the result presentation and clarify the 
comparison across different settings, we only present the 
performance of the NN-API and static ad hoc policies in 
Table 3. Full comparative results can be found in section 
4.3.2 in the online appendix.

Table 3 shows that our NN-API policy consistently 
outperforms the benchmark policies in terms of 

accumulated rewards by reducing response times, parti
cularly for opioid overdoses. This suggests that even 
with predetermined base locations, there is always room 
for improvement in real-time operations, which our 
NN-API policy can achieve. Furthermore, the table 
demonstrates a significant improvement from the Both 
random setting to the status quo-supplementary setting 
under both the NN-API and static policies, highlighting 
the importance of base locations. Base locations determine 
the feasible choices for dispatching and relocation deci
sions, and optimizing them could further improve perfor
mance and shorten response times, especially for the 
static policy. Although optimizing base locations can 
improve coverage, the impact of such optimization for the 
NN-API policy may be limited to Tippecanoe County 
because of the centralized pattern of requests. The status 
quo-supplementary setting yields base locations that ade
quately cover high-demand areas, and optimizing base 
locations would primarily benefit low-demand areas 
through enhancing coverage. Therefore, the resulting 
improvement in average response time may not be signif
icant. Nevertheless, optimizing base locations in regions 

Figure 3. (Color online) Spatial Distribution of Naloxone Administration and Settings of Ambulances and UAVs in Tippecanoe, 
Marion, and Marshall Counties 

Notes. (a) Tippecanoe. (b) Marion. (c) Marshall.

Table 2. Performance Comparison (95% Confidence Interval) Among Different Service Areas

Reward

Response time (minutes) Respond within threshold (%)

Outsourced (%)General Opioid General Opioid

Tippecanoe
NN-API 2,132 6 40 9.1 6 0.4 5.7 6 0.3 76.6 6 0.4 78.8 6 0.4 13.9 6 0.4
Static 1,882 6 39 10.3 6 0.2 7.7 6 0.4 74.9 6 0.5 74.6 6 0.7 14.8 6 0.4

Marion
NN-API 5,420 6 133 6.8 6 0.3 4.9 6 0.2 70.2 6 0.5 72.6 6 0.6 21.9 6 0.4
Static 3,672 6 104 7.9 6 0.6 7.4 6 0.5 64.5 6 0.7 61.2 6 0.7 25.9 6 0.8

Marshall
NN-API 135 6 10 12.6 6 0.6 8.1 6 0.6 72.6 6 1.2 74.1 6 1.7 17.5 6 1.0
Static 112 6 9 13.5 6 1.1 9.2 6 0.8 67.5 6 1.1 62.2 6 1.8 18.1 6 0.9
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with more dispersed demands could lead to more signifi
cant reductions in response time.

5.6. Mechanism Behind Performance Superiority
Our experiments in Sections 5.3–5.5 consistently demon
strate that the NN-API policy outperforms the bench
mark policies, as shown in Tables 1–3. The NN-API 
policy is particularly effective at reducing response times 
for opioid overdose emergency requests. Table 4 pro
vides an example of the performance comparison 
between the NN-API policy and all the tested bench
marks. The superior performance of the NN-API policy 
is driven by the consideration of the following compo
nents: dynamic redeployment, sequential events and 
long-term cost, heterogeneity between UAVs and ambu
lances, and the complex relationship between value 
functions and basis functions. The benefits of consider
ing these components are verified by the comparison 
between different benchmarks.

The ad hoc static policy generally performs poorly 
compared with the other policies. With the same dis
patching policy, the heuristic policy can achieve a shorter 

response time by maximizing coverage in dynamic rede
ployment. In general, because of the same dispatching 
policy, the performances of the static policy and the 
dynamic heuristic policy do not differ a lot from each 
other. In most of the test scenarios, the three ADP-based 
policies significantly outperform the other two policies, 
with a much shorter response time, particularly for opi
oid overdose emergency requests. This is because these 
policies consider long-term rewards and are able to learn 
toward an objective function that gives higher weights to 
opioid overdose cases. Among the three ADP-based pol
icies, the NN-API and L-ADP policies can lead to higher 
rewards in most of the test scenarios. Although Maxwell 
ADP occasionally outperforms L-ADP, the NN-API pol
icy, which uses a well-trained neural network, can con
sistently improve on the performance of L-ADP and 
outperform Maxwell ADP. The superior performance of 
the NN-API policy can be attributed to two factors: the 
design of the basis functions and the modeling flexibility 
of the neural network. The basis functions we use take 
into account the heterogeneity of ambulances and UAVs 
in terms of service time and incorporate temporal features 

Figure 4. (Color online) Various Settings of Base Locations of Ambulances and UAVs in Tippecanoe County 

Notes. (a) Both random. (b) Status quo supplementary. (c) Status quo optimized. (d) Both optimized.

Table 3. Performance Comparison (95% Confidence Interval) Under Different Base Locations and Initial Layouts at 
Tippecanoe County

Reward

Response time (minutes) Respond within threshold (%)

Outsourced (%)General Opioid General Opioid

Both random
NN-API 1,975 6 44 11.5 6 0.4 7.4 6 0.3 76.3 6 0.4 78.6 6 0.5 15.2 6 0.3
Static 1,735 6 38 14.1 6 0.6 8.7 6 0.4 74.0 6 0.4 69.5 6 0.6 17.5 6 0.4

Status quo supplementary
NN-API 2,132 6 40 9.1 6 0.4 5.7 6 0.3 76.6 6 0.4 78.8 6 0.4 13.9 6 0.4
Static 1,882 6 39 10.3 6 0.2 7.7 6 0.4 74.9 6 0.5 74.6 6 0.7 14.8 6 0.4

Status quo optimized
NN-API 2,169 6 41 9.1 6 0.4 5.6 6 0.3 77.1 6 0.3 79.1 6 0.4 13.9 6 0.4
Static 1,916 6 40 10.0 6 0.2 7.5 6 0.4 75.3 6 0.4 75.2 6 0.6 14.3 6 0.5

Both optimized
NN-API 2,192 6 41 9.0 6 0.4 5.5 6 0.3 77.8 6 0.3 79.4 6 0.4 13.6 6 0.5
Static 1,932 6 39 9.9 6 0.2 7.4 6 0.4 75.4 6 0.4 75.9 6 0.6 14.1 6 0.4
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of the system. This allows our solution method to approxi
mate the value function more accurately, even with a lin
ear approximation model.

5.7. Managerial Insights on Policy Selection
To facilitate the integration of UAVs in EMS and provide 
operational guidance for policy selection, we collect and 
analyze results from 60 environment scenarios. These 
scenarios span a range of demand patterns (centralized, 
scattered), demand rates (low, medium, high), ambu
lance and UAV quantities (low, medium, high), and 
base locations (optimized, unoptimized). Our collected 
results demonstrate that the NN-API policy leads to the 
best performances among all the tested policies in 59 of 
60 scenarios, with no other policies showing statistically 
better results at a 95% confidence interval. The L-ADP 
policy and the static ad hoc policy perform comparably 
with NN-API in 28 and 11 scenarios, respectively, with 
no significant difference from NN-API at the 95% confi
dence interval. These findings reaffirm the superiority of 
the NN-API policy and also suggest that the adoption of 
a “simpler” policy may yield sufficiently good perfor
mance under specific circumstances. Thus, we investi
gate two questions. (1) Under which circumstances is 
NN-API statistically significantly better than other poli
cies so that we would recommend adopting it (“NN 
best”)? (2) In which cases can the static ad hoc policy 
achieve statistically comparable performance with 
NN-API, indicating that it may be reasonable to use the 
simpler static policy (“static NN comp”)? To answer 
these questions, we utilize exact logistic regression with 
regularization to examine the relationship between the 
scenario settings and the policy performance. Further 
details about scenario generation and logistic regression 
can be found in section 5 in the online appendix.

The regression coefficients for “NN best” are shown in 
Table 5. These results indicate that when demand is not 
low and ambulance and UAV availability is limited, 
adopting the NN-API policy is strongly recommended 
as it significantly outperforms all other policies. These 
findings align with the observations made in Sections 
5.3–5.5, which suggest the use of the NN-API policy in 
scenarios where dispatching and redeployment deci
sions are particularly challenging. This typically occurs 

when consecutive high-demand situations occur and 
resources are scarce, where each dispatching decision 
significantly affects the response time of subsequent 
events.

Panel B in Table 5 presents the regression coefficients 
for “static NN comp,” where the coefficient for 
“demand_high” is regularized to zero. The regression 
results suggest that the static ad hoc policy has the poten
tial to achieve performance comparable with the 
NN-API policy under specific conditions. These condi
tions include low and scattered demand, sufficient avail
ability of ambulances and UAVs, and optimized base 
locations. On the contrast to the favorable scenarios for 
“NN best,” the “Static NN comp” requires an adequate 
number of ambulances and UAVs, along with low 
demand that allows for less consideration of subsequent 
requests. Additionally, in the case of scattered demand, 
redeploying to the closest base becomes less disadvanta
geous as predicting the location of the next request 
becomes more challenging compared with centralized 
demand scenarios. Further, optimizing the base loca
tions enhances the potential of improving performance 
with the static policy. Under optimized base locations, 
each base can effectively cover its designated area, 

Table 4. Performance Comparison (95% Confidence Interval) Among All Benchmark Policies at Tippecanoe County with 
Realistic Base Locations and a Moderate Number of UAVs

Reward

Response time (minutes) Respond within threshold (%)

Outsourced (%)General Opioid General Opioid

Static ad hoc 1,882 6 39 10.3 6 0.2 7.7 6 0.4 74.9 6 0.5 74.6 6 0.7 14.8 6 0.4
Dynamic heuristic 1,943 6 41 9.8 6 0.2 7.6 6 0.3 74.9 6 0.4 74.6 6 0.7 14.8 6 0.4
Maxwell ADP 2,002 6 39 9.3 6 0.3 7.1 6 0.4 75.4 6 0.4 75.1 6 0.3 14.8 6 0.2
L-ADP 2,090 6 38 9.7 6 0.3 6.9 6 0.3 75.9 6 0.3 76.2 6 0.4 14.7 6 0.3
NN-API 2,132 6 40 9.1 6 0.4 5.7 6 0.3 76.6 6 0.4 78.8 6 0.4 13.9 6 0.4

Table 5. Regularized Exact Logistic Regression Coefficients 
for “NN Best” and “Static NN Comps”

Coefficient Standard error p-value

Panel A: NN best
demand_central 0.037 0.359 0.918
demand_high �0.119 0.439 0.786
demand_low �1.229 0.531 0.021
fleet_high 0.375 0.430 0.383
fleet_low 1.737 0.468 0.016
base_optimized 0.131 0.387 0.735

Panel B: Static NN comp
demand_central �2.530 0.121 0.000
demand_high 0.000 — —
demand_low 1.055 0.153 0.000
fleet_high �0.073 0.105 0.485
fleet_low �0.635 0.110 0.000
base_optimized 0.853 0.099 0.000

Note. Bold p-values indicating significance at the 95% confidence 
level.
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thereby rendering the redeployment to home bases a sat
isfactory strategy.

6. Conclusions
In this paper, we develop an ADP approach that makes 
intelligent real-time decisions in UAV-augmented logistic 
operations, with a focus on the emergency response to opi
oid overdose incidents. We formulate this problem with an 
MDP model that captures the complex system evolution 
and interplay between the high-dimensional state and a 
variety of actions. In the face of the solution challenges, we 
adopt an ADP-based solution approach, which is shown to 
be efficient in solving real-sized instances. We extend the 
literature on emergency response operations management 
by incorporating autonomous vehicles into the modeling. 
Additionally, we extensively investigate the use of basis 
functions and neural networks in the ADP framework.

With a detailed event-based simulation model, we 
evaluate the system performance metrics of the NN-API 
policy together with various benchmark policies pro
posed in the previous literature. We use historical data 
on naloxone administration for opioid overdose in Indi
ana and the NEMSIS database for our case studies. Our 
comparative results suggest that our NN-API policy sig
nificantly improves system performance over the bench
mark policies, especially when the base locations are 
scattered and the incident rate is high. This improvement 
is mainly because of the following reasons. First, by 
adopting an MDP framework, we incorporate future 
rewards into consideration when making both dispatch
ing and redeployment decisions. Second, by explicitly 
considering the heterogeneity of UAVs and ambulances, 
we can better approximate the value functions. Addi
tionally, our use of basis functions designed to minimize 
response times and consider the heterogeneity of the sys
tem leads to better performance compared with the 
benchmarks in the literature that only consider a single 
type of server. Finally, the use of neural networks helps 
improve value function approximation in a wide range 
of scenarios. Notably, when demand is significant and 
ambulance and UAV availability is limited, we strongly 
recommend the adoption of the NN-API policy because 
of its outstanding performance surpassing all other 
tested policies.

In brief, to implement the NN-API algorithm, we 
first obtain catchment area details from the partnering 
EMS agency, including the locations of their antici
pated UAV and ambulance bases. Using this informa
tion, we calibrate the EMS logistics system simulator 
and develop prediction models for travel times, 911 
request times and locations, and bystander response 
rates. We then train our recommended policies using 
the calibrated simulator, our algorithm, and the predic
tion models, taking into account the level of uncer
tainty and capacity of the ambulances and UAVs. 

These policies provide dispatching and redeployment 
recommendations to the dispatcher based on the status 
of the ambulances and UAVs (i.e., location and 
idle/busy status) and the location of any incoming 
requests.

In this work, we demonstrate the benefits of using 
UAVs to deliver lifesaving medication and provided 
guidance on how EMS agencies can incorporate UAVs 
into their operations. Our findings highlight the poten
tial advantages of using UAVs in the EMS field and offer 
practical guidance on how to effectively utilize UAVs, 
including strategies for dispatching and redeployment. 
We hope that this work will contribute to the wider 
adoption of UAVs in EMS.

Our future research will be in the following directions. 
First, we will incorporate additional realistic features of 
UAVs and the EMS system, such as time-varying weather 
conditions and nonstationary, request distributions in the 
future. For example, individuals are likely to be at differ
ent places over our considered time horizon (e.g., the 
workplace during daytime and home during nighttime). 
Second, we will investigate the issue of EMS access equity 
across diverse communities within a service area, for 
which we will formulate constrained MDPs with con
straints on the allowable system outcome inequity. We 
will develop an ADP approach to the resultant con
strained MDPs. Finally, it is also worth investigating the 
optimal locations of ambulances and UAV bases given an 
RL-based operational strategy instead of assuming a clos
est dispatch rule in the facility location phase. This will 
allow us to further improve system efficiency and reduce 
response times.
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