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ABSTRACT

Proofs of localization for random Schrodinger operators with sufficiently regular distribution of the potential can take advantage of the frac-
tional moment method introduced by Aizenman-Molchanov [Commun. Math. Phys. 157(2), 245-278 (1993)] or use the classical Wegner
estimate as part of another method, e.g., the multi-scale analysis introduced by Frohlich-Spencer [Commun. Math. Phys. 88, 151-184 (1983)]
and significantly developed by Klein and his collaborators. When the potential distribution is singular, most proofs rely crucially on expo-
nential estimates of events corresponding to finite truncations of the operator in question; these estimates in some sense substitute for the
classical Wegner estimate. We introduce a method to “lift” such estimates, which have been obtained for many stationary models, to certain
closely related non-stationary models. As an application, we use this method to derive Anderson localization on the 1D lattice for certain
non-stationary potentials along the lines of the non-perturbative approach developed by Jitomirskaya-Zhu [Commun. Math. Physics 370,
311-324 (2019)] in 2019.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0150430

I. INTRODUCTION

The study of large deviations has featured prominently in many proofs of localization for ergodic Schrodinger operators, both in the
random and quasi-periodic context. For the random case, the first proof of Anderson localization for the Anderson model with singular
potentials on the one-dimensional lattice in Ref. 1 by Carmona-Klein-Martinelli used large deviation estimates coming from a study of the
Lyapunov exponent; later proofs in, e.g., Refs. 2-5 either introduced new approaches or made simplifications but still relied on large deviation
estimates in some way.

For the two-dimensional Anderson model with singular potentials, Ding—Smart in Ref. 6 recently obtained localization at the edges of the
spectrum, and a key unique continuation result relied crucially on large deviation estimates in the form of the Azuma inequality. This unique
continuation enabled them to use the strategy introduced by Bourgain-Kenig in Ref. 7 and elucidated by Germinet-Klein in Ref. 8. The result
in Ref. 6 has since been improved upon in Ref. 9 and was combined with a Z* unique continuation result to obtain the same localization result
in the three-dimensional context in Ref. 10. In the quasi-periodic context, analysis of the large deviation sets is crucial for, e.g., the method
introduced by Bourgain and his co-authors in Ref. 11, detailed in Ref. 12. Recent work in this vein includes Refs. 13 and 14.

To be more explicit, when we speak of discrete Schrédinger operators in dimension d, we mean operators on £2(Z%) of the form

[Hyl(n) = Y. w(m)+ Vay(n). (1)

|m—n|=1
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In both the random and quasi-periodic cases, when large deviation estimates are under consideration, they are often of the form
P[A square of length £ is “bad”] < e @

for some 7 > 0 and some contextual notion of “bad.” In general, most proofs of localization require statements like the above, but with e
possibly replaced by some other f(¢) vanishing as £ — co. For the special case in (2) of an exponential decay, we have produced a method
by which to “lift” estimates of this form from some joint distribution P; of the values {V,(w)} to another distribution Py, which is closely
related. We note that our method admits some generalization to arbitrary f(£), but both the constraints on Py and the losses in the “lifted”
rate can be severe for slower rates of decay, motivating our emphasis on exponential estimates.

In particular, the method is still somewhat robust for “almost exponential” decays such as f(£) = ¢ (where 0 < q < 1) and not very
robust for power law decays, i.e., f(£) = £79 with g > 0. The method requires estimates on how “close” P is to P, when both are restricted
to finitely many coordinates, so we expect applications to be mostly (or exclusively) in the random context, where the potential at any given
site has no dependence on the potential at other sites; in such cases, said estimates can be obtained in fairly natural circumstances. We note,
however, that the underlying probabilistic results apply in all contexts where the requisite estimates hold.

Specifically, we let ¢ be a non-trivial probability distribution on R satisfying an appropriate moment condition. (By non-trivial, we mean
y is supported on at least two points.) When d = 1 and V, are identically distributed with law y, the transfer matrices associated with the
random operator,

[Hy](n) = y(n+ 1) +y(n-1) + Vay(n),

satisfy large deviation estimates as a consequence Ref. 15, which should be understood in the wider context of the Furstenberg theory of
random matrix products. More explicitly, we let Q = R%, P = y%, and V,, : Q — R be projection onto the nth coordinate. Then, the family of
operators

[Hoy](n) = y(n+1) + y(n—1) + Va(w)y(n) 3)

are precisely distributed in this way. This explicit description is necessary both in comparing such families to families with slightly different
distribution and in the method used in Ref. 5 specifically, which we hope to adapt to our context.

For a system where V, are independently distributed with laws of the form g u, with g, >0, [ g du =1,and g, € L (du), we derive the
existence of similar large deviation estimates for the transfer matrices associated with the said system so long as the following key condition
holds:

1 ¥
I}EEON,,:Z_N log ||gnle = 0, 4

ie, YNy logllgn|es = o(N). Furthermore, this system will show more or less the same Lyapunov behavior as if V,,(w) were i.i.d. with law
¢ By this, we mean that the “approximate” system with potential at site n distributed with law g u has a Lyapunov exponent $(E), which
describes the asymptotics of the associated transfer matrices, and at all energies, this coincides with the Lyapunov exponent y(E) describing
the transfer matrices associated with the “exact” system where the potential at each site is distributed with law y. This probabilistic result can
loosely be understood as a multiplicative version of the standard result found in, e.g., Ref. 16 that large deviation principles for stochastic
processes are preserved under certain forms of super-exponential approximation.

These estimates are then used to derive almost sure Anderson localization for the associated random family of Schrédinger operators
using a strategy for proving localization along the lines of Refs. 5 and 17. In the case where y has unbounded support, we will require further

technical assumptions, the most salient of which is the strengthening of (4) to

k+N

1
lim —|sup log [gnle | = 0. (5)
N—ooco N keZ n:;N

To our knowledge, the only work that has obtained large deviation estimates for non-stationary matrix products is from
Gorodetski-Kleptsyn in Ref. 18, and the author of Ref. 19 also analyzed the asymptotics of non-stationary random matrix products but
does not produce large deviation estimates. We note that the large deviation estimates found in Ref. 18 hold in an overall more general set-
ting than ours, forgoing any kind of convergence condition on the sequence of distributions and the requirement that they all be absolutely
continuous with respect to some base distribution .

However, in this considerably more general setting, a Lyapunov exponent cannot be expected to exist for all the non-stationary matrix
products satisfying the relevant assumptions. In particular, to our knowledge, the results in Ref. 18 cannot be combined with the Craig-Simon
subharmonicity result in Ref. 20, which uses subharmonicity of the Lyapunov exponent y(z) to achieve a certain kind of uniformity in energy.

The general large deviations they obtain consequently do not seem to be compatible with the approach of Ref. 5, which we use to derive
localization. We came to know while preparing this work that the forthcoming work of Gorodetski-Kleptsyn will prove Anderson localization
in the context of distributions satisfying the requirements in Ref. 18 via completely different methods using a purely dynamical approach that
builds upon the approach used in Ref. 4.
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We emphasize that the results in Ref. 18 are on the whole considerably more general in the context of large deviation estimates corre-
sponding to non-stationary matrix products. Similarly, the forthcoming localization result from the work of Gorodetski-Kleptsyn will be far
more general then the localization results we obtain here. There are certain rare examples for which our results are applicable and those in
Ref. 18 are not, but “most” examples satisfying the hypotheses of our work satisfy the hypotheses in Ref. 18.

At the same time, the method presented there is one-dimensional in an essential way, as the transfer matrix method that allows the study
of generalized eigenfunctions in terms of matrix products is only available in one-dimensional and quasi-one-dimensional contexts. In con-
trast, our lifting method, while imposing much harsher restrictions on the distributions considered, is fundamentally an abstract probabilistic
result about product measures and is easily adapted to the study of non-stationary potentials on Z“ for any d or any reasonably “tame” lattice.

Moreover, while the large deviation work in Ref. 18 does not require compact support of the distribution and makes morally the same
mild moment assumptions as we do in this work and as are made in, e.g., Refs. 1 and 17, it is our understanding that the forthcoming
localization proof from the work of Gorodetski-Kleptsyn will further the approach of Ref. 4 and, in particular, will require the potentials
Vu(w) to have a uniform bound. We point out that our localization result holds for unbounded distributions under our more stringent
assumptions.

These results are of special interest in the case where y is singular. With sufficient regularity, the study of the problem becomes amenable
to the fractional moment method pioneered in Ref. 21; such methods are able to handle non identically distributed distributions in consid-
erably higher generality than our methods under the requisite assumptions. The methods of Ref. 22, developed earlier, are also available for
the one-dimensional problem specifically. In the continuum setting, Klein obtained localization for certain non-stationary Anderson models
with no regularity assumptions made in Ref. 23. This was a consequence of Wegner estimates derived more generally using the quantitative
unique continuation introduced by Bourgain-Kenig in Ref. 7 and further elaborated upon by Bourgain-Klein in Ref. 24.

In addition, the requirement that the laws of V,(w) are all absolutely continuous with respect to some base measure y becomes con-
siderably more natural in the context of finite valued potentials specifically. If, e.g., 4 = S2_| @m0, , then absolute continuity implies that

Un = quf:l ﬁn,mé‘xm and ”gnHoo = max{ﬁn,m

A

}. Physically, the situation corresponds to pockets of zero natural density where the probability dif-

fers from what it should be more than any given ¢ > 0; (4) is in this context precisely equivalent to 3,,m <, &, for all m, where the convergence
is in the sense of natural density or, more precisely, its obvious analog on Z.

We also prove another result under even stronger assumptions than (5) that essentially makes all the statistics of a system with V,,(w)
distributed as g, u identical to those of i.i.d. V,(w) with law y; specifically, if

3" log [gullee < oo, ®)

nez

then the joint distribution Py corresponding to the non-stationary case is absolutely continuous with respect to the joint distribution IP; with
Vu(w) iid. This argument, under more stringent conditions, essentially allows a great number of results, e.g., the dynamical localization
results from Ref. 5, to be carried over wholesale from stationary contexts to non-stationary contexts.

We mention in brief that our model is just one of many where the potential incorporates randomness but is not just given by i.i.d.
random variables. A comprehensive review is well beyond the scope of this work; we briefly mention the random polymer models studied in,
e.g., Refs. 25 and 26, which have potential purely driven by randomness but allow some “local” dependence among the variables determining
the potential, mixed models studied in, e.g., Refs. 27 and 28, which consider potentials given by random terms together with terms that are
either quasi-periodic or periodic, and “trimmed” models considered in, e.g., Refs. 29 and 30.

The rest of this paper is organized as follows: in Sec. II, we introduce the necessary probabilistic definitions and our results, introducing
our three main probabilistic results and their consequences for localization of non-stationary Anderson models. In Sec. III, we prove our
probabilistic results. In Sec. I'V, we recall basic facts about Schrédinger operators and results regarding stationary Anderson models. In Sec. V,
we use our probabilistic results to derive large deviation estimates and prove important consequences thereof, namely, identical Lyapunov
behavior for the non-stationary approximate system and applicability of the Craig-Simon subharmonicity result for the said system. In Sec. V1,
we prove technical lemmas necessary to prove our main localization result concerning unbounded potentials, Theorem I1.9, and comment
on the small changes necessary to prove the similar Theorem II.5, which allows weaker hypotheses in the case that the potential is bounded.
Finally, in Section VII, we prove Theorem IL.9.

Il. PRELIMINARIES AND STATEMENTS OF RESULTS

Throughout, Py and P; will denote distinct probability distributions on the same measure space (X, %). When the discussion is specified
to Schrodinger operators, (X, %) will be R and the product Borel algebra. In this case, Py and IP; can also be understood as joint distributions
of variables V,(w) so that V, are projection maps. The expectation with respect to Py and P; will be denoted E¢ and E;, respectively.
Whenever & c & are o-algebras and X is an L! (P;, ) random variable, we denote its conditional expectation with respect to & and P; by
Ei[X|€]. Thatis, E;[X | €] is the unique (up to P;-a.e. equivalence) & measurable variable, which satisfies

Ei[xa-X] =Ei[xa - Ei[X| €]]

for all A € &. Throughout, P; can be considered an “exact” distribution and Py can be considered an “approximate” distribution.
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For two measures v and y on a measure space, v < y denotes the absolute continuity of v with respect to y. When we specify the
conversation to product measures, we will fix a probability measure 4 on IR and consider non-negative g, € L*° (dy) with g > 0 and [ gdy = 1.
In a natural way, these functions correspond to probability measures v << y with essentially bounded Radon-Nikodym derivatives. In some
sense, these measures are the more relevant objects, but we identify them with their densities for notational simplicity so that we may write,

e.g. g, and g, u instead of ’Z‘; and y, .
Given (Q, %) some measure space, %, a filtration, and Py, P, two probability measures such that P| 7, <P | Z,» We will define
d(P,
g, = {Polz,)
d(P1z,)

Sometimes, we will consider families of filtrations, i.e., collections (g,fc ) where for any fixed k € Z, (?f") is a filtration. In this case, we set

v A(Polgzp)
T d(Pig)

We introduce notions relevant only to the study of Schrodinger operators later in the paper.

Definition II.1. We let (X, M) be a measurable space and (A‘E)(n,E)ENxR be a collection of measurable sets. (This should be understood as
a collection of sequences indexed by E € R.) We say that the collection decays exponentially uniformly in E with respect to a probability measure
PP if there exists N € N and v > 0 such that for n > N and all E, we have

P[AE] <o

Definition I1.2. We say a collection of sequences of events (Ay) () (with n € N,E € R) is adapted to a filtration of o-algebras (Fy)new if
for all E and n, we have AE € F.

Note that there is nothing special about the choice of R for indexing our collection of sequences, save that it is what we will use later in
this work, with E representing energy.

Theorem IL3. Let (X, #) be a measurable space. Furthermore, let O = X% and B be the o-algebra on X* generated by measurable
cylinder sets. Let y be a probability measure on (X, M) and g, be a sequence of non-negative functions with g, € L (du) and [ g du=1. We
define on (Q, B) the product measures,

Po= Qg Pi =4,

nez

and the coordinate projections V, by V,(w) = w, for Q 5> w = (wn)nez. Finally, we define the -algebras as

U(V—na Vl—n;~-~ Vn—l’ Vn), n> 0)
Fn =
{Q, 0}, n=0.
If g, satisfy
N
oy 3, el o :

then any collection of events (AL), which is adapted to (F,)new and exponentially decaying uniformly in E in Py, is also exponentially decaying
uniformly in E in Py.

A straightforward consequence of Theorem IL3 is that large deviation estimates are valid for the joint distribution P and, as a
consequence, the existence of a Lyapunov exponent, the same one existing for the joint distribution P;.

Theorem I1.4. Let O = R” and Py = i” for some non-trivial (i.e., supported on at least two points) y such that there is & > 0 for which
[ 1x|%du(x) < oo and define the family of operators H, by

Hoy(n) = y(n+ 1) +y(n—1) + Va(@)y(n).
Moreover, let Sf, () be the SL,(C) matrices satisfying

vy _[v(r+1)

Szl,n (w)
P )] v
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for any solution y € C* to Hyy = zy and y(z) = limy—.eo 1 E1[log ISt1,a7(w) 1] Then, for any fixed z € C and & > 0, there exist n = y(z,€) >0
and N = N(z, €) such that
mo|

for n> N. In particular, %”Sfl,n] (w)|| = y(z) Po-almost surely.

1 Z —nn
L 1og St (@)l - y(2)| >¢] <

These results suffice to produce the necessary estimates to show Anderson localization for the bounded case:

Theorem IL5. Let (X, /) be R equipped with its Borel g-algebra, and further let (Q, B), Py, P1, Fn, and V, be as in Theorem I1.3, with
Eq. (4) satisfied.

Assume moreover that u has compact support. Then, there is a set Qg ¢ Q with P[Qqo] = 1 such that for all @ € Qo, the operators on £*(Z)
defined by

Hoy(n) = y(n—1) +y(n+1) + Va(w)y(n)
has pure point spectrum with all eigenfunctions exponentially decaying.

However, for distributions 4 with unbounded support, we need for technical reasons to be able to discuss uniformity across different

choices of filtrations (%, )¥, which physically corresponds to uniformity across different choices of centers for an interval. Concretely, in
the stationary Anderson model context, the statistics for the transfer matrix Sfa,b]’w only depend on the length b —a + 1 and the energy E.
While we cannot recover this exact statement in the non-stationary case, we can under stronger assumptions lift a priori large deviation
estimates, which are uniform across such choices from a stationary context to similar large deviation estimates in a non-stationary context.
We introduce additional definitions specific to these considerations. Throughout, “uniform in filtration” can loosely be read as “depending
only on the length of the associated interval.” This is in the full level of abstraction not quite correct but describes our specific application. We
introduce the following necessary definitions:

Definition IL6. Given a measure space (X, #) and a collection of filtrations (F,)¥, with n € N, k € Z, we say that a collection of events
(A%EY decays exponentially uniformly in E and k with respect to P if there exists N and i > 0 such that for all E, all k, and all n > N, we have

P[AF] <™
Definition IL.7. We say that (AXF) is (F,)* adapted if for any fixed ko € Z, the collection of events AXF is F 5 adapted.
With these natural extensions of earlier definitions, we can state a version of Theorem I1.3, which is uniform in filtration.

Theorem IL8. Let (X, .#) be a measurable space. Furthermore, let O = X” and B be the o-algebra on X” generated by measurable
cylinder sets. Let y be a probability measure on (X, M) and g, be a sequence of non-negative functions with g, € L (du) and [ g du=1. We
define on (Q, RB) the product measures

Py = Qgups P1 =y

nez

and the coordinate projections V, by V,(w) = w, for O > w = (wn ) nez. Finally, we define the o-algebras

ok JOWVien Virn -« Vi1 Vieen)s n>0,
"), n=0.
If g, satisfy
I 1[ 3 loglgde | -0
im — | sup 0g|lgn]loo | =0,
N—ooo N keZ pakoN n

then any collection of events (AEX), which is adapted to (F,)* and exponentially decaying uniformly in E and k with respect to Py, is also
exponentially decaying uniformly in E and k with respect to IPo.

This version, uniform in filtration (i.e., center), suffices to show Anderson localization for t, “converging” to u, which have unbounded
support but satisfy a mild moment condition, more or less the condition found in the original Carmona-Klein-Martinelli work.!

Theorem IL.9. Let (X, /) be R equipped with its Borel g-algebra, and furthermore, let (Q, B), Po, P, F,, and V, be as in Theorem IL.5
with Eq. (5) satisfied.
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Assume also that there are a >0 and M < oo such that [|x|*du(x) <K and [|x|g,(x)du(x) <M for all neZ. Set Qy c Q with
Po[Qo] = 1 such that for all w € Qo, the operators on £2(Z) defined by

Hoy(n) =y(n-1) +y(n+1) + Va(w)y(n)

has the pure point spectrum with all eigenfunctions exponentially decaying, i.e., H, exhibits Anderson localization.

Remark I1.10. Our additional conditions in the unbounded case amount to imposing uniformity in various ways; this in some sense is
required to make up for the loss of uniformity, which came from the existence of a bound on V. In particular, (5) allows the extraction of large
deviation estimates uniform in “center” of the corresponding interval or square by prohibiting arbitrarily long stretches of abnormally high | g, |.
We will explicitly go through the unbounded case through the rest of this paper and point out when they arise, the places where boundedness
allows one to discard assumptions.

Finally, a condition stronger than even (5) forces essentially all the relevant statistics of [Py to coincide with those of [Py, i.e., absolute
continuity with an essential bound on %'

Theorem I1.11. Let (Q, B), Po, and Py be as in Theorem IL.3. If the Radon-Nikodym derivatives satisfy the stronger condition

Y. 1oggnlleo < oo, (6)

nez
then Py < 1, and moreover, for any A € B, we have Po[A] < CP1[A], where C := T1,,e7 |81 -
A direct application of this result to the results in Ref. 5 gives the following result:

Theorem I1.12. Let everything be as in Theorem IL5; assume further that y has compact support, and the Radon-Nikodym derivatives
obey the stronger condition,

Z log [|gnl|eo < o0. (7)

nez

Then, H,, is almost surely exponentially dynamically localized, in the sense of Ref. 5.

I1l. LIFTING METHOD, PROBABILISTIC RESULTS

We prove a simple lemma, and a useful corollary, before proving Theorem II.3, which allows us to lift large deviation estimates under
certain conditions.

Lemma IIL1. Let (X, /) be a be a measurable space and Po,IP; be two probability measures on it. Let (Fy)nen be a sequence of
o-subalgebras of M, and further assume that Po|g < Pi|g for all n € N. Then, for any collection of events (A}), which decays uniformly
exponentially with respect to Py at rate 1, we will also have uniform exponential decay with respect to Py if

1
#o := lim sup (sup —log ( HXAﬁH” Hoo)) < (8)
n—o0 E N
where d(Pol|g,)
H, = - OF)
d(P1lg,)

and || - | e denotes the L (dPPy) norm.
Proof. Under the assumption of (8), we have as before for any € > 0 some Ny = No(¢) such that
ey <1
for all n > No and « € A. By our assumption of uniform exponential decay with respect to Py, there is Ny € N such that
P[AE] <e™
for all @ and n > N. Fixing & < 5 — 77, and N = max(No, N1), we get
]P’o[Af] < ¢~ (to=e)n

for n > N and all E, establishing uniform exponential decay of the family with respect to Py. O
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Control of the Radon-Nikodym derivatives on the whole space gives a general result.

Theorem I1L.2. If (Q, M), Fn, Po, P1, and H, are as above and, moreover, we have
1
lim = log ||Hx| =0, )
n—oo p

then any family adapted to F, exponentially decaying uniformly in E with respect to Py is exponentially decaying uniformly in E with respect to
Po.

Proof. For any family of events, we have
SUP [ azHnleo < [[Hn o

for all #n. By monotonicity of log, the required bound (8) holds as before. O
Along essentially the same lines, we also have a uniformized version.

Theorem IIL.3. If (Q, %), (fin)k, Py, P1, and Hﬁ are as above and, moreover, we have

lim
n—oon

l[sup log IIHfilloo] =0, (10)
keZ

then any family adapted to F, exponentially decaying uniformly in E and k with respect to Py is exponentially decaying uniformly in E and k
with respect to Po.

Remark I11.4. These results have a natural analog for other large deviation estimates. In particular, if r(n) > 0 is monotone increasing and
r(n) — oo, then for Py and Py satisfying the obvious analog of (9)

1
lim —— log||Hy| o =0, 11
Jim Gy los 1l (11

any adapted sequence A, eventually satisfying P1[A,] < e also satisfies Po[An] < e~ 179" eventually for any e > 0, and this can be made
uniform over a parameter or over filtrations with the appropriate uniformity assumptions imposed on (11).

For our proof of localization, absent the uniformity in filtration coming from Theorem IIIL.3, we can get a weaker form of uniformity by
examining arithmetic progressions within a filtration.

Corollary IIL5. If (Q, M), Fn, Po, and Py are as above and (9) holds, any family of events {AE}, which is adapted with respect to a
subfiltration {&,} of the form &, = Fy,,41, uniformly exponentially decays with respect to Py if it does the same for IP;.

Proof. It suffices to show that

1
lim — 1 H, =0.
ym - log [Hinst] = O

For large enough #, we have

1
» log | Hit| < log || Hip1|

kn+1
with the right-hand side term going to zero as a consequence of (9). ]

We will later extract uniformity over finitely many (sub-)filtrations in the context of Schrédinger operators. Our work thus far now
suffices to prove Theorem I1.3, after recalling some definitions and a fundamental probabilistic result. Its uniformized (in filtration) variant
Theorem II.8 will follow along the same lines.

Definition I11.6. If ) is a set, we call of ¢ P(Q) a n-system over Q if

1. o is non-empty,
2. dis closed under finite intersections, i.e., for A1, A, € o, we have Ay N A; € 4.

Definition IIL.7. If Q is a set, we call Z ¢ P(Q) a A-system if
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1. QeZ,
2. Zis closed under complementation; for any A € Z, we have ACe g,
3. Zis closed under disjoint countable unions; if (An)nen are pairwise disjoint and all in Z, then UA, € Z.

A result of Dynkin, found in, e.g., Ref. 31, allows us to prove equality of measures in terms of these systems.

Theorem II1.8 (Dynkin). If of is a n-system contained in some A-system Z, then o(&f) is also contained in Z, where o () is the o-algebra
generated by o.

We prove one more lemma, which, combined with Theorem III.2, implies Theorem II.3.
Lemma II1.9. In the setting of Theorem 11.3, we have for N > 0,

N

IHneo = TT lgnllos-

n=—N

Proof. We prove this by showing that, in fact, we have the pointwise (almost surely with respect to ;) equality,

Hy(w) = BN & (Va(@)).

The right-hand side of this clearly has norm less than or equal to TIY__y [gu/lcc by submultiplicativity of | - | and can be shown to have
norm at least that more or less as a direct consequence of the product measure structure. This equality of functions (pointwise a.s.) will follow
from showing equality of their integrals on any %, measurable set. We define

HN = HN(w) - H gn(Vn(w))

n=—N

so that the equality of their integrals is the same as vanishing of the integral of Hy.
We let Zn be the family of sets A € Fy such that

fAHN(w)am»1 -0.

These families are closed under countable disjoint union as a consequence of the dominated convergence theorem. (Note that E;[|Hy|] < 2.)
If we assume that Q € Zn, we obtain

fAHN(w) dP, = -fACHN(w)dpl.

If we can show Q € Z,, we will also have closure under complementation and, hence, that Z,, are A-systems.

We let &y denote the family of #ny measurable cylinder sets, i.e., A =[],z An with A, € . It is clear that Fy measurability requires
that A, € {#}, X} for n > N or n < —N. We will show o/ c Zx. The result is trivial if A, = @ for any n, then the set has measure zero; we thus
assume that A, = X for n > N or n < —N. The result then follows by a computation using the fact that P, is a product measure,

Ei[xaHy(w)] = Po[A]

=TT Eilxa.gn(Va(w))l

n=—N

We note that Q € oy for all N, as clearly Q = [T, X; hence, Q € Zy, and Z are A-systems. Moreover, &y are n-systems; clearly,

[TAwA ] Bu=]] (AmnBw)

meZ me7Z meZ

and measurability is preserved. Hence, o(9/n) ¢ Zn by the 7-A theorem. However, o (/) is precisely &,; the pre-images of the projections
are cylinder sets, giving us the desired equality. O

Using a similar argument as in the previous lemma, we can prove an abstract result, which has Theorem I1.11 as an immediate conse-
quence. First, we recall a probabilistic result of Doob’s, whence we will obtain the existence of Hoo = limy— o Hn. The result can be found in,
e.g., Ref. 31.

Theorem II1.10 (Doob). Let Y, be a martingale on a probability space (X, %, P) with respect to a filtration F, such that Y, > 0, and also
let Foo = 0(F1,...). Then, there is Y oo, which is F oo measurable such that Y, — Y o almost surely.
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Using this result, we can prove the following lemma:

Lemma IIL.11. Let (Q, F), Po, Py, and (F,) be as in the previous lemma and corollary, and let Foo = 6(F1, F2,... ). If

C :=sup log |Hyu| < oo, (12)

then Po|g_ < Pi|g_ and Po[A] < € -Pi[A] forall A € F.

Proof. First, we note that even in the absence of the moment condition, the stochastic process H, is, in fact, a martingale with respect
to (%) and IP;. Indeed, the martingale condition requires that E,[H,1 | %4 ] = Hy. It follows from the definition that H, is %, measurable,
and because (%) is a filtration, %, ¢ F,41 so that for A € F,, we have

Ei[xaHn] = Po[A]

Ei[xaHns+1]

E\[Ei[xa - Hu+1|Fn]]
Ei[xa - E1[Hps1|Fn]],

with the very last equality a consequence of the &, measurability of A. Hence, H,, is, in fact, Ei[Hy41|Fn].
Non-negativity of the Radon-Nikodym derivatives is obvious, so there exists (up to almost everywhere equivalence) a IP; almost sure
limit,
Heo(w) := nlir{.loHn(w),

which is %o, measurable; moreover, under our condition (12), satisfies Heo < ¢ almost surely. As a consequence of the dominated conver-
gence theorem, E;[Hoo | = 1. The theorem will follow immediately once we show that Po[A] = E;[ya - Heo ] for all A € Foo, i.e., Hoo is the
d(Pol 7, )
d(Pi|#..)
finite intersections are both obvious. We let Z be the collection of A € & such that Po[A] = E[ya - Heo ] As noted earlier, Ei[Heo | = 1 by
dominated convergence, and so Q) € Z. Naturally then, E; [y c - Heo | = 1 = Ei[a - Hoo | s0 that Z is closed under complementation. Finally,
using monotone convergence twice, we obtain for any countable collection of disjoint (A, )nen € Z,

]P)()[UAn] = Z ]P)()[An]
= > Ei[ya, - He]

= Ei[)u,4,  Heo]

Radon-Nikodym derivative . Toward this end, we use another 7-1 argument. We let &/ = U,enF . Non-emptiness and closure under

so that Z is a A-system. Consequently, 0( /) = Foo is contained in Z; this completes the argument. O

Remark I11.12. Condition (12) is a strict strengthening of (9) and relies only on the coarse data coming from the norms |Hp| 0. However,
strictly speaking, the weaker condition

E, [supHn(w)] < oo

neN

suffices to give Py << Py, as the bound (12) is only used to justify application of the dominated convergence theorem. In this more general setting,
a bound of the form Py[A] < C-P1[A] for A € Foo will hold if and only if the limit of these Radon-Nikodym derivatives Hoo is essentially
bounded. Furthermore, we note that (12) is sharp in the sense that no weaker condition formulated solely in terms of the asymptotics of |Hu| oo
can serve as a sufficient condition for absolute continuity.

We note that Theorem II.11 is an immediate consequence of this result together with Lemma III.9. Theorem I1.12 is then immediate
consequence of Ref. 5 together with Theorem II.11. While we omit the details, Ref. 17 establishing Anderson localization for Jacobi operators
can also be extended to non-i.i.d. potentials in the strongly converging regime using Theorem II.11.

IV. SCHRODINGER OPERATOR PRELIMINARIES

Having shown some general results, we can now introduce notions relevant to the analysis of random Schrédinger operators. We also
give some remarks on the general strategy of the non-perturbative approach. More or less, the entire section follows Refs. 5 and 17 closely.
For an introduction to fundamental results in the theory of random Schrodinger operators, we recommend Sec. 9 of Ref. 32. Throughout this
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section, we let Q = R”, % be the g-algebra generated by cylinder sets (with respect to the Borel o-algebra on R), and V,, be the coordinate
projections V() := w,. Then, to any w € O, there is a Schrodinger operator defined on £*(Z) by

[Hoy](n) =y(n+1) +y(n-1) + Va(@)y(n). 3)

Definition IV.1. A probabilistic family of Schridinger operators is a Borel probability measure P on (Q, B).

Remark IV.2. In the case where P has support contained in [-M, M]* for some M, we can consider H, as a random variable valued
in B(£*(Z)), which is the pushforward of P under w — H,; doing this explicitly in the general (unbounded) case is unwieldy, hence our
identification with the probability on the space of potentials R”. In either setting, H,, is weakly measurable in an appropriate sense.

Throughout the rest of this paper, we freely identify a probabilistic family of Schrodinger operators with the corresponding probability
distribution P on (Q, %). Moreover, while much of what we discuss in this section holds in considerable generality, we restrict ourselves
to considering two types of . We will consider distributions P; of the form P; = y” for some Borel measure 4 on R and Py of the form
Py = ®Zgny for some y Py under consideration will always satisfy at least (4), if not one of the stronger conditions (5) or (6), so that we can

ne

understand Py as, in fact, “close” in some sense to the IP; corresponding to the base distribution y. In relation to each other, we will call Py
approximate and P; exact.

Given fairly mild assumptions on y, there are many results regarding localization for the exact system P;. In Ref. 22, it was shown
that if y was absolutely continuous with bounded density, then Anderson localization and a form of dynamical localization hold. This result
was extended to hold for singular measures in Ref. 1 by Carmona-Klein-Martinelli, who found Anderson localization to hold for arbitrary
non-trivial y satisfying the moment condition

[ du(x) < oo (3)

for some a > 0. This paper used results regarding large deviations for the Lyapunov exponent, together with the multi-scale analysis developed
in Ref. 33.

At least in the context of operators studied in this work, two properties are of interest, both corresponding to localization in some sense
of the mass of e” " as t ranges over R.

Definition IV.3. We say an operator H,, is Anderson localized if the spectrum is entirely pure point, and its eigenfunctions are exponentially
decaying.

Definition IV.4. An operator H,, is dynamically localized if there is some A and y > 0 such that

sup (8, e "18,)| < AeHH I,
teR
We introduce the latter definition for the sake of completeness; as we have mentioned earlier, dynamical localization can be obtained in
the setting of Theorem I1.12 via our probabilistic method without any further work. The rest of our paper focuses on the proof of Anderson
localization in the settings of Theorems II.5 and IL.9.

Definition IV.5. E € R is called a generalized eigenvalue of H, if there exists some non-zero y € C* with [w(n)| polynomially bounded as

|n| = oo satisfying
Hoy = Ey. (14)

Such vy is then called a generalized eigenfunction.

The study of these suffices more or less entirely to show Anderson localization. This is a consequence of Sch’nol’s theorem, which can be
found in, e.g., Ref. 32.

Theorem IV.6 (Sch’nol). If all the generalized eigenfunctions of H, are exponentially decaying (i.e., |y(n)| decays exponentially as
|n| = o0), then H,, has only pure point spectrum.

We analyze the asymptotics of |y(n)| using by working over truncations to finite boxes. We thus define for a < b the operator Hi, ),
as the restriction of H,, to [a, b]. This is PH,,P for an appropriate choice of projection P, and we identify it witha (b—a+1) x (b—a+1)
matrix.

In relation to these truncations, we can define additional quantities,

Pfa,h],w = det (H[a,b],w - E)
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and . .
G[a,b],w(x’y) = <6X’ (HW - E)7 8)’)

calling the latter quantity the Green’s function. Note that the Green’s function is only defined for E ¢ o(H|,),) and x,y € [a,b] and that,
moreover, the inverse (H — E) ™" is the matrix inverse, not the B(¢*(Z)) inverse. The importance of these quantities comes from the well-
known formulas

l//(x) = _G}[Sa,b],w(x’a)v/(a - 1) - Gl[sa,b],w(x’ b)‘//(b + 1)’ X € [Gl, b]’ (15)

and

‘PEax— u)| ! |PE w|
|Gl (y)| = LT ZDetlel -y oy (16)
‘Pfa,b],w|

The first formula reduces exponential decay of generalized eigenfunctions to exponential decay of the truncated Green’s functions; the second
allows us to study the asymptotics of these in terms of the asymptotics of determinants. Finally, we will study these using the transfer matrices.
Given any solution y € C” to (14), it satisfies for all n € Z,

o)) _(E-vatw) 1) win) )

y(n) 1 0 J\y(n-1).

The 2 x 2 matrix in (16) is called the one-step transfer matrix, and we denote it by S (w). For a < b, we can define Sfu)b] (w) as the unique
matrix such that

v(a) - $E(0) y(b+1) (18)

y(a-1) v(b).

The asymptotics of these matrices encode the asymptotics of generic solutions y € C” to H,y = Ey; the formula below allows us to control
the asymptotics of the truncated determinants and, through those, the truncated Green’s functions. Finally, we make use of the formula

Pﬁz,h],w _Pl[;aﬂ,h],w

Stable = (19)
[a.b].0
P}[Eu,b—l],w _PI[Ea+l,b—l],w
to estimate the determinants P[Eu’b], » by writing them as matrix elements,
1 1
P}[Ea,h],w = ( ’S}[Ea,h],w >’ (20)
0 0

whence, at least in the stationary case P, = ”, the Furstenberg theory gives us information regarding the asymptotics. If

[ dux) < o0 (13)

for some « > 0, then Furstenberg’s theorem and extensions thereof are applicable. In particular, the work of Furstenberg-Kesten shows that
under weaker conditions than those proposed, the quantity

1
y(E) := lim —E[log|Sf,,, ]
is defined, and almost surely, we have

1
, log I8E (@) = ¥(E),

and the Furstenberg Theorem implies that as long as y is non-trivial, y(E) > 0 for all E. Le Page showed in Ref. 15 that under our condi-
tions, we have exponential decay in the probability of large deviations, both for these quantities and for the magnitude of the corresponding
matrix elements. In Ref. 34, it was found that this could be made uniform over a parameter varying over a compact set; in particular, it is a
straightforward application of Ref. 34, also proved in Ref. 3.

Theorem IV.7 (Tsai, Bucaj et al.). Fixing I ¢ R compact and & > 0, there exist 5§ > 0 and N such that for any u,v € R* with |u| = |v| = 1
and any E € R, we have
7|

1 n
; log ‘(u’sl[il,n],wv)l - V(E) 1

>4<[
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forn>N.

Because IP; =y, in particular, the map T defined by (Tw), = w,+1 is measure preserving so that the statistics of S‘[Ea)h] and those of

Sfl)bf a+1] are identical. Hence, exponential large deviation estimates for Pfa)b],w, uniform over a compact interval I, are a corollary of Tsay’s

theorem together with (20).

Corollary IV.8. FixI c R be compact and € > 0. Then, there are n > 0 and N such that

]

In particular, this result gives in a crude sense,

1 —n(b—a
mloglpﬂ,b],wl—y(li)|>e]<e n(bmer) 1)

forb—a+1>N.
(Glaga(y)] ~ e 7EFL

A stronger, quantitative version of this result would imply Anderson localization as a consequence of (15). This motivates the following
definition:

Definition IV.9. Wesay x € Z is (C,n, E, ) regular if

E —C
|G[x—n,x+n],w(x>x + n)| <e !

and x is (C, n, E, w)-singular if it is not regular for the same set of parameters.

In particular, there is a reformulation of Anderson localization in terms of this notion. Using formula (15), Theorems I1.5 and IL.9 are
straightforward consequences of the following theorem:

Theorem IV.10. Under the assumptions of either Theorems IL5 or IL.9, there is Qp c Q with Po[Qo] = 1 such that for every w € Qo and
E € R, there exist N = N(E,w) and C = C(E) such that for every n > N, both 2n and 2n + 1 are (C, n, E, w)-regular.

All the relevant estimates in this section are established for a stationary IP1, and so Sec. V derives the analogous large deviation estimate
results for an appropriate Py, along with important consequences.

V. ADAPTATIONS FOR NON-STATIONARITY

Throughout this section, [Py is of the form specified in either Theorems II.5 or I1.9; we explicitly indicate when a result only applies in
one context. By applying Theorem I1.3 to Corollary IV.8, we can produce a Py analog of (21).

Theorem V.1. Fixing I c R compact, for any e > 0 and K € N, there are 1y = (¢, K) > 0 and N = N(¢,K) such that

> 8] < e—q(b+hn—u—11n+1)

1
I3 log |Pf,, ; , —y(E
0[‘ba+n(j1+j2)+l Og‘ [u+]m,b+]zn],w| V( )

for =K <a<b<K,-K<j <j,<K,n>N,andEcl.

Proof. Fixa,b e Zand ji, j, € No. Let | = max{|al,|b|} and j = max{]j,|,|j,|}. Clearly, the events

4

are & j,,; measurable. Moreover, they have IP; exponential large deviation estimates by Corollary IV.8. By Corollary I1.3, there are Py

exponential large deviation estimates, i.e., there are N (& a,b, j1, j2) and #(&, a, b, j1, j2) such that

1
{w : ’ IOg |Pfa7j1n,b+jzn],w‘ - Y(E)

b-a+jin+ jon+1
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1 i (b=a+ jun+ jon+1)
P 10g P, wpsintl = P(E)| > & | < T (bmatintion
0” b—a+ (]1 T jz)n i1 0g| [u—]ln,b-#]zn]' Y( ) ‘{I €
for n > N. Taking # to be the minimum of 7 for |al,|b],|j, |, |j,| all smaller than K and N to be the maximum of N ranging over the same
parameters, we obtain the desired # and N. O
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We proved this theorem that works even without the assumption of condition (9) to illustrate what is used in the bounded case if said
condition fails; however, we have something stronger when (9) holds, allowing the use of Theorem II.8.

Theorem V.2. In the context of Theorem II.9, but not necessarily in the context of Theorem IL5, fixing I c R compact, for any € > 0, there
aren =n(e) > 0and N = N(¢) such that forb—a > N,

g

Proof. By stationarity of the shift map (Tw), = wn+1 in the P; context, the large deviation estimates furnished by Ref. 34 are, in fact,
uniform in the endpoints of the interval, i.e., uniform in filtration. The result is then immediate as a consequence of Theorem II.8. ]

1 E —n(b—a+1)
mlog |Plab],0l *Y(E)H <e M,

For a certain application of Ref. 20, we need to consider complexified energy, i.e., transfer matrices S ab]> which characterize the solutions
to Hoy = zy in the sense of (18). For z € C generally, the non-uniform version of Theorem V.1 (i.e., for a single fixed energy z € C) also holds
by applying Theorem II.3 to the work of Le Page in Ref. 15. (We believe that the uniform result in Ref. 34 still applies in the context of
complexified energy, but we are not sure of the details and do not need it.). There is analogously y(z) = lim,—ec + E1 [log ISf1,11] and

1
Llog5101 = 1(2)
P, almost surely. The large deviation results imply that these IP; almost sure limits are also Py almost sure limits.

Theorem V.3. For Py and P, as above and any z € C, there is Q; such that Po[Q.] = 1 and
1 2
" log [[Sf1,n1,0ll = (2).

Proof. We note first that as a consequence of Theorem V.1 or its non-uniform complex analog, there are #7 > 0 and N € N such that for
n > N, we have
m|

The eventual exponential decay implies summability so that by Borel-Cantelli, there exist for all £ > 0 subsets Q. ¢ Q with Po[Q.] = 1, and
for all w € O, we have some N = N(w) such that n > N implies

1 z n
; lOg ”S[l,n],w - Y(Z) "

>4<[

<E&

1 z
|5 108 1571111 - #(2)

We note that 1 log ISt1,u1,0 | = ¥(2) precisely if @ € Nmen Q1. This intersection has probability 1 and so is the requisite Q.. O

1L,n],@

This last result is of some interest in its own right, demonstrating an ability to “lift” Lyapunov behavior across contexts; it is also necessary
for the proof of localization in making it possible to apply certain results exploiting subharmonicity of y(z) in Ref. 20.

We go through the details here, although the argument is fundamentally the same as in the original paper. For any fixed z € C, there is
Q; c Q with Po[Q.] = 1 such that for w € Q, the quantity

y"(w,2) := lim sup

n—+oo

log H S‘El,n],w H
n

coincides with y(z). A result of Craig and Simon makes this in some sense uniform in the context of the exact Anderson model and, moreover,
says the same for the quantity

log ||S7
¥ (w,z) = lim sup 8 Pln)bol | [_"’_IJ’E’(’JH.

n—+oo n
(In fact, the quantities y* (w, z) and y~ (w, z) always coincide, and so we denote this quantity going forward by y(w, z).)

Theorem V.4 (Ref. 20). Let u be a distribution on R satisfying the condition
/ max {0,log |x|}du(x) < oo

and Py = u”. Then, there exists Oy ¢ Q = R” with P1[Q1] = 1 such that y(w,E) < y(E) forall w € Q; and E € R.

L1:Ly:L) €202 Joquialdas 62

J. Math. Phys. 64, 061902 (2023); doi: 10.1063/5.0150430 64, 061902-13
Published under an exclusive license by AIP Publishing



Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

Remark V.5. Craig and Simon originally proved the result for bounded Schrédinger operators, which in our context implies an absolute
bound on V,(w). However, the proof straightforwardly generalizes to any family H,, satisfying this mild moment condition, without which y(E)
is not even guaranteed to exist.

The key step to proving this result concerning E € R was a theorem regarding the Lyapunov exponent in complexified energy.

Theorem V.6 (Ref. 20). For an exact system whose parameters satisfy the assumptions in Theorem V.4, y(z) is subharmonic, and for all
w € Q, the function y(w, z) is submean.

That y(w, E) is still submean in the context of the approximate system is obvious; the change from the exact to approximate system
amounts only to a change in probability measure and J(w, E) is not an averaged quantity. On the other hand, subharmonicity of the PPy
Lyapunov exponent j(z) is only obtained by showing its equality with the P, Lyapunov exponent y(z); we recall some basic facts from the
theory of subharmonic and submean functions.

Proposition V.7. If f is submean and E, is fixed, then

f(Eo) < lim iz / f(E) &E,
r=0 711" J|E-E,|<r

and if f is subharmonic and Ey is fixed, then

F(Eo) = lim [ e
=0 71r? J|E-Eo|<r

Using this, we can now prove, more or less along the lines of the original argument in the original paper of Craig and Simon, the following:

Theorem V.8. There exists a subset Qg ¢ Q with Po[Qo] = 1 such that for allE € R,
T(@.E) < 1(E)

Proof. Recall that y(w,z) is submean and y(z) is subharmonic. Moreover, we have shown that for any fixed z € C, there is a Py full
measure subset (O, ¢ Q such that y(w, z) = y(z). By Fubini, there is a Py probability 1 subset Qo such that for w € Qo, we have y(w, z) = y(z)
for a Lebesgue almost every z € C.

Hence, it suffices to show that for any w such that y(w, z) < y(z) for Lebesgue almost all z, we, in fact, have it for all z. For such w, we

have necessarily for any fixed E €e R and r > 0,
Feadz- [ iz
‘[|2—E\<r))(w Z) z |z—E|<rY(Z) ‘

It follows immediately that

r—=0 711"

1
= lim —2/ y(z)d’z
|e—E|<r

r=0 77
= y(E).

7(w,E) < lim %/ P(w,2)d’z
|z—E|<r

We reformulate this result quantitatively and in terms of the transfer matrices.

Corollary V.9. For Po-a.s. w and any € > 0, there exists N = N(w, €) such that for n > N, we have

max { S p0 s ST 1750} < €75

and
(B e

—1
max { Hs[n+1,2n],E,wH’ ”S[2n+2,3n],E,w ”} <e

VI. MAIN LEMMAS

We use now the large deviation results we have obtained to prove several technical lemmas, generally following Ref. 17, making some
simplifications due to our exclusive consideration of the Schrodinger case, rather than Jacobi operators as a whole. Throughout this section,
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we fix a compact interval of energies [s,t] =: I ¢ R. Of course, if we have localization almost surely with respect to any given compact interval,
then (taking a countable intersection) we have almost sure localization for all energies. Continuity of y(E) was shown in Ref. 17, using ideas
from work in Ref. 35, so that, in particular, infge; y(E) > 0. The proof proceeds by analyzing the sets where large deviations occur, so we define
subsets of I x Q,

&) (b—a
Bfa,b],s = {(E’w) : |Pfu,b],w‘ 2 e(]’(E)‘F %" +1)}

and (y(E)—¢) (b-a+1)
— —¢&)(b—a+1
B[a,h],s = {(E’w) : |P}[2u,b],w| <e " }’

and the sections
+ +
B[u,b],E,e = {w : (E’w) € B[u,b],e}

and
B[ia,b],w,e = {E : (E’w) € B[iu,b],e}'

Moreover, we let Ej 4], denote the b — a + 1 eigenvalues (with multiplicity) of Hy, ). An immediate consequence of (16) is as follows:

Lemma VL1. If n>2and0 < e < vi/8andxis (y(E) — 8¢, E, n, w)-singular, then

EeBj +

X—n,x+n),e J BErxfn,x],e U B[x,x+n],£'

Our work in lifting LDEs and the existence of these for the exact case will allow us to prove technical lemmas like those in Refs. 5 and 17.
In particular, Theorem V.1 suffices for most of these. We take #, = (&, 4), where 7 is the large deviation parameter from Theorem V.1. We
now proceed through some technical lemmas, proved in either Refs. 5 or 17 for P, and comment on any differences arising in the proofin a
non-stationary context.

Lemma VI.2. Let 0 < & < #,. There is Q1 c Q such that Po[Q1] = 1, and for all w € Q, there is N1 = N1 (w) such that for all n > Ny, we

have

- - —(110—00) (2n+1
max{‘B[n+l,3n+l],£0,w|"B[fn,n],fo,w” <e (ro=00) (2t )

This is done by a Borel-Cantelli argument in Ref. 17 for P, which uses large deviation estimates and carries over with no modification
to our PP context as a consequence of Theorem V.1.

Lemma VI.3. For any € > 0 and p > 4[n,, where 1, is the large deviation parameter furnished by Theorem V.2, there is Oy = Qy(e,p) c Q.
with full probability such that for every w € Q, there is Ny = N»(w) so that for n > N, any y,,y, satisfying —n <y, <y, <n, and | - n—y,|
> plogn and |n—y,| > plogn, we have

Ej,[n+1,3n+1],w ¢ B[—n,yl],s,w u B[yz,n],a,w U B[—n,ﬂ],e,w

forallje[1,b-a+1].
Proof. Following Ref. 5, we analyze the events

An = {w : EI] € [1,2}1 + 1];Ej,[n+l,3n+l],w € B[—n,yl],s,w u B[yz,n],e,w}

and, leveraging independence and union bounds together with large deviation estimates coming from Theorem V.2, obtain
Po[An] < 2(2n + 1) 1 logn+2 (22)
for sufficiently large n. Because pr, > 4, this is summable, whence the result follows. o

This result has an analog in the context of Theorem IL5, which can be proven using only Theorem V.1 rather than requiring
Theorem V.2.

Lemma VI1.4. Foranye>0and L > 1, there is Oy = Qa(e, L) c Q with full probability such that for every w € Qa, there is N> = Na(w) so
that for n > N, any y,, y, satisfying —n <y, <y, <n,and|—n—y| > { and |n - y2| > 7, we have
Ej,[n+l,3n+1],w ¢ B[—n,yl],s,w u B[yz,n],&w u B[—n,n],s,w
forallje[1,b-a+1].

Its proof is more or less the same as that of Lemma V1.3, but replacing plog n with 7 gives (in the original stationary context) a stronger
estimate than (22), .
Pi[A.] <2(2n+1)°e 1172, (23)
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where 7} is the IP; large deviation parameter. For any € > 0 and sufficiently large n, we then obtain
P, [An] < 67(%7£)n.

In particular, then, instead of carrying over exponential estimates beforehand to ultimately produce the summable but subexponential esti-
mates of (22), we derive exponential estimates of (23) in the stationary context and then carry them over using Theorem V.1, obtaining

Po[A,] <. (24)

(Even Theorem V.1 is in some sense more than we need; another direct application of Theorem I1.3 suffices.) This result is also true in the
unbounded context of Theorem I1.9, but in carrying out the localization proof for the unbounded case, Lemma V1.3 turns out to be necessary.
This is because the next pair of results concerning determinants corresponding to the edge of a box is weaker than its bounded context analog.

Lemma VL5. For fixedr > 1 and p > 0, for almost all w, there exists N = N(w) such that for n > N and m € [-n,n] with| —n — m| < plogn
or |n—m| < plogn,
[Vin(w)| < n'®,

where o > 0 is such that sup,,[ [ |x|*ga(x) du(x)] < .
Proof. Weset C := sup,[ [ |x|"gu(x)du(x)]. By Chebyshev,

<

r

Po[Vin(w) > n7%] <

3

for any m € [-n,n]. Hence, the probability that there exists some m with |V,,(w)| exceeding #”* and also | - n - m| < plogn or |n — m|
< plogn is bounded by (using a union bound)

2
—?(1 +2p logn),
n
which is summable, whence the result follows from the work of Borel-Cantelli. ]
A crucial corollary is the following:

Corollary VI.6. Fixing I c R compact, for p >0 and r > 1, there is a probability 1 subset Q3 = Q3(p,r) c Q such that for w € Qs, there is
N = N(w) > 3 such that if n > N and | - n— y| > plogn, then

|Pf—n,y],w| < e4pm7 (logn) ) (25)
The same result also holds for |n — y| < plog n and |Pﬁ,’n])w| substituted in appropriately.

Proof. The Proof of Lemma VL5 only relied on the existence of a uniform (in m) bound on the ath moments of |V,,(w)|. Clearly, if E
varies over compact I c R, there is similarly a uniform (in m) bound on the ath moments of supge|Vm(w) — E|. Hence, replacing C in our
proof with larger C if necessary, we obtain the necessary result. Because of the tri-diagonal nature of H_,, )., we have

PE = H (Vn(w) - E),

whence we obtain ,
2 (p logn+1)(logn)

P

for n large. Because 1 < plog n for large n, the result follows immediately. ]

n,y],w| n

In the bounded context, there is an obvious analog of this result; there exists M such that |V, (w)| < M for all , and so (taking M slightly
larger if necessary to account for varying E over I) [P [nylel MP**!, without even making any restrictions to edges. Hence, in particular,
we have the following proposition:

Proposition VL7. In the setting of Theorem IL5 with supp Py c [-M, M]%, if we fix I c R compact and L > 1, then for all w € supp P,
there is N = N(w) such that if n> N and | = n—y| > {, then

|Pf—n,y],w| < M%’ (26)
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where M = sup;|M — E|. The same result also holds for |n — y| < % and \Pﬁ,n],w| substituted in appropriately.

The availability of such a bound is what allows the use of Lemma V1.4 instead of VI1.3. Ultimately, the problem of using Lemma VI.4
with our weaker control of |V, ()| comes down to the superexponential growth of n'% , whereas n" '%¢" = ¢” r(logn)* grows subexponentially
and M"/* grows exponentially. In the following Proof of Theorem IV.10 under the assumptions of I1.9, we note that replacing 7, := #(&) and
1, := n(¢) from Theorem V.2 with 7jo := #(&0,4) and 7 := n(e,4) from Theorem V.1, Lemma V1.3 with Lemma V1.4, and 108 ith Np"/E,

3 logM

where L is chosen to be sufficiently large (specifically L > ===

IV.10 under the assumptions of Theorem IL.5.

in terms of parameters introduced in Sec. V1I), we obtain a Proof of Theorem

Vil. PROOF OF THEOREM IV.10

Having established these technical results in our non-stationary case, we are ready to prove P almost sure eventual (y(E) — 8¢,n, E, w)-
regularity of 2n + 1, where ¢ < v;/8. The proof for 2n, —2n, and —2n — 1 follows by a nearly identical argument (in the i.i.d. potential setting,
symmetry considerations obviate any need to consider the negative cases even in passing; the absence of stationarity here technically forces
one to run the argument in the negative direction as well, though no unique technical difficulties arise).

This follows Ref. 17, which made some necessary adjustments to account for unboundedness. We note that many technical details
there are absent here because they arise from considering the Jacobi case rather than only the Schrodinger case; more or less of all of these
reduce to showing bounds on the growth of hopping terms, which are uniformly 1 in the Schrodinger case. We believe that these additional
considerations do not prevent the argument from going through in the more general Jacobi case but have not gone through the details.

Although the argument more or less follows Refs. 5 and 17, the former discussing bounded Schrodinger operators and the latter
unbounded Jacobi operators, both of which were inspired by Ref. 36, we say a few words about the general strategy. A particular site n being
(y(E) — & n, E, w)-singular forces a “resonance” of a sort; for sufficiently large n, Corollary V.9 is used to establish the existence of eigenvalues
E; and E; for truncations to [—n,n] and [n + 1,3n + 1], which give “sub”-deviations from the expected Lyapunov behavior, either on the whole
intervals [-n,n] and [n + 1,3n + 1] or on subintervals. Using Lemmas VL3 and VL5, we derive three inequalities for different cases, at least
one holding for each instance of singularity. All of these inequalities fail for large enough #; it follows that there cannot be infinitely many
singular points with respect to any set of parameters satisfying our assumptions, giving localization with respect to the compact interval I.

Proof of Theorem IV.10. We fix 0 < & < vr/8. We then choose 7, a large deviation parameter satisfying the conclusion of Theorem V.2
for €. Then, given these parameters, we fix 0 < & < 7, and 0 < & < min{(#,, — 80) /3, & }. Given these parameters, we take ( with probability
1 such that the conclusions of Corollary V.9 and Lemmas VI.3 and V1.5 hold.

We let w € 2 and E € I be a generalized eigenvalue of H,,. We further let ¢ be the associated generalized eigenfunction. At least one of
¥(0), (1) is non-zero; we assume without loss of generality that y(0) # 0. There is N(w) satisfying the conclusions of Corollary V.9 and
Lemmas VI.3 and VL5 and so that, furthermore, for n > N, we have that 0 is (y(E) — 8¢, n, E, w)-singular [this singularity is a consequence
of y(0) # 0 together with (15) and the polynomial bound on growth of |y(#).].

We suppose (toward a contradiction) that for infinitely many n > N, 2n + 1 is also (y(E) — 8¢, n, E, w)-singular. By Lemma VI.1 and

Corollary V.9, we have that E € B[_n+1,3n+l],£0)w. There is then for any fixed n > N some Ej, an eigenvalue of Hy, [44+134+1] Such that E; lies in

a slightly larger band of energies I := [s— 1, + 1] (recall that I = [s,¢]) and |E - E}| < e~ (1=8)(21+1) ‘\ere this not the case, then either all
eigenvalues would lie to one side of I or some would lie on each side. In full detail, we show that the latter case is impossible, with a proof that
generalizes straightforwardly to the former. We let E;- be the largest eigenvalue to the left of  and E;+ be the smallest to the right.

All E;j are the real zeroes of P11 3+1],E0> Which is a polynomial in E of degree 21 + 1. Then, P‘[E

wb], 1 monotone on one of [E;-,E] or
[E, Ej+ ]- Then, in particular, we have

1< min {|E- - B, |+ - E[} < m(Bpy,,) <& WD <,

whence we conclude it is impossible that there are no eigenvalues in I, and so there is some E; € I. Our proof, in particular, showed that
mnlee Such that

|Ei — E| < e~ (=0)(2n+1) Thap |Ei — Ej| < 2¢~ (0=00) (2n+1) By Lemma V1.3, we have, in particular, that Ej ¢ Bj_,,,},... However, because E; is
an eigenvalue of H[_ ) »» We obtain

one such E; satisfies [E - E;| < e"(0%)2"*1) 'We can repeat this argument to produce an eigenvalue E; of Hy[-nn) € B

1 -4
”G[’"!"]ij,w” 2 Ee(ﬂo 0)(2n+1)’

and by equivalence of norms, there are y,,y, € [—n, 1] such that y, < y, and

e('h)*‘so)(Z”*l). (27)

1
G—nn i@ > 2
‘ [-nn].Ej, (yl }/2)| Zm
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These two facts together will yield precisely the sought contradiction. Because E; ¢ B[_; ),¢.» We obtain

1Pl 2 €PENDED),

which we can combine with (16) to obtain

PEJ' e(’lo—ao‘*'}’(Ej)—S)(Z"“)

Dol 2 T
Because y, < y,, our analysis can be split into (essentially) three cases: | - n — y,| > plogn and |n - y,| > plogn, | - n—y,| > logn but |n - y,|

<logn,and|—n-y,| <lognand |n—-y,| < plogn. (A fourth case mirroring the second also exists; we omit any explicit consideration as the
argument is the same.) In the first case, it is an immediate consequence of Lemma V1.3 that (28) yields

(28)

E .
|P[in,y|—1],w| ' ‘

(y(Ej)+e) (2n+1) 1 (=00 +y(E;)=€) (2n+1)
e > —— e . 29
2V2n+1 29)

By our choice of € < (8o — #,)/3, this cannot hold for arbitrarily large ».
For the second and third cases, we use Lemma VL5 to bound the term “close” to the edge. Hence, for the second case, (28) yields

e3pra7'(logn)ze(y(Ej)+s)(2n+l) > 1 e(ﬂo—§q+y(Ej)—e)(2n+l)’

T 2V2n+1

which also cannot hold for arbitrarily large n. In the third case, (28) yields

G ogny L (nomdoap(E =) Gns).

T 2V2n+1

which again cannot hold for arbitrarily large n. Hence, it is impossible that that there are infinitely many # such that 2n + 1 is (y(E) — ¢,
n, E, w)-singular. O
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