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ABSTRACT

Trauma injuries continue to be the leading cause of mortality and morbidity among US citizens aged 44 years
and under. Government agencies are often in charge of designing an effective trauma network in their region to
provide prompt and definitive care to their citizens. This process is, however, largely manual, experience-based
and often leads to a suboptimal network in terms of patient safety. To support effective decision making, we pro-
pose a Nested Trauma Network Design Problem (NTNDP), which can be characterized as a nested multi-level,
multi-customer, multi-transportation, multi-criteria, capacitated model with the bi-objective of maximizing the
weighted sum of equity and effectiveness in patient safety. We use mistriages (system-related under- and over-
triages) as surrogates for patient safety. To add realism, we include intermediate trauma centers that are set up in
many states in the US to serve as feeder centers to major trauma centers to improve patient safety and three crite-
ria to mimic EMS’s on-scene decisions. We propose a ‘3-phase’ solution approach that first solves a relaxed ver-
sion of the model, then solves a Constraint Satisfaction Problem, and 1a modified version of the original optimiza-
tion problem (if needed), all using a commercial solver. Our findings suggest that solutions are sensitive to (i) the
proportion of assignments attributed to various destination determination criteria, (ii) distribution of trauma pa-
tients, and (iii) relative emphasis on equity vs. effectiveness. We also illustrate the use of our approach using real

data from a midwestern US state; results show over 30% performance improvement in the objective value.

1. Introduction

In the US, trauma is the leading cause of death for individuals aged
44 and under (#3 across all ages), resulting in almost 200,000 deaths
and an economic burden of over $670 billion annually (ACS, 2016;
CDC, 2022). Trauma is a serious public health problem with significant
social and economic costs. A trauma care system in a state (or a region
within a state) is often established in an attempt to provide prompt and
definitive care to trauma patients. Timely access to a trauma center
(TC) is one of the key determinants of patient outcomes (Branas et al.,
2013; Jansen et al., 2015).

1.1. Types of trauma centers

The American College of Surgeons (ACS) verifies TCs as Levels [-V
based on the presence of the type of trauma resources and their avail-
ability (American Trauma Society, 2022). ACS-verified Levels I and II
are referred to as major trauma centers (MTCs) and capable of provid-

ing definitive care for patients suffering from major traumatic injuries
(i.e., severely injured patients). MTCs are equipped with highly sophis-
ticated surgical and diagnostic equipment, with 24/7 surgeon availabil-
ity, to provide high-quality medical and nursing care. While timely ac-
cess to a . (MTC) improves survival of severely injured patients by
25% relative to care delivered at a non-trauma center (MacKenzie et al.,
2006).

According to the Centers for Disease Control and Prevention, “there
is no access to an advanced trauma center for nearly 45 million Ameri-
cans within the golden hour (60 min)” (ACS, 2016). The reason for this
is the geographic maldistribution of MTCs in the U.S.; in 2010, 9 states
had a clustered pattern, 22 had a dispersed pattern, and 10 had a ran-
dom pattern (Brown et al., 2016). Further, there is a significant cost as-
sociated with building and operating MTCs, and it can be financially
challenging to open an MTC in rural areas due to concerns of sufficient
patient volume.

To circumvent this problem, Levels III-V TCs are set up to serve as
feeder centers to MTCs for communities that do not have timely access
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to MTCs; we refer to such TCs as intermediate TCs (ITCs). ITCs provide
a subset of services offered by ELAE MTCs, but only during part of the
day, and serve as centers for initial care, resuscitation, and subsequent
transfer to major trauma centers (MTCs). It has been shown that an in-
clusion of ITCs in underserved counties decreases trauma-related mor-
tality rates due to improved survival of transferred severely injured pa-
tients after stabilizing at those ITCs (Barringer et al., 2006; Tinkoff et
al., 2007). After stabilizing, a patient is eventually transferred to an
MTC as ITCs are not capable of providing definitive care to severely in-
jured patients. All other hospitals are referred to as non-trauma centers
(NTCs), which are the ideal destination for non-severely injured trauma
patients.

1.2. On-field decisions and trauma triage

The majority of trauma deaths occur in the pre-hospital environ-
ment or within 4 h of the trauma event (ACEP, 1987). The pre-hospital
trauma triage is designed to transport the right patient to the right hos-
pital at the right time. The emergency medical service (EMS) is crucial
in providing initial care to the injured patient and accurate pre-hospital
triage. EMS providers’ on-field decision making practice involves two
components; (i) injury assessment (how severe the injuries are) and (ii)
destination determination (which hospital to select and how to trans-
port). An error in making any of these decisions can lead to pre-hospital
mistriage.

Note that, besides mortality, mistriage has been used in the trauma
literature as a surrogate for patient safety as it often increases the risk of
short/long disability caused due to delay in provision of definitive care
(Jansen et al., 2015; Hirpara et al., 2022, Parikh et al., 2022). Conse-
quently, considering (i), an error in accurately assessing the injury type
(severe or non-severe) can lead to ‘clinical mistriage.” Similarly, for (ii),
an error in determining the most suitable hospital type (trauma center
or not) can lead to ‘system-related mistriage.’

1.3. System-related mistriages

We define three types of system-related mistriages (as surrogates for
patient safety). A situation when a severely injured patient is taken to
an NTC because of a lack of access to an MTC experiences is referred to
as ‘system-related under-triage (srUT).’ Further, in a trauma network
with MTCs and ITCs, if a severely injured patient, who ideally should be
transported to an MTC, is first transported to an ITC due to lack of ac-
cess to MTC, then we refer to that as ‘system-related under-triage stabi-
lized (srUTS).” We use the modifier ‘stabilized’ because an ITC has the
ability to provide prompt assessment, resuscitation, limited surgery, in-
tensive care and stabilization of injured patients and emergency opera-
tions, compared to an NTC (in which case we would have referred this
patient as srUT). In contrast, an excess (or cluster per Brown et al.,
2016) of MTCs and ITCs in the vicinity of an incidence location (also
known as scene) could induce EMS to transport a less severely injured
patient to such hospitals, which we refer to as ‘system-related over
triage (srOT).’

Generally, stUT (and srUTS) and srOT have negative implications on
patient safety. A srUT increases the likelihood of an adverse outcome
such as disability, morbidity, and even mortality due to delay in receiv-
ing definitive care (Rotondo et al., 2014). In contrast, a srOT indirectly
impacts patient safety by causing overcrowding at emergency depart-
ments (Lerner, 2006), unnecessary trauma activation resulting in addi-
tional charges to the patient, and loss of salvageable lives in mass casu-
alty trauma (Frykberg, 2002; Armstrong et al., 2008).

1.4. Trauma network’s influence on destination determination

It is during the destination determination phase when the network
of MTCs and ITCs is critical. Table 1 shows three destination determina-
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Table 1
Influence of the trauma network on different destination determination crite-
ria.

Influence of the MTC/ITC network

For severe injuries, take to an MTC (ideally) or ITC (if no MTC available)

Choices tend to favor MTC or ITC based on perception of different hospital types in
the vicinity, past experience, and access time

Take to nearest hospital (even if NTC) during extreme weather condition or road
closure

tion criteria used by EMS providers at the incidence location, the deci-
sion makers, and how the network of MTC/ITC impacts the correspond-
ing decision. Clearly, the network of MTC/ITC influences the selection
of an appropriate hospital for prompt and definitive care, eventually re-
ducing mistriages and improving patient care.

Although trauma literature alludes to the importance of network of
MTC and ITC andlimplications on mistriages (a key patient safety met-
ric), there key questions are yet to be addressed, which form the basis of
our research.

1.5. Focus of this work

This paper ﬁeeus on the strategic decision of jointly determining the
number and location of MTCs and ITCs to improve patient safety. We
address the following questions:

1. How do ITCs support patient safety?

2. What effect does destination determination criteria have on the
MTC/ITC network?

3. How sensitive is the MTC/ITC network to the distribution of
trauma patients?

4. What is the impact of focusing on equity of patient safety on the
trauma network’s performance?

The key contributions of our research are as follows. First, we pro-
pose a Nested Trauma Network Design Problem (NTNDP), which is a
nested multi-level, multi-customer, multi-choice, multi-transportation
capacitated model with a bi-objective of maximizing equity and effec-
tiveness in patient safety. Multi-choice refers to the inclusion of all 3
dominant criteria for destination determination (see Table 1). While
‘equity’ quantifies the level of similarity in patient safety across regions
in a geographical area (portion of a state or the state), ‘effectiveness’
quantifies overall patient safety (see Section 3.1 for details). Second, we
propose a three-step approach to efficiently solve the proposed MIP
model. This approach is able to find a near-optimal solution in a reason-
able amount of time for instances of realistic problem sizes. Finally, to
test our approach, we generate several datasets with different distribu-
tions of trauma patients using information available from the trauma
system of Ohio, a midwestern US state. We also evaluate the sensitivity
of the solution to variations in proportion attributed to the 3 destina-
tion determination criteria, weights associated with equity and effec-
tiveness, and different distributions of patients. Finally, we illustrate
the use of our approach for real data from a midwestern US state (i.e.,
the state of Ohio).

Our experiments suggest that destination determination criteria im-
pact a trauma system's design and performance. While ACS and many
state trauma agencies recommend using ‘protocol’ as the primary desti-
nation determination criteria, increased use of ‘patient choice’ criteria
(often practiced in reality) results in more ITCs in suburban and rural
zones; the corresponding mistriages are also high. Further, for the same
number of patients, dispersed distribution of patients results in a 21.8%
decrease in the trauma network performance (i.e., causes high mis-
triages) even with almost 3 times of ITCs in the network compared to
cluster distribution. Further, if only equity among regions was empha-
sized (compared to effectiveness), the performance of the resulting net-
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work declines by over 8% given the limitations inherent in the equity
objective. Using real data from OH for 2019, we demonstrate that the
state could achieve a 31.2% and 33.1% reduction in mistriages by using
our approach to redistribute and optimize their trauma network.

In the following sections, we first review the existing literature in
Section 2. Our proposed optimization model for NTNDP and the solu-
tion approach are discussed in Sections 3 and 4, respectively. Next, we
discuss our experimental study in Section 5 and illustrate the use of our
approach on a real network in Section 6. Finally, in Section 7, we sum-
marize our key findings and Discuss avenues for further research.

2. Literature review

Several approaches to address a variety of healthcare facility loca-
tion problems have been proposed; e.g., primary health centers (Giines
et al., 2014), long-term care centers (Cardoso et al., 2015; Intrevado et
al., 2019), preventive healthcare facilities (Zhang et al., 2009; Zhang et
al., 2010), ambulance location and/or relocation (Reuter-Oppermann
et al., 2017; Van Buuren et al., 2018), among others. For a comprehen-
sive review, see Reuter-Oppermann et al. (2017), Ahmadi-Javid et al.
(2017), and Giines et al. (2019).

Because our work focuses on patient safety, our review suggests that
two types of surrogate metrics for patient safety have been widely used
in the literature; (i) minimizing total distance or travel time across all
constituents (Cocking et al., 2012; Schmid, 2012; Belién et al., 2013;
Toro-Diaz et al., 2013; Chen et al., 2013; Bayram et al., 2015) and (ii)
maximizing demand coverage within a fixed access time (Ingolfsson et
al., 2008; Balcik & Beamon, 2008; Lim et al., 2011; Shariff et al., 2012;
Kim & Kim, 2013; Salman & Yiicel, 2015).

In terms of patient safety in trauma network design, Branas et al.
(2000) proposed a model (known as TRAMAH) to simultaneously lo-
cate major trauma centers and air ambulances to maximize coverage of
severely injured patients. Cho et al. (2014) also presented a model to si-
multaneously find major trauma centers and medical helicopters to
maximize the expected number of patients transported to an MTC
within 60 min. The authors incorporated busy fraction of medical heli-
copters in their model and developed the Shifting Quadratic Envelopes
algorithm to optimize the problem. Lee and Jang (2018) extended this
model to a multiperiod location model by introducing an additional de-
cision on when to locate trauma centers and air ambulances over a
planning horizon. Considering additional complexity, the authors pro-
posed a solution approach that iteratively updates helicopters’ avail-
ability using the previous step of optimization result. However, these
approaches do not account for non-severely injured patients (who affect
srOT) and intermediate trauma centers (which can improve access in
rural areas).

Jansen et al. (2015) proposed a novel data-driven approach to lo-
cate MTCs and ITCs with the bi-objective of minimizing the total ac-
cess time and the number of exceptions or srUT for Scotland. The same
authors developed a multi-fidelity surrogate-management strategy to
reduce the computation time for real-world data-driven optimization
problems (Wang et al., 2016). They demonstrated the viability of their
approach using real data from the state of Colorado’s trauma system
(Jansen et al., 2018). While this model considered ITCs, it failed to ac-
count for non-severely injured patients and various destination deter-
mination criteria.

To support decision making around trauma networks, the ACS Com-
mittee on Trauma (ACS COT) developed the Needs-Based Assessment of
Trauma System (NBATS) tool (ACS-NBATS, 2015). NBATS uses six cri-
teria to suggest the required number of MTCs in a given geographical
area, also known as the trauma service area (TSA); population, median
travel times, lead agency support, an existing number of major trauma
centers, and where severely injured patients are transported (MTCs and
NTCs). However, NBATS does not determine the location of the MTCs.
To address this gap, Parikh et al. (2022) proposed a model for a Perfor-
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mance-based Assessment of Trauma System (PBATS) to find the mini-
mum number and location of MTCs by keeping system-related under-
triage (stUT) and over-triage (srOT) rates within a prespecified limit.
Recently, Hirpara et al. (2022) proposed a bi-objective model for
trauma center location problem (TCLP) to determine the number and
location of MTCs and NTCs in order to minimize the weighted sum of
srUT and srOT rates. They demonstrated their approach through a case
study based on the existing network of a US state with focus on ‘green-
field’ design and ‘redistribution’ of existing MTCs. While both these re-
cent works consider both types of patients and associated mistriages,
they do not explicitly consider ITCs (a critical trauma facility for a vi-
able trauma system) and various destination determination criteria
(that affect mistriages).

In terms of destination determination criterion, prior trauma loca-
tion models have only considered a single criterion, often mimicking
the ACS-suggested protocol. However, multiple criteria have been ob-
served in practice besides this protocol, with patient choice and closest
facility being dominant (Newgard et al., 2011, Newgard et al., 2013).
Patient choice has been studied in many IE/OR journals to determine
destination location in an optimization framework. Zhang et al. (2012)
studied the impact of client choice behavior on the preventive care fa-
cility network configuration. The authors presented two alternative
models; (i) probabilistic-choice model based on the multinomial logit
(MNL) model, where a client may patronize each facility with a certain
probability based on the attractiveness of the facilities, and (ii) optimal-
choice model, where each client will go to the most attractive facility.
Zhang and Atkins (2019) presented several models for designing a net-
work of walk-in medical facilities. For a choice model, they considered
travel time, attractiveness, and waiting time at the facility to calculate
the utility of receiving care at a given facility. Further, they also consid-
ered deterministic patient choice, where a patient chooses the facility
with the highest utility to receive care. Closest facility criteria have
been considered in Cardoso et al. (2015), Mestre et al. (2015), and
Nasrabadi et al. (2020).

Our review of the literature suggests the following gaps:

e All prior trauma system design approaches failed to explicitly
consider multiple destination determination criteria alluded in

edical literature and followed in practice.

e None of the prior research considered both types of patients
(severe and non-severe), along with consideration of intermediate
trauma centers.

e Further, equity in safety among regions, along with effectiveness,
have not been considered jointly in the trauma literature (further
elaborated in Section 3).

To fill the above gaps, we propose a nested multi-level, multi-
customer, multi-destination determination criteria and multi-
transportation bi-objective (equity and effectiveness) capacitated
model. Our proposed NTNDP model not only accounts for both types of
patients (severely and non-severely injured) and associated mistriages,
but also explicitly considers several other factors that affect system per-
formance; i.e., ITCs, three criteria for destination determination, and
equity and effectiveness in patient safety. We now present our proposed
model.

3. A bi-objective model for NTNDP

Our generic model is developed for a Trauma Service Area (TSA); a
geographical area comprising a collection of counties in a state, the
state itself, or even collection of states, similar to the definition in
NBATS tool. Further, this TSA is divided into subareas known as regions
or districts, which have the oversight to providing trauma care within
that region. Because of the existence of such regions within a TSA, it be-
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comes critical to consider the equity of patient safety among regions
when designing a trauma network.

A variety of equity measures have been proposed in the literature
when allocating public resources; e.g., minimax, variance, range, sum
of absolute deviations, sum of absolute deviation from desire standard,
squared coefficient of variation, and Gini index (Burkey et al., 2012;
Lejeune and Prasad, 2013; Smith et al., 2013; Chanta et al., 2014; Wang
et al., 2015; Ares et al., 2016; Enayati et al., 2019). However, little con-
sensus exists concerning which equity measure researchers should em-
ploy (Stone, 1997; McLay & Mayorga, 2013). Based on our interactions
with trauma collaborators, their general focus is to improve patient
safety in the worst-performing region (among all regions) of the TSA.
Therefore, we use the minimax equity measure as it intrinsically focuses
on improving the performance of the worst one.

However, any equity measure as a standalone objective often results
in undesirable, sometimes meaningless, solutions (Burkey et al., 2012;
Smith et al., 2013; Enayati et al., 2019). For instance, minimax cannot
distinguish between two networks with identical worst performing re-
gions; however, one solution could have better performance in other re-
gions than the other solution. In some situations, if a higher aggregated
network performance can be achieved with a slightly less equity among
individual regions, then it may be a preferred network for the decision
makers. Considering both these factors, recent literature has proposed
‘effectiveness’ as a supporting metric, alongside equity (Burkey et al.,
2012; Smith et al., 2013; Enayati et al., 2019). We, therefore, use both
equity and effectiveness as objective terms in the proposed model. That
is, the NTNDP is to determine the optimal number and location of MTCs
and ITCs to maximize the weighted sum of equity in patient safety
(among regions) and effectiveness (across the TSA).

Recall that patients with traumatic injuries can be classified into
two categories; (i) severely injured patients with life-threatening in-
juries and (ii) non-severely injured with other trauma injuries. Due to
limited patient-level on-scene vitals data, we estimate the severity of in-
jury at the incidence location using the Injury Severity Score (ISS) as a
surrogate, in line with the existing trauma literature. We also define
two thresholds: ‘access’ threshold as a clinically-driven time (specified
in trauma literature) to reach a hospital (MTC, ideally) and ‘bypass’
threshold as a resource-driven value that specifies the maximum addi-
tional minutes (compared to a nearby MTC/ITC) that EMS can dedicate
to transport them to an NTC (ideal hospital).

Table 2
Classification of triage type based on injury severity and destination hospital
type.

Injury Severity Score (ISS)

ISS > 15 (severely injured)  ISS < 15 (non-severely

injured)
Destination MTC System-related appropriate- Eystem-related over-triage
hospital type triage (SrATP) (srOT)

ITC  System-related underfr-igae
stabilized (srUTS)

NTC System-related under-triage
(srUT)

System-related
appropriate-triage (stATN)

=== [deal nssignment & NTC
== Biest assignment
Actual assFnment 0} e T

Severely /

injured patent ®
{155=18)

Severely o
(155=1%)

(a) Systeme=related under-triage
stabilized (srUT)

»Pr MTC  injured patient 87---------

(b) Systeme-related under-triage
(srlT)
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Before we present the model, we first present some preliminaries
around destination determination and triage classification.

3.1. Triage classification

Table 2 classifies the triage types based on injury severity and des-
tination hospital type. Irrespective of the destination determination
criteria, if a patient is transported to the ideal hospital type based on
their injury severity, then it is deemed as appropriate triage; i.e., se-
verely injured transported to MTC is classified as srAT® and non-
severely injured transported to NTC is classified as srATN. Mismatch in
injury severity and destination hospital type results in mistriage (see
Fig. 1); recall that ISS > 15 is considered a severely injured patient.

As mentioned earlier, delay in definitive care for severely injured
patients (i.e., stUTS or srUT) increases the likelihood of an adverse out-
come due to the life-threatening nature of those injuries. We combine
both mistriages associated with severely injured patients and refer to it
as ‘system-related aggregated under-triage (srAU).” It defines as a
weighted sum of srUT and srUTS. In contrast, mistriage of the non-
severely injured patients indirectly impacts patient safety and is rela-
tively non-serious. Therefore, we consider mistriages of severely in-
jured patients (i.e., stUT and srUTS, aggregated as srAU in the model) as
the primary patient safety metric, while mistriage of non-severely in-
jured patients (i.e., srOT) as a secondary patient safety metric.

3.2. Destination determination

Recall that in Section 2, we mentioned that we incorporate three
dominant destination determination criteria that EMS use at the inci-
dence location; protocol, patient choice, and closest facility.

3.2.1. Protocol

The protocol criterion is essentially the Notional Tasking Algorithm
(NTA) that attempts to mimic the EMS decision making process at the
incidence location, as proposed by the American College of Surgeons
(ACS). It considers clinical and resource factors for destination determi-
nation. In this paper, we extend the NTA used in Hirpara et al. (2022) to
consider ITCs for severely injured patients (see Fig. 2). The NTA follows
an ordered priority list based on patient’s injury severity, the thresh-
olds, and the vicinity of MTCs, ITCs, and NTCs.

3.2.1.1. Severely injured patient.| The top priority is to assign a se-
verely injured patient to any MTC (ideal hospital) within the ‘access’
threshold via ground; if this occurs, we refer to it as system-related
appropriate triage positive (srATP). If no MTC is accessible via
ground, then the second priority is assigning them to an MTC that is
accessible via air ambulance (if available); this is also considered as
srATP. For air ambulance transport, the NTA considers inbound-to- in-
cidence location, loading, and transport-to-MTC times and compares
it against the ‘access’ threshold; if below, then such transport is feasi-
ble.

Ifione of the first two priorities satisfy, then the third and fourth pri-
orities are to assign them to an accessible ITC (not ideal, but better
equipped than NTC) via ground and air. Because the ideal trauma hos-

.'lll'.\'T{‘
_,ome :

-

Noa-severely ,.-"-
wrmmmmen e P MITC ijuged patient @ ghﬁc

(155=10)
(¢} Systeme-related over-lriage
{srT)

Fig. 1. Mistriages based on severity of injury and destination hospital type.
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Fig. 2. Notional Tasking algorithm.

pital (i.e., MTC) is not chosen, we consider such a patient as system-
related under-triage stabilized (srUTS). The modifier ‘stabilized’ is used
because ITCs are often capable to stabilize a severely injured patient. If
all of the above are infeasible, then, as the last option for EMS, the pa-
tient is assumed to be transported to a nearby NTC; this results in sys-
tem-related under-triage (srUT).

3.2.1.2. Non-severely injured patient. For such ISS < 15 patients, the
‘bypass’ threshold is a resource-driven value that specifies the maxi-
mum additional minutes (compared to a nearby MTC/ITC) EMS can
dedicate to transport the patient to an NTC (ideal hospital). For exam-
ple, suppose the additional time to reach an NTC beyond the time to
nearest MTC/ITC (say, 10 min) is within the ‘bypass’ threshold (say
15 min), then, in practice, the EMS is often likely to take the patient
to that NTC. We refer to this type of a situation as system-related ap-
propriate triage negative (srATN). Otherwise, the EMS would likely
take the patient to the nearby MTC/ITC (due to longer drive or other
operational criteria) resulting in system-related under-triage (srOT).

3.2.2. Patient choice

Anecdotal evidence and discussions with EMS suggest that patients
often choose bigger hospitals over nearby hospitals due to their percep-
tion that the bigger the hospital, the better the care. However, travel
time to the hospital also impacts their decision as they want to reach
the hospital soon to avoid delay in receiving the care. In line with litera-
ture in the healthcare domain, we model patients’ choices through a
linear utility model (Zhang et al., 2012; Haase & Miiller, 2015; Zhang &
Atkins, 2019). Accordingly, linear function comprises two dominant
components that impact patients’ decision making; (i) the attractive-
ness of hospitals and (ii) ground travel time to those hospitals. The be-
low equation calculates the utility of patient i receiving care at hospital
j as a linear function of attractiveness of facility j(47) and ground travel
time from the location of patient i to hospital j (TGy):

uy; = P14; - BTGy,

here, we let the attractiveness of a hospital for a patient!(4;) depend
upon the hospital type (MTC, ITC, or NTC) and that it is identical for all
patients. The coefficients ; and f, denote the sensitivity to the two
components, respectively, and can be estimated empirically based on
available data or existing literature. Each patient is assigned to a hospi-
tal that has the highest utility across all hospitals.

3.2.3. Closest facility

In case of extreme weather considerations, road closures, or other
unforeseen circumstances, EMS providers tend to prioritize closest fa-
cility over protocol or patient choice, irrespective of patient’s injury
severity and closest hospital’s type. We model this by assigning such a
patient to the closest hospital from the incidence location.

3.3. Optimization model

With this background, we now present the model under the follow-
ing assumptions:

The candidate locations for the MTCs, ITCs, and NTCs are known
and finite.

The number of patients, their locations, and severity are
deterministic and known.

The destination determination criteria for each patient is
preassigned based on the given %-allocation among the three
criteria.

All severely injured patients, if initially transported to an ITC or
an NTC, will eventually be transferred via ground to the nearest
MTC from the incidence location (to allow them access to
definitive care); patients are categorized as srUT and srUTS
accordingly because of delays in reaching MTC.

The attractiveness of the facility to patients is given and depends
only on the hospital’s type.

A severely injured patient can be assigned to any MTC/ITC
accessible within the access threshold in protocol criteria.
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Further, in keeping up with the existing literature and what was ob-
served in the data we had access to, we make the following assumptions
about transportation modes:

e Ground and air transport times are known and deterministic.

e Air ambulance is only allowed to transport severely injured
patients to MTCs and ITCs in the protocol criteria.

e While ground ambulance services are available without
constraints, the availability of air ambulances was restricted to
15% of total severely injured patients based on data from state
trauma agencies reports.

Tables 3 and 4 summarize the parameters and decision variables, re-
spectively, used in our model.

2a
K|

[minimize Doy au™ + w,

«—

ay =y Y, Ry )05 =y =)
inS=1
+6 ) Ry ) (v +y)v

i:S;=1 j

ek
au™™ > auy;Vk € K 2)
Table 3
Parameters in the model.
Notation Definition
I Set of incidences for trauma patients, divided into the subsets
19; subset of patients assigned via protocol criteria; ; € /° C I;
1P subset of patients assigned via patient choice criteria; i € I” C I;
1€ subset of patients assigned via closest facility criteria;i € /€ C /
J Set of candidate locations (for MTC, ITC, and NTC); j € J
K Set of regions in the TSA; k € K
L Set of hospital type; / € L; | = 1, 2, 3 represent MTC, ITC, and NTC,
respectively
@y, W) Weights for equity and effectiveness in the objective function;
0 +wy =1
I Weight for stUT and srUT® patient
S; Injury severity of patient i; 1, if severely injured (ISS > 15); 0,
otherwise
Ry Region indicator, 1 if patient i is from a region k; 0, otherwise
TGy, TA;  Travel time from patient i to any candidate location j via ground and
air
SG; Subset of set J corresponding to each i-j pair and includes all other
locations t € J such that ground travel time from patient i to t is greater
than from i toj (i.e., t € SGy;, if TGy < TGy; jit € J)
a ‘Access’ time threshold to determine srUT (for protocol criteria only)
B ‘Bypass’ time threshold to determine srOT (for protocol criteria only)
Tin, Tioad Inbound time from base-to-incidence location and loading time of
patient at the incidence location for an air ambulance
z Maximum allowable patients via air ambulance
Al Attractiveness of hospital level |
By B> Coefficient for attractiveness and travel time in the utility function
V;;‘T"c, Ve  Minimum and maximum allowable volume of a severely injured patient
at MTC
V,";:L‘ vy Minimum and maximum allowable volume of a severely injured patient
at ITC
¥ Minimum allowable ratio of number of ITCs to MTCs
OTmax Maximum allowable overall over-triage patients
AVG.,A;}‘_ Accessibility of candidate location j from patient i within « via ground
and air; 1, if candidate location j is accessible from patient i; 0,
otherwise
P Equivalent fraction of an MTC corresponding to an ITC
C Maximum equivalent MTCs allowed in the network

M Big number
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Table 4
Decision variables in the model.
Notation  Definition
X 1, if a candidate location j is designated to be level [; 0, otherwise
J
A, System-related aggregated under-triage in region k; g™ =max {a“k}
aumax
yl!j 1, if patient i is transported via ground to location j (i.e., if j is an MTC,
then patient i is sSrATP and if j is an NTC, then patient i is sStATN); 0,
otherwise;
yz. 1, if severely injured patient i (; € /° C I) is transported via air to
location j that is marked as MTC (i.e., srAT? via air); 0, otherwise
yz_ 1, if severely injured patient i is transferred (from ITC or NTC) to
location j that is marked as MTC (i.e., transferred stUT or srUTS patient);
0, otherwise
y;‘_ 1, if severely injured patient i is transported via ground to location j that
is marked as ITC (i.e., stUTS via ground); 0, otherwise
y;. 1, if severely injured patient i (; € /9 C ) is transported via air to

location j that marked as ITC (i.e., stUTS via air); 0, otherwise
nMTCATC 1, if location j is marked as MTC or ITC and is the nearest non-NTC via
v ground for patient i (; € 19 C I); 0, otherwise
ne{.}’TC 1, if location j is marked as NTC and is the nearest NTC via ground for
patient i (; € 19 C I); 0, otherwise

Uy, Ui Utility of patient i receiving care at hospital j; U = max {uy}
njj 1, if candidate location j is the nearest hospital for patient i (; € /€ C I)
or if the highest utility for patient i (; € I” C ) occurs for a hospital j; 0,
otherwise
I _1.v;
;xj =LveJ 3)
1 2
ij + prj <C @
J J
1 /min 1 2 3 1 pymax . \;
X Vire < _SZl(yij-Fyij-'—yij) <X Vire: W €J (5)
inS;=

;xf > \y;le 6)

EVER< N () SV e J

ITrc = rc>
! i:§;=1 )
1 ax
Ya -5)- Vi, < OT™ ®
i i:8;=0 j
2yt =Lviel: 5=1 ©
J
y; =0;Vi eIOB',- =1.Yj €J.TG;>a (10)
Vp=0Vi €191 8= 1Y) €1, Thy + Ty + Tioug>a an
G, 1 AR o . —
2AT <M1= Yyiviel” s =1 12)
J J
1 3 S\ O . — :
X+ Y osuvielf:s=1veJ 13)
1€SGy;
4 S 3. v, o . —
Z(yij+yij)§2yij, viel®:5=1 a4
J J
y;;:o;v:'elo S =1V €, TG>a (15)
G, 1 AN\ O . —
ZAl.jxj <M(l- Zyij),Vl erf:s5=1 a6)
J J
vy =0Viel? S = 1.Y) € J, Ty + Ty, + Tjpus>a a7
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S5 + o) + B
J J

<M1= Y yyvi

J (18)
2 5
ZZ(V,-,- +ty) =2 (19)
L
neg?fch/?;Vielozs,.:o,VjeJ (20)
NTC _ 1.\; o . —
.neij =LVviel”:5=0 21
J
3 TC T\ O . — ;
B+ Y neC<uvier?:5=09eJs (22)
1€5Gy;
neZ’TCJTC < x]! +xf; viel?: S;=0,vjeJ (23)
MTC_ITC _ 4 .\,: 0. o _
. nei/. =L;,Viel .S,._O (24)
J
M- Z MTC_ITC
(25)
¥ (1)7°76,) - 3, (7016, ) -
(26)
@27
Utility calculation for an assignment using pak choice criteria
uy =Py Y A = BTG vie 17,V € J (28)
1
UM > viel' NjeJ (29)
@™ —u) = M(1—ny) <0:Viel”NjeJ (30)

Closest hospital for patients assigw)ugh closest facility criteria

1+ Y m<vielf Vel
1€5G;;
— 1-Y7 C P
dony=1vielCul (32)

J

(3D

Assignment of mﬂ“ﬂoﬂpaﬁent choice and closest facility criteria

Doy =Lvielful’ 5 =1 33)

J

ny+x; 2 20VielCul’ LS =1,v € (34)

X+ Yo shvielfur i s=1yeJ 35)
1€8Gy;

Db Danvielful’ s =1 (36)

J J

nij+xf22yg.;\1ielculp:Si=1,VjeJ 37)

ny+x 2 20Vie Ul LS =0,V e (38)

Bounds on decision variables
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xjf.e {0,1};VieJ VielL (39)
auy, au™™ > 0;Vk € K (40)
vy €101} VieLvjes 41
yg.,y;e{o,l};weLVjeJ (42)
yg,y;e{o,l};VieIO,VjeJ (43)
nel’c, neg.m—”c €(0,1};viel®vVieJ (44)
u ™ e R;Vie I, Vj e J (45)
n; €{0,1};vieI“ulf,vjeJ (46)

The model minimizes a weighted sum of maximum srAU patients
among regions (equity measure) and average srAU patients across re-
gions (effectiveness measure). We use Vij variables in the model to clas-
sify triage types and record destination hospitals for further volume cal-
culation.

For each region, Constraints (1) calculate the total aggregated un-
der-triage patients (srAU), which is a weighted sum of overall srtUT
(first term) and srUTS (second term) in a region. Constraints (2) calcu-
late maximum srAU patients among all regions. Constraints (3) ensure
that each candidate location is designated as either MTC, ITC, or NTC.
Constraint (4) ensures that the total number of MTCs and ITCs must be
less than or equal to the maximum allowable equivalent MTCs (which
allows the model to find the best combination of MTCs and ITCs consid-
ering budgetary constraints). Constraints (5) bound volume of severely
injured patients (directly transported to MTC or transferred from ITC or
NTC) at candidate location j if it is designated as MTC. Constraint (6)
ensures that the ratio of ITCs to MTCs is within a prespecified value.
Constraints (7) limit the volume of severely injured patients (trans-
ported to ITC via ground or air) at candidate location j if it is designated
as ITC. Constraint (8) ensures that total TSA-wide srOT patients (differ-
ence of total non-severely injured patients and srATN) is within an al-
lowable limit.

For patients assigned via protocol criteria, Constraints (9)-(27) as-
sign them to hospitals and classify their triage types. Constraints (9) en-
sure that each severely injured patient is either initially transported to
an MTC via ground or air, or eventually transferred to MTC from an
ITC/NTC. Constraints (10) and (11) rule out an assignment of severely
injured patient i to every inaccessible MTC via ground and air, respec-
tively. Note that an MTC is considered not accessible via ground if
ground travel time is higher than the ‘access’ threshold,; it is not accessi-
ble via air if the total airtime (sum of inbound, loading, and air travel) is
higher than the ‘access’ threshold. Constraints (12) rule out an assign-
ment of severely injured patient i to all MTCs via air if any MTC is acces-
sible via ground. That is, in an effort to preserve the limited air ambu-
lance trips, a patient is only airlifted if no MTC is accessible via ground.

Constraints (13) capture the transfer of severely injured patients
from an ITC or NTC to the nearest MTC to receive definitive care. Con-
straints (14) ensure that severely injured patient i is assigned to an ITC
(via ground or air) if initially not assigned to any MTC (ij;; =1). Con-
straints (15) rule out an assignment of severely injured patient i to ITCs
not accessible via ground. However, if any MTC is accessible via
ground, then Constraints (16) rule out assignment of severely injured
patient i to all ITCs. Constraints (17) rule out an assignment of severely
injured patient i to ITCs not accessible via air, while Constraints (18)
rule out assignments to all ITCs if any ITC is accessible via ground or
any MTC is accessible via ground or air. Constraints (16) and (18) en-
sure priority-based assignment of severely injured patients discussed in
the section 3.2.1.1. Constraints (19) ensure that the air transport usage
does not exceed their availability.

For each non-severely injured patient i, Constraints (20)-(22) deter-
mine the nearest NTC. Constraints (20) ensure that a candidate location
j must be an NTC to be considered as the nearest NTC, Constraints (21)
make sure that for a non-severely injured patient i, only one NTC should
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be considered as the nearest NTC. For any pair of patient i and candi-
date location j, if a candidate location j is marked as NTC, then Con-
straints (22) rule out the assignment of patient i to candidate location(s)
t that are located further (in terms of time) than j. Constraints (23)-(25)
serve the same purpose as (20)-(22), respectively, for the nearest non-
NTC (MTC or ITC) via ground. For non-severely injured patient i, Con-
straints (26) rule out the assignment to all NTCs if the ‘bypass’ thresh-
old criterion is not met; this patient is marked as srOT. Note that srOT
occurs when MTC or ITC is closer than the nearest NTC. We do not need
to explicitly assign srOT patients to an MTC or ITC as they are not
counted towards trauma volume; these patients are often discharged
from the ED of an MTC or ITC without admission to the inpatient
trauma unit.

For patients assigned via patient choice criteria, Constraints (28)-
(30) capture patients’ choices using the utility model. For each patient
i, Constraints (28) calculate utility of receiving care at each hospital
(candidate location), Constraints (29) find maximum utility among all
hospitals, while Constraints (30) record the hospital with the maximum
utility. Constraints (31) and (32) find the closest facility for each pa-
tient assigned via closest facility criteria. For patients assigned via pa-
tient choice and closest facility criteria, variable n; capture patient
choice and the closest facility, respectively. Constraints (32) ensure that
each patient has only one closest facility and select one hospital with
maximum utility for the closest facility and patient choice criteria, re-
spectively.

For patients assigned through patient choice and closest facility cri-
teria, Constraints (33)-(38) assign them to hospitals and classify their
triage types. Constraints (33) ensure that each severely injured patient
is initially assigned to MTC or eventually transferred to MTC from ITC/
NTC. Constraints (34) assign and classify severely injured patient i as
srATP? if the nearest hospital or patient’s choice is MTC. Constraints (35)
ensure that each severely injured patient is transferred to the nearest
MTC after being initially transported from the incidence location to an
ITC (srUTS patient) or an NTC (srUT patient). Constraints (36) ensure
that severely injured patientgmismassigned to an ITC if initially not as-
signed to any MTG; i.e., Ejy?/ Eonstraints (37) classify a severely in-
jured patient i as srUTS if the criterion of nearest hospital or patient
choice results in ITC. Constraints (38) classify a non-severely injured
patient i as stUTN if the criterion of nearest hospital or patient choice re-
sults in NTC. Constraints (39)-(46) define bound on decision variables.

Note that the NTNDP can be characterized as a hierarchical, dis-
crete, multi-facility location problem. Such problems are combinatorial
in nature and have been shown to be NP-hard (Daskin, 2011). For even
50 candidate hospital locations, there are 3°0 = 7.18 x 1023 solutions.
Our preliminary experiments suggested that commercial software such
as CPLEX and Gurobi encountered out-of-memory issues for realistic
problem instances that normally havel100 + locations and 1000 + pa-
tients. We, therefore, explored a tailored ‘3-phase’ approach to avoid
such issues and find a near-optimal solution. We now discuss our pro-
posed approach.

4. A 3-phase solution approach

A primary goal of any trauma system is to provide prompt care to se-
verely injured patients. Data from the state of OH indicated that se-
verely injured patients made up about 15% of the total patients. The
problem complexity can thus be reduced if relaxed the model to first fo-
cus on severely injured patients, and then the non-severely injured pa-
tients. Considering this, we propose a ‘3-phase’ approach that systemat-
ically reduces the problem complexity into different phases to decrease
the number of decision variables and constraints (see Fig. 3).

In Phase 1, we only consider severely injured patients (§; = 1) and
determine the optimal location of MTCs and ITCs based on the NTNDP
model presented earlier. Essentially, we remove all decision variables

Computers & Industrial Engineering xxx (xxxx) 109250

Phase 1: Only severely injured patients
Determine optimal number and location of
MTCs and ITCs

Phase 2: Only non-severely injured patients
For a given optimal location of MTCs and ITCs,
check feasibility in terms of over-triage limit
(Constraint Satisfaction Problem)

Phase 3: For all patients
For a given optimal location of MTCs,

determine optimal number and location of ITCs
such that objective minimize and total srOT

within prespecified limit

Fig. 3. Flowchart of the ‘3-phase’ approach.

and constraints related to non-severely patients. The Phase 1 problem is
as follows:

Phase 1 problem

.. . au,
minimizeio; au™ + w, %
s.t.

Constraints (1)-(7), (9)-(19), (28)-(37), (39)-(43), (45)-(46)

In Phase 2, we use the solution from Phase 1 and solve a Constraint
Satisfaction Problem for non-severely injured patients. Essentially, we
check the feasibility of the Phase 1 solution in terms of total over-triage
patients (which are triggered by non-severely injured patients). Feasi-
bility in Phase 2 means overall srOT patients are within the prespecified
limit, and that the solution found in Phase 1 is optimal to the entire
problem. However, infeasibility in Phase 2 indicates the need for
changes in the solution from Phase 1 to keep total srOT patients within
the limit, which then invokes Phase 3. As non-severely injured patients
do not directly impact the objective of the NTNDP, the model for the
Phase 2 can be defined by Constraints (8), (20)-(32), (38), (41), and
(44)-(46).

In Phase 3, we fix the location of MTCs (obtained from Phase 1)
while considering both types of patients and solve the original model
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for NTNDP. Basically, for a given location of MTCs, we find the optimal
location of ITCs to minimize the objective while keeping total srOT
within a limit. Fixing MTCs

Phase-3 problem

Zk‘”‘k

minimizeiw, au™* + w, K

s.t.
Constraints (1)-(46)
x; =1V € J'\(47)

is reasonable as the impact of MTCs on the objective is relatively
higher than ITCs due to their capability of providing definitive care to
severely injured patients. In the formulation for Phase 3, we add Con-
straints (47) to fix the location of MTCs obtained from Phase 1 (repre-
sented by set J’ where J’ € J).

We used Gurobi solver on Dell 17-10700 CPU @2.90 GHz Desktop
with 32 GB RAM to find an optimal solution in each phase.

5. Computational study

We now detail our experimental study starting with the test area
generation (referred to as a TSA), sources of data collection, evaluation
of the solution approach, sensitivity analysis, and insights.

5.1. TSA determination

We consider the collection of counties in an existing midwestern US
state as TSA. In so doing, we can use the underlying transportation net-
work to estimate actual ground transportation times from the incidence
locations to the candidate hospitals. Fig. 4 illustrates the TSA with 34
counties and 64 hospitals. In this TSA, 21 counties are rural (61.7%), in
line with the % of rural counties in the US (i.e., 62%). All 64 hospitals in
the TSA were considered as candidate locations for an MTC, ITC, or

Fig. 4. TSA with counties, and region; grey filled areas are urban counties;
‘+ represents candidate locations.

Computers & Industrial Engineering xxx (xxxx) 109250

NTC. We also grouped counties to represent regions similar to several
state trauma agencies (MDHHS, 2022; TDSHS, 2022). In our chosen
TSA, Regions 2 and 6 are entirely rural regions, while Region 4 is an en-
tirely urban. Further, Region 1 is dominantly rural (with higher % of
rural counties compared to urban counties), while Regions 3 and 5 are
dominantly urban.

For all analyses, we used ArcGIS Pro 2.9.1 to calculate actual drive
times to generate the ground time matrix (TGy) and the Haversine for-
mula (assuming the helicopter speed of 120 mph) to generate the air-
time matrix (TA;). Note that both these time matrices are pre-generated
and serve as a look-up tablgduring the solution process.

5.2. Performance of the 3-Phase approach

For performance evaluation of the ‘3-phase’ approach, we consid-
ered 10 problem instances using this TSA, each with 5000 patients
(15.63% of severely injured patients), and between 15 and 60 candi-
date locations. We used 200 and 50 as a lower bound for the volume of
severely injured patients at MTCs and ITCs, respectively. The limit for
srOT patients is set as 50% of total non-severely injured patients. The
attractiveness for MTCs, ITCs, and NTCs is set as 5, 4, and 1, respec-
tively, and coefficients for attractiveness and ground travel time were
set as 0.825 and 0.566. All other parameters are the same as the base
case mentioned in section 5.4. We set the CPU-time limit as 12 h for
solving the Gurobi MIP solver.

Table 5 presents our computational experiments that compare the
solution quality and runtime of the ‘3-phase’ approach and ‘Original
model’ (per Section 3.3) for several problem instances. The ‘% Differ-
ence’ column represents the difference between the objective of the
‘3-phase’ and ‘Original model,” where positive value represents a ‘3-
phase’ approach outperformed the ‘Original model.” The number in a
bracket of the ‘Original model’ column of ‘Solution Quality’ repre-
sents the gap between best solution and lower bound when the solver
reached the time limit.

These computational experiments verify that our ‘3-phase’ ap-
proach can achieve high-quality solutions in a short amount of time;
therefore, we used this approach for further experiments to generate in-
sights.

5.3. Patient volume and sampling

We collected state-wide trauma data across various states from pub-
lished annual reports (available on state trauma websites) and observed
a substantial variation across these states. The patient volume varied
between 11,000 and 72,000 per year, with 3.2 to 8.2 variation in num-
ber of trauma patients per thousand citizens. Additionally, patient vol-

Table 5
Performance evaluation of the ‘3-phase’ approach.

Problem Candidate Solution Quality Runtime in Hours
instance Locations
Original 3- % Original 3-
model phase  Difference  model phase
1 15 158.3 159.8 -0.93% 1.65 0.07
2 20 169.3 169.6 —0.22% 1.94 0.14
3 25 141.5 142.3 -0.53% 2.16 0.19
4 30 120.9 1209 0% 3.29 0.28
5 35 122.5 1225 0% 3.77 0.32
6 40 100.9 100.9 0% 6.70 0.4
7 45 113.1 1129 0.17% 12 1.17
(4.95)
8 50 100.3 99.9 0.35% 12 1.53
6.17)
9 55 Out of - - Out of 1.68
Memory Memory
10 60 Out of - - Out of 5.2
Memory Memory



sagar
Highlight
Add space after ":"

sagar
Highlight
Aline this line to match with the word "Constraints" above

sagar
Highlight
This text is part of sentence above the box ("Fixing MTCs"), so move it up.

sagar
Highlight
Reduce the size of the figure

pjpari01
Pencil

pjpari01
Cross-Out

pjpari01
Inserted Text
s


S. Hirpara et al.

ume at a county level was observed to be highly correlated with the
population of that county. For the experimental study, our TSA at-
tempts to mimic the trauma patient volume of a median US state; i.e.,
we used 5.2 as the average trauma patients per thousand citizens and
median population of a US state as 4.5 million to arrive at 23,680
trauma patients. In line with the literature, we considered 15.63% of
patients as severely injured and the rest as non-severely injured.

Through preliminary experiments, we also noticed that the compu-
tational time to reach a solution was prohibitively high when consider-
ing all 23,680 patients (65 h). Instead of aggregating patients at the
county or zip level (which would lose the granularity required for our
problem), we adopted a sampling approach. We selected a representa-
tive sample among these 23,680 patients such that the underlying dis-
tribution of patients (Gini index) was highly correlated with the distrib-
ution of these 23,680 patients. All other parameters were appropriately
scaled.

Fig. 5 illustrates the solution quality and runtime comparison at
various sampling rates. To balance quality and computational time, we
selected 15% as the sample size; it reduced the time by 95% with
about 1.6% difference in the solution compared to the problem being
solved with complete data. Essentially, this sampling allowed us to
solve problem instances (per Table 6) on average in 3.5 h.

5.4. Experimental setting

During the preliminary experiments, we also noticed that the solu-
tions appeared to be sensitive to three key factors. Table 6 summarizes
these factors and their levels with bold entries in the last column indi-
cating the base case. While ACS or state trauma agencies typically pro-
pose a protocol for destination determination based on the severity of
injuries, only 40% of patients were assigned using protocol criteria ac-
cording to literature and data from our collaborators. Patient choice
(PC) is the second dominant criteria for destination determination, fol-
lowed by assignment to the closest facility, which is inevitable. There-
fore, we considered four scenarios to quantify the impact of assignment
criteria on the performance and design of the network. We used the (40,
40, 20) combination as a base case based on our interactions with our

B % Diffin Obj  —#—% Decrease in Runtime
4.0% 100% g
T £
O 3.0% .__’\ 80% b=
< 60% 2
% 2.0% 40% <
=S w
0.0% ] 0% 9
10%  15%  20%  25% 3
R

Sample Size as Percentage of Complete Dataset

Fig. 5. Solutio:
plete data set.

n‘lality and imtime for different sample size compared to com-

Table 6
Summary of the parameters, levels, and values in the sensitivity analysis.

Parameter Level Values
Percentage of assignment using protocol, 4 (40, 40, 20), (60, 20,20),
patient choice and closest facility criteria (80, 0,20), (100,0,0)
Distribution of trauma patients 3 Disperse (0.25), Regular
(0.5),Cluster
(0.75)
Weights combination for equity and 3 (0.1, 0.9), (0.5, 0.5), (0.9,
effectiveness 0.1)
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trauma collaborators and the trauma literature; i.e., 40% of patients
were assigned using protocol and patient choice (PC) criteria, while the
remaining 20% used the closest facility criteria in all counties. Assign-
ment criteria and injury severity are preassigned to each patient as part
of the data preprocessing step.

Distribution of patients in the TSA was distributed using 3 levels
quantified through the Gini index, where 0 and 1 represent fully-
dispersed and fully-clustered distributions. Accordingly, dispersed cor-
responded to Gini = 0.25 (patients are less clustered and more homo-
geneously distributed), clustered corresponded to Gini 0.75 (pa-
tients are highly clustered around urban zones), and regular corre-
sponded to Gini = 0.5 (patients are moderately clustered around urban
zones). While the dispersed distribution attempted to mimic states such
as New Jersey, Delaware, and Vermont, the clustered distribution mim-
icked states such as Nevada, Texas, and Arizona.

Three weight combinations are used to evaluate the impact of em-
phasis on equity vs. effectiveness. We also use 1 and 0.5 as the y and 6,
respectively. Following ACS recommendation, we used 240 severely in-
jured patients as a lower bound for MTCs and 60 for ITCs considering
their limited resources (specialist surgeons, equipment and capacity).
Additionally, per trauma literature, we used the upper bound on vol-
ume as 1,000 at both MTCs and ITCs, access time threshold as 30 min,
bypass time threshold as 0 min, and C = 64 (total candidate locations).
For air transport (via helicopter), we set the inbound time (time from
the helicopter depot to the incidence location) as 10 min and the load-
ing time as 5 min. Based on the range calculated from state trauma re-
ports, we used 15% of severely injured patients as upper bound for heli-
copter use. We set 70% of total non-severely injured as the maximum
allowable number of over-triage patients in the TSA.

For the utility model representing the patient choice, the attractive-
ness for MTC, ITC, and NTC is set as 5, 3, and 1, respectively, as a way
to differentiate the relative perception of trauma centers among citi-
zens. The coefficients for attractiveness and ground travel time were es-
timated as 0.1 and 0.05 using the optimization framework and data
from the state of Ohio (see Appendix for details).

5.5. Insights from the experiments:‘Below, we summarize key insights from
our experimental study

Insight 1: Destination determination criteria impacts patient safety;
while 100% protocol usage improves it, increased use of patient choice
lowers it.

As alluded earlier, the ACS and/or state trauma agencies prefer that
EMS paramedics determine the destination of patients based on a proto-
col. Our results suggest that if all such determinations were done using
this protocol (i.e., 100, 0, 0), we observed a 92.4% reduction in objec-
tive compared to the base case of (40, 40, 20) (i.e., 1.71 vs. 22.54) with
fewer ITCs (1 vs. 9) and MTCs (14 vs. 15). That is, if patient choice and
closest facility considerations were not part of the destination determi-
nation, the trauma network could be optimized and substantial perfor-
mance benefits could be achieved.

In terms of the distribution of MTCs, we noticed a disperse distribu-
tion that accessed by most of the TSA by at least one MTC or ITC such
that most severely injured patients had access to one of them within the
access time, thus, reducing under-triage patients (see Fig. 6). Further, a
dispersed network of MTCs and ITCs also means a higher chance of hav-
ing NTCs within the bypass threshold for non-severely injured patients
resulting in lower over-triage patients.

However, as shown in Fig. 7, higher assignments through patient
choice (PC) criterion require more ITCs (3 in a vs. 9 in ¢) and result in a
73.1% increase in objective (12.96 vs. 22.54).

To understand this further, imagine a network without ITC. Under
the PC criterion, the absence of ITCs in the vicinity of the incidence lo-
cation in a suburban or rural zone would leave a severely injured pa-
tient (or their family) to choose between a nearby NTC (say, at 5 min)
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and far located MTC (say, at 25 min). Considering a lower travel time,
that patient will likely choose the NTC over MTC. This would result in
that patient experience under-triage. While at least one MTC in that
zone would mitigate such an under-triage, it may not be feasible due to
MTC’s minimum volume requirement. This is where an ITC could play a
compromising role as it would likely induce the patient (or their family)
to choose this ITC over an NTC, and eventually getting better care (see

Fig. 8-c).
s appear to im-
prove patient safety compared to other distributions.

To delineate different distributions of severely injured patients, we
use D, R, and C to represent disperse, regular, and cluster with Gini in-
dexes of 0.25, 0.5, and 0.75, respectively (see Fig. 9). Our results indi-
cate that as the patient distribution changes from disperse (D) to cluster
(C), the overall objective decreases by 18.8% (22.42 vs. 18.5). The
number of ITCs is almost three times (14 vs. 5) in the dispersed situa-
tion compared to cluster situation.

This is reasonable as clustered distribution increases opportunities
for treating more patients at the same MTCs and ITCs located around
the clustered zones. However, the performance of cluster distribution
highlights that better performance can be achieved with even fewer re-
sources which is counterintuitive.

Moreover, we observed distinct location of MTCs and ITCs across
three patient distribution scenarios (see Fig. 10). In the cluster distribu-
tion, due to higher patients from dominantly urban regions (#3-#5), 13
out of 14 MTCs are located in those regions; however, in the dispersed
situation, the MTCs are spread across the TSA. In addition, higher pa-
tients from suburban and rural zones in disperse distribution trigger the
opening of ITCs in those zones as patients are still not enough to make
an MTC feasible from a minimum volume perspective. As a result, 11
out of 14 ITCs are located in dominantly rural regions in dispersed dis-
tribution compared to zero in the case of cluster distribution. That is,
the distribution of the patients tends to drive the number and location
of MTCs and ITCs across the TSA.

As expected, in an equitable network, most regions performed
equally. This is evident from the histogram (depicting equity per region
under w; = 0.9) in Fig. 11. Despite this, the performance of many re-
gions is worse than the performance observed with lower values of o, (a
less equitable network). To quantify this, we used skewness of the dis-
tributions for each of the three w; values. For the most equitable net-
work (0; = 0.9), the skewness was —2.4, while it reduced to —0.5 for
the least equitable network (alternately, network with higher effective-
ness, (o7 = 0.1). The corresponding TSA-wide AU (A,,,) increased by
8% (20.75 vs. 22.42) indicating an overall decline in the system perfor-
mance. Note that an 8% increase is equivalent to an annual increase of

(a) (RO, 0, 20) (b) (60, 20, 20) (c) (40, 40, 20)
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Fig. 9. Objective, #MTC and #ITCs for disperse (D), regular (R) and cluster (C)
distribution of patients.

67 severely injured patients who will suffer aggregated under-triage
(considering 23,680 data); they all could experience disabilities or mor-
tality. The reason for this increase is due to the relocation of a few MTCs
and ITCs to improve the performance of worse-performing regions.
However, those relocations decrease AU of worse regions at the cost of
a relatively higher increase of AU patients from the well-performing re-
gions; the net effect is an overall increase of AU at the TSA level.

In a nutshell, results emphasize that the trauma decision maker
should choose weights wisely as a higher focus on equity of patient
safety can lead to higher under-triage patients, eventually increasing
the likelihood of disability and mortality.

6. Case study

To illustrate the practical benefit of the proposed approach, we con-
sidered the state of Ohio as a TSA and used actual data from the state
for 2019. Among 71,971 trauma patients recorded in 2019, we received
17,757 de-identified patient records resulting after data linkage per-
formed by the ODPS (Ohio Department of Public Safety). This data was
further cleansed to remove missing data and unresolved addresses us-
ing ArcGIS. The resulting 11,313 patients in the cleansed dataset had a
correlation of 0.99 with the 17,757 patients based on county-level case

{a) Disperse distribution (D)

(b) Regular distribution (R)
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comparison, which indicated a similar spatial distribution of incidences
between the original and cleansed datasets. This TSA consisted of a net-
work of 163 hospitals in 2019, which included 21 MTCs, 21 ITCs, and
the remaining 121 NTCs. Fig. 12 illustrates the heat map of 11,313 inci-
dences and the location of hospitals.

In this data, destination determination through protocol, patient
choice, and closest facility criteria were around 20%, 50%, and 30%,
respectively. We empirically derived ‘access’(a) as 25 min and ‘bypass’
() as —12 min such that the estimated srAU and srOT closely matched
the observed values in the 20% of patients assigned through protocol
criteria in the existing data. Similarly, patients assigned through patient
choice criteria were used to estimate f; = 0.1 and , = 0.05 through
an optimization model shown in Appendix. In line with the discussion
in Section 5.3, we further sampled 3,552 patients (correlation of 0.999
with 11,313 data) to limit the computational burden; we scaled the
MTC and ITC volume requirements accordingly. We set maximum al-
lowable number of over-triage patients in the state as 67.31% of total
non-severely injured patients (similar to observed in 11,313 data) and
remaining parameters values are as used in Section 5.

Using ®; = 0.5, we derived two optimal networks, one for the case
when the number of effective MTCs is the same (Redistributed) and the
other where this number is also optimally determined by the model
(Greenfield). In addition, we also derived an optimal trauma network
with all assignments through protocol criteria as recommended by ACS
and/or state trauma agencies.

6.1. Existing vs. Redistributed vs. Greenfield trauma network

The Existing network had 31.5 effective MTCs (21 MTCs + 0.5*21
ITCs). Hence, for the Redistributed network, we set C = 31.5. How-
ever, for the Greenfield network, we let C = 163 (all candidate loca-
tions) allowing the model to select as many MTCs and ITCs it needs to
minimize the objective function. Table 7 summarizes the performance
of the three networks, while Fig. 13 illustrates the trauma network su-
perimposed on heat maps of incidences.

The Gini index for the 2019 data is 0.751, representing a clustered
distribution of patients. In the Existing network, many ITCs were ob-
served in the clustered areas (darker areas in Fig. 13); however, the Re-
distributed and Greenfield networks, we observed several MTCs in
those clustered areas in line with Insight 2. Due to these additional
MTGCs, redistribution reduces the average srAU patients by 31.2% com-
pared to the Existing network (10 vs. 6.88). The Greenfield network
only did slightly better than the Redistributed network; the average
srAU patients decreased by 33.1% (10 vs. 6.69) at the cost of an addi-
tional 3.5 effective MTCs. Further, in both the Redistributed and Green-
field networks, ITCs were located in moderately dense areas (light grey
areas in Fig. 13) as highlighted in Insight 1.

1 2
T |
4 %
;-
E © 6

(c) Cluster distribution ()
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Overall, our results indicate that for the same number of effective
MTCs, the potential to improve patient safety is considerably high in
the Redistributed approach. Further, the law of diminishing returns ap-
plies in the Greenfield network, where an increase from 31.5 to 35 ef-
fective MTCs does not yield a significant benefit in the performance.
However, the Greenfield solution can enable benchmarking of existing,
redistributed, or any other network that the state trauma decision mak-
ers may be considering.
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Fig. 12. Trauma network in OH for 8 regions; star indicates MTCs, circle indi-
cates ITCs and cross represents NTCs. Darker shades of grey indicate higher vol-
ume of incidences.

Table 7
Performance of Existing, Redistributed, and Greenfield network.

Network Obj Average srAU Max srAU # MTC # ITC Effect. MTC
Existing 16.50 10 23 21 21 31.5
Redistributed 9.69 6.88 12.5 25 13 31.5
Greenfield 9.59 6.69 12.5 29 12 35

6.2. Greenfield network with 100% protocol criteria

Fig. 14 compares the Greenfield network with two destination de-
termination allocations over 11,313 patients. We observed that a net-
work with 100% protocol criteria results in a reduction in the objective
by more than 50% (9.59 vs. 4.75) compared to a network with 20%
protocol, 50% patient choice and 30% closest facility (similar to the Ex-
isting network). This observation is similar to Insight 1. We did observe
that 100% protocol led to fewer number of effective MTCs (24 vs. 31.5;
MTCs increase to 29 from 22, but ITCs decreased to 4 from 12).

Further, maximum srAU among all regions decreased by 52% (a
47.7% reduction in average srAU patients), which corresponds to 27
({6.89-3.5}*8) fewer severely injured patients who would suffer a mis-
triage (srUT or srUT®) in sample (3,552) data. Considering 71,971 pa-
tients reported in 2019 in OH, this would correspond to 547 fewer pa-
tients annually, which is substantial. Clearly, following ACS recommen-
dation of using protocol as the primary criteria can lead to substantial
benefits in patient safety; however, this will require the state to intro-
duce new EMS training initiatives to promote protocol, while attempt-
ing to mitigate other reasons for destination determination.

7. Summary and future research

Our research introduced the nested trauma network design problem
(NTNDP) that determines the number and location of major, intermedi-
ate, and non-trauma centers for a trauma service area. The NTNDP min-
imizes a weighted sum of equity among regions and effectiveness across
the TSA. Several practical considerations, compared to existing trauma
literature, were incorporated in the NTNDP, such as multiple patient
types, multiple choices for transportation, multiple destination determi-
nation criteria and multiple level of hospitals. Specific to the trauma lit-
erature, NTNDP generalizes TCLP by including intermediate trauma
centers, a vital element of a trauma network that improves access to
trauma care for regions that do not have access to a major trauma cen-


sagar
Highlight
Reduce figure size to match font size with manuscript text. Change color of each bar to Grey to match with bar (19-22] in the last row.

pjpari01
Sticky Note
Reduce figure size slightly.


S. Hirpara et al.

Computers & Industrial Engineering xxx (xxxx) 109250

{a) Existing 2019 network

(b} Redistributed network

() Greenfield network

a) 20% protocol, 50% patient choice,
30% closest facility
(similar to Existing network)

ter. The inclusion of three dominant destination determination criteria
ensures faithful representation of the on-scene EMS decision making
process. In addition, consideration of both equity and effectiveness in
the objective allow trauma decision makers to trade off these two con-
tradicting measures in network design.

We modeled the NTNDP as a mixed-integer linear program and pro-
posed a ‘3-Phase’ solution approach to find near-optimal solutions in a
reasonable amount of time. We generated a TSA using data from a state
trauma system in the US and quantified the impact of system parame-
ters on the performance of the trauma system. We illustrated the use of
the proposed approach on 2019 data for the state of Ohio. The key find-
ings from our study are as follows:

e If EMS providers could exclusively use ‘protocol’ as the criterion
for destination determination at the incidence location, then a
trauma network with low levels of under-triages can be realized
with fewer MTCs and ITCs. Increased use of the ‘patient choice’
criterion could result in higher number of ITCs required in
suburban and rural zones and increased under-triages.

A clustered distribution of severely injured patients in the TSA
appears to improve trauma system performance with fewer MTCs
and ITCs.

Solely focusing on equity of patient safety among regions as an
objective function appears myopic; balancing it with effectiveness
across the TSA appears to result in a better performing network.
Illustration of our approach on real data from a midwestern US
state indicated an over 30% improvement in patient safety;
Greenfield network can enable benchmarking of existing,
redistributed, and other networks. Importance of 100% use of
protocol for destination determination was also verified.

14

b) 100% protocol

These findings have several practical implications. Trauma decision
makers can use our approach to comprehend the compromised role of-
fered by ITCs on patient safety (via provision of intermediate care), es-
pecially in suburban and rural zones where MTCs are financially not vi-
able (due to a low number of patients). Further, they can quantify the
impact of various destination determination criteria used in practice on
patient safety. They can, subsequently, design training programs for
EMS providers that help them employ ‘protocol’ (which is the preferred
approach suggested by ACS) during on-scene decision making.

Future research in this domain could include incorporating on-scene
patient vitals available in the EMS registries to improve injury determi-
nation. Further, it would be interesting to consider the variability in the
EMS providers’ on-scene injury assessment and its impact on subse-
quent decisions. Considering migration patterns among regions in a
state and other uncertainties in patient distribution to design a robust
network could also be considered.
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Appendix A:: Optimization model to estimate coefficients of patient choice utility model

Our proposed model determines the coefficients of the utility model in order to minimize the misclassification of patients. A patient is misclassi-
fied if the destination hospital type estimated through the utility model differs from the actual destination type; e.g., a misclassification would be
when a patient was taken to MTC (according to actual data), while the utility model's estimated choice is NTC. The optimization model is presented
below with parameter and decision variables in Table A1 and A2, respectively.

minimize: Y ;m;

subject to:
u; = ﬂIZAlXjZ —pTGVielLNjeJ (¢))
1

UM >y Vie LY e &)
@™ —u)—M(1—ny) <OViel,VjeJ 3
Zn,., =Lviel 4
J

m 2 ngX! - Chvielvje Vel ®)
0<p.p <1 (6)
U, u?’ax eR;vielLVjeJ @)
n; €{0.1}:VieLVjeJ ®
m,e{0,1):Viel ©

The objective of the model is to minimize the total misclassification of patients. Constraints (1)-(4) are similar to the NTNDP model to capture pa-
tients’ choices using the utility model. For each patient i, Constraints (1) calculate the utility of receiving care at each hospital, Constraints (2) find
maximum utility among all hospitals, while Constraints (3) and (4) record the hospital with the maximum utility. For each patient i, Constraints (5)
record misclassification by comparing the estimated and actual hospital type. Constraints (6)-(9) define bound on decision variables.

The attractiveness for MTC, ITC, and NTC is set as 5, 3, and 1, respectively. We used 5627 cases assigned through patient choice criteria in the
cleaned 2019 data from the state of Ohio, along with corresponding 2019 network of hospitals and their types. Further, we used ArcGIS to generate
the ground travel time matrix and the Gurobi solver to find an optimal solution.

=

Table Al
Parameters in the model.
Notation Definition
I Set of trauma patients assigned via protocol criteria; i € /
J Set of candidate hospital locations (for MTC, ITC, and NTC); j € J
L Set of hospital type; / € L; | = 1, 2, 3 represent MTC, ITC, and NTC, respectively
Al Attractiveness of hospital level [
! 1, if patient i chose hospital type [; 0, otherwise
i
TGy Travel time from patient i to any candidate location j via ground
X! 1, if a candidate location j is designated to be level [; 0, otherwise
J

M Big number

Table A2

Decision variables in the model.

Notation Definition
Py Coefficient for the attractiveness of hospital
I3 Coefficient for travel time between incidence location and hospital
iy, U Utility of patient i receiving care at hospital j; #;"** = Max {uy}
nj; 1, if the highest utility for patient i occurs for a hospital j; 0, otherwise
m; 1, if estimated choice through utility model is different than chosen hospital type; 0, otherwise
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