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Abstract. Problem definition: Uncrewed aerial vehicles (UAVs) are transforming emer-
gency service logistics applications across sectors, offering easy deployment and rapid
response. In the context of emergency medical services (EMS), UAVs have the potential to
augment ambulances by leveraging bystander assistance, thereby reducing response times
for delivering urgent medical interventions and improving EMS outcomes. Notably, the
use of UAVs for opioid overdose cases is particularly promising as it addresses the chal-
lenges faced by ambulances in delivering timely medication. This study aims to optimize
the integration of UAVs and bystanders into EMS in order to minimize average response
times for overdose interventions. Methodology/results: We formulate the joint operation of
UAVs with ambulances through a Markov decision process that captures random emer-
gency vehicle travel times and bystander availability. We apply an approximate dynamic
programming approach to mitigate the solution challenges from high-dimensional state
variables and complex decisions through a neural network-based approximation of the
value functions (NN-API). To design the approximation, we construct a set of basis func-
tions based on queueing and geographic properties of the UAV-augmented EMS system.
Managerial implications: The simulation results suggest that our NN-API policy tends to
outperform several noteworthy rule- and optimization-based benchmark policies in terms
of accumulated rewards, particularly for situations that are primarily characterized by
high request arrival rates and a limited number of available ambulances and UAVs. The
results also demonstrate the benefits of incorporating UAVs into the EMS system and the
effectiveness of an intelligent real-time operations strategy in addressing capacity
shortages, which are often a problem in rural areas of the United States. Additionally, the
results provide insights into specific contributions of each dispatching or redeployment
strategy to overall performance improvement.

Funding: This work was supported by the National Science [Grant 1761022].
Supplemental Material: The online appendix is available at https://doi.org/10.1287 /msom.2022.0166
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1. Introduction
1.1. Motivation

prevent death. The bystander-enabled uncrewed aerial
vehicle (UAV) delivery system is one potential approach

The United States is facing a severe opioid crisis, with
over 210 opioid overdose deaths reported each day (Cen-
ters for Disease Control and Prevention National Center
for Health Statistics 2022). Opioid overdoses can lead to
respiratory depression and cardiac arrest, and without
timely intervention, the chances of survival decrease by
up to 10% per minute (Cao 2005). Brain damage can
occur after four minutes, and death can occur within six
to eight minutes later (Doe-Simkins et al. 2009). In many
cases, trained first responders are unable to reach the
patient in time to administer naloxone, typically admin-
istered as a nasal spray, and provide ventilation to

to mitigate this problem. In such a UAV-augmented
emergency medical service (EMS) system, 911 dispatch-
ers can dispatch a UAV and direct a bystander to render
an emergency response to the patient while EMS person-
nel are en route.

UAV use, as pilotless aircraft, has seen a rapid expan-
sion of applications in recent years. In the United States,
this is largely facilitated by the increasingly specified
guidelines and relaxed regulations of the U.S. Federal
Aviation Administration (FAA) on UAV airspace and
operations. For example, Amazon Prime Air, Amazon’s
special service that delivers packages within 30 minutes,
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was granted operation by the FAA in mid-2020 to test
order delivery via UAVs (Reuters 2020). In addition to
parcel delivery, UAV use has a wide range of appli-
cations, including land surveillance, wildlife tracking,
search and rescue operations, disaster response, and bor-
der patrol (Everaerts et al. 2008). UAVs are particularly
well suited for these tasks because of their ability to cover
large areas quickly and efficiently, as well as their ability
to access areas that may be difficult or dangerous for
humans to reach. Since 2016, a number of east and central
African countries have collaborated with Zipline, the
world’s largest automated delivery system designer,
manufacturer, and operator, to deliver blood supplies,
reducing the delivery time from four hours to 15 minutes
in some cases (World Health Organization 2019).
With state-of-the-art technologies, UAVs designed for
on-demand commodity delivery can fly up to an hour
and reach distances of up to 45 miles while carrying nec-
essary payloads for emergency responses, such as auto-
mated external defibrillators (AEDs) for out-of-hospital
cardiac arrests (Boutilier et al. 2017), blood transfusion
tool kits for trauma injuries (Ling and Draghic 2019), and
naloxone nasal spray for opioid overdoses (Ornato et al.
2020). All of these recent developments, including the
improvement of technology, decreases in cost, and chang-
ing regulations, will enhance the potential use of UAVs in
EMS delivery.

This technology is especially promising given the
inherent need for a rapid response to enhance patient
outcomes, particularly in remote or hard-to-reach areas.
For example, UAVs can respond faster in urban en-
vironments that present barriers to emergency services,
such as heavy traffic congestion. Additionally, the scar-
city of ambulances in many U.S. rural counties can lead
to extremely long response times, with 1 in 10 patients
waiting nearly 30 minutes for EMS arrival (Mell et al.
2017). Compared with increasing the number of ambu-
lances and corresponding medical personnel, incorpo-
rating UAVs for medical delivery is a more realistic and
cost-effective approach to optimize medical resources.
For emergencies such as opioid overdoses and out-
of-hospital cardiac arrests, it is expected that UAV-
delivered medical interventions can significantly save
critical response times and avert life-threatening condi-
tions. In practice, medical UAVs will be equipped with
audio or video assistance devices, such as cameras, to
help bystanders quickly assess the situation and follow
instructions. For example, Zipline and Intermountain
Healthcare have implemented drone deliveries in the
Salt Lake Valley to reach patients and deliver medication
faster without requiring patients to travel to a clinic or
hospital (Gereau 2022). In the realm of EMS delivery,
there have been ongoing efforts to encourage bystander
intervention, such as educational campaigns (Lockey
et al. 2021), training programs (Clark et al. 2014), and lia-
bility protection laws (Latimore and Bergstein 2017).

More recently, mobile phone applications (e.g., Unity-
Philly) (Schwartz et al. 2020) have focused on connecting
layperson first responders with people experiencing
overdoses. Furthermore, research has demonstrated the
benefit of layperson-initiated overdose reversal through
the administration of naloxone before the arrival of an
ambulance or first responders (Schwartz et al. 2020).

The main objectives of our work are twofold: first, to
demonstrate the benefits of using UAVs to deliver life-
saving medication and second, to provide guidance for
EMS agencies on how to incorporate UAVs into their
operations. By highlighting the potential advantages of
using UAVs, we hope to encourage their wider adoption
in the EMS field. At the same time, our work aims to pro-
vide practical guidance for how to effectively incorpo-
rate UAVs into EMS operations, including strategies for
dispatching and redeployment.

In the United States, 911 calls are typically received by
a public safety answering point (PSAP), which deter-
mines the nature of the emergency and next, decides
either to dispatch responders immediately or transfer
the call to a specialized secondary PSAP. We assume that
both UAVs and ambulances are managed in a central-
ized scheme and aim to improve EMS outcomes through
the joint operation of both types of vehicles, including
dispatching and redeployment. We develop a Markov
decision processes (MDP) framework to capture the
interplay between these decisions, spatially distributed
stochastic arrivals of requests, and the state of the EMS
system involving the concurrent use of UAVs and ambu-
lances. The process flow is shown in Figure 1. When a
witness calls 911 to report a case, a request enters the
EMS system. During the call, the dispatcher will ask
about the presence of bystanders nearby in addition to
following the current protocol. Based on the status of the
system, a dispatching decision is made, which may
include the dispatch of an ambulance or a UAV followed
by an ambulance and the specific ambulance (and UAV)
to be dispatched. When the UAVs or ambulances have
completed their service, they are redeployed to one of
their bases to be better prepared for upcoming requests.
Note that UAV dispatching is helpful if and only if at
least one bystander is willing to help when the UAV
arrives at the emergency scene. The probability that at
least one bystander is willing to help is estimated based
on the number of bystanders acquired during the call
and the likelihood that one of them is willing to retrieve
and administer the EMS tool kit.

The most straightforward dispatching strategy is to
dispatch the UAV closest to the request in order to mini-
mize the response time and maximize the chance of sur-
vival (Kim et al. 2009). However, this myopic strategy is
typically suboptimal, and a more sophisticated strategy
would improve outcomes (Jagtenberg et al. 2015). Be-
cause ambulance and UAV resources are limited, mini-
mization of response time for the current requests may
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Figure 1. (Color online) An Illustration of a UAV-Based EMS Process Timeline
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lead to a much longer response time for future requests
(i.e., a nuanced balance should be considered between
current and future requests). Additionally, we consider
redeployment decisions for UAVs and ambulances. Rede-
ploying UAVs and ambulances to one of their bases
allows for charging, replenishment, and personnel rest.
Proper redeployment decisions aim to balance the distri-
bution of available UAVs and ambulances over the bases
for time-varying demand. On top of this delicate trade-
off, uncertainties in travel time, bystander willingness to
assist, and emergency request volume and their locations
should be modeled explicitly in the MDP framework.

In summary, the integration of UAVs and ambulances
brings increased flexibility to EMS delivery but also intro-
duces unique challenges in making intelligent operational
decisions in real time. The operational strategy/policy
suggested by our model and algorithm addresses the fun-
damental trade-off between response times for current
and future requests while taking into account various
uncertainties and the use of heterogeneous servers (am-
bulances and UAVs).

1.2. Main Contributions and Results

1. We extend the MDP-based analytics framework
to consider a range of real-time operational decisions in
a dynamic, coordinated logistics system with both con-
ventional (ambulances) and augmenting (UAVs) deliv-
ery vehicles. Given the two types of delivery vehicles,
we consider two types of requests that can be answered
in the logistic system, differing in the use of UAVs. Our
approach also accounts for additional sources of uncer-
tainty. In addition to uncertain request arrival times
and locations, we use a delayed reward function to
reflect the uncertainty of UAV and ambulance travel
times. Yet, we preserve the model’s high fidelity, in-
cluding the presence of bystanders.

2. We apply an approximate dynamic programming
(ADP) approach and design a tractable approximate
policy iteration (API) algorithm for the complex sto-
chastic dynamic optimization problem, which employs
value function approximation (VFA) via neural net-
works. Based on the spatial and temporal characteristics
of the EMS system, we design a set of effective basis

functions to enhance the algorithm’s performance. Our
basis functions are novel and distinct from the literature
in three aspects. (a) We consider the heterogeneous
nature of the ambulance-UAV system and approximate
coverage accordingly, especially on the future missed
call rate; (b) we approximate the average response time
to adapt to the objective of minimizing response times,
beyond maximizing the number of requests served; and
(c) we consider not only spatial features but also tempo-
ral features of the system (i.e., availability reduction).
Additionally, the neural network representation of the
value function offers a much richer class of nonlinear
functions and can be trained iteratively.

3. We acquire important managerial implications
about real-time operations for coordinated EMS logis-
tics. Our case studies are based on historical data from
the state of Indiana for emergency naloxone adminis-
tration for opioid overdoses and the National EMS
Information System (NEMSIS) database. Simulation re-
sults suggest that our policy consistently outperforms
several noteworthy rule- and optimization-based bench-
mark policies in terms of accumulated rewards. This
superiority is particularly pronounced when the request
arrival rate is high and the availability of ambulances
and UAVs is limited. Our results also highlight the ben-
efits of using UAVs in the EMS system and the effective-
ness of an intelligent real-time operations strategy in
addressing capacity shortages, which are common chal-
lenges in rural areas of the United States. Additionally,
our results provide valuable insights into the contribu-
tions made by each dispatching or redeployment strat-
egy. We also identify scenarios where the use of the
neural network-based approximation of the value func-
tions (NN-API) is strongly recommended, as it signifi-
cantly outperforms benchmark policies, and situations
where a simple static policy can perform comparably to
the NN-APL

2. Literature Review

To the best of our knowledge, our work is the first that
combines the real-time operations of UAVs and ambu-
lances for time-sensitive logistics. Previous research has
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primarily focused on individual aspects of the problem,
such as ambulance dispatching and redeployment using
static and dynamic policies, optimization models for
vehicle mix in EMS, and the use of UAVs for emergency
response. Our research builds upon these efforts by
also considering the coordination optimization between
UAVs and ambulances.

There is a wealth of literature on ambulance operations
management, with many studies focusing on minimizing
average response time, as in our research. Early work in
this area primarily utilized static policies, including
threshold-based policies and policies derived through inte-
ger programming (IP) or mixed IP. For example, Daskin
(1983) and Marianov and ReVelle (1996) used an IP-based
approach and generalized the maximal expected covering
location problem (MEXCLP) for public service facility loca-
tion analysis. Alternatively, the threshold-based policy is
also widely used in ambulance dispatching and redeploy-
ment. One representation of the threshold policy is the
“preparedness” measure proposed by Andersson and
Varbrand (2007), which is used to evaluate the ability of an
EMS system to serve potential patients.

In the EMS system, patient numbers are highly uncer-
tain, and so, preplanned scheduling or operation solutions
may not optimally respond to fluctuating situations. There-
fore, real-time decision making is required, which con-
siders systems dynamics, such as time-varying demand
(emergency calls), time-varying traffic, and different inter-
vention times required by patients. As a result, several
researchers have explored the benefit of dynamic dispatch-
ing and redeployment optimization using assumptions
such as exponential service time and no-buffer request
queue. McLay and Mayorga (2013a, b) and Jagtenberg et al.
(2017) built several MDP models and solved them to op-
timality for small-scale instances. These exactly solved
MDPs highlighted the value and suboptimality of the clos-
est idle dispatching policy and how various equity formu-
lations affect the underlying dispatching policies. Recent
advances in ADP have improved our ability to solve large-
scale problems efficiently. For example, Schmid (2012) and
Jenkins et al. (2020) approximated value functions with tab-
ular ADP. Among previous work using ADP, our work is
most closely related to Maxwell et al. (2010) and Nasrollah-
zadeh et al. (2018), which proposed novel basis functions
based on the underlying problem structure to approximate
value functions. Our work differs in that we consider the
joint operation of two delivery modes for EMS logistics.
The joint operation requires the consideration of additional
novel basis functions for heterogeneous service providers.
We refer to two review papers—Aringhieri et al. (2017)
and Bélanger et al. (2019)—for comprehensive discussions
on optimizing location, redeployment, and dispatching
decisions for emergency medical vehicles.

Another stream of literature relates to vehicle mix and
response to multiple requests for EMS. Similar to our
work, most of these papers differentiate vehicles by their

service capability for different types of patients. Previous
papers consider multiple responses in the context of
deterministic and probabilistic maximal covering ambu-
lance location problems (Schilling et al. 1979, ReVelle
and Marianov 1991). McLay (2009) proposed the
MEXCLP with two types of servers to efficiently deploy
two types of medical units (i.e., advanced life support
(ALS) and basic life support (BLS)) to serve multiple
types of customers. For UAV-ambulance coordination,
Shin et al. (2022) developed a modeling framework to
optimize a network of drones, bystanders, and ambu-
lances for cardiac arrest response, taking into account the
availability of bystanders. In addition to location pro-
blems, researchers have also worked on dispatching
and redeployment problems involving multiple types of
ambulances with stochastic programming (SP) and
MDP. Boujemaa et al. (2020) addressed the ambulance
redeployment planning problem in a two-tiered EMS
using a two-stage SP model, with the first stage addres-
sing redeployment decisions and the second stage
addressing dispatching decisions. Similarly, Yoon et al.
(2021) formulated a two-stage SP problem for location
and dispatching decisions considering prioritized em-
ergency patients and also extended the model to in-
corporate nontransport vehicles, similar to UAVs in our
model. For real-time operations, Chong et al. (2016) and
Yoon and Albert (2020, 2021) constructed MDP models
to optimize the dispatching of multiple types of vehicles
to (prioritized) patients, demonstrating structural prop-
erties. For example, the optimal policy is a control-limit
policy, which is more likely to send an ALS unit to calls
when more ALS units are available. However, to make
the MDP tractable, the authors only decided whether to
dispatch an ALS or a BLS but not which specific unit to
dispatch. With ADP-based solution techniques, we are
able to model and improve upon dispatching and rede-
ployment decisions with greater specificity, including
the specific UAV and ambulance to dispatch and the spe-
cific base to redeploy the UAV or ambulance to.

Unlike previous work on vehicle mix, we model the
information of bystanders for UAV dispatch, which is
unique. Additionally, to our best knowledge, among
studies of multiple types of ambulances, only Park and
Lee (2019) considered the real-time dispatching that
makes specific dispatching and redeployment decisions.
The authors leveraged ADP with state aggregation and
monotonicity-preserving projection operators to solve
the complex MDP model. In our work, we maintain a
high level of fidelity without using state aggregation and
address the curse of dimensionality through neural
network-based VFA. We capture differences between
UAVs and ambulances by using different transition
dynamics and integrating them into the VFA using a
queueing model of heterogeneous servers.

Recent studies have explored the feasibility of deliver-
ing medical equipment via UAVs, including flotation
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devices (Claesson et al. 2017b), AEDs (Boutilier et al.
2017, Claesson et al. 2017a), and blood products (Amu-
kele et al. 2017). In addition to strategic decisions, Chu
et al. (2021) developed UAV dispatching rules based on
the difference between predicted ambulance response
time and calculated UAV response time for each out-of-
hospital cardiac arrest. There are two categories of exist-
ing literature that investigate the joint optimization of
UAV planning and operations management. The first
category concerns situations where UAVs are carried by
truck and dispatched from the truck near the service
location. Typical applications include precision agricul-
ture, package delivery, oceanographic sampling, forest
fire, or oil spill monitoring (Tokekar et al. 2016, Fawaz
et al. 2017, Jia and Zhang 2017). The second category of
studies considers cases where UAVs and ground vehi-
cles perform independent tasks, similar to the situation
in our work. However, most previous studies in this cat-
egory only consider facility locations at the strategic level
and UAYV allocation at the tactical level (Dorling et al.
2016, Agatz et al. 2018). The studies most similar to ours
are Ulmer and Thomas (2018) and Chen et al. (2019).
Ulmer and Thomas (2018) explored the addition of
UAVs to conventional vehicles for the same-day delivery
problem. Using an MDP model, the authors presented a
dynamic vehicle routing problem with heterogeneous
fleets, where the decisions were to reject an order and
assign a UAV or a ground vehicle. To address the curse
of dimensionality, the authors adopted policy function
approximation based on the insight that distant custo-
mers should generally be served by UAVs and that
closer customers should be served by conventional vehi-
cles. Chen et al. (2019) extended the work to include
additional information on resource availability and
demand as well and implemented a deep Q—learning.
However, only the acceptance and general assighment
decisions were made in both studies (i.e., the
order/request should either be served by UAVs or
be served by conventional vehicles). An important dif-
ference in our work is that we seek to optimize the dis-
patching and redeployment decisions of UAVs and
ambulances with potentially multiple responses to each
EMS request. This difference in the decisions signifi-
cantly expands our MDP model, making it very difficult
to parameterize the policy function directly and use the
value function of state-action pairs. Additionally, our
application emphasizes the “time criticality” of the ser-
vice, with emergency response time being the key objec-
tive. Therefore, the objective function is different, and
different basis functions are required to approximate the
value function.

3. MDP Model

This section presents an infinite-horizon average-cost
MDP formulation. We adopt event-driven modeling to

incorporate on-demand UAV and ambulance dispatch-
ing and redeployment decisions in the model and
capture the EMS system evolution. Events are triggered
by changes in the status of UAVs, ambulances, and
requests. Let N :={1,2,...,N} be the set of demand
nodes, M":={1,2,...,M"} be the set of UAV charging
stations,and M? := {1,2, ..., M"} be the set of ambulance
bases (e.g., hospitals or bases of private EMS agencies).
We consider a total of L" UAVs and L ambulances. The
home base of UAV [ is denoted by h} €{1,2,...,M"},
and the home base of ambulance ! is denoted by
hf €{1,2,...,M"}. Let A"(s) be the set of available UAVs
(e, A"(s) :={l:r}! = 0}, where r{" is the remaining time
in its current status of UAV ); similarly, let .A"(s) be the
set of available ambulances (i.e., A’(s):={l:7] =0},
where r{ is the remaining service time in its current status
of ambulance /).

We divide 911 requests into two types based on
whether UAVs can be of help. (1) Type 1 includes
requests for which UAVs can serve as the first response,
such as opioid overdose and out-of-hospital cardiac
arrest. (2) Type 2 includes requests that only ambulances
can help, such as massive hemorrhage. We assume that
arrivals of EMS requests of type 1 and type 2 follow Pois-
son processes with rates A" and A“, respectively. We
make dispatching decisions for both types of requests.
For type 1 requests, we need to choose between a single-
ambulance response and a UAV-ambulance sequence
response. For type 2 requests, we only consider which
ambulance to dispatch. We also make redeployment
decisions each time a UAV or ambulance finishes the
current emergency response task and returns to a base
for replenishment, recharging, and personnel rest. In the
following model description, we assume that all the
information obtained from the 911 call, such as request
location, request type, and bystander information, is
accurate.

3.1. State Space

The state space is composed of five parts: vectors
B" = (by,b4,...,b}.), B* = (V5,05,...,b0.), C=(c1,c0,...,cy), €,
and 7, where b}, [ =1, ...,L" contains information about
the state of the lth UAV; b, [ =1,...,L* contains informa-
tion about the state of the /th ambulance; ¢;, j=1,...,]
contains information about the jth request; e denotes the
event type; and 7 corresponds to the current time. There-
fore, the state space of the system is represented by
S:={s=(t,¢,B",B*,C)}.

The status of UAV [ is given by b =(d}, ], f}),
I=1,...,L", whered} €{1,2,...,N} is the destination of
each UAV. For this work, it is sufficient to consider four
possibilities for the status of UAVs (ie., f/* € {0,1,2,3},
where 0 indicates that the UAYV is available at the base, 1
indicates that the UAV is going to a request location, 2
indicates that the UAYV is serving a request on the scene,
and 3 indicates that the UAV is returning to a base).
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The state of ambulance [ is given by b} = (d},7{,f"),
I=1,...,L%, whered] €{1,2,...,N} is the destination of
each ambulance. Assume that all the opioid-overdosed
patients require transport to hospitals and that all other
patients require transporting to hospitals with probabil-
ity p'. For this work, it is sufficient to consider five possi-
bilities for the status of an ambulance (i.e., f' €{0,1,
2,3,4}, where 0 indicates that the ambulance is available
at the base, 1 indicates that the ambulance is going to a
request location, 2 indicates that the ambulance is serv-
ing a request on the scene, 3 indicates that the ambulance
is going to the hospital, and 4 indicates that the ambu-
lance is returning to a base).

A request j is represented by ¢; = (g;,q;,0;,w)), j=1,

.,J, where g; €{1,2,...,N} is the request location and
g; is the arrival time of the request. For this work, o; €
{1A,1B,2} denotes the type and status of the request,
where 0; = 1A (0; = 1B) implies that UAVs are qualified
for the first response and the request is waiting for the
first (follow-up) response and o; = 2 implies that only
ambulances are qualified for serving the request. If
request j is finished, it would be marked as “served” and
immediately removed from the request set. In addition,
wj represents bystander helpmg probability at request j.
Specifically, w; =1— (1 —p” p")N' is the probability that at
least one bystander is w1111ng to help when the UAV
arrives, where N’ is the estimated total number of
bystanders and p” is the probability that each bystander
is still willing to help when the UAV arrives. The
bystander willingness p’ can be estimated through inter-
views (Lankenau et al. 2013).

An event is represented by e, e € E, where E is the set of
all possible event types. Without loss of generality, we
assume that decisions are made at transition times. In
our model, transition times are associated with the fol-
lowing events: (1) request  arrives; (2) ambulance / is in
transit to request j; (3) ambulance [ arrives at the location
of request j and starts service; (4) ambulance !/ finishes
serving request j at the scene; (5) ambulance ! finishes
serving request j at a hospital; (6) ambulance [ arrives at a
base; (7) UAV [is in transit to request j; (8) UAV [ arrives
at the location of request j and starts service; (9) UAV [
finishes serving request j at the scene and is in transit to a
base; and (10) UAV [ arrives at a base.

3.2. Action Space

We consider a loss system without request queues (i.e., a
request will be outsourced to a nearby EMS agency if
there are no available UAVs and ambulances in our sys-
tem). Another option is to place requests in a queue
when all servers are busy. Bandara et al. (2014) showed
that the strategy performance relationship remains the
same for systems allowing and not allowing request
queueing, but the overall system performance with
queuing is lower because of increased vehicle utilization.
Therefore, we consider outsourcing requests that arrive

when no ambulance is available. The action space is
described with three event-based cases based on the type
of actions required.

Case 1. If request j arrives (e = 1), the decision maker
has three types of decisions: (1) whether to outsource
the request; (2) which ambulance to immediately dis-
patch to serve the request; and (3) which UAV to
immediately dispatch and which ambulance to dis-
patch as a follow-up.

Define X', =1 if UAV [ is dispatched to request j
and X;‘ =0 otherwise. Also, define X? =1 if ambu-
lance [ is dispatched to request j and X}, =0 other-
wise. Therefore, if event ¢ = 1, the action space is
given by

As(s) =S (Xj, Xi ) Y X], <
leA%(s)
u a
X< > Xiy
le A" (s) leA(s)

where the first constraint states that for each request, at
most one ambulance is dispatched and the second con-
straint states that the number of UAVs dispatched
should not exceed the number of ambulances dis-
patched. The two constraints together limit the dispatch-
ing decisions into three types: (1) dispatching one UAV
and one ambulance, (2) dispatching only one ambulance,
and (3) dispatching no UAV or ambulance (i.e., outsour-
cing the request).

Case 2. If event ¢ € {5,9}, the decision is to determine
to which base to redeploy the ambulance/UAV.

If event e = 5 (i.e.,, an ambulance finishes service),
let Z}, =1 if ambulance [ is redeployed to base b and
Z{, =0 otherwise. Then, the action space is given by

As(s):= {(z;ﬁb): >z, = 1},
beM”

which ensures that ambulance [ is redeployed to only
one base.

If evente =9 (i.e., a UAV finishes service), let Z, =
1 if UAV I is redeployed to base b and Z, =0 other-
wise. Then, the action space is given by

As(s) = {(z;jb): Z Z, = 1},
neM"

which ensures that UAV [is redeployed to only one base.

Case 3. If the event e€ {2,3,4,6,7,8}, we set A(s) =0
(i.e., no action will be taken).
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3.3. Transitions

Let si be the state of the system when the kth event hap-
pens. The evolution of state s, can be characterized by
action a;, random element w(sy, ax), and a function F (i.e.,
Skt = F(sk, a, w(sk,ax))). We assume that the on-scene
time follows a lognormal distribution (Ingolfsson et al.
2008).

3.4. One-Step Reward Function
We consider maximizing the average health outcome
as the primary objective function in our optimization
framework. The health outcome is modeled as a decreas-
ing function of the response time because the likelihood
of survival decreases with the time it takes to receive
medical treatment (Blackwell and Kaufman 2002, Wilde
2013), especially in cases of opioid overdose where every
minute is critical. Let h(sy,ax, k1) denote the cost or
reward of a transition from s to sy, when action ay is
taken. The system only incurs a cost or gains a reward at
evente € {1,3,8}.

When e =1 (i.e., request j arrives), a penalty will be
incurred if the request is outsourced, specifically

G if > Xi=0, > X =0
h(sk, ax, sge1) = I€A™(s) IEAT(s)
0 otherwise,
@

where C, is the penalty for health outcome decrease from
delay in response time caused by outsourcing request j.
Whene =8 (i.e.,aUAV arrives at the scene),

g1t — ) - L=y if 0; = 14;

. @
0 otherwise,

h(sg, @k, Si1) = {
where 7 — g; represents the first response time of request
J; g1(-) denotes the reward function with respect to the
response time for opioid overdoses (e.g., g1(f) = %),
where T} is the response time threshold (e.g., T1 = 8 min-
utes); and random variable N;~ Binom(N’,p’) is the
number of willing bystanders when a UAV arrives at
the scene. If 0 # 1A, then the UAYV arrives later than the
ambulance, or the UAV is dispatched for a request of
type 2. In this case, the UAV dispatching becomes
redundant.

When e =3 (i.e., an ambulance arrives at the scene),

gl(T — q]) if O]' = 1A,
h(sk, ax, si1) = § a(T—¢q;)  ifo;=2; 3)
0 if O]' = 1B,

where ¢»(-) denotes the reward function with respect to
the response time for general (e.g., $2(t) = %), with T,
being the response time threshold (e.g., T> = 12 minutes).
Let 0; = 1A and o; = 2 denote the cases where the ambu-

lance serves as the first response; let o; = 1B denote the

case where the ambulance serves as the follow-up
response.

3.5. Optimality Criterion
The expected average reward value of a policy 7 is
defined for all sy € S as

' 1 T-1
vg(1,50) := lim = Es, 5., [Z h(st/at15t+1)|50rﬂ] , @
t=0

where hi(s;, a;,5¢41) is the one-step cost/reward, which is
defined in Section 3.4. The limit in Equation (4) exists for
a stationary policy when the MDP is unichained (Puter-
man 2014, section 8.3.3). Assuming that the Markov
chain under the policy 7t is unichain, we have v,(,s9) =
vg(1), Vsp € S. Then, the optimal policy 7t is the policy
that satisfies the average-reward Bellman optimality
equation,

0p(70",5) +0g(10") = I}{l&xgp(S’ |s,a)[h(s,a,5")+vp(r",5")],

Vses, ®)

where ©v,(-) is the optimal relative value function,
h(s,a,s’) is the one-step cost/reward, and p(s’|s, a) is the
transition probability. For notational simplicity, we omit
7" and denote the optimal average reward as v, in the fol-
lowing sections. We refer to Cavazos-Cadena (1991) and
Cavazos-Cadena and Sennott (1992) for summaries of
results on existence conditions for discrete-time average
cost MDPs with countable state space and finite action
sets.

4. Approximate Solutions
A conventional method to solve Equation (5) is through
policy iteration (PI). The PI algorithm starts with a ran-
dom policy, computes the value function of that policy
(step 1: policy evaluation), and then, determines a new
and improved policy based on the previous value func-
tion (step 1: policy improvement). These two steps are
repeated iteratively until the policy converges. However,
to perform steps 1 and 2, it is first necessary to parameter-
ize the associated transition matrix S X A X § — R and
reward matrix S X A — R. In our MDP model, the state
space | S| is unbounded as the time variable 7 is continu-
ous. Even without 7, the dimension of the state space
grows exponentially with the number of UAVs and
ambulances. This makes it infeasible to store all
up(s), s € S, not to mention enumerating the state space to
solve the Bellman Equation (5) to optimality. To tackle
the curse of dimensionality resulting from the need to
enumerate the state space, we conduct a simulation-
based API The main framework of the API algorithm is
described in Section 4.1.

To represent value functions of the high-dimensional
state space, we approximate the relative value function
(i.e., vp(s), s € S) with a neural network model of a finite
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set of basis functions (or features). That is, for eachs € S,
0p(s) = Z(@(s)) = Z(Py(5), P,(5), ..., Ps(s)).  (6)

Here, ®(s) = (¢,(s), ,(s), .. qbf(s)) is the set of f basis
functions, and Z(-) is a model mapping basis functions to
the relative value function. In our algorithm, Z(-) repre-
sents a neural network model. Using Equation (6), the
approximate relative value function is determined by
the neural network model Z(-) and a set of prespecified
basis functions, which are described in detail in Sections
4.1and 4.2, respectively.

4.1. Approximate Policy Iteration
The NN-API algorithm is extended from the basic PI
algorithm and adapted in the following four aspects.

4.1.1. Simulation-Based Policy Evaluation. The core
concept of approximate dynamic programming is to fol-
low a sample path rather than enumerating the state
space to update value functions. In NN-API, sample
paths are generated based on the current policy and pre-
defined distributions of randomness. Only rewards
from the states visited on the sample paths would be
used to update Z(-).

4.1.2. Postdecision State Variable. A postdecisionstate
variable is the state of the system after we have made a
decision but before any new information has arrived
(Powell 2007). Rather than estimating the expectation of
the value around the next predecision state si.1, we
directly estimate V(s) for the postdecision state s{. That
is, we rrllake decisions by optimizing @) = min,, (C(s},, ax)
+ ka (SM-2(sy,ay))) instead of estimating the expecta
tion and optimizing 9} = min,, (C(s},ax) + )/IE{Vk+1
(SMW(st,ar, Wis1))}). Here, M and W represent our
model and the uncertainty in the model, respectively;
SM4 denotes the system state immediately after decision
a,and SM'W denotes the system state after the uncertainty
Wis realized.

4.1.3. Average Reward Computation. For the average
reward v, computation, instead of solving the Poisson
Equation (5), NN-API estimates v, iteratively with
Vg = Vg + B, Ay, where B % (n, is the number of
updates of v, so far) and Ag = r(s a) — 0.

4.1.4. Value Function Representation. We use a feed-
forward neural network to approximate the value func-
tion rather than using a tabular form. The neural net-
work consists of three layers: an input layer, a hidden
layer, and an output layer. The information provided to
the input layer is a set of | ¢| basis functions associated
with a postdecision state s”. The hidden layer consists of
a set of nonlinear activation units, and the size of this
layer is a tunable parameter. The output layer produces

a single scalar output by applying the activation func-
tion, which is the final approximation for the value func-
tion with respect to the input. For more information on the
design and training of the neural network, see section 1 in
the online appendix.

The four solution ideas help alleviate the curse of
dimensionality and are incorporated into the framework
of the Neural Network-based Approximate Policy Itera-
tion (NN-API) (Algorithm 1) by using temporal differ-
ence learning.

Algorithm 1 (NN-API: Neural Network-Based Approx-
imate Policy Ilteration)

Result: A trained neural network whose input is
basis functions and output is an approximate value
function.

Construct the basis functions ® = (¢, ¢, . .. qbf

Initialize the neural network Zy(®) usmg a myopic

policy. Initialize the average reward ¢ vg =0.

forn=1,2,...,N do
Policy evaluation starts.
Sample an initial state S"! and choose a sample
path @";
form=1,2,..., Mdo

Compute a™" =arg min, 4»n(C(s™",a) + Z,_1

(q)n m(SM a(Sn m ll))))

Compute S™"+1 = SM(gnm gnm W, (w"));

Compute by m+l - =0, + B, (C(s” " q) —C(s""™,a)),

=1/(n—=1)M+m+1);

end

Let " be an M x F matrix where the (i, k)th entry
is given by ¢;"";

Let V" be a Vector of M dimensions with elements,
omm C(S" m an, m) An M +Z ((D" m(sM a™" (S” m’ n, m)))/
m=1,..., M;

Policy evaluation ends.

Retrain the neural network model with feature
W" and label V". Denote the updated neural net-
work model with Z,; Policy improvement.

end

4.2. Basis Functions

A key difficulty in the design of value function approxi-
mation is to select a set of basis functions that enable us
to approximate the downstream costs. Based on the
problem property, we conjecture the following basis
functions (Sections 4.2.1-4.2.6). We adopt an iterative
process of testing and refining to identify effective basis
functions for our ADP implementation. Although
simulation-based comparison would need to verify the
effectiveness of these basis functions, we ensure that
the constructed basis functions have the same monoto-
nicity as the optimal value function at the design phase.
Specifically, the optimal value function is monotone
with bystander helping probability and availability of
ambulances/UAVs, as stated in Proposition 1.
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Proposition 1. The optimal value function for the average-
reward MDP described in Section 3 has the following
properties.

1. It increases with an increase in the bystander helping
probability w; given the assumption that the on-scene time of
the UAV is insignificant.

2. It increases when the system has one additional avail-
able UAV or ambulance.

The proof of Proposition 1 is based on the coupling
arguments between the systems under optimal and sub-
optimal policies; see section 2 in the online appendix for
details. To further refine the design of basis functions, we
follow Nasrollahzadeh et al. (2018) by approximating
the system dynamics by constructing a queueing model.
We use an M/G/c/c queue to approximate our system
because we do not consider putting 911 requests in the
queue as reasonable. Another adaptation is from the fact
that we cannot treat UAVs and ambulances as homoge-
neous servers with the same service time distribution.
Thus, based on the approximations provided by Fakinos
(1980), we construct basis functions by dealing with the
queueing system with heterogeneous servers. In Sections
4.2.1-4.2.6, when mentioning “server,” we refer to both
UAVs and ambulances for type 1 requests and ambu-
lances for type 2 requests.

4.2.1. Expected Delayed Rewards. When dispatching
decisions are made (i.e., ¢ = 1), the immediate reward
only includes the penalty for outsourcing requests. The
reward for serving the request is not realized until a
UAV or ambulance arrives at the scene (i.e.,e =8 ore =
3). To reflect the direct impact of the dispatching decision
on the reward, we include the expected reward as one of
the basis functions. We denote the expected travel time
for UAVs to travel between locations d; and d, as
£*(dy,dy) and the expected travel time for ambulances
ast'(dy,d).

If both a UAV and an ambulance are dispatched (i.e.,

Xi, =1.X,;=1),
w-g1(F'(d),g)) ifo;=1A,F"(dY &) <F'(ds,)),

Pr(9)=8 '@ ,g) ifo;=1AF"(d!,g) > (d,g)),
$(F'(d] ) otherwise,

@)

where 0; = 14, £ (dr,8) < f (d],, 8)) refers to the scenario
where UAVs are eligible for the first response and the
dispatched UAV is expected to arrive earlier than the dis-

patched ambulance. Here, g(if”(al;‘1 ,8j)) represents the
reward from UAV’s first response time if there is more
than one willing bystander (with probability w;); o; =
1A, tAu(dﬁ /8) 2 £ (d],gj) refers to the scenario where
UAVs are eligible for the first response, but the dis-
patched ambulance is expected to be the first response.

Otherwise, 0; = 2 (i.e., the dispatched ambulance) would
serve as the first response.

If only an ambulance is dispatched (ie., > X} ;=0
Xj, ;=1), a delayed reward from ambulance response is
expected: thatis,

gif'(d,g)) ifo=14,
(s)= , 8)
" {8z(t (d,g) ifoj=2.

If the request is outsourced (ie, >, X}, =0,3,X];=0),
the penalty for outsourcing would be incurred immedi-
ately when the dispatching decision is made so that there
would not be any delayed rewards: that is,

P,(s) =0. 9)

4.2.2. Uncovered Request Rate. This basis function
captures the rate of request arrivals that cannot be
reached within the response time threshold by any of the
available servers. Let A" (s) and .A"(s) be the set of avail-
able UAVs and the set of ambulances, respectively,
when the system state is s. Specifically, A"(s) = {I|f} = 0},
and A"(s) = {I|f = 0}. Then, the coverage of demand
node i can be written as

Nis) = > Lyaw,neny + D, lawe,ozay (10)
leA"(s) leA(s)

We can then compute the rate of request arrivals that are
not covered by any available servers with

Py(s) = Z/\il{Ni(s)zo}- (11)
ieN

Note that a type 1 request is considered as covered either
when (i) an ambulance is expected to reach it within time
T4 or when (ii) a UAV is expected to reach it within T,
and an ambulance is expected to reach it within T’s.

4.2.3. Future Uncovered Request Rate. When making
redeployment decisions, the state where the redeployed
server reaches its new base is more important than the
current state. This basis function is parallel to the second
basis function, but it replaces the current location of rede-
ployed servers by its destination if we are making rede-
ployment decisions (i.e., e € {5,9}). Denote the future
state with the redeployed server arriving at the base by
s’. Then, the future uncovered rate can be written as

D5(5) =D A e)=0 (12)
ieN

where the coverage N;(s) is defined in the same way as
in (10) except that s is replaced by s’. When making dis-
patching decisions, we do not perform the replacement
because the server will still be unavailable when it
arrives at its destination. In other words, with the
“future uncovered request rate,” we would like to
maximize the future coverage when the redeployed
server becomes available.
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4.2.4. Future Missed Call Rate. This basis function cap-
tures the rate that a request is outsourced or delayed
because all the servers are busy with other requests,
which is represented as

N
By(s) =D APils), (13)
i=1

where P;(s) is the probability that all servers that can
reach a request at demand node i are busy with other
requests. We estimate {P;(s),i =1,..., N} by treating the
request service processes in different demand areas as
Erlang loss systems. In an Erlang loss system with arrival
rate A, service rate 1, and 1 servers, the steady-state prob-
ability of losing a request is given by (A, u,n)=
(A/w)"/n!
D e A"/
distribution, which satisfies the assumptions of Erlang
loss systems. Service times include response time (base
to the scene), on-scene time, transport time (scene to hos-
pital), and transition time (hospital to base). However, in
our model, service time distributions for ambulances
and UAVs are not identical. Fakinos (1980) generalized
the Erlang B formula for the case of heterogeneous ser-
vers. Specifically, for an M/G/k/k blocking system with
heterogeneous servers, denote the arrival rate at demand
node i with A;, average service time B;, i j=1,...,k and

their product p; ; = Aif;,j=1,..., k. Then, the probability
of blocking is

. In an EMS system, arrivals follow a Poisson

1

kPi1Pi2 " Pik

Pi(s):Bi,k(pi,l"“’pz‘,k)z kK (k—o)! !
0=0" Kl Zj1<~~-<jnpi,j1pi,/zmpfrfk

where j; <jp <---<j, is a permutation of v servers in
{1,2,...,k}. To estimate parameters in the generalized
Erlang B formula, we let £; be the set of available servers
that can serve a request in each demand node i within
the threshold response time so that Li(s)={l € A(s):

d(d?/”, i) < A}. Then, we use k = | £;(s)| as the number of
servers in the Erlang loss system for demand area i.

4.2.5. Average Response Time. This basis function
captures the average response time of the two closest
servers to each request. We only count the number of
servers satisfying certain conditions in the previous three
basis functions. With “average response time,” we
emphasize the exact distance, directly affecting the
response time. Denote by pj; the probability that server !
is dispatched to the request at node i (Chelst and Jarvis
1979). Then, the average travel time to each demand
nodeis

T, = 2Pt )
2P

where #; is the average travel time from [ to i. The dis-
patching probability is estimated by the hypercube

queueing model developed by Larson (1974), which
characterizes the operations of an EMS system with a
multiserver-queuing system comprising distinguishable
servers. Additionally, we estimate the dispatching
probability following the approximation procedures
described in Larson (1975). Thus, the demand-weighted
average response time can be written as

2Pyt
= ATy = A . 14
¢5(6) g; g\; 2 1Py (49

4.2.6. Availability Reduction. The previous five basis
functions capture the spatial features of the system,
whereas this one captures the temporal aspect of avail-
ability reduction associated with the traveling of UAVs
and ambulances. The travel time matters because UAVs
and ambulances are unavailable to serve requests during
the travel. For example, consider a scenario where an
ambulance can be redeployed to two bases, A and B.
Redeployment to A results in a slightly higher coverage
but requires a much longer travel time. Without this
basis function, we will choose to redeploy the ambulance
to base A, but it may not always be the optimal choice.
Therefore, we represent availability reduction caused by
the travel time of UAVs and ambulance redeployment
with the following basis function:

Hd(s), di(s’)) ee€{5,9} and Z Z{,=1or
beM”?
Pe(s) = >z, =1,
beM"
0 otherwise.

(15)

5. Numerical Experiments

In this section, we present a simulation-based compara-
tive study with realistic UAV design parameters and real
EMS data from the NEMSIS database and naloxone
administration heat map in the state of Indiana. We start
by introducing the experimental setup and benchmark
policies. Then, we compare the policies” performance in
scenarios with varying numbers of UAVs, service areas,
and base locations. When we investigate the influence of
one factor, everything else is fixed to ensure a fair com-
parison. Next, in Sections 5.6 and 5.7, we analyze the
underlying mechanism behind the superior perfor-
mance of NN-API and provide insights into situations
where a simpler approach, such as the static ad hoc pol-
icy, exhibits comparable performance with the NN-APL

5.1. Experimental Setup

In this section, we present an overview of our experi-
mental setup and the calibration criteria employed for
the determination of base locations, bystander willing-
ness, EMS demands, performance metrics, and valida-
tion of results. For a comprehensive understanding of
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the estimation and evidential support for other para-
meters, such as fleet sizes and time parameters, please
refer to section 3 in the online appendix. To ensure statis-
tical confidence in our comparisons, we set the simulation
time horizon to one day and conducted 400 replications
for each case.

5.1.1. Base Locations and Initial Layouts. To evaluate
the efficiency of dynamic operations of the joint EMS sys-
tem, we consider the home bases and initial layouts of
UAVs and ambulances as predetermined. We leverage a
status quo layout. Ambulance bases are located at hospi-
tals, police stations, and fire departments; bases of UAVs
are located at low-ambulance coverage areas. Initially,
numbers of ambulances and UAVs located at each base
are proportional to the demand density of the base loca-
tion. We investigate the impact of optimizing base loca-
tions in Section 5.5.

5.1.2. Bystander Willingness. The willingness of bystan-
ders to provide assistance in emergency situations exhi-
bits significant variation, as reported in the literature,
with estimates ranging from 27% to 76% (Strang et al.
2000, Kerr et al. 2009, Barbic et al. 2020). This variability
can be attributed to several factors, including sociodemo-
graphic characteristics, prior witnessing experience,
prior overdose experience, perceived risk of arrest, and
the specific location of the overdose incident (Tobin et al.
2005, Burn 2017). Considering the wide range of esti-
mates, we model bystander willingness using a uniform
distribution within the interval of [0.2,0.8].

5.1.3. EMS Demands. For our case studies, we extract
EMS request distribution from the naloxone administra-
tion heat map in the state of Indiana, with the assump-
tion that opioid overdose requests share the same
distribution with other EMS requests. The geographic
distribution of these request incidences (measured by

the centrality of the distribution) is consistent with the
rural-urban area classification (Figure 2). Accordingly,
we consider three catchment areas based on their geo-
graphic delineation: Marion County (urban), Tippecanoe
County (semiurban), and Marshall County (rural).

5.1.4. Performance Metrics. We calculate six metrics:
accumulated total rewards, average response time for all
requests and for opioid overdose requests, fraction of
calls served within the response time threshold for all
requests and for opioid overdose requests, and fraction
of outsourced requests.

5.1.5. Results Validation. The response time of the
practical policy is in line with the performance of the cur-
rent EMS system. Specifically, median EMS arrival times
for all call types are between seven and eight minutes
(Mell et al. 2017). In rural, remote, geographically chal-
lenging, or high-traffic urban areas, this response time
can average more than 14 minutes (Hanna 2018).

5.2. Benchmark Policies
In this section, we introduce several policies that are
used as benchmarks in our study.

5.2.1. Static Ad Hoc Policy. In current practice, experi-
enced dispatchers make ambulance dispatching deci-
sions in the following ad hoc manner (Schmid 2012).
They can view a dashboard with a regional map that
shows the position and status of each server. In case of an
emergency, the closest available server is usually dis-
patched. Servers will return to their home bases after
serving a request.

5.2.2. Dynamic Heuristic Policy. When an EMS request
is received, the closest available server is dispatched. The
redeployment policy uses the heuristic developed by
Jagtenberg et al. (2015), which is based on solving the

Figure 2. (Color online) Spatial Distribution of Naloxone Administration for Opioid Overdose
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on the incident arrival probability distribution heat map for Tippecanoe County. For example, the value “0.270” in the center grid indicates that
there is a 0.27 probability of the next incident occurring in that grid in Tippecanoe County. (a) Marion. (b) Tippecanoe. (c) Marshall. (d) Extracted

distribution.
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MEXCLP. This heuristic is easy to implement and has
shown good performance for instances considered by
the authors. When a server finishes its current task, it
will be redeployed to a base that results in the largest
marginal contribution to coverage according to the
MEXCLP model.

5.2.3. Maxwell ADP. Maxwell et al. (2010) and Nasrol-
lahzadeh et al. (2018) proposed two ADP-based policies
for optimal ambulance redeployment decisions and/or
dispatching decisions. We regard them as predecessors
of our solution methodology and thus, use them as
benchmark policies. We employ the basis functions and
coefficient training algorithms proposed by Maxwell
et al. (2010) and Nasrollahzadeh et al. (2018) while keep-
ing our modeling framework, which includes the system
dynamics and the objective function.

5.2.4. L-ADP. In this ADP-based benchmark, we employ
the basis functions developed in Section 4.2. However, for
feature combination and ADP training, we adopt a linear
representation for the value function approximation and
choose the coefficient training algorithms in Maxwell et al.
(2010) and Nasrollahzadeh et al. (2018).

5.3. Benefit of Introducing UAVs
In this section, we explore the benefit of the joint opera-
tion of UAVs with ambulances. The comparison is based
on the arrival profile in Tippecanoe County. We consider
three settings of the fleet size (i.e., no UAVs, § UAVs, and
16 UAVs). Table 1 suggests that the NN-API policy
achieves a shorter response time than the benchmark in
all the tested scenarios (the complete comparison results
can be found in section 4.1 in the online appendix).

Table 1 demonstrates that the incorporation of UAVs
into an EMS system can significantly reduce the response

Table 1. Average Response Time (Minutes) Comparison
(95% Confidence Interval) Among Different Numbers of
UAVs in Tippecanoe County (Semiurban) and Marshall
County (Rural)

General Opioid
Tippecanoe County
0 UAV
NN-APIL 10.8+0.3 83+04
Static 13.7 0.3 12.8 £ 0.5
8 UAVs
NN-API 9.1+04 57+0.3
Static 103 £0.2 77+04
Marshall County
0 UAV
NN-API 12.6 £ 0.5 10.8 £ 0.5
Static 13.5+0.6 11.5+0.7
8 UAVs
NN-API 78+0.3 54+03
Static 9.3+04 79+0.5

time, especially for opioid overdose requests. The
response time reduction is more significant in rural
areas, where ambulance resources are typically limited.
For both counties, the response times can be reduced by
over 30% with the use of UAVs, even when using a sim-
ple operational strategy. With our proposed strategy,
response times could be reduced by as much as 50%.
This magnitude of reduction in response time could
potentially save more lives, as UAVs would be able to
arrive at the scene faster and provide lifesaving treat-
ment in a timely manner. This could be especially benefi-
cial for opioid overdose victims who might not have
survived without prompt medical intervention. More-
over, Table 1 also demonstrates comparable perfor-
mances between the NN-API policy with no UAV and
the static policy with eight UAVs in Tippecanoe County
(semiurban). This suggests that intelligent real-time
operations can compensate for the lack of EMS resources.
In general, the addition of UAVs to the EMS system can
improve the overall performance and efficiency of emer-
gency response.

5.4. Sensitivity Analysis on Service Areas

In this section, we investigate the sensitivity of the policy
performances with respect to the urban-rural delineation
of the service areas. As shown in Figure 3, a service area
that is more urban (e.g., Marion County) tends to have a
higher volume of requests and more pockets of spatially
concentrated requests, whereas a service area that is
more rural (e.g., Marshall County) tends to be the
reverse. Table 2 summarizes our results, suggesting that
the NN-API policy performs consistently better than the
benchmarks in terms of accumulated rewards. The com-
plete comparison results can be found in section 4.2 in
the online appendix.

Table 2 suggests that in areas with high demand, such
as Marion County, more requests arrived continuously.
Hence, ADP-based policies take advantage of considering
future requests and lead to significantly better perfor-
mance, as indicated by a p-value of less than 0.01 in a
paired t-test. In low-demand cases, like Marshall County,
the intervals between requests were longer, making the
decision process more similar to a one-shot decision. In
these cases, there is barely any benefit from sacrificing
current rewards to prepare for future demand, resulting
in similar performances between the NN-API policy and
the static policy, as indicated by a p-value of 0.12 in a
paired t-test.

5.5. Performance Improvement with Optimized
Base Locations

In this section, we investigate the impact of the optimiza-

tion of the home base locations on the policy perfor-

mance. We use a maximal coverage location problem

(MCLP) to jointly optimize the locations of ambulance

and UAV bases for maximum coverage. More details
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Figure 3. (Color online) Spatial Distribution of Naloxone Administration and Settings of Ambulances and UAVs in Tippecanoe,

Marion, and Marshall Counties
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Notes. (a) Tippecanoe. (b) Marion. (c) Marshall.

about this location model can be found in section 4.3.1
in the online appendix. We compare the performance
of our NN-API policy with the benchmark policies
under four different sets of base locations in Tippecanoe
County (Figure 4): (a) both random, where both ambu-
lance and UAYV bases are randomly located across the
service area; (b) status quo supplementary (the baseline
setting used in the previous two sections), where ambu-
lance bases are located at hospitals, fire departments,
and police stations, whereas UAV bases are located in
low-ambulance coverage areas; (c) status quo optimized,
where ambulance bases are fixed at status quo locations
and only UAYV bases are optimized using an MCLP; and
(d) both optimized, where both ambulance and UAV
bases are jointly optimized using a larger-scale MCLP.

To simplify the result presentation and clarify the
comparison across different settings, we only present the
performance of the NN-API and static ad hoc policies in
Table 3. Full comparative results can be found in section
4.3.2 in the online appendix.

Table 3 shows that our NN-API policy consistently
outperforms the benchmark policies in terms of

[ ]
Tyér .
k3 e
N
. =¥ |
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accumulated rewards by reducing response times, parti-
cularly for opioid overdoses. This suggests that even
with predetermined base locations, there is always room
for improvement in real-time operations, which our
NN-API policy can achieve. Furthermore, the table
demonstrates a significant improvement from the Both
random setting to the status quo-supplementary setting
under both the NN-API and static policies, highlighting
the importance of base locations. Base locations determine
the feasible choices for dispatching and relocation deci-
sions, and optimizing them could further improve perfor-
mance and shorten response times, especially for the
static policy. Although optimizing base locations can
improve coverage, the impact of such optimization for the
NN-API policy may be limited to Tippecanoe County
because of the centralized pattern of requests. The status
quo-supplementary setting yields base locations that ade-
quately cover high-demand areas, and optimizing base
locations would primarily benefit low-demand areas
through enhancing coverage. Therefore, the resulting
improvement in average response time may not be signif-
icant. Nevertheless, optimizing base locations in regions

Table 2. Performance Comparison (95% Confidence Interval) Among Different Service Areas

Response time (minutes)

Respond within threshold (%)

Reward General Opioid General Opioid Outsourced (%)

Tippecanoe

NN-API 2,132 £40 91+04 57*03 76.6 = 0.4 78.8+0.4 13.9+04

Static 1,882 =39 10.3+0.2 77x04 749+ 0.5 746 +0.7 148 =04
Marion

NN-API 5,420 =133 6.8+0.3 49x02 702+ 0.5 72.6 0.6 219*04

Static 3,672 =104 79*0.6 74+0.5 64.5+0.7 61.2+0.7 259*0.8
Marshall

NN-API 13510 12.6 = 0.6 8.1x0.6 726+1.2 741+17 17.5*+1.0

Static 112+9 135+1.1 9.2+0.8 67.5*+1.1 622+18 18.1+0.9
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Figure 4. (Color online) Various Settings of Base Locations of Ambulances and UAVs in Tippecanoe County
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Notes. (a) Both random. (b) Status quo supplementary. (c) Status quo optimized. (d) Both optimized.

with more dispersed demands could lead to more signifi-
cant reductions in response time.

5.6. Mechanism Behind Performance Superiority
Our experiments in Sections 5.3-5.5 consistently demon-
strate that the NN-API policy outperforms the bench-
mark policies, as shown in Tables 1-3. The NN-API
policy is particularly effective at reducing response times
for opioid overdose emergency requests. Table 4 pro-
vides an example of the performance comparison
between the NN-API policy and all the tested bench-
marks. The superior performance of the NN-API policy
is driven by the consideration of the following compo-
nents: dynamic redeployment, sequential events and
long-term cost, heterogeneity between UAVs and ambu-
lances, and the complex relationship between value
functions and basis functions. The benefits of consider-
ing these components are verified by the comparison
between different benchmarks.

The ad hoc static policy generally performs poorly
compared with the other policies. With the same dis-
patching policy, the heuristic policy can achieve a shorter

response time by maximizing coverage in dynamic rede-
ployment. In general, because of the same dispatching
policy, the performances of the static policy and the
dynamic heuristic policy do not differ a lot from each
other. In most of the test scenarios, the three ADP-based
policies significantly outperform the other two policies,
with a much shorter response time, particularly for opi-
oid overdose emergency requests. This is because these
policies consider long-term rewards and are able to learn
toward an objective function that gives higher weights to
opioid overdose cases. Among the three ADP-based pol-
icies, the NN-API and L-ADP policies can lead to higher
rewards in most of the test scenarios. Although Maxwell
ADP occasionally outperforms L-ADP, the NN-API pol-
icy, which uses a well-trained neural network, can con-
sistently improve on the performance of L-ADP and
outperform Maxwell ADP. The superior performance of
the NN-API policy can be attributed to two factors: the
design of the basis functions and the modeling flexibility
of the neural network. The basis functions we use take
into account the heterogeneity of ambulances and UAVs
in terms of service time and incorporate temporal features

Table 3. Performance Comparison (95% Confidence Interval) Under Different Base Locations and Initial Layouts at

Tippecanoe County

Response time (minutes)

Respond within threshold (%)

Reward General Opioid General Opioid Outsourced (%)

Both random

NN-API 1,975 = 44 11.5+0.4 74+03 763+ 04 786+ 0.5 152+0.3

Static 1,735 =38 141+0.6 87x04 740+04 69.5+0.6 17.5+0.4
Status quo supplementary

NN-API 2,132 +40 91+04 57+0.3 76.6 0.4 788 +0.4 13.9+0.4

Static 1,882 =39 10.3+0.2 77*04 749 +05 74.6*0.7 14.8+0.4
Status quo optimized

NN-API 2,169 + 41 91x04 56*0.3 771+0.3 79.1+0.4 13.9+0.4

Static 1,916 + 40 10.0 0.2 75+04 753+0.4 752*0.6 14.3+0.5
Both optimized

NN-APIL 2,192 41 9.0x04 55*0.3 778+0.3 79.4*0.4 13.6 = 0.5

Static 1,932 £ 39 9.9x0.2 74*04 754+04 759+ 0.6 141+04
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Table 4. Performance Comparison (95% Confidence Interval) Among All Benchmark Policies at Tippecanoe County with
Realistic Base Locations and a Moderate Number of UAVs

Response time (minutes)

Respond within threshold (%)

Reward General Opioid General Opioid Outsourced (%)
Static ad hoc 1,882 =39 10.3+0.2 77+04 749 £ 0.5 74.6 0.7 14.8 0.4
Dynamic heuristic 1,943 + 41 9.8+0.2 76*0.3 749 * 0.4 74.6 0.7 14.8 + 0.4
Maxwell ADP 2,002 + 39 9.3+0.3 71+04 754+ 0.4 751*0.3 14.8 0.2
L-ADP 2,090 + 38 9.7+0.3 69+0.3 759+ 0.3 762+ 0.4 14703
NN-API 2,132 £ 40 91x04 57+03 76.6 = 0.4 788 +0.4 13904

of the system. This allows our solution method to approxi-
mate the value function more accurately, even with a lin-
ear approximation model.

5.7. Managerial Insights on Policy Selection

To facilitate the integration of UAVs in EMS and provide
operational guidance for policy selection, we collect and
analyze results from 60 environment scenarios. These
scenarios span a range of demand patterns (centralized,
scattered), demand rates (low, medium, high), ambu-
lance and UAV quantities (low, medium, high), and
base locations (optimized, unoptimized). Our collected
results demonstrate that the NN-API policy leads to the
best performances among all the tested policies in 59 of
60 scenarios, with no other policies showing statistically
better results at a 95% confidence interval. The L-ADP
policy and the static ad hoc policy perform comparably
with NN-API in 28 and 11 scenarios, respectively, with
no significant difference from NN-API at the 95% confi-
dence interval. These findings reaffirm the superiority of
the NN-API policy and also suggest that the adoption of
a “simpler” policy may yield sufficiently good perfor-
mance under specific circumstances. Thus, we investi-
gate two questions. (1) Under which circumstances is
NN-API statistically significantly better than other poli-
cies so that we would recommend adopting it (“NN
best”)? (2) In which cases can the static ad hoc policy
achieve statistically comparable performance with
NN-AP], indicating that it may be reasonable to use the
simpler static policy (“static NN comp”)? To answer
these questions, we utilize exact logistic regression with
regularization to examine the relationship between the
scenario settings and the policy performance. Further
details about scenario generation and logistic regression
can be found in section 5 in the online appendix.

The regression coefficients for “NN best” are shown in
Table 5. These results indicate that when demand is not
low and ambulance and UAV availability is limited,
adopting the NN-API policy is strongly recommended
as it significantly outperforms all other policies. These
findings align with the observations made in Sections
5.3-5.5, which suggest the use of the NN-API policy in
scenarios where dispatching and redeployment deci-
sions are particularly challenging. This typically occurs

when consecutive high-demand situations occur and
resources are scarce, where each dispatching decision
significantly affects the response time of subsequent
events.

Panel B in Table 5 presents the regression coefficients
for “static NN comp,” where the coefficient for
“demand_high” is regularized to zero. The regression
results suggest that the static ad hoc policy has the poten-
tial to achieve performance comparable with the
NN-API policy under specific conditions. These condi-
tions include low and scattered demand, sufficient avail-
ability of ambulances and UAVs, and optimized base
locations. On the contrast to the favorable scenarios for
“NN best,” the “Static NN comp” requires an adequate
number of ambulances and UAVs, along with low
demand that allows for less consideration of subsequent
requests. Additionally, in the case of scattered demand,
redeploying to the closest base becomes less disadvanta-
geous as predicting the location of the next request
becomes more challenging compared with centralized
demand scenarios. Further, optimizing the base loca-
tions enhances the potential of improving performance
with the static policy. Under optimized base locations,
each base can effectively cover its designated area,

Table 5. Regularized Exact Logistic Regression Coefficients
for “NN Best” and “Static NN Comps”

Coefficient Standard error p-value
Panel A: NN best
demand_central 0.037 0.359 0.918
demand_high —0.119 0.439 0.786
demand_low —-1.229 0.531 0.021
fleet_high 0.375 0.430 0.383
fleet_low 1.737 0.468 0.016
base_optimized 0.131 0.387 0.735
Panel B: Static NN comp

demand_central —2.530 0.121 0.000
demand_high 0.000 — —

demand_low 1.055 0.153 0.000
fleet_high —0.073 0.105 0.485
fleet_low —0.635 0.110 0.000
base_optimized 0.853 0.099 0.000

Note. Bold p-values indicating significance at the 95% confidence
level.
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thereby rendering the redeployment to home bases a sat-
isfactory strategy.

6. Conclusions

In this paper, we develop an ADP approach that makes
intelligent real-time decisions in UAV-augmented logistic
operations, with a focus on the emergency response to opi-
oid overdose incidents. We formulate this problem with an
MDP model that captures the complex system evolution
and interplay between the high-dimensional state and a
variety of actions. In the face of the solution challenges, we
adopt an ADP-based solution approach, which is shown to
be efficient in solving real-sized instances. We extend the
literature on emergency response operations management
by incorporating autonomous vehicles into the modeling.
Additionally, we extensively investigate the use of basis
functions and neural networks in the ADP framework.

With a detailed event-based simulation model, we
evaluate the system performance metrics of the NN-API
policy together with various benchmark policies pro-
posed in the previous literature. We use historical data
on naloxone administration for opioid overdose in Indi-
ana and the NEMSIS database for our case studies. Our
comparative results suggest that our NN-API policy sig-
nificantly improves system performance over the bench-
mark policies, especially when the base locations are
scattered and the incident rate is high. This improvement
is mainly because of the following reasons. First, by
adopting an MDP framework, we incorporate future
rewards into consideration when making both dispatch-
ing and redeployment decisions. Second, by explicitly
considering the heterogeneity of UAVs and ambulances,
we can better approximate the value functions. Addi-
tionally, our use of basis functions designed to minimize
response times and consider the heterogeneity of the sys-
tem leads to better performance compared with the
benchmarks in the literature that only consider a single
type of server. Finally, the use of neural networks helps
improve value function approximation in a wide range
of scenarios. Notably, when demand is significant and
ambulance and UAV availability is limited, we strongly
recommend the adoption of the NN-API policy because
of its outstanding performance surpassing all other
tested policies.

In brief, to implement the NN-API algorithm, we
first obtain catchment area details from the partnering
EMS agency, including the locations of their antici-
pated UAV and ambulance bases. Using this informa-
tion, we calibrate the EMS logistics system simulator
and develop prediction models for travel times, 911
request times and locations, and bystander response
rates. We then train our recommended policies using
the calibrated simulator, our algorithm, and the predic-
tion models, taking into account the level of uncer-
tainty and capacity of the ambulances and UAVs.

These policies provide dispatching and redeployment
recommendations to the dispatcher based on the status
of the ambulances and UAVs (i.e., location and
idle/busy status) and the location of any incoming
requests.

In this work, we demonstrate the benefits of using
UAVs to deliver lifesaving medication and provided
guidance on how EMS agencies can incorporate UAVs
into their operations. Our findings highlight the poten-
tial advantages of using UAVs in the EMS field and offer
practical guidance on how to effectively utilize UAVs,
including strategies for dispatching and redeployment.
We hope that this work will contribute to the wider
adoption of UAVsin EMS.

Our future research will be in the following directions.
First, we will incorporate additional realistic features of
UAVs and the EMS system, such as time-varying weather
conditions and nonstationary, request distributions in the
future. For example, individuals are likely to be at differ-
ent places over our considered time horizon (e.g., the
workplace during daytime and home during nighttime).
Second, we will investigate the issue of EMS access equity
across diverse communities within a service area, for
which we will formulate constrained MDPs with con-
straints on the allowable system outcome inequity. We
will develop an ADP approach to the resultant con-
strained MDPs. Finally, it is also worth investigating the
optimal locations of ambulances and UAV bases given an
RL-based operational strategy instead of assuming a clos-
est dispatch rule in the facility location phase. This will
allow us to further improve system efficiency and reduce
response times.
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