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ABSTRACT

Proofs of localization for random Schrödinger operators with sufficiently regular distribution of the potential can take advantage of the frac-
tional moment method introduced by Aizenman±Molchanov [Commun. Math. Phys. 157(2), 245±278 (1993)] or use the classical Wegner
estimate as part of another method, e.g., the multi-scale analysis introduced by Fröhlich±Spencer [Commun. Math. Phys. 88, 151±184 (1983)]
and significantly developed by Klein and his collaborators. When the potential distribution is singular, most proofs rely crucially on expo-
nential estimates of events corresponding to finite truncations of the operator in question; these estimates in some sense substitute for the
classical Wegner estimate. We introduce a method to ªliftº such estimates, which have been obtained for many stationary models, to certain
closely related non-stationary models. As an application, we use this method to derive Anderson localization on the 1D lattice for certain
non-stationary potentials along the lines of the non-perturbative approach developed by Jitomirskaya±Zhu [Commun. Math. Physics 370,
311±324 (2019)] in 2019.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0150430

I. INTRODUCTION

The study of large deviations has featured prominently in many proofs of localization for ergodic Schrödinger operators, both in the
random and quasi-periodic context. For the random case, the first proof of Anderson localization for the Anderson model with singular
potentials on the one-dimensional lattice in Ref. 1 by Carmona±Klein±Martinelli used large deviation estimates coming from a study of the
Lyapunov exponent; later proofs in, e.g., Refs. 2±5 either introduced new approaches or made simplifications but still relied on large deviation
estimates in some way.

For the two-dimensional Andersonmodel with singular potentials, Ding±Smart in Ref. 6 recently obtained localization at the edges of the
spectrum, and a key unique continuation result relied crucially on large deviation estimates in the form of the Azuma inequality. This unique
continuation enabled them to use the strategy introduced by Bourgain±Kenig in Ref. 7 and elucidated by Germinet±Klein in Ref. 8. The result
in Ref. 6 has since been improved upon in Ref. 9 and was combined with a Z3 unique continuation result to obtain the same localization result
in the three-dimensional context in Ref. 10. In the quasi-periodic context, analysis of the large deviation sets is crucial for, e.g., the method
introduced by Bourgain and his co-authors in Ref. 11, detailed in Ref. 12. Recent work in this vein includes Refs. 13 and 14.

To be more explicit, when we speak of discrete Schrödinger operators in dimension d, we mean operators on ℓ
2(Zd) of the form

∥Hψ∥(n) ≙ ∑
∣m−n∣≙1

ψ(m) +Vnψ(n). (1)
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In both the random and quasi-periodic cases, when large deviation estimates are under consideration, they are often of the form

P∥A square of length ℓ is ªbadº∥ ≤ e−ηℓ (2)

for some η > 0 and some contextual notion of ªbad.º In general, most proofs of localization require statements like the above, but with e−ηℓ

possibly replaced by some other f (ℓ) vanishing as ℓ→∞. For the special case in (2) of an exponential decay, we have produced a method
by which to ªliftº estimates of this form from some joint distribution P1 of the values {Vn(ω)} to another distribution P0, which is closely
related. We note that our method admits some generalization to arbitrary f (ℓ), but both the constraints on P0 and the losses in the ªliftedº
rate can be severe for slower rates of decay, motivating our emphasis on exponential estimates.

In particular, the method is still somewhat robust for ªalmost exponentialº decays such as f (ℓ) ≙ e−ηℓq (where 0 < q < 1) and not very
robust for power law decays, i.e., f (ℓ) ≙ ℓ−q with q > 0. The method requires estimates on how ªcloseº P0 is to P1 when both are restricted
to finitely many coordinates, so we expect applications to be mostly (or exclusively) in the random context, where the potential at any given
site has no dependence on the potential at other sites; in such cases, said estimates can be obtained in fairly natural circumstances. We note,
however, that the underlying probabilistic results apply in all contexts where the requisite estimates hold.

Specifically, we let μ be a non-trivial probability distribution onR satisfying an appropriate moment condition. (By non-trivial, we mean
μ is supported on at least two points.) When d ≙ 1 and Vn are identically distributed with law μ, the transfer matrices associated with the
random operator,

∥Hψ∥(n) ≙ ψ(n + 1) + ψ(n − 1) +Vnψ(n),
satisfy large deviation estimates as a consequence Ref. 15, which should be understood in the wider context of the Furstenberg theory of
random matrix products. More explicitly, we let Ω ≙ RZ, P ≙ μZ, and Vn : Ω→ R be projection onto the nth coordinate. Then, the family of
operators

∥Hωψ∥(n) ≙ ψ(n + 1) + ψ(n − 1) +Vn(ω)ψ(n) (3)

are precisely distributed in this way. This explicit description is necessary both in comparing such families to families with slightly different
distribution and in the method used in Ref. 5 specifically, which we hope to adapt to our context.

For a system where Vn are independently distributed with laws of the form gnμ, with gn > 0, ∫ gndμ ≙ 1, and gn ∈ L
∞(dμ), we derive the

existence of similar large deviation estimates for the transfer matrices associated with the said system so long as the following key condition
holds:

lim
N→∞

1

N

N

∑
n≙−N

log ∥gn∥∞ ≙ 0, (4)

i.e.,∑N
n≙−N log ∥gn∥∞ ≙ o(N). Furthermore, this system will show more or less the same Lyapunov behavior as if Vn(ω) were i.i.d. with law

μ. By this, we mean that the ªapproximateº system with potential at site n distributed with law gnμ has a Lyapunov exponent γ̃(E), which
describes the asymptotics of the associated transfer matrices, and at all energies, this coincides with the Lyapunov exponent γ(E) describing
the transfer matrices associated with the ªexactº system where the potential at each site is distributed with law μ. This probabilistic result can
loosely be understood as a multiplicative version of the standard result found in, e.g., Ref. 16 that large deviation principles for stochastic
processes are preserved under certain forms of super-exponential approximation.

These estimates are then used to derive almost sure Anderson localization for the associated random family of Schrödinger operators
using a strategy for proving localization along the lines of Refs. 5 and 17. In the case where μ has unbounded support, we will require further
technical assumptions, the most salient of which is the strengthening of (4) to

lim
N→∞

1

N
[sup

k∈Z

k+N

∑
n≙k−N

log ∥gn∥∞] ≙ 0. (5)

To our knowledge, the only work that has obtained large deviation estimates for non-stationary matrix products is from
Gorodetski±Kleptsyn in Ref. 18, and the author of Ref. 19 also analyzed the asymptotics of non-stationary random matrix products but
does not produce large deviation estimates. We note that the large deviation estimates found in Ref. 18 hold in an overall more general set-
ting than ours, forgoing any kind of convergence condition on the sequence of distributions and the requirement that they all be absolutely
continuous with respect to some base distribution μ.

However, in this considerably more general setting, a Lyapunov exponent cannot be expected to exist for all the non-stationary matrix
products satisfying the relevant assumptions. In particular, to our knowledge, the results in Ref. 18 cannot be combined with the Craig±Simon
subharmonicity result in Ref. 20, which uses subharmonicity of the Lyapunov exponent γ(z) to achieve a certain kind of uniformity in energy.

The general large deviations they obtain consequently do not seem to be compatible with the approach of Ref. 5, which we use to derive
localization.We came to know while preparing this work that the forthcoming work of Gorodetski±Kleptsyn will prove Anderson localization
in the context of distributions satisfying the requirements in Ref. 18 via completely different methods using a purely dynamical approach that
builds upon the approach used in Ref. 4.
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We emphasize that the results in Ref. 18 are on the whole considerably more general in the context of large deviation estimates corre-
sponding to non-stationary matrix products. Similarly, the forthcoming localization result from the work of Gorodetski±Kleptsyn will be far
more general then the localization results we obtain here. There are certain rare examples for which our results are applicable and those in
Ref. 18 are not, but ªmostº examples satisfying the hypotheses of our work satisfy the hypotheses in Ref. 18.

At the same time, the method presented there is one-dimensional in an essential way, as the transfer matrix method that allows the study
of generalized eigenfunctions in terms of matrix products is only available in one-dimensional and quasi-one-dimensional contexts. In con-
trast, our lifting method, while imposing much harsher restrictions on the distributions considered, is fundamentally an abstract probabilistic

result about product measures and is easily adapted to the study of non-stationary potentials on Z
d for any d or any reasonably ªtameº lattice.

Moreover, while the large deviation work in Ref. 18 does not require compact support of the distribution and makes morally the same
mild moment assumptions as we do in this work and as are made in, e.g., Refs. 1 and 17, it is our understanding that the forthcoming
localization proof from the work of Gorodetski±Kleptsyn will further the approach of Ref. 4 and, in particular, will require the potentials
Vn(ω) to have a uniform bound. We point out that our localization result holds for unbounded distributions under our more stringent
assumptions.

These results are of special interest in the case where μ is singular. With sufficient regularity, the study of the problem becomes amenable
to the fractional moment method pioneered in Ref. 21; such methods are able to handle non identically distributed distributions in consid-
erably higher generality than our methods under the requisite assumptions. The methods of Ref. 22, developed earlier, are also available for
the one-dimensional problem specifically. In the continuum setting, Klein obtained localization for certain non-stationary Anderson models
with no regularity assumptions made in Ref. 23. This was a consequence of Wegner estimates derived more generally using the quantitative
unique continuation introduced by Bourgain±Kenig in Ref. 7 and further elaborated upon by Bourgain±Klein in Ref. 24.

In addition, the requirement that the laws of Vn(ω) are all absolutely continuous with respect to some base measure μ becomes con-
siderably more natural in the context of finite valued potentials specifically. If, e.g., μ ≙ ∑M

m≙1 αmδxm , then absolute continuity implies that

μn ≙ ∑M
m≙1 βn,mδxm and ∥gn∥∞ ≙ max{ βn,m

αm
}. Physically, the situation corresponds to pockets of zero natural density where the probability dif-

fers fromwhat it should bemore than any given ε > 0; (4) is in this context precisely equivalent to βn,m
d
Ð→ αm for allm, where the convergence

is in the sense of natural density or, more precisely, its obvious analog on Z.
We also prove another result under even stronger assumptions than (5) that essentially makes all the statistics of a system with Vn(ω)

distributed as gnμ identical to those of i.i.d. Vn(ω) with law μ; specifically, if

∑
n∈Z

log ∥gn∥∞ <∞, (6)

then the joint distribution P0 corresponding to the non-stationary case is absolutely continuous with respect to the joint distribution P1 with
Vn(ω) i.i.d. This argument, under more stringent conditions, essentially allows a great number of results, e.g., the dynamical localization
results from Ref. 5, to be carried over wholesale from stationary contexts to non-stationary contexts.

We mention in brief that our model is just one of many where the potential incorporates randomness but is not just given by i.i.d.
random variables. A comprehensive review is well beyond the scope of this work; we briefly mention the random polymer models studied in,
e.g., Refs. 25 and 26, which have potential purely driven by randomness but allow some ªlocalº dependence among the variables determining
the potential, mixed models studied in, e.g., Refs. 27 and 28, which consider potentials given by random terms together with terms that are
either quasi-periodic or periodic, and ªtrimmedº models considered in, e.g., Refs. 29 and 30.

The rest of this paper is organized as follows: in Sec. II, we introduce the necessary probabilistic definitions and our results, introducing
our three main probabilistic results and their consequences for localization of non-stationary Anderson models. In Sec. III, we prove our
probabilistic results. In Sec. IV, we recall basic facts about Schrödinger operators and results regarding stationary Anderson models. In Sec. V,
we use our probabilistic results to derive large deviation estimates and prove important consequences thereof, namely, identical Lyapunov
behavior for the non-stationary approximate system and applicability of the Craig±Simon subharmonicity result for the said system. In Sec. VI,
we prove technical lemmas necessary to prove our main localization result concerning unbounded potentials, Theorem II.9, and comment
on the small changes necessary to prove the similar Theorem II.5, which allows weaker hypotheses in the case that the potential is bounded.
Finally, in Section VII, we prove Theorem II.9.

II. PRELIMINARIES AND STATEMENTS OF RESULTS

Throughout, P0 and P1 will denote distinct probability distributions on the same measure space (X,ℱ). When the discussion is specified
to Schrödinger operators, (X,ℱ)will beRZ and the product Borel algebra. In this case, P0 and P1 can also be understood as joint distributions
of variables Vn(ω) so that Vn are projection maps. The expectation with respect to P0 and P1 will be denoted E0 and E1, respectively.
Whenever 𝒢⊂ℱ are σ-algebras and X is an L1(Pi,ℱ) random variable, we denote its conditional expectation with respect to 𝒢 and Pi by
Ei∥X ∣𝒢∥. That is, Ei∥X ∣𝒢∥ is the unique (up to Pi-a.e. equivalence)𝒢measurable variable, which satisfies

Ei∥χA ⋅ X∥ ≙ Ei∥χA ⋅ Ei∥X ∣𝒢∥∥
for all A ∈ 𝒢. Throughout, P1 can be considered an ªexactº distribution and P0 can be considered an ªapproximateº distribution.
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For two measures ν and μ on a measure space, ν≪ μ denotes the absolute continuity of ν with respect to μ. When we specify the
conversation to product measures, we will fix a probability measure μ onR and consider non-negative gn ∈ L

∞(dμ)with g ≥ 0 and ∫ gdμ ≙ 1.
In a natural way, these functions correspond to probability measures ν≪ μ with essentially bounded Radon±Nikodym derivatives. In some
sense, these measures are the more relevant objects, but we identify them with their densities for notational simplicity so that we may write,

e.g., gn and gnμ instead of dμn
dμ

and μn.

Given (Ω,ℱ) some measure space,ℱn a filtration, and P0, P1 two probability measures such that P0∣ℱn
≪ P1∣ℱn

, we will define

Hn :≙
d(P0∣ℱn

)
d(P1∣ℱn

) .
Sometimes, we will consider families of filtrations, i.e., collections (ℱk

n ) where for any fixed k ∈ Z, (ℱk0
n ) is a filtration. In this case, we set

H
k
n :≙

d(P0∣ℱ k
n
)

d(P1∣ℱ k
n
) .

We introduce notions relevant only to the study of Schrödinger operators later in the paper.

Definition II.1. We let (X,ℳ) be a measurable space and (AE
n)(n,E)∈N×R be a collection of measurable sets. (This should be understood as

a collection of sequences indexed by E ∈ R.) We say that the collection decays exponentially uniformly in E with respect to a probability measure
P if there exists N ∈ N and η > 0 such that for n > N and all E, we have

P∥AE
n∥ ≤ e−ηn.

Definition II.2. We say a collection of sequences of events (AE
n)(n,E) (with n ∈ N,E ∈ R) is adapted to a filtration of σ-algebras (ℱn)n∈N if

for all E and n, we have AE
n ∈ℱn.

Note that there is nothing special about the choice of R for indexing our collection of sequences, save that it is what we will use later in
this work, with E representing energy.

Theorem II.3. Let (X,ℳ) be a measurable space. Furthermore, let Ω ≙ XZ and ℬ be the σ-algebra on XZ generated by measurable
cylinder sets. Let μ be a probability measure on (X,ℳ) and gn be a sequence of non-negative functions with gn ∈ L

∞(dμ) and ∫ gndμ ≙ 1. We
define on (Ω,ℬ) the product measures,

P0 ≙⊗
n∈Z

gnμ, P1 ≙ μ
Z
,

and the coordinate projections Vn by Vn(ω) ≙ ωn for Ω ∋ ω ≙ (ωn)n∈Z. Finally, we define the σ-algebras as
ℱn ≙

⎧⎪⎪⎨⎪⎪⎩
σ(V−n,V1−n, . . .Vn−1,Vn), n > 0,

{Ω,∅}, n ≙ 0.

If gn satisfy

lim
N→∞

1

N

N

∑
n≙−N

log ∥gn∥∞ ≙ 0, (4)

then any collection of events (AE
n), which is adapted to (ℱn)n∈N and exponentially decaying uniformly in E in P1, is also exponentially decaying

uniformly in E in P0.

A straightforward consequence of Theorem II.3 is that large deviation estimates are valid for the joint distribution P0 and, as a
consequence, the existence of a Lyapunov exponent, the same one existing for the joint distribution P1.

Theorem II.4. Let Ω ≙ RZ and P1 ≙ μ
Z for some non-trivial (i.e., supported on at least two points) μ such that there is α > 0 for which

∫ ∣x∣αdμ(x) <∞ and define the family of operators Hω by

Hωψ(n) ≙ ψ(n + 1) + ψ(n − 1) +Vn(ω)ψ(n).
Moreover, let Sz∥1,n∥(ω) be the SL2(C)matrices satisfying

S
z
∥1,n∥(ω)⎛⎜⎝

ψ(1)
ψ(0)

⎞⎟⎠ ≙
⎛⎜⎝
ψ(n + 1)
ψ(n)

⎞⎟⎠

J. Math. Phys. 64, 061902 (2023); doi: 10.1063/5.0150430 64, 061902-4
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for any solution ψ ∈ CZ to Hωψ ≙ zψ and γ(z) ≙ limn→∞
1
n
E1∥log ∥Sz∥1,n∥(ω)∥∥. Then, for any fixed z ∈ C and ε > 0, there exist η ≙ η(z, ε) > 0

and N ≙ N(z, ε) such that
P0[∣ 1

n
log ∥Sz∥1,n∥(ω)∥ − γ(z)∣ > ε] ≤ e−ηn

for n > N. In particular, 1
n
∥Sz∥1,n∥(ω)∥→ γ(z) P0-almost surely.

These results suffice to produce the necessary estimates to show Anderson localization for the bounded case:

Theorem II.5. Let (X,ℳ) be R equipped with its Borel σ-algebra, and further let (Ω,ℬ), P0, P1,ℱn, and Vn be as in Theorem II.3, with
Eq. (4) satisfied.

Assume moreover that μ has compact support. Then, there is a set Ω0 ⊂ Ω with P0∥Ω0∥ ≙ 1 such that for all ω ∈ Ω0, the operators on ℓ
2(Z)

defined by

Hωψ(n) ≙ ψ(n − 1) + ψ(n + 1) +Vn(ω)ψ(n)
has pure point spectrum with all eigenfunctions exponentially decaying.

However, for distributions μ with unbounded support, we need for technical reasons to be able to discuss uniformity across different

choices of filtrations (ℱn)k, which physically corresponds to uniformity across different choices of centers for an interval. Concretely, in
the stationary Anderson model context, the statistics for the transfer matrix SE∥a,b∥,ω only depend on the length b − a + 1 and the energy E.
While we cannot recover this exact statement in the non-stationary case, we can under stronger assumptions lift a priori large deviation
estimates, which are uniform across such choices from a stationary context to similar large deviation estimates in a non-stationary context.
We introduce additional definitions specific to these considerations. Throughout, ªuniform in filtrationº can loosely be read as ªdepending
only on the length of the associated interval.º This is in the full level of abstraction not quite correct but describes our specific application. We
introduce the following necessary definitions:

Definition II.6. Given a measure space (X,ℳ) and a collection of filtrations (ℱn)k, with n ∈ N, k ∈ Z, we say that a collection of events

(Ak,E
n ) decays exponentially uniformly in E and k with respect to P if there exists N and η > 0 such that for all E, all k, and all n > N, we have

P∥Ak,E
n ∥ < e−ηn.

Definition II.7. We say that (Ak,E
n ) is (ℱn)k adapted if for any fixed k0 ∈ Z, the collection of events Ak0 ,E

n isℱk0
n adapted.

With these natural extensions of earlier definitions, we can state a version of Theorem II.3, which is uniform in filtration.

Theorem II.8. Let (X,ℳ) be a measurable space. Furthermore, let Ω ≙ XZ and ℬ be the σ-algebra on XZ generated by measurable
cylinder sets. Let μ be a probability measure on (X,ℳ) and gn be a sequence of non-negative functions with gn ∈ L

∞(dμ) and ∫ gndμ ≙ 1. We
define on (Ω,ℬ) the product measures

P0 ≙⊗
n∈Z

gnμ, P1 ≙ μ
Z

and the coordinate projections Vn by Vn(ω) ≙ ωn for Ω ∋ ω ≙ (ωn)n∈Z. Finally, we define the σ-algebras

ℱ
k
n ≙

⎧⎪⎪⎨⎪⎪⎩
σ(Vk−n,Vk+1−n, . . .Vk+n−1,Vk+n), n > 0,

{Ω,∅}, n ≙ 0.

If gn satisfy

lim
N→∞

1

N
[sup

k∈Z

k+N

∑
n≙k−N

log ∥gn∥∞] ≙ 0,

then any collection of events (AE,k
n ), which is adapted to (ℱn)k and exponentially decaying uniformly in E and k with respect to P1, is also

exponentially decaying uniformly in E and k with respect to P0.

This version, uniform in filtration (i.e., center), suffices to show Anderson localization for μn ªconvergingº to μ, which have unbounded
support but satisfy a mild moment condition, more or less the condition found in the original Carmona±Klein±Martinelli work.1

Theorem II.9. Let (X,ℳ) be R equipped with its Borel σ-algebra, and furthermore, let (Ω,ℬ), P0, P1,ℱn, and Vn be as in Theorem II.5
with Eq. (5) satisfied.
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Assume also that there are α > 0 and M <∞ such that ∫ ∣x∣αdμ(x) < K and ∫ ∣x∣αgn(x)dμ(x) <M for all n ∈ Z. Set Ω0 ⊂ Ω with

P0∥Ω0∥ ≙ 1 such that for all ω ∈ Ω0, the operators on ℓ
2(Z) defined by

Hωψ(n) ≙ ψ(n − 1) + ψ(n + 1) +Vn(ω)ψ(n)
has the pure point spectrum with all eigenfunctions exponentially decaying, i.e., Hω exhibits Anderson localization.

Remark II.10. Our additional conditions in the unbounded case amount to imposing uniformity in various ways; this in some sense is
required to make up for the loss of uniformity, which came from the existence of a bound on Vn. In particular, (5) allows the extraction of large
deviation estimates uniform in ªcenterº of the corresponding interval or square by prohibiting arbitrarily long stretches of abnormally high ∥gn∥.
We will explicitly go through the unbounded case through the rest of this paper and point out when they arise, the places where boundedness
allows one to discard assumptions.

Finally, a condition stronger than even (5) forces essentially all the relevant statistics of P0 to coincide with those of P1, i.e., absolute

continuity with an essential bound on dP0
dP1

.

Theorem II.11. Let (Ω,ℬ), P0, and P1 be as in Theorem II.3. If the Radon±Nikodym derivatives satisfy the stronger condition

∑
n∈Z

log ∥gn∥∞ <∞, (6)

then P0 ≪ P1, and moreover, for any A ∈ℬ, we have P0∥A∥ ≤ CP1∥A∥, where C :≙∏n∈Z ∥gn∥∞.

A direct application of this result to the results in Ref. 5 gives the following result:

Theorem II.12. Let everything be as in Theorem II.5; assume further that μ has compact support, and the Radon±Nikodym derivatives
obey the stronger condition,

∑
n∈Z

log ∥gn∥∞ <∞. (7)

Then, Hω is almost surely exponentially dynamically localized, in the sense of Ref. 5.

III. LIFTING METHOD, PROBABILISTIC RESULTS

We prove a simple lemma, and a useful corollary, before proving Theorem II.3, which allows us to lift large deviation estimates under
certain conditions.

Lemma III.1. Let (X,ℳ) be a be a measurable space and P0,P1 be two probability measures on it. Let (ℱn)n∈N be a sequence of
σ-subalgebras of ℳ, and further assume that P0∣ℱn

≪ P1∣ℱn
for all n ∈ N. Then, for any collection of events (AE

n), which decays uniformly
exponentially with respect to P1 at rate η, we will also have uniform exponential decay with respect to P0 if

η0 :≙ lim sup
n→∞

(sup
E

1

n
log(∥χAE

n
Hn∥

∞
)) < η, (8)

where

Hn :≙
d(P0∣ℱn

)
d(P1∣ℱn

)
and ∥ ⋅ ∥∞ denotes the L∞(dP1) norm.

Proof. Under the assumption of (8), we have as before for any ε > 0 some N0 ≙ N0(ε) such that

e
−(η0+ε)n∥χAE

n
Hn∥

∞
≤ 1

for all n > N0 and α ∈ A. By our assumption of uniform exponential decay with respect to P1, there is N1 ∈ N such that

P1∥AE
n∥ ≤ e−ηn

for all α and n > N1. Fixing ε < η − η0 and N ≙ max(N0,N1), we get
P0∥AE

n∥ ≤ e−(η−η0−ε)n
for n > N and all E, establishing uniform exponential decay of the family with respect to P0. ◻
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Control of the Radon±Nikodym derivatives on the whole space gives a general result.

Theorem III.2. If (Ω,ℳ),ℱn, P0, P1, and Hn are as above and, moreover, we have

lim
n→∞

1

n
log ∥Hn∥ ≙ 0, (9)

then any family adapted toℱn exponentially decaying uniformly in E with respect to P1 is exponentially decaying uniformly in E with respect to
P0.

Proof. For any family of events, we have
sup
E

∥χAE
n
Hn∥∞ ≤ ∥Hn∥∞

for all n. By monotonicity of log, the required bound (8) holds as before. ◻

Along essentially the same lines, we also have a uniformized version.

Theorem III.3. If (Ω,ℳ), (ℱn)k, P0, P1, and H
k
n are as above and, moreover, we have

lim
n→∞

1

n
[sup

k∈Z

log ∥Hk
n∥∞] ≙ 0, (10)

then any family adapted to ℱn exponentially decaying uniformly in E and k with respect to P1 is exponentially decaying uniformly in E and k
with respect to P0.

Remark III.4. These results have a natural analog for other large deviation estimates. In particular, if r(n) ≥ 0 is monotone increasing and
r(n)→∞, then for P0 and P1 satisfying the obvious analog of (9)

lim
n→∞

1

r(n) log ∥Hn∥∞ ≙ 0, (11)

any adapted sequence An eventually satisfying P1∥An∥ ≤ e−r(n) also satisfies P0∥An∥ ≤ e−(1−ε)r(n) eventually for any ε > 0, and this can be made
uniform over a parameter or over filtrations with the appropriate uniformity assumptions imposed on (11).

For our proof of localization, absent the uniformity in filtration coming from Theorem III.3, we can get a weaker form of uniformity by
examining arithmetic progressions within a filtration.

Corollary III.5. If (Ω,ℳ), ℱn, P0, and P1 are as above and (9) holds, any family of events {AE
n}, which is adapted with respect to a

subfiltration {𝒢n} of the form𝒢n ≙ℱkn+l, uniformly exponentially decays with respect to P0 if it does the same for P1.

Proof. It suffices to show that

lim
n→0

1

n
log ∥Hkn+l∥ ≙ 0.

For large enough n, we have
1

n
log ∥Hkn+l∥ ≤ 2k

kn + l
log ∥Hkn+l∥

with the right-hand side term going to zero as a consequence of (9). ◻

We will later extract uniformity over finitely many (sub-)filtrations in the context of Schrödinger operators. Our work thus far now
suffices to prove Theorem II.3, after recalling some definitions and a fundamental probabilistic result. Its uniformized (in filtration) variant
Theorem II.8 will follow along the same lines.

Definition III.6. If Ω is a set, we call𝒜⊂𝒫(Ω) a π-system over Ω if

1. 𝒜 is non-empty,
2. 𝒜 is closed under finite intersections, i.e., for A1,A2 ∈𝒜, we have A1 ∩ A2 ∈𝒜.

Definition III.7. If Ω is a set, we call𝒵 ⊂𝒫(Ω) a λ-system if
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1. Ω ∈𝒵,
2. 𝒵 is closed under complementation; for any A ∈𝒵, we have AC

∈𝒵,
3. 𝒵 is closed under disjoint countable unions; if (An)n∈N are pairwise disjoint and all in𝒵, then ∪An ∈𝒵.

A result of Dynkin, found in, e.g., Ref. 31, allows us to prove equality of measures in terms of these systems.

Theorem III.8 (Dynkin). If 𝒜 is a π-system contained in some λ-system𝒵, then σ(𝒜) is also contained in𝒵, where σ(𝒜) is the σ-algebra
generated by𝒜.

We prove one more lemma, which, combined with Theorem III.2, implies Theorem II.3.

Lemma III.9. In the setting of Theorem II.3, we have for N > 0,

∥HN∥∞ ≙ N

∏
n≙−N

∥gn∥∞.
Proof. We prove this by showing that, in fact, we have the pointwise (almost surely with respect to P1) equality,

HN(ω) ≙ N

∏
n≙−N

gn(Vn(ω)).
The right-hand side of this clearly has norm less than or equal to ∏N

n≙−N ∥gn∥∞ by submultiplicativity of ∥ ⋅ ∥∞ and can be shown to have
norm at least that more or less as a direct consequence of the product measure structure. This equality of functions (pointwise a.s.) will follow
from showing equality of their integrals on anyℱn measurable set. We define

H̃N :≙ HN(ω) − N

∏
n≙−N

gn(Vn(ω))
so that the equality of their integrals is the same as vanishing of the integral of H̃N .

We let𝒵N be the family of sets A ∈ℱN such that

∫
A
H̃N(ω) dP1 ≙ 0.

These families are closed under countable disjoint union as a consequence of the dominated convergence theorem. (Note that E1∥∣HN ∣∥ ≤ 2.)
If we assume thatΩ ∈𝒵N , we obtain

∫
A
H̃N(ω) dP1 ≙ −∫

AC
H̃N(ω) dP1.

If we can showΩ ∈𝒵n, we will also have closure under complementation and, hence, that𝒵n are λ-systems.
We let 𝒜N denote the family of ℱN measurable cylinder sets, i.e., A ≙∏n∈Z An with An ∈ℳ. It is clear that ℱN measurability requires

that An ∈ {∅,X} for n > N or n < −N. We will show𝒜N ⊂𝒵N . The result is trivial if An ≙ ∅ for any n, then the set has measure zero; we thus
assume that An ≙ X for n > N or n < −N. The result then follows by a computation using the fact that P1 is a product measure,

E1∥χAHN(ω)∥ ≙ P0∥A∥
≙

N

∏
n≙−N

E1∥χAngn(Vn(ω))∥.
We note thatΩ ∈𝒜N for all N, as clearlyΩ ≙∏n∈Z X; hence,Ω ∈𝒵N , and𝒵N are λ-systems. Moreover,𝒜N are π-systems; clearly,

∏
m∈Z

Am ∩∏
m∈Z

Bm ≙∏
m∈Z

(Am ∩ Bm)
and measurability is preserved. Hence, σ(𝒜N) ⊂𝒵N by the π±λ theorem. However, σ(𝒜N) is preciselyℱn; the pre-images of the projections
are cylinder sets, giving us the desired equality. ◻

Using a similar argument as in the previous lemma, we can prove an abstract result, which has Theorem II.11 as an immediate conse-
quence. First, we recall a probabilistic result of Doob’s, whence we will obtain the existence of H∞ ≙ limN→∞HN . The result can be found in,
e.g., Ref. 31.

Theorem III.10 (Doob). Let Yn be a martingale on a probability space (X,ℱ,P) with respect to a filtrationℱn such that Yn ≥ 0, and also
let ℱ∞ ≙ σ(ℱ1, . . . ). Then, there is Y∞, which isℱ∞ measurable such that Yn → Y∞ almost surely.
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Using this result, we can prove the following lemma:

Lemma III.11. Let (Ω,ℱ), P0, P1, and (ℱn) be as in the previous lemma and corollary, and let ℱ∞ ≙ σ(ℱ1,ℱ2, . . . ). If
C :≙ sup

n
log ∥Hn∥ <∞, (12)

then P0∣ℱ∞ ≪ P1∣ℱ∞ and P0∥A∥ ≤ eC ⋅ P1∥A∥ for all A ∈ℱ.

Proof. First, we note that even in the absence of the moment condition, the stochastic process Hn is, in fact, a martingale with respect
to (ℱn) and P1. Indeed, the martingale condition requires that E1∥Hn+1 ∣ℱn∥ ≙ Hn. It follows from the definition that Hn isℱn measurable,
and because (ℱn) is a filtration,ℱn ⊂ℱn+1 so that for A ∈ℱn, we have

E1∥χAHn∥ ≙ P0∥A∥
≙ E1∥χAHn+1∥
≙ E1∥E1∥χA ⋅Hn+1∣ℱn∥∥
≙ E1∥χA ⋅ E1∥Hn+1∣ℱn∥∥,

with the very last equality a consequence of theℱn measurability of A. Hence, Hn is, in fact, E1∥Hn+1∣ℱn∥.
Non-negativity of the Radon±Nikodym derivatives is obvious, so there exists (up to almost everywhere equivalence) a P1 almost sure

limit,

H∞(ω) :≙ lim
n→∞

Hn(ω),
which is ℱ∞ measurable; moreover, under our condition (12), satisfies H∞ ≤ e

C almost surely. As a consequence of the dominated conver-
gence theorem, E1∥H∞∥ ≙ 1. The theorem will follow immediately once we show that P0∥A∥ ≙ E1∥χA ⋅H∞∥ for all A ∈ℱ∞, i.e., H∞ is the

Radon±Nikodym derivative
d(P0 ∣ℱ∞)
d(P1 ∣ℱ∞)

. Toward this end, we use another π±λ argument. We let𝒜≙ ∪n∈Nℱn. Non-emptiness and closure under

finite intersections are both obvious. We let 𝒵 be the collection of A ∈ℱ such that P0∥A∥ ≙ E1∥χA ⋅H∞∥. As noted earlier, E1∥H∞∥ ≙ 1 by
dominated convergence, and so Ω ∈𝒵. Naturally then, E1∥χAC ⋅H∞∥ ≙ 1 − E1∥χA ⋅H∞∥ so that𝒵 is closed under complementation. Finally,
using monotone convergence twice, we obtain for any countable collection of disjoint (An)n∈N ⊂𝒵,

P0∥∪An∥ ≙∑
n

P0∥An∥
≙∑

n

E1∥χAn ⋅H∞∥
≙ E1∥χ∪nAn ⋅H∞∥

so that𝒵 is a λ-system. Consequently, σ(𝒜) ≙ℱ∞ is contained in𝒵; this completes the argument. ◻

Remark III.12. Condition (12) is a strict strengthening of (9) and relies only on the coarse data coming from the norms ∥Hn∥∞. However,
strictly speaking, the weaker condition

E1[sup
n∈N

Hn(ω)] <∞
suffices to give P0 ≪ P1, as the bound (12) is only used to justify application of the dominated convergence theorem. In this more general setting,
a bound of the form P0∥A∥ ≤ C ⋅ P1∥A∥ for A ∈ℱ∞ will hold if and only if the limit of these Radon±Nikodym derivatives H∞ is essentially
bounded. Furthermore, we note that (12) is sharp in the sense that no weaker condition formulated solely in terms of the asymptotics of ∥Hn∥∞
can serve as a sufficient condition for absolute continuity.

We note that Theorem II.11 is an immediate consequence of this result together with Lemma III.9. Theorem II.12 is then immediate
consequence of Ref. 5 together with Theorem II.11. While we omit the details, Ref. 17 establishing Anderson localization for Jacobi operators
can also be extended to non-i.i.d. potentials in the strongly converging regime using Theorem II.11.

IV. SCHRÖDINGER OPERATOR PRELIMINARIES

Having shown some general results, we can now introduce notions relevant to the analysis of random Schrödinger operators. We also
give some remarks on the general strategy of the non-perturbative approach. More or less, the entire section follows Refs. 5 and 17 closely.
For an introduction to fundamental results in the theory of random Schrödinger operators, we recommend Sec. 9 of Ref. 32. Throughout this
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section, we let Ω ≙ RZ, ℬ be the σ-algebra generated by cylinder sets (with respect to the Borel σ-algebra on R), and Vn be the coordinate
projections Vn(ω) :≙ ωn. Then, to any ω ∈ Ω, there is a Schrödinger operator defined on ℓ

2(Z) by
∥Hωψ∥(n) ≙ ψ(n + 1) + ψ(n − 1) +Vn(ω)ψ(n). (3)

Definition IV.1. A probabilistic family of Schrödinger operators is a Borel probability measure P on (Ω,ℬ).
Remark IV.2. In the case where P has support contained in ∥−M,M∥Z for some M, we can consider Hω as a random variable valued

in B(ℓ2(Z)), which is the pushforward of P under ω↦ Hω; doing this explicitly in the general (unbounded) case is unwieldy, hence our
identification with the probability on the space of potentials RZ. In either setting, Hω is weakly measurable in an appropriate sense.

Throughout the rest of this paper, we freely identify a probabilistic family of Schrödinger operators with the corresponding probability
distribution P on (Ω,ℬ). Moreover, while much of what we discuss in this section holds in considerable generality, we restrict ourselves
to considering two types of P. We will consider distributions P1 of the form P1 ≙ μ

Z for some Borel measure μ on R and P0 of the form
P0 ≙ ⊗

n∈Z
gnμ for some μ P0 under consideration will always satisfy at least (4), if not one of the stronger conditions (5) or (6), so that we can

understand P0 as, in fact, ªcloseº in some sense to the P1 corresponding to the base distribution μ. In relation to each other, we will call P0

approximate and P1 exact.
Given fairly mild assumptions on μ, there are many results regarding localization for the exact system P1. In Ref. 22, it was shown

that if μ was absolutely continuous with bounded density, then Anderson localization and a form of dynamical localization hold. This result
was extended to hold for singular measures in Ref. 1 by Carmona±Klein±Martinelli, who found Anderson localization to hold for arbitrary
non-trivial μ satisfying the moment condition

∫ ∣x∣αdμ(x) <∞ (13)

for some α > 0. This paper used results regarding large deviations for the Lyapunov exponent, together with the multi-scale analysis developed
in Ref. 33.

At least in the context of operators studied in this work, two properties are of interest, both corresponding to localization in some sense
of the mass of e−itHωψ as t ranges over R.

Definition IV.3. We say an operator Hω is Anderson localized if the spectrum is entirely pure point, and its eigenfunctions are exponentially
decaying.

Definition IV.4. An operator Hω is dynamically localized if there is some A and μ > 0 such that

sup
t∈R
∣⟨δx, e−itHωδy⟩∣ ≤ Ae−μ∣x−y∣.

We introduce the latter definition for the sake of completeness; as we have mentioned earlier, dynamical localization can be obtained in
the setting of Theorem II.12 via our probabilistic method without any further work. The rest of our paper focuses on the proof of Anderson
localization in the settings of Theorems II.5 and II.9.

Definition IV.5. E ∈ R is called a generalized eigenvalue of Hω if there exists some non-zero ψ ∈ CZ with ∣ψ(n)∣ polynomially bounded as∣n∣→∞ satisfying

Hωψ ≙ Eψ. (14)

Such ψ is then called a generalized eigenfunction.

The study of these suffices more or less entirely to show Anderson localization. This is a consequence of Sch’nol’s theorem, which can be
found in, e.g., Ref. 32.

Theorem IV.6 (Sch’nol). If all the generalized eigenfunctions of Hω are exponentially decaying (i.e., ∣ψ(n)∣ decays exponentially as∣n∣→∞), then Hω has only pure point spectrum.

We analyze the asymptotics of ∣ψ(n)∣ using by working over truncations to finite boxes. We thus define for a ≤ b the operator H[a,b],ω

as the restriction of Hω to ∥a, b∥. This is PHωP for an appropriate choice of projection P, and we identify it with a (b − a + 1) × (b − a + 1)
matrix.

In relation to these truncations, we can define additional quantities,

P
E
∥a,b∥,ω ≙ det (H∥a,b∥,ω − E)

J. Math. Phys. 64, 061902 (2023); doi: 10.1063/5.0150430 64, 061902-10

Published under an exclusive license by AIP Publishing

 2
9
 S

e
p
te

m
b
e
r 2

0
2
3
 1

7
:4

7
:1

7



Journal of
Mathematical Physics

ARTICLE scitation.org/journal/jmp

and
G
E
∥a,b∥,ω(x, y) ≙ ⟨δx, (Hω − E)−1δy⟩

calling the latter quantity the Green’s function. Note that the Green’s function is only defined for E ∉ σ(H[a,b],ω) and x, y ∈ ∥a, b∥ and that,

moreover, the inverse (H − E)−1 is the matrix inverse, not the B(ℓ2(Z)) inverse. The importance of these quantities comes from the well-
known formulas

ψ(x) ≙ −GE
∥a,b∥,ω(x, a)ψ(a − 1) −GE

∥a,b∥,ω(x, b)ψ(b + 1), x ∈ ∥a, b∥, (15)

and

∣GE
∥a,b∥,ω(x, y)∣ ≙ ∣P

E
∥a,x−1∥,ω∣ ⋅ ∣PE

∥y+1,b∥,ω∣
∣PE
∥a,b∥,ω∣ , x ≤ y. (16)

The first formula reduces exponential decay of generalized eigenfunctions to exponential decay of the truncated Green’s functions; the second
allows us to study the asymptotics of these in terms of the asymptotics of determinants. Finally, we will study these using the transfer matrices.
Given any solution ψ ∈ CZ to (14), it satisfies for all n ∈ Z,

⎛⎜⎝
ψ(n + 1)
ψ(n)

⎞⎟⎠ ≙
⎛⎜⎝
E −Vn(ω) −1

1 0

⎞⎟⎠
⎛⎜⎝

ψ(n)
ψ(n − 1).

⎞⎟⎠ (17)

The 2 × 2 matrix in (16) is called the one-step transfer matrix, and we denote it by SEn(ω). For a ≤ b, we can define SE∥a,b∥(ω) as the unique
matrix such that ⎛⎜⎝

ψ(a)
ψ(a − 1)

⎞⎟⎠ ≙ S
E
∥a,b∥(ω)⎛⎜⎝

ψ(b + 1)
ψ(b).

⎞⎟⎠ (18)

The asymptotics of these matrices encode the asymptotics of generic solutions ψ ∈ CZ to Hωψ ≙ Eψ; the formula below allows us to control
the asymptotics of the truncated determinants and, through those, the truncated Green’s functions. Finally, we make use of the formula

S
E
∥a,b∥,ω ≙

⎛⎜⎝
P
E
∥a,b∥,ω −P

E
∥a+1,b∥,ω

P
E
∥a,b−1∥,ω −P

E
∥a+1,b−1∥,ω

⎞⎟⎠ (19)

to estimate the determinants PE
∥a,b∥,ω by writing them as matrix elements,

P
E
∥a,b∥,ω ≙ ⟨⎛⎜⎝

1

0

⎞⎟⎠, S
E
∥a,b∥,ω

⎛⎜⎝
1

0

⎞⎟⎠⟩, (20)

whence, at least in the stationary case P1 ≙ μ
Z, the Furstenberg theory gives us information regarding the asymptotics. If

∫ ∣x∣αdμ(x) <∞ (13)

for some α > 0, then Furstenberg’s theorem and extensions thereof are applicable. In particular, the work of Furstenberg±Kesten shows that
under weaker conditions than those proposed, the quantity

γ(E) :≙ lim
n→∞

1

n
E∥log ∥SE∥1,n∥∥∥

is defined, and almost surely, we have
1

n
log ∥SE∥1,n∥(ω)∥→ γ(E),

and the Furstenberg Theorem implies that as long as μ is non-trivial, γ(E) > 0 for all E. Le Page showed in Ref. 15 that under our condi-
tions, we have exponential decay in the probability of large deviations, both for these quantities and for the magnitude of the corresponding
matrix elements. In Ref. 34, it was found that this could be made uniform over a parameter varying over a compact set; in particular, it is a
straightforward application of Ref. 34, also proved in Ref. 3.

Theorem IV.7 (Tsai, Bucaj et al.). Fixing I ⊂ R compact and ε > 0, there exist η > 0 and N such that for any u, v ∈ R2 with ∥u∥ ≙ ∥v∥ ≙ 1
and any E ∈ R, we have

P1[∣ 1
n
log ∣⟨u, SE∥1,n∥,ωv⟩∣ − γ(E)∣ > ε] < e−ηn

J. Math. Phys. 64, 061902 (2023); doi: 10.1063/5.0150430 64, 061902-11

Published under an exclusive license by AIP Publishing

 2
9
 S

e
p
te

m
b
e
r 2

0
2
3
 1

7
:4

7
:1

7



Journal of
Mathematical Physics

ARTICLE scitation.org/journal/jmp

for n > N.

Because P1 ≙ μ
Z, in particular, the map T defined by (Tω)n ≙ ωn+1 is measure preserving so that the statistics of SE∥a,b∥ and those of

SE∥1,b−a+1∥ are identical. Hence, exponential large deviation estimates for PE
∥a,b∥,ω, uniform over a compact interval I, are a corollary of Tsay’s

theorem together with (20).

Corollary IV.8. Fix I ⊂ R be compact and ε > 0. Then, there are η > 0 and N such that

P1[∣ 1

b − a + 1
log ∣PE

∥a,b∥,ω∣ − γ(E)∣ > ε] < e−η(b−a+1) (21)

for b − a + 1 > N.

In particular, this result gives in a crude sense,

∣GE
∥a,b∥,ω(x, y)∣ ∼ e−γ(E)∣x−y∣.

A stronger, quantitative version of this result would imply Anderson localization as a consequence of (15). This motivates the following
definition:

Definition IV.9. We say x ∈ Z is (C,n,E,ω) regular if
∣GE
∥x−n,x+n∥,ω(x, x ± n)∣ ≤ e−Cn

and x is (C,n,E,ω)-singular if it is not regular for the same set of parameters.

In particular, there is a reformulation of Anderson localization in terms of this notion. Using formula (15), Theorems II.5 and II.9 are
straightforward consequences of the following theorem:

Theorem IV.10. Under the assumptions of either Theorems II.5 or II.9, there is Ω0 ⊂ Ω with P0∥Ω0∥ ≙ 1 such that for every ω ∈ Ω0 and
E ∈ R, there exist N ≙ N(E,ω) and C ≙ C(E) such that for every n > N, both 2n and 2n + 1 are (C,n,E,ω)-regular.

All the relevant estimates in this section are established for a stationary P1, and so Sec. V derives the analogous large deviation estimate
results for an appropriate P0, along with important consequences.

V. ADAPTATIONS FOR NON-STATIONARITY

Throughout this section, P0 is of the form specified in either Theorems II.5 or II.9; we explicitly indicate when a result only applies in
one context. By applying Theorem II.3 to Corollary IV.8, we can produce a P0 analog of (21).

Theorem V.1. Fixing I ⊂ R compact, for any ε > 0 and K ∈ N, there are η ≙ η(ε,K) > 0 and N ≙ N(ε,K) such that
P0[∣ 1

b − a + n( j1 + j2) + 1 log ∣PE
∥a+ j1n,b+ j2n∥,ω∣ − γ(E)∣ > ε] < e−η(b+ j2n−a− j1n+1)

for −K ≤ a ≤ b ≤ K, −K ≤ j1 < j2 ≤ K, n > N, and E ∈ I.

Proof. Fix a, b ∈ Z and j1, j2 ∈ N0. Let l ≙ max{∣a∣, ∣b∣} and j ≙ max{∣j1∣, ∣j2∣}. Clearly, the events
{ω : ∣ 1

b − a + j1n + j2n + 1
log ∣PE

∥a− j1n,b+ j2n∥,ω∣ − γ(E)∣ > ε}
are ℱjn+l measurable. Moreover, they have P1 exponential large deviation estimates by Corollary IV.8. By Corollary II.3, there are P0

exponential large deviation estimates, i.e., there are Ñ(ε, a, b, j1, j2) and η̃(ε, a, b, j1, j2) such that

P0[∣ 1

b − a + ( j1 + j2)n + 1 log ∣PE
∥a− j1n,b+ j2n∥∣ − γ(E)∣ > ε] < eη̃ (b−a+ j1n+ j2n+1)

for n > Ñ. Taking η to be the minimum of η̃ for ∣a∣, ∣b∣, ∣j1∣, ∣j2∣ all smaller than K and N to be the maximum of Ñ ranging over the same
parameters, we obtain the desired η and N. ◻
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We proved this theorem that works even without the assumption of condition (9) to illustrate what is used in the bounded case if said
condition fails; however, we have something stronger when (9) holds, allowing the use of Theorem II.8.

Theorem V.2. In the context of Theorem II.9, but not necessarily in the context of Theorem II.5, fixing I ⊂ R compact, for any ε > 0, there
are η ≙ η(ε) > 0 and N ≙ N(ε) such that for b − a > N,

P0[∣ 1

b − a + 1
log ∣PE

∥a,b∥,ω∣ − γ(E)∣] < e−η(b−a+1).
Proof. By stationarity of the shift map (Tω)n ≙ ωn+1 in the P1 context, the large deviation estimates furnished by Ref. 34 are, in fact,

uniform in the endpoints of the interval, i.e., uniform in filtration. The result is then immediate as a consequence of Theorem II.8. ◻

For a certain application of Ref. 20, we need to consider complexified energy, i.e., transfer matrices Sz∥a,b∥, which characterize the solutions
toHωψ ≙ zψ in the sense of (18). For z ∈ C generally, the non-uniform version of Theorem V.1 (i.e., for a single fixed energy z ∈ C) also holds
by applying Theorem II.3 to the work of Le Page in Ref. 15. (We believe that the uniform result in Ref. 34 still applies in the context of
complexified energy, but we are not sure of the details and do not need it.). There is analogously γ(z) ≙ limn→∞

1
n
E1∥log ∥Sz∥1,n∥∥∥ and

1

n
log ∥Sz∥1,n∥,ω∥→ γ(z)

P1 almost surely. The large deviation results imply that these P1 almost sure limits are also P0 almost sure limits.

Theorem V.3. For P0 and P1 as above and any z ∈ C, there isΩz such that P0∥Ωz∥ ≙ 1 and
1

n
log ∥Sz∥1,n∥,ω∥→ γ(z).

Proof. We note first that as a consequence of Theorem V.1 or its non-uniform complex analog, there are η > 0 and N ∈ N such that for
n > N, we have

P0[∣ 1
n
log ∥Sz∥1,n∥,ω − γ(z)∣ > ε] < e−ηn.

The eventual exponential decay implies summability so that by Borel±Cantelli, there exist for all ε > 0 subsetsΩz,ε ⊂ Ω with P0∥Ωz,ε∥ ≙ 1, and
for all ω ∈ Ωz,ε, we have some N ≙ N(ω) such that n > N implies

∣ 1
n
log ∥Sz∥1,n∥,ω∥ − γ(z)∣ < ε.

We note that 1
n
log ∥Sz∥1,n∥,ω∥→ γ(z) precisely if ω ∈ ∩m∈NΩz,1/m. This intersection has probability 1 and so is the requisiteΩz . ◻

This last result is of some interest in its own right, demonstrating an ability to ªliftº Lyapunov behavior across contexts; it is also necessary
for the proof of localization in making it possible to apply certain results exploiting subharmonicity of γ(z) in Ref. 20.

We go through the details here, although the argument is fundamentally the same as in the original paper. For any fixed z ∈ C, there is
Ωz ⊂ Ω with P0∥Ωz∥ ≙ 1 such that for ω ∈ Ωz , the quantity

γ
+(ω, z) :≙ lim sup

n→+∞

log ∥Sz∥1,n∥,ω∥
n

coincides with γ(z). A result of Craig and Simonmakes this in some sense uniform in the context of the exact Andersonmodel and, moreover,
says the same for the quantity

γ
−(ω, z) :≙ lim sup

n→+∞

log ∥Sz∥−n,−1∥,E,ω∥
n

.

(In fact, the quantities γ+(ω, z) and γ−(ω, z) always coincide, and so we denote this quantity going forward by γ(ω, z).)
Theorem V.4 (Ref. 20). Let μ be a distribution on R satisfying the condition

∫ max{0, log ∣x∣}dμ(x) <∞
and P1 ≙ μ

Z. Then, there existsΩ1 ⊂ Ω ≙ R
Z with P1∥Ω1∥ ≙ 1 such that γ(ω,E) ≤ γ(E) for all ω ∈ Ω1 and E ∈ R.
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Remark V.5. Craig and Simon originally proved the result for bounded Schrödinger operators, which in our context implies an absolute
bound on Vn(ω). However, the proof straightforwardly generalizes to any family Hω satisfying this mild moment condition, without which γ(E)
is not even guaranteed to exist.

The key step to proving this result concerning E ∈ R was a theorem regarding the Lyapunov exponent in complexified energy.

Theorem V.6 (Ref. 20). For an exact system whose parameters satisfy the assumptions in Theorem V.4, γ(z) is subharmonic, and for all
ω ∈ Ω, the function γ(ω, z) is submean.

That γ(ω,E) is still submean in the context of the approximate system is obvious; the change from the exact to approximate system
amounts only to a change in probability measure and γ(ω,E) is not an averaged quantity. On the other hand, subharmonicity of the P0

Lyapunov exponent γ̃(z) is only obtained by showing its equality with the P1 Lyapunov exponent γ(z); we recall some basic facts from the
theory of subharmonic and submean functions.

Proposition V.7. If f is submean and E0 is fixed, then

f (E0) ≤ lim
r→0

1

πr2
∫∣E−E0 ∣<r f (E) d

2
E,

and if f is subharmonic and E0 is fixed, then

f (E0) ≙ lim
r→0

1

πr2
∫∣E−E0 ∣<r f (E) d

2
E.

Using this, we can now prove, more or less along the lines of the original argument in the original paper of Craig and Simon, the following:

Theorem V.8. There exists a subset Ω0 ⊂ Ω with P0∥Ω0∥ ≙ 1 such that for all E ∈ R,
γ(ω,E) ≤ γ(E).

Proof. Recall that γ(ω, z) is submean and γ(z) is subharmonic. Moreover, we have shown that for any fixed z ∈ C, there is a P0 full
measure subset Ωz ⊂ Ω such that γ(ω, z) ≙ γ(z). By Fubini, there is a P0 probability 1 subset Ω0 such that for ω ∈ Ω0, we have γ(ω, z) ≙ γ(z)
for a Lebesgue almost every z ∈ C.

Hence, it suffices to show that for any ω such that γ(ω, z) ≤ γ(z) for Lebesgue almost all z, we, in fact, have it for all z. For such ω, we
have necessarily for any fixed E ∈ R and r > 0,

∫∣z−E∣<rγ(ω, z)d2z ≙ ∫∣z−E∣<rγ(z)d2z.
It follows immediately that

γ(ω,E) ≤ lim
r→0

1

πr2
∫∣z−E∣<rγ(ω, z)d2z

≙ lim
r→0

1

πr2
∫∣z−E∣<rγ(z)d2z

≙ γ(E).
◻

We reformulate this result quantitatively and in terms of the transfer matrices.

Corollary V.9. For P0-a.s. ω and any ε > 0, there exists N ≙ N(ω, ε) such that for n > N, we have

max{∥S∥1,n∥,E,ω∥, ∥S−1∥−n,−1∥,E,ω∥} ≤ e(γ(E)+ε)n
and

max{∥S∥n+1,2n∥,E,ω∥, ∥S−1∥2n+2,3n∥,E,ω∥} ≤ e(γ(E)+ε)n.

VI. MAIN LEMMAS

We use now the large deviation results we have obtained to prove several technical lemmas, generally following Ref. 17, making some
simplifications due to our exclusive consideration of the Schrödinger case, rather than Jacobi operators as a whole. Throughout this section,
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we fix a compact interval of energies ∥s, t∥ ≙: I ⊂ R. Of course, if we have localization almost surely with respect to any given compact interval,
then (taking a countable intersection) we have almost sure localization for all energies. Continuity of γ(E) was shown in Ref. 17, using ideas
from work in Ref. 35, so that, in particular, infE∈I γ(E) > 0. The proof proceeds by analyzing the sets where large deviations occur, so we define
subsets of I ×Ω,

B
+

∥a,b∥,ε ≙ {(E,ω) : ∣PE
∥a,b∥,ω∣ ≥ e(γ(E)+ε)(b−a+1)}

and
B
−

∥a,b∥,ε ≙ {(E,ω) : ∣PE
∥a,b∥,ω∣ ≤ e(γ(E)−ε)(b−a+1)},

and the sections
B
±

∥a,b∥,E,ε ≙ {ω : (E,ω) ∈ B±∥a,b∥,ε}
and

B
±

∥a,b∥,ω,ε ≙ {E : (E,ω) ∈ B±∥a,b∥,ε}.
Moreover, we let Ej,[a,b],ω denote the b − a + 1 eigenvalues (with multiplicity) of H[a,b],ω. An immediate consequence of (16) is as follows:

Lemma VI.1. If n ≥ 2 and 0 < ε < νI/8 and x is (γ(E) − 8ε,E,n,ω)-singular, then
E ∈ B

−

∥x−n,x+n∥,ε ∪ B
+

∥x−n,x∥,ε ∪ B
+

∥x,x+n∥,ε.

Our work in lifting LDEs and the existence of these for the exact case will allow us to prove technical lemmas like those in Refs. 5 and 17.
In particular, Theorem V.1 suffices for most of these. We take η0 ≙ η(ε0, 4), where η is the large deviation parameter from Theorem V.1. We
now proceed through some technical lemmas, proved in either Refs. 5 or 17 for P1, and comment on any differences arising in the proof in a
non-stationary context.

Lemma VI.2. Let 0 < δ0 < η0. There is Ω1 ⊂ Ω such that P0∥Ω1∥ ≙ 1, and for all ω ∈ Ω1, there is N1 ≙ N1(ω) such that for all n > N1, we
have

max{∣B−∥n+1,3n+1∥,ε0 ,ω∣, ∣B−∥−n,n∥,ε0 ,ω∣} ≤ e−(η0−δ0)(2n+1).
This is done by a Borel±Cantelli argument in Ref. 17 for P1, which uses large deviation estimates and carries over with no modification

to our P0 context as a consequence of Theorem V.1.

Lemma VI.3. For any ε > 0 and p > 4/ηε, where ηε is the large deviation parameter furnished by Theorem V.2, there is Ω2 ≙ Ω2(ε, p) ⊂ Ω
with full probability such that for every ω ∈ Ω2, there is N2 ≙ N2(ω) so that for n > N2, any y1, y2 satisfying −n ≤ y1 ≤ y2 ≤ n, and ∣ − n − y1∣
> p log n and ∣n − y2∣ > p log n, we have

E j,∥n+1,3n+1∥,ω ∉ B∥−n,y1∥,ε,ω ∪ B∥y2 ,n∥,ε,ω ∪ B∥−n,n∥,ε,ω

for all j ∈ ∥1, b − a + 1∥.
Proof. Following Ref. 5, we analyze the events

An ≙ {ω : ∃ j ∈ ∥1, 2n + 1∥;E j,∥n+1,3n+1∥,ω ∈ B∥−n,y1∥,ε,ω ∪ B∥y2 ,n∥,ε,ω}
and, leveraging independence and union bounds together with large deviation estimates coming from Theorem V.2, obtain

P0∥An∥ ≤ 2(2n + 1)3e−ηεp log n+2
(22)

for sufficiently large n. Because pηε > 4, this is summable, whence the result follows. ◻

This result has an analog in the context of Theorem II.5, which can be proven using only Theorem V.1 rather than requiring
Theorem V.2.

Lemma VI.4. For any ε > 0 and L > 1, there is Ω2 ≙ Ω2(ε,L) ⊂ Ω with full probability such that for every ω ∈ Ω2, there is N2 ≙ N2(ω) so
that for n > N2, any y1, y2 satisfying −n ≤ y1 ≤ y2 ≤ n, and ∣ − n − y1∣ > n

L
and ∣n − y2∣ > n

L
, we have

E j,∥n+1,3n+1∥,ω ∉ B∥−n,y1∥,ε,ω ∪ B∥y2 ,n∥,ε,ω ∪ B∥−n,n∥,ε,ω

for all j ∈ ∥1, b − a + 1∥.
Its proof is more or less the same as that of Lemma VI.3, but replacing p log n with n

L
gives (in the original stationary context) a stronger

estimate than (22),
P1∥An∥ ≤ 2(2n + 1)3e−η̃ n

L
+2
, (23)
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where η̃ is the P1 large deviation parameter. For any ε > 0 and sufficiently large n, we then obtain

P1∥An∥ ≤ e−( η̃L −ε)n.
In particular, then, instead of carrying over exponential estimates beforehand to ultimately produce the summable but subexponential esti-
mates of (22), we derive exponential estimates of (23) in the stationary context and then carry them over using Theorem V.1, obtaining

P0∥An∥ ≤ e−ηn. (24)

(Even Theorem V.1 is in some sense more than we need; another direct application of Theorem II.3 suffices.) This result is also true in the
unbounded context of Theorem II.9, but in carrying out the localization proof for the unbounded case, Lemma VI.3 turns out to be necessary.
This is because the next pair of results concerning determinants corresponding to the edge of a box is weaker than its bounded context analog.

LemmaVI.5. For fixed r > 1 and p > 0, for almost allω, there exists N ≙ N(ω) such that for n > N andm ∈ ∥−n,n∥with ∣ − n −m∣ ≤ p log n
or ∣n −m∣ ≤ p log n,

∣Vm(ω)∣ ≤ nr/α,
where α > 0 is such that supn∥∫ ∣x∣αgn(x) dμ(x)∥ <∞.

Proof. We set C :≙ supn∥∫ ∣x∣αgn(x)dμ(x)∥. By Chebyshev,
P0∥Vm(ω) ≥ nr/α∥ ≤ C

nr

for any m ∈ ∥−n,n∥. Hence, the probability that there exists some m with ∣Vm(ω)∣ exceeding nr/α and also ∣ − n −m∣ ≤ p log n or ∣n −m∣
≤ p log n is bounded by (using a union bound)

2C

nr
(1 + 2p logn),

which is summable, whence the result follows from the work of Borel±Cantelli. ◻

A crucial corollary is the following:

Corollary VI.6. Fixing I ⊂ R compact, for p > 0 and r > 1, there is a probability 1 subset Ω3 ≙ Ω3(p, r) ⊂ Ω such that for ω ∈ Ω3, there is
N ≙ N(ω) ≥ 3 such that if n > N and ∣ − n − y∣ > p log n, then

∣PE
∥−n,y∥,ω∣ ≤ e4prα−1(log n)2. (25)

The same result also holds for ∣n − y∣ < p log n and ∣PE
∥y,n∥,ω∣ substituted in appropriately.

Proof. The Proof of Lemma VI.5 only relied on the existence of a uniform (in m) bound on the αth moments of ∣Vm(ω)∣. Clearly, if E
varies over compact I ⊂ R, there is similarly a uniform (in m) bound on the αth moments of supE∈I ∣Vm(ω) − E∣. Hence, replacing C in our
proof with larger C̃ if necessary, we obtain the necessary result. Because of the tri-diagonal nature of H[−n,y],ω, we have

P
E
∥−n,y∥,ω ≙

y

∏
m≙−n

(Vm(ω) − E),
whence we obtain ∣PE

∥−n,y∥,ω∣ ≤ n 2r
α
(p log n+1)(log n)

for n large. Because 1 < p log n for large n, the result follows immediately. ◻

In the bounded context, there is an obvious analog of this result; there existsM such that ∣Vn(ω)∣ ≤M for all n, and so (taking M̃ slightly

larger if necessary to account for varying E over I) ∣PE
−∥n,y∥,ω∣ ≤ M̃ b−a+1, without even making any restrictions to edges. Hence, in particular,

we have the following proposition:

Proposition VI.7. In the setting of Theorem II.5 with suppP0 ⊂ ∥−M,M∥Z, if we fix I ⊂ R compact and L > 1, then for all ω ∈ suppP0,
there is N ≙ N(ω) such that if n > N and ∣ − n − y∣ > n

L
, then

∣PE
∥−n,y∥,ω∣ ≤ M̃ n

L , (26)
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where M̃ ≙ supE∈I ∣M − E∣. The same result also holds for ∣n − y∣ < n
L
and ∣PE

∥y,n∥,ω∣ substituted in appropriately.

The availability of such a bound is what allows the use of Lemma VI.4 instead of VI.3. Ultimately, the problem of using Lemma VI.4

with our weaker control of ∣Vm(ω)∣ comes down to the superexponential growth of nr
n
K , whereas npr log n

≙ epr(log n)
2

grows subexponentially

and M̃ n/L grows exponentially. In the following Proof of Theorem IV.10 under the assumptions of II.9, we note that replacing η0 :≙ η(ε0) and
ηε :≙ η(ε) from Theorem V.2 with η̃0 :≙ η(ε0, 4) and η̃ε :≙ η(ε, 4) from Theorem V.1, Lemma VI.3 with Lemma VI.4, and epr(log n)

2

with M̃ n/L,

where L is chosen to be sufficiently large (specifically L > 3 log M̃
ε0−δ0

in terms of parameters introduced in Sec. VII), we obtain a Proof of Theorem

IV.10 under the assumptions of Theorem II.5.

VII. PROOF OF THEOREM IV.10

Having established these technical results in our non-stationary case, we are ready to prove P0 almost sure eventual (γ(E) − 8ε,n,E,ω)-
regularity of 2n + 1, where ε < νI/8. The proof for 2n, −2n, and −2n − 1 follows by a nearly identical argument (in the i.i.d. potential setting,
symmetry considerations obviate any need to consider the negative cases even in passing; the absence of stationarity here technically forces
one to run the argument in the negative direction as well, though no unique technical difficulties arise).

This follows Ref. 17, which made some necessary adjustments to account for unboundedness. We note that many technical details
there are absent here because they arise from considering the Jacobi case rather than only the Schrödinger case; more or less of all of these
reduce to showing bounds on the growth of hopping terms, which are uniformly 1 in the Schrödinger case. We believe that these additional
considerations do not prevent the argument from going through in the more general Jacobi case but have not gone through the details.

Although the argument more or less follows Refs. 5 and 17, the former discussing bounded Schrödinger operators and the latter
unbounded Jacobi operators, both of which were inspired by Ref. 36, we say a few words about the general strategy. A particular site n being(γ(E) − ε,n,E,ω)-singular forces a ªresonanceº of a sort; for sufficiently large n, Corollary V.9 is used to establish the existence of eigenvalues
Ei and Ej for truncations to ∥−n,n∥ and ∥n + 1, 3n + 1∥, which give ªsubº-deviations from the expected Lyapunov behavior, either on the whole
intervals ∥−n,n∥ and ∥n + 1, 3n + 1∥ or on subintervals. Using Lemmas VI.3 and VI.5, we derive three inequalities for different cases, at least
one holding for each instance of singularity. All of these inequalities fail for large enough n; it follows that there cannot be infinitely many
singular points with respect to any set of parameters satisfying our assumptions, giving localization with respect to the compact interval I.

Proof of Theorem IV.10. We fix 0 < ε0 < νI/8. We then choose η0 a large deviation parameter satisfying the conclusion of Theorem V.2

for ε0. Then, given these parameters, we fix 0 < δ0 < η0 and 0 < ε < min{(η0 − δ0)/3, ε0}. Given these parameters, we take Ω̃ with probability
1 such that the conclusions of Corollary V.9 and Lemmas VI.3 and VI.5 hold.

We let ω ∈ Ω̃ and E ∈ I be a generalized eigenvalue of Hω. We further let ψ be the associated generalized eigenfunction. At least one of
ψ(0),ψ(1) is non-zero; we assume without loss of generality that ψ(0) ≠ 0. There is N(ω) satisfying the conclusions of Corollary V.9 and
Lemmas VI.3 and VI.5 and so that, furthermore, for n > N, we have that 0 is (γ(E) − 8ε0,n,E,ω)-singular [this singularity is a consequence
of ψ(0) ≠ 0 together with (15) and the polynomial bound on growth of ∣ψ(n)∣.].

We suppose (toward a contradiction) that for infinitely many n > N, 2n + 1 is also (γ(E) − 8ε0,n,E,ω)-singular. By Lemma VI.1 and
Corollary V.9, we have that E ∈ B−∥n+1,3n+1∥,ε0 ,ω. There is then for any fixed n > N some Ej, an eigenvalue of Hω,[n+1,3n+1] such that Ej lies in

a slightly larger band of energies Ĩ :≙ ∥s − 1, t + 1∥ (recall that I ≙ ∥s, t∥) and ∣E − E j ∣ ≤ e−(η0−δ0)(2n+1). Were this not the case, then either all
eigenvalues would lie to one side of Ĩ or some would lie on each side. In full detail, we show that the latter case is impossible, with a proof that
generalizes straightforwardly to the former. We let Ej − be the largest eigenvalue to the left of I and Ej + be the smallest to the right.

All Ej are the real zeroes of P[n+1,3n+1],E,ω, which is a polynomial in E of degree 2n + 1. Then, PE
∥a,b∥,ω is monotone on one of ∥Ej − ,E∥ or∥E,Ej +∥. Then, in particular, we have

1 ≤ min{∣Ej − − E∣, ∣Ej + − E∣} ≤ m(B−∥a,b∥,ω) ≤ e−(η0−δ0)(2n+1) < 1,
whence we conclude it is impossible that there are no eigenvalues in Ĩ, and so there is some E j ∈ Ĩ. Our proof, in particular, showed that

one such Ej satisfies ∣E − E j ∣ ≤ e−(η0−δ0)(2n+1). We can repeat this argument to produce an eigenvalue Ei of Hω,∥−n,n∥ ∈ B
−

∥−n,n∥,ε,ω such that

∣Ei − E∣ ≤ e−(η0−δ0)(2n+1). Then, ∣Ei − E j ∣ ≤ 2e−(η0−δ0)(2n+1). By Lemma VI.3, we have, in particular, that Ej ∉ B[−n,n],ω,ε. However, because Ei is
an eigenvalue of H[−n,n],ω, we obtain

∥G∥−n,n∥,E j ,ω∥ ≥ 1

2
e
(η0−δ0)(2n+1),

and by equivalence of norms, there are y1, y2 ∈ ∥−n,n∥ such that y1 ≤ y2 and

∣G∥−n,n∥,E j ,ω(y1, y2)∣ ≥ 1

2
√
2n + 1

e
(η0−δ0)(2n+1). (27)
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These two facts together will yield precisely the sought contradiction. Because Ej ∉ B[−n,n],ε,ω, we obtain

∣P∥−n,n∥,ω∣ ≥ e(γ(E j)−ε)(2n+1),

which we can combine with (16) to obtain

∣PE j

∥−n,y1−1∥,ω∣ ⋅ ∣PE j

∥y2+1,n∥,E j ,ω
∣ ≥ e(η0−δ0+γ(E j)−ε)(2n+1)

2
√
2n + 1

. (28)

Because y1 < y2, our analysis can be split into (essentially) three cases: ∣ − n − y1∣ ≥ p log n and ∣n − y2∣ ≥ p log n, ∣ − n − y1∣ ≥ log n but ∣n − y2∣
< log n, and ∣ − n − y1∣ < log n and ∣n − y2∣ < p log n. (A fourth case mirroring the second also exists; we omit any explicit consideration as the
argument is the same.) In the first case, it is an immediate consequence of Lemma VI.3 that (28) yields

e
(γ(E j)+ε)(2n+1) ≥

1

2
√
2n + 1

e
(η0−δ0+γ(E j)−ε)(2n+1). (29)

By our choice of ε < (δ0 − η0)/3, this cannot hold for arbitrarily large n.
For the second and third cases, we use Lemma VI.5 to bound the term ªcloseº to the edge. Hence, for the second case, (28) yields

e
3prα−1(log n)2

e
(γ(E j)+ε)(2n+1) ≥

1

2
√
2n + 1

e
(η0−δ0+γ(E j)−ε)(2n+1),

which also cannot hold for arbitrarily large n. In the third case, (28) yields

e
6prα−1(log n)2

≥
1

2
√
2n + 1

e
(η0−δ0+γ(E j)−ε)(2n+1),

which again cannot hold for arbitrarily large n. Hence, it is impossible that that there are infinitely many n such that 2n + 1 is (γ(E) − ε,
n,E,ω)-singular. ◻
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