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Abstract— The inconvenience of charging is one of the major
concern for potential electric vehicle (EV) users. In addition
to building more charging facilities, electric vehicle charging
assistance service has emerged for making EV charging more
convenient to customers. In this paper, we consider an optimal EV
charging station location problem with two types of customers.
One is ordinary self-charging customers whereas the other
is customers using a new service mode called valet-charging.
We formulate the problem via bi-level location optimization
model, where the lower level problem is a game model that
characterizes customers’ station choice behaviors. To solve the
hard nonlinear mixed-integer optimization problem, we design
an adaptive large neighbourhood search (ALNS) algorithm for
the upper level problem and a construct-improve heuristic for
the lower level problem. We conduct numerical experiments to
justify the efficiency of our solution method. We also conduct
a need-inspired case study to derive practical insights which
will help EV charging assistant service providers make strategic
decisions.

Note to Practitioners—The convenience of charging service is
one major concern for EVs. In China, NIO Inc., NETA AUTO,
and FAW-Volkswagen have started to provide valet-charging
service. Charging station location problem becomes complicated
while taking this service into account. We believe our work
develops an effective tool for charging station planners to analyze
station locations as well as the impact of valet charging services.

Index Terms— Electric vehicle, location-capacity problem,
valet-charging, bi-level optimization, adaptive large neighbour-
hood search.
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I. INTRODUCTION

HE main contributor to global warming is fossil fuel
consumption and ensuing greenhouse gas emissions in
human activities [1]. Increased attention is received to curb
excessive consumption in the transportation sector. Electric
vehicles (EVs) have been long recognized as a promising tech-
nology solution to reduce fossil fuel consumption. In the past
decade, we witnessed the booming of EV industry worldwide.
Figure 1 shows the scale increase of battery electric vehicle
(BEV) and plug-in hybrid electric vehicle (PHEV) stocks in
the United States, Europe, and China from 2010 to 2020.
The scale continues to grow rapidly, according to Global
EV Outlook 2021 [2]. Meanwhile, policies and regulations
have been enacted in many countries worldwide to further
accelerate technology adoption, commercial use, and con-
sumer purchase of EVs. Norway, Finland, Germany, China,
the United Kingdom, and France have announced a total ban
on the sale of fossil fuel vehicles by 2025, 2030, 2030, 2035,
2035, and 2040, respectively [3], [4], [5], [6], [7]. Much of
the evidence suggests strong intention of adopting EVs more
widely in the near future, pending on the overcoming of several
implementation barriers. One such barrier is inconvenience in
charging EVs, which is especially a hindrance to private users.
Admittedly, for private EV use, it is not viable to many
individual users installing their own charging piles due to
economic and infrastructural reasons. However, public charg-
ing stations are often time not sufficient to these users. This
contributes to the hesitation of EV purchase among potential
buyers [8]. Knowing that city-wide construction of charging
stations and public provision of accessory services can be
lengthy and costly, the decision on where to locate charging
piles among business or publicly accessible locations is an
important strategic decision to EV manufacturers and city
officials. This decision, subsequently, has significant socioe-
conomic implications, including city-wide EV adoption and
transportation infrastructure upgrade.

Compared to the fueling operation of a gasoline-powered
vehicle, it takes much longer to charge an EV [9], which
results in less satisfied experience of EV use. Thus, it is
critical to study how to deliver EV charging assistance ser-
vice. Recently, valet-charging has emerged in China to make
EV charging more accessible to individual users. Under this
service mode, staff from a contracted service company are
sent to help call-in customers charge their EVs. They would
arrive at the appointment time, pick up the car, drive to the
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charging station, then drive back after the charging and return
the car to the customer. In this way, customers are free from
the charging duty and their acceptance on EV use is likely
improved.

In this paper, we study an optimal EV charging station
location problem under a fixed percentage composition of
two types of customers requesting EV charging. This strategic
decision is of special interest to EV manufacturers and service
providers. One type of customers is self-charging customers,
who would bring their vehicles to a charging station and
charge their vehicles themselves. These customers choose the
charging station with the shortest total time of travel and
waiting. For a charging station, the more customers come for
charging service, the longer each of them would wait for the
service, which in turn reduces the willingness of self-charging
customers to choose that charging station. The other type
of customers is valet-charging customers, who would have
chosen the new service mode. Upon receiving a valet-charging
request, service staff are dispatched to provide the charging
service. We trade the valet-charging staff labor cost for the
access convenience of self-charging customers.

We formulate this location optimization problem via a
bi-level optimization model. We use the upper level problem
to decide the location and number of charging piles of each
charging station, as well as the dispatch decisions for valet-
charging staffs. The upper level objective is to minimize the
overall service cost, which comprises the costs of charging sta-
tion construction, charging pile setting up, valet-charging staff
labor, and access inconvenience of self-charging customers.
We use the lower level problem to specify self-charging
customers’ station choice behaviors. For self-charging cus-
tomers, their charging stations are solely dependent upon the
convenience of self service. Hence, the lower level problem is
a game among self-charging customers.

We design an adaptive large neighbourhood search (ALNS)
algorithm to solve the upper level problem. We introduced an
problem driven operator design method that mimics real-world
situations. Meanwhile, we design a construct-improve heuristic
to solve the lower level problem, and embed it into the upper
level solution procedure for objective value evaluation of the
charging station network design. We compare the proposed
solution method with two web-based commercial solvers,
namely BARON and scip, as well as a genetic algorithm. Our
comparative results justify the tractability and efficiency of our
approach.

The contributions of this research are as follows. First,
we consider a novel sustainable transportation system
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infrastructure design problem for EV manufacturers and ser-
vice providers, in which we consider EV charging can be
delivered in two modes, self-charging and valet-charging.
Specifically, we formulate a bi-level location optimization
model and use a game model to capture self-charging cus-
tomers’ behaviors in the lower level problem in relation to
the EV charging station locations and the charging assistance
service delivery performance in general. Second, we propose
an efficient solution method to generic bi-level location opti-
mization model with equilibrium on customer location choice.
Specifically, our approach comprises an ALNS algorithm with
special operator design for the upper level problem, and a
construct-improve heuristic for the lower level Nash equi-
librium problem. Third, we test the optimal network design
reliability for EV manufacturers and service providers who are
interested in the sizeable catchment area of Yangpu District,
Shanghai, China, and recommend to the decision-makers plan-
ning strategies on network construction in response to future
demand changes.

The remainder of the paper is organized as follows.
We review relevant literature in Section II. In Section III,
we derive the bi-level location optimization problem.
In Section IV, we present an ALNS for the upper level
problem and a construct-improve heuristic for the lower level
problem. In Section V, we compare our solution method to
commercial solvers and a genetic algorithm. We also report
our findings off simulation experiments and a real-world
case study. We draw conclusions and outline future research
directions in Section VII.

II. LITERATURE REVIEW

In this section, we review three categories of relevant
literature. First, we review the literature on the novel service
mode called valet-charging. Next, we will shift our focus to the
literature concerning the challenges and issues on determining
the locations of EV charging stations. Finally, we review the
literature on the problem of optimal service facility location
with congested queuing network.

Valet charging is a relatively new topic. To the best of our
knowledge, there are only four academic studies concerning
valet charging. Rao, Cao, and Klanner [10] first considered
the valet-charging service in Singapore. They assume that
service providers go to customers’ location by their own e-
bike, and drive customers’ EV to the assigned charging station,
before the next service request. The research question is how
to decide the service sequence. It is modeled by a Sequen-
tial Ordering Problem and analyzed by a simulation tool.
Lai and Li [11], [12] considered on-demand valet-charging
service provided by a platform. When a request occurs,
a staff will be dispatched to pick up the EV, driving to
a station for charging, and return the EV. The city plan-
ner will decide the number of charging stations, while the
platform will decide the price for valet-charging and wage
for staff. A queuing network is formulated to capture the
matching dynamic of staffs, customers and charging stations.
Li et al. [13] considered a charging station location problem
with both valet- and self-charging customers. In their model,
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both customers are allocated to underutilized charging sta-
tions. Their paper is most similar to ours. We also consider
a charging station location problem with these two types
of customers, but we incorporate the congestion of charg-
ing stations and the self-charging customers’ station choice
behavior.

Several literature reviews have already been conducted on
the topic of charging station location problems. For further
exploration, we recommend the following references: [14],
[15], [16], [17], [18], [19]. The extensive research on the
topic has various focuses. Liu et al. [20] proposed a fuzzy
multi-criteria decision-making methodology to select charging
station locations. Kazemi-Karegar [21] optimized the location
with consideration of EV energy loss, grid energy loss, and
urban road condition. The authors solved the problem using a
genetic algorithm. Kong et al. [22] studied an optimal location
problem that comprehensively considered users, service staff,
traffic condition, and grid condition. The authors solved the
problem with an iterative optimization algorithm. Limited
research considers plug-in hybrid EVs. Karagan [23] studied
the optimal location problem of charging stations for plug-in
hybrid EVs with different driving ranges. The model aims
to maximize miles traveled on vehicle’s electrical power
and thereby minimize transportation costs under the existing
electricity and gasoline cost structure. The authors proposed an
arc-cover formulation and solved the problem with a Benders
decomposition algorithm.

In this paper, we study an optimal location problem for
plug-in EV charging stations, but we take the new service
mode of valet-charging into consideration. Valet-charging cus-
tomers interact with self-charging customers, making this
system different from the traditional ones.

Next, we review the modeling of private EV owner’s choice
on the charging station in location analysis. When modeling
the charging stations that private EV owners choose, much of
the work assumed that the drivers choose a charging station
with minimum travel distance or time. Only a few studies
did not make this assumption, instead they built a behavior
model to describe customers’ station choices and incorporated
the model into a location optimization model. For example,
Tian et al. [24] first used a cloud model [25], [26] based
on data features including expected value, entropy, and hyper
entropy, to predict drivers’ charging behavior. Then they
formulated a location optimization model to minimize the
operational cost of EV drivers. Considering that EV drivers
may have several trip destinations and are more likely to
make charging decisions based on the combination of these
destinations, Pan et al. [27] proposed a process to determine
EV charging options and built a coverage location model
that aims to maximize EV drivers’ existing activities, which
implies the minimization of unreachable trips. Dong et al. [28]
studied the optimal location of EV stations and discussed
the impact of driving range increase of EVs on locating
public charging facilities. They proposed an activity-based
evaluation method to model each driver’s driving and charging
behaviors, and quantified the range anxiety related to limited-
range vehicles. Yang [9] considered a utility-based user-choice
behavior model in their location optimization model. In their

model, user utility includes the charging distance and the
number of chargers at the charging station, and users would
choose charging station with the highest utility.

The other category of relevant literature is about EV
location optimization problems with centralized customer
allocation. Valet-charging customers’ behavior is assumed
to be under control of a service provider who can allo-
cate charging demands to different stations in a centralized
manner. As a result, location-allocation models were formu-
lated. For example, Tan and Lin [29] formulated a stochastic
location-allocation model, which allocates customer flows in
the network. Worley, Klabjan, and Sweda [30] proposed a
location-allocation model to determine EV routes while deter-
mining the location of charging stations, and conducted a case
study on an express parcel delivery company. Zhang et al. [31]
proposed a multi-objective bi-level model. The upper-level
problem determines the location and capacity of charging
stations to minimize the total cost and service tardiness. The
lower-level problem addresses customer allocation to minimize
the total travel time.

In this paper, we are the first to consider two distinct types
of customers. In addition to self-charging customers (mostly
studied in the literature), we consider valet-charging customers
in a charging station location optimization model. We model
their station choice behaviors quite differently from the exist-
ing literature. We use equilibrium constraints to model the
spatial distribution of customer demands, which captures the
interplay between the two customer types. Finally, we review
optimal service station location problems that assume an
underlying congested queuing network. The distinct feature
here is to incorporate queuing performance measures in the
resultant optimization models. It is challenging to solve such
optimization models due to the nonlinearity of queuing system
performances (e.g., waiting time) with respect to the decision
variables in the optimization model. And such nonlinearity
may increase and the optimization becomes more intractability
as assumptions for convenient analysis of queuing networks
are dropped for practical relevance. Another difficulty lies in
the complexity of user’s choice behavior. We do not see any
EV charging station location optimization with simultaneous
incorporation of centralized user allocation and individualized
user choice. The following review will not be limited to EV
charging station location problems.

In our problem, as part of the total demand, valet-charging
customers will be allocated to different charging stations.
The allocation problem is often solved together with the
location problem. Amiri [32] built an integer programming
model to determine where to build facilities and how to
allocate customers to each facility, aiming to minimize
construction cost and operation cost. The problem is then
solved by heuristic procedures based on Lagrange relaxation.
Aboolian et al. [33] extended the above model by further
considering the capacity of each facility. The authors pro-
posed a new algorithm, which first determines the customer
allocation and then determines the location and capacity of
each facility. Elhedhli [34] presented a location-allocation
model and proposed a linearization-based method to solve the
problem.
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Another type of demand considered in our problem, self-
service customers, choose charging stations by themselves.
User choice behavior is often described by equations. For
example, choosing the charging station with the shortest
time or distance can be formulated as linear equations.
Wang et al. [35] established an optimization model to mini-
mize construction cost and operation cost. The model assumes
that customers go to the nearest facility. The operation cost
includes customers’ travel time and expected waiting time.
The waiting time was calculated with the M/M/1 formula.
A greedy-dropping heuristic is designed to solve this model.
Aboolian et al. [36] went further to use the M/M/k formula to
calculate the waiting time which is much more computation-
ally expensive. The authors presented an exact solution and
several heuristic methods such as simulation annealing. Com-
puting complex user choice behavior at a Nash equilibrium
is a challenging task by itself. Cavadas et al. [37] considered
the impact of charging station location on demand in their
location optimization model. They assumed that the charging
probability of EVs each time they stop in a day is proportional
to the time of the stop. Since an EV may stop at more than
one location a day, the location of the charging demand may
be affected by the station location. The authors formulated the
problem as a MIP model.

We formulate our problem via a bi-level optimization
model. The first bi-level mathematical optimization model
was proposed by Bracken and McGill [38], and was used
to study a Stachelberg game with two decision makers. The
so-called leader in the game minimizes his objective function
subject to conditions composed (in part) by optimal decisions
of the so-called follower [39]. In recent years, lower-level
problems describing follower decisions are no longer limited
to a optimization problem. Li and Liao [40] considered a
bi-level model of optimal deployment of shared autonomous
vehicles (SAVs). The upper level problem determines the hub
locations and initial SAV distribution, while the lower level
captures travelers’ activity-travel scheduling behavior by an
extended dynamic user equilibrium model. Jung et al. [41]
proposed a bi-level charging station location model for electric
taxi. The upper level problem is a multiple server allocation
problem and the lower level problem is a dispatch simulation.
Ma and Xie [42] developed a bi-level model that tackles the
charging operation problem for shared EVs. The upper level
problem is to decide the location of fast-charging stations,
while the lower level problem incorporates simulation-based
methods to calculate dynamic EV assignments.

In this paper, we consider a location-allocation problem
in the upper level problem for station location and capacity,
as well as valet-charging customers’ allocation. In the lower
level problem, we model the self-charging customers’ station
choice behaviors as a game.

III. A BI-LEVEL LOCATION MODEL

In this section, we first present a model for estimating
charging demands. Then we introduce our bi-level location
optimization model with two types of customers, where the
leader is a company which can be an EV manufacturer or a
service operator and the follower is self-charging customers.
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The upper level is a location-allocation problem for the
company to decide where to locate charging stations and
how to dispatch valet-charging staffs. The lower level is a
game among self-charging customers, each of whom wants
the shortest total process time, including travelling, charging
and possible waiting.

A. Upper Level Problem

The upper level problem considers the company’s decision.
It consists of two components. The first component is the
location decision, i.e., where to build each charging station and
with how much capacity (number of piles). The second one is
the allocation decision, i.e., which station valet-charging staff
will be dispatched to for each demand node. The objective of
the upper level problem is to minimize the construction and
operating costs.

Let I be the set of demand nodes. Each demand node
is associated with some catchment area of EV users. These
catchment areas are disjoint. Note that we can divide the city
transportation network into a grid, and estimate the demand
of each grid cell by its internal commercial and residen-
tial areas. This demand estimation method is recommended
by NIO. Since charging station location is a long-term plan,
we emphasized customers’ long-term behavior and disregarded
the short-term fluctuations in demand. In practice, the values
of total demand rate can be derived by calculating the average
charging demand over a specific time span. We assume that
the demand arrival at each node follows a Poisson distribution,
with parameter A} for valet-charging customers and A? for self-
charging customers. We assume that customer choices between
self- and valet-charging are exogenous based on the following
considerations: First, some customers receive monthly free
charging sessions either through bundled services or as a
complimentary offering from the company. These customers
will definitely choose valet charging. For other customers,
due to the relatively high one-time cost of valet charging,
in the early stages when their consumption habits have not
yet changed, only customers for whom time inconvenience
is a hard constraint (e.g., users who are too busy to charge
their EVs) would choose valet charging. Thus, We set a
fixed proportional division between self- and valet-charging
demands. We admit such specification can be a significant
simplification of the problem. However, it is worth noting
that without this specification, the modeling becomes much
more inconvenient and the problem becomes hard to solve.
In Section V-B3, we analyze the impact of varying this
proportion. In Section VI, we discuss how to model and
analyze the scenario where the choice between self- and
valet-charging is regarded endogenous. We also point out the
potential challenges in solving the alternative problem.

We assume that there is a finite set of candidate station
locations, denoted by J. We aim to select a subset of nodes
from J to build EV charging stations and determine the
capacity at each station.

We define three sets of decision variables. Let x; € {0, 1}
be the location decision, and x; = 1 implies that a charging
station will be established at candidate location j. Let s; €
N be the capacity decision, which specifies the number of
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charging piles at station j. Let y;; € [0, 1] represent the
fraction of valet-charging customers assigned from demand
node i to station j. For exposition simplicity, we introduce
intermediate variables to the model. Let p;; be the fraction of
self-charging customers from demand node i getting charging
service at station j. Thus, the expected demand arrival rate
at station j is a; = Zie]()‘ilyij +)u?pij). Our upper level
location-allocation problem is presented as:

(P1) ginsln chxj—i—cssj +c1tczz

jeJ iel jeJ

(t]; + W aj. 55)) 2 vij

+eote DD (th + Wlaj,s;)Api; (D)

iel jeJ

st sp<Mx;, jel )

D=1 iel (3)

jeJ

z/j = b +M(1 —x;),
x; €{0,1}, s5; €N,
yij =0,

iel,jel @
jeJ &)
iel,jeld (6)

The first term of equation (1) represents the construction
cost, comprising a fixed cost and several variable costs.
Denoted by c; is the fixed cost of building a charging
station, and denoted by c; is the variable cost of installing a
charging pile at a station. The second and third terms represent
operation costs. The second term represents valet-charging
staff labor cost where ¢y is the unit-time coefficient. The third
term represents the access inconvenience of self-charging cus-
tomers, with unit-time penalty cost cy. Denoted by W(a s S J-)
is the expected time a customer at the station for charging
and possible waiting. W (a;, s;) is a monotonically increasing
with respect to a; and monotonically decreasing with respect
to s;. It can be computed with the corresponding queuing-
theoretic formula. We denote ¢, to be the entire duration of
effective operation, which is used to balance the fixed cost
and operating cost.

Each inequality (2) restricts charging piles to be installed
and operating at a candidate location only after a charging
station is built there; M being a sufficiently large constant.
Equations (3) ensures all valet-charging demands to be sat-
isfied. The travel time from node i to station j via the
shortest path is denoted by #;;. Each inequality (4) ensures
the travel time to be set with a sufficiently large value
if going to a candidate location with no charging station
established, thus preventing demand from going to those
locations.

Note that the upper level problem includes variables p;;’s,
which represent self-charging customers’ station choice behav-
iors. The lower level problem is used to determine the values
of p;;’s after the company’s decision.

B. Lower Level Problem

The lower level problem incorporates the station choice of
each self-charging customer. We assume that all self-charging
customers are homogeneous and rational. These assumptions

are commonly employed to describe customer choice behavior,
e.g. Fisk [43]. We consider self-charging customers’ station
choice as a game. Each customer is a participant in this game
aiming to minimize his total processing time of travelling,
charging and possible waiting. Each participant could only
choose one station for charging, which is his action in this
game. When no participant could shorten his total processing
time by only changing his own strategy, we call that the game
has reached a Nash equilibrium.

Our lower level Nash equilibrium problem is presented
as:

P2) D> opy=1, iel (7)
jeJ
ajfsipw= "> (Myij+1pij)/sip<1—e, jelJ
iel
(®)
- =T if p;; >0
t.+Wlai,s; 1 J iel 9
ij (/ j)[ZTl*a lfpl]=0 ()
pij >0, iel jel (10)

Equation (7) ensures all self-charging demands to be sat-
isfied. Inequality (8) ensures that the long-run utilization rate
of each charging station is comfortably below 1 with ¢ €
[0, 1) being a model coefficient preset by the decision maker.
Equation (9) is the equilibrium equation for each i € I and
Jj € J, which is used to specify the charging station location
choice behavior of self-charging customers at demand node i.
The left side of the equation represents the expected total time
T; that customers from node i take in order to charge their EVs
at station j. It is composed of two parts: (i) the travel time
from node i to station j through the shortest path, denoted
by #/.; ;5 and (ii) the expected time a customer at the station for
charging and possible waiting. The right side of the equation
is T;*, which represents the minimum expected total time that
a self-charging customer at node i could take for the charging
service. Lemma 1 explains why T* is the minimum expected
total time.

Lemma 1: For any feasible solution of (P1), we have T* =
mjin{t;j +W(a;,s;)}, forall i € 1.

The proof for Lemma 1 is given in Appendix A.

A bi-level optimization problem has an optimal solution
when the lower level problem has a unique solution. (P2) is
a pure strategy game with discrete decision spaces for each
participant. In Lemma 2, we show that (P2) has a Nash
equilibrium.

Lemma 2: The Nash equilibrium of (P2) exists.

The proof for Lemma 2 is given in Appendix B.

According to Zhang et al. [44], a unique equilibrium almost
always exists in (P2), except for few extremely symmetric
cases. Hence, an optimal solution of the bi-level optimization
problem almost always exists. The above bi-level optimization
model can be rewritten as:

P3) Elsln 2cx1+cs, +c1tczz

jeJ iel jeJ
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(1] + W (aj, s;)) M vij

+eote DDt + W(aj ;)4 pij

iel jeJ

s.t. (2) ~ (6), (7) ~ (10)

It is easy to see that (P3) contains binary, general integer,
and continuous decision variables. The objective function (1)
is non-convex, and due to the network congestion, W(~, )
is highly nonlinear with respect to s;, x;, and y;;, even
by assuming the simplest M/M/1 queue at each established
facility. The above implies that (P3) is a non-convex MINLP,
which is difficult to solve in general. Further, equation (9)
brings great difficulty to solving this problem.

IV. AN ALNS BASED SOLUTION METHOD

With preliminary experiments, we found that state-of-the-
art off-the-shelf solvers, such as BARON and scip, could not
solve the problem to exact optimality even for small sizes
(e.g., 4 demand nodes and 3 candidate facilities). When the
instance size further increased slightly, the above solvers even
could not yield a feasible solution under reasonable time or
memory limitation (See Section V-A).

Moreover, it is difficult to apply decomposition meth-
ods, such as Generalized Benders Decomposition [45], for
industry-sized instances because of the non-convexity in the
objective function and equation (9). We resort to heuristics.

We design an construct-improve heuristic to solve the
lower level problem when the upper level decision is fixed.
We embedded this heuristic to a customized ALNS algorithm,
which is designed to solve the upper level problem.

A. An ALNS Algortihm for Upper Level Problem

ALNS is a heuristic first proposed by Ropke and
Pisinger [46]. This heuristic is widely used these years due to
its good performance on VRP problems. We adapt its frame-
work in our location optimization problem. The algorithm
involves two main ideas: (1) define a neighbourhood of a fea-
sible solution by the destroy-repair operator; (2) dynamically
adjust the probability of selecting each destroy-repair operator
(adaptive weight adjustment). We present the ALNS heuristic
in Algorithm

A feasible solution can be easily reached by assuming that
each candidate node has a charging station with maximum
capacity, and valet-charging staff at each demand node are
dispatched to charging stations evenly. Note that computing
the objective value with a feasible solution sol = (X,s,Y)
requires solving the lower level problem first. We present
the solution method for the lower level problem in the
next section. We elect to use a naive acceptance and stop-
ping criterion as follows. We accept any inferior solution
with a fixed probability prb. The algorithm terminates after
G iterations.

Before introducing the destroy-repair operators, we first
introduce a representation of the solution in the algorithm.

In the algorithm, we use y’ = {yi’j} (yi’j e[0,1], Viel,je
J) to represent the solution in place of y = { Vi j} in the model.
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X/yi/j
Zie,/ xfy;j ’
always satisfied. We assume s € [Suin, Smaxl-

Let y;; = Vi € I,j € J. Thus, Equation (3) is

Algorithm 1 ALNS
Input: A feasible solution sol € {solution}.
QOutput: Best found solution solpey;.
S0lpes: < sol;
while stop-criterion not met do
sol’ < sol,;
randomly choose a destroy-repair operator with probabil-
ity weight w;
Destroy(sol’), Repair(sol’);
if Obj(sol’) > Obj(sol) then
sol < sol’;
else
sol < sol’ with probability prb;
end if
if Obj(sol’) < Obj(solyes) then
50lpesy < sol’;
end if
Update operator weight w;
end while
return solp.;;

We design five problem-driven destroy-repair operators
by mimicking read-world situations, instead of employing
standard random destroy-repair operators. We introduce their
physical meanings and corresponding realization methods
next.

1) Re-construction. Randomly choose a candidate node ;.
Build a charging station of random size at that point
with probability prb(, which means x; = 1 and s; =
rand([Syin, Smax]). Otherwise, do not build a charging
station at that point, which means x; =0 and s; = 0.

2) Capacity expansion. Randomly choose a candidate
node j where x; = 1. Let s; = rand([s;, *3"=]). This
means expanding the capacity of the station.

3) Capacity reduction. Randomly choose a candidate
node j where x; = 1. Let 5; = rand([w%,sj). This
means reducing the capacity of the station.

4) More staff come. Randomly choose a candidate node j

where x; = 1. For each demand node i, let y;, =

41 .
rand([y; i y”z ]). This means more staff come to the

station from each demand node.
5) Less staff come. Randomly choose a candidate node j

where x; = 1. For each demand node i, let y;, =
rand([%, yi j]). This means less staff come to the station

from each demand node.

We use a roulette wheel selection principle to select an
operator from the above five. Denote by wy is the wight of
operator k, k € {1,2,...,5}. Let

wy
5 9
k=1 Wk

P (“Operator [ is selected”) = viel{l,2,...,5}.
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Algorithm 2 Improving Heuristic

Algorithm 3 Construction Heuristic

Input: A non-equilibrium state p’ = (plfj),modiﬁed travel
time #/ ;- arrival rate a;, number of charging piles s;, number
of iterations Nj.

Qutput: Final equilibrium state p = ( Di j).

k < 0;
for k < N; do
foriel,jeJ do
Tij < ti’j + W(aj, s_,-);
end for
fori €1 do
Jj~ < argmin Tij;
J
i+
JjT < arg jg},?;&(o T;j;
Pij+ < pij+ — Ap;
pij- < pij- + Ap;
end for
k<~ k+1;
end for
return p;

Let w, =wy, =---
we update each wy as:

= ws initially. Then at each iteration,

Wik d, if 6, =0
Whdtl = (l—r)wk,d+r?, if6s #0 °
k,d
Vke{l,2,---,5},

where m; 4 is the score of operator k at the d-th iteration,
and 6y 4 is the number of times we have attempted to use
operator k at the d-th iteration. Denoted by r (r € [0, 1]) is
the reaction factor, which quantifies how quickly the weight
adjustment reacts.

B. A Construct-Improve Heuristic for Lower Level Problem

In this subsection, we describe how to solve the lower level
problem with a construct-improve heuristic. Once the lower
level problem is solved, the objective function value can be
evaluated accordingly.

We first provide the intuition behind the heuristic. If a
solution p’ = (plfj) satisfies (7), (8) and (10), we call it a
non-equilibrium state. We can obtain a solution to the lower
level problem by improving p’ while keeping other constraints
satisfied. If the network were not at its equilibrium, some
self-service customers would have the intent to change their
station choices, i.e., from a station with longer service time to
a station with shorter service time. If no one could benefit from
changing his/her station, the network would have reached its
equilibrium. Given any non-equilibrium state, the following
improving heuristic (Algorithm 2) offers a computational
procedure to find an equilibrium state. At each iteration, the
final solution accuracy is relative to Ap. Decreasing Ap makes
the result more accurate, but the corresponding N; needs to
be set larger. Properly setting the values for the N; and Ap
pair can be easily achieved by several rounds of preliminary
experimentation.

Input: modified travel time ti’ i arrival rate a;, number of
charging piles s;, number of iterations Nj.
Output: A non-equilibrium state p’ = ( plfj).
k <0
p < 0;
Ap < 1/Ny;
for k < N, do
foriel,jeJ do
Tij <t + W(aj, s5);
end for
fori el do
Jj* < argmin 7_",-j;
J
pij« < pij + Ap;
end for
k<~ k+1;
end for
return p’;

Furthermore, we design a construction heuristic to construct
a feasible non-equilibrium state (see Algorithm 3). Note that

randomly generated p’ = ( p; j) may not satisfy equation (8),

thus not necessarily a feasible state.

V. NUMERICAL EXPERIMENTS

In this section, we first compare our ALNS algorithm with
a genetic algorithm (GA) and two state-of-the-art off-the-shelf
solvers to verify the computational efficiency of our algorithm.
We then conduct a case study based on Yangpu District,
Shanghai. We further perform sensitivity analysis on several
model parameters and conduct strategic planning for several
future demand scenarios.

ALNS and GA are coded in C++, and all the instances
are solved with ALNS and GA on a PC with 3.6 GHz
CPU and 16 GB RAM. The same instances are solved
with the two solvers on the NEOS server (neos-guide.org).
NEOS (Network-Enabled Optimization System) server is a
free Internet-based service for solving numerical optimization
problems.

A. Solution Performance Comparison

We compare ALNS with the three benchmark solution meth-
ods to verify the efficiency of ALNS. We rewrite equation (9)
as the following equivalent form
(1D
(12)

t,+Wiaj, sp)—T/ =0, Viel, jel,
pij([i,j +W(aj, Sj) — Tl*) =0 Viel, jel,

where the expected waiting time, W(a j» 8;), is further
expressed by the sum of queuing time and service time, i.e.,

W(aj, Sj) = uneue(ajv sj) + Wservice- (13)

To make the optimization model compatible to the solvers,
we elect to use the M/M/1 queue formula to approximate
queue time qu,e(aj,sj) at station j. The service rate of
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Fig. 2. Chromosome encoding and genetic operators in GA.

a single charging pile is u, and the service rate of a charging
station with s; charging piles is regarded as s;u. That is,

_aj/sin
uneue(aj» sj) ~ m (14)
The service time Wi, ;e Of a single EV is w™!, which is
independent of the station. Hence, we have
- a;/sin 1
W(“jv Sj) = uneue(ajv Sj) + Wservice ~ ﬁ + ;
(15)

We also design a genetic algorithm (GA) to serve as a
benchmark method. Genetic algorithms have great flexibil-
ity to solve optimization problem with complex constraints.
Figure 2 provides an illustration of chromosome encoding,
as well as crossover and mutation operations. Like the ALNS
algorithm above, we use unnormalized y’ instead of y to
ensure that equation (3) is satisfied. For each j € J, x;
can be determined by s;, ie., if 5; > 0, x; = 1, otherwise
xj = 0. Therefore, we only need to encode s and y’ into the
chromosome. We design three crossover operators and four
mutation operators. We use elitism strategy to retain better
chromosomes.

We run the solution methods on ten test instance classes
of different problem scales. Each instance class contains
10 instances. Demand nodes and candidate facility locations
are uniformly distributed on the map with both length and
width being 64/]7]. The demand is proportional to |7|. We con-
sider two measures: the time taken to solve the instance and
the relative gap on the objective between different solution
methods. We calculate the average result over the ten instances
in each class. Because even start-of-the-art solvers may not
always be able to find a feasible solution, we also record the
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number of instances with no feasible solution (NFS) for each
class and exclude them when calculating the averages.

Due to the default settings of the solvers, BARON always
stops at around 8 minutes 30 seconds and scip always stops
at around 10 hours. Upon termination, both output their
incumbent solution if it is found. For GA, we set the size of the
population to be 80 and the maximum number of generations
to be 2000. For ALNS, We set the maximum number of
iterations to 10000. Under this setting, the GA and ALNS
solution times are positively correlated to the instance size.
With a small size, the instances only require tens of seconds
for GA and several seconds for ALNS to solve.

ALNS will almost find better results every time. Even
it takes more time to solve, the solution found by GA is
somewhat worse than that of ALNS. The solver’s performance
will be more worse. The performance of Scip is very unstable.
There are often situations where no solution can be found. The
solution of BARON is more comparable to that of ALNS if the
instance is small. But as the instance size increases, BARON’s
performance becomes less stable, needlessly to say it continues
to be much slower than ALNS. There are situations where no
solution can be found via BARON. In conclusion, the ALNS
solution is of reasonable efficiency, effectiveness, and stability.

B. Case Study

1) A Case of Yangpu District, Shanghai: Yangpu District is
northeast of the central city of Shanghai, and on the northwest
bank of the lower reaches of Huangpu River. The total area
of Yangpu District is 60.61 square kilometers, and it has a
total permanent resident population of 1.31 million by the
end of 2020. NIO Inc. is a global EV manufacturer. It was
established in November 2014 and successfully listed on the
New York Stock Exchange in September 2018. Based on
the feedback from NIO Inc., we divide Yangpu District into
lkm x lkm grids, and consider each grid as a demand node
for a total of 53 demand nodes. We use the cell-based demand
distribution estimated by NIO Inc. We designate the center of
the cell to be the location of each demand node. In Figure 3,
circles of different sizes are used to represent demand nodes
with different demand levels. A larger circle implies more
demand. There are also 18 candidate EV charging station
locations, marked with vehicle icons.

We used the route planning service of AutoNavi Map
(https://www.amap.com/) to obtain realistic travel time #; in
our case study, which account for real-time road congestion
information. Admitting the travel time differs by the time of
the day and day of the week, we have taken the estimates at
different times. The average of these extracted travel times was
considered a good estimate for the strategic location decision
optimization. More specifically, since we consider a long-term
equilibrium of customer choices, we did not model the road
congestion as a distribution over time, but rather used the mean
value as the representative parameter value.

We set the service rate of a single charging pile to be
n = 1/50 EV per minute. We set the total charging demand
to be 7 EVs per minute and the ratio of self-charging
customers to valet-charging customers is 7:3. We assume
their operation cost coefficients ¢y and ¢; to be 27 CNY/h
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TABLE I
COMPARISON OF ALNS, GA AND SOLVERS
1] x | J] ALNS GA BARON Scip
Gap(%) CPU(s) Gap(%) CPU(s) Gap(%) # of NFS CPU(s) Gap(%) # of NFS CPU(s)
4x3 <1 <1 2 17 23 0 515 26* 3 36012*
63 <l 1 4 25 22 0 507 30% 2 36013*
6x4 <1 1 5 29 35 0 515 34%* 5 36012%*
8x4 0 2 7 36 31 0 510 32% 7 36012%
8x5 0 2 10 44 46* 1 521% 55% 2 36014*
8x6 <1 2 6 47 56* 1 506* 59 0 36012
10x5 0 2 13 51 44 0 520 55% 1 36013*
10x6 0 3 16 59 72% 2 514* 63 0 36014
10x7 <1 3 11 68 82% 3 509* 68 0 36013
10x8 0 3 18 75 99* 7 512% 76 0 36012
|I| = Numbers of demand nodes; |J| = Numbers of candidate nodes
Gap(%), Gap from best found solution.
# of NFS, The number of times no feasible solution was found in 10 cases.
* Mean of cases with feasible solutions founded.
TABLE II
SOLUTION OF THE CASE
Number of charging stations built ) z; 7 Stations
Number of charging piles built >° s 408 Piles
Construction cost 40.85  10%5 CNY
Opefatlon cost of self- 40.62 106 CNY
Cost SCI'V]CC- customers
Opergtlon cost of valet- 2337 106 CNY
charging customers
Total cost 104.84 108 CNY
Travel time (avg) 14.1 min
Self-charging customers Waiting time (avg) 56.5 min
Total time (avg) 70.6 min
Travel time (avg) 14.3 min
Valet-charging customers ~ Waiting time (avg) 56.6 min
Total time (avg) 70.9 min
. Utilization rate p (avg) 83.8% -
Stations Waiting time W (avg) 574 min

Fig. 3. Demand nodes and candidate nodes.
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Fig. 4. Convergence curve of ALNS algorithm.

and 36 CNY/h, respectively, and set the decision epoch to
be 1 year. We assume that all charging activities occur between
8 am to 8 pm every day, and 365 days a year, so there is an
average of 365 x 12 x 60 = 262, 800 minutes over the entire
decision epoch. We further assume that the construction cost
of a charging station is 240,000 CNY, and each charging pile
requires an additional variable cost of 96,000 CNY.

For the parameter selection of the construct-improve heuris-
tic, we set Ny to be 100 and N, to be 300. This can fit our
data size and improve solution efficiency with a reasonable
level of solution accuracy.

Figure 4 shows the convergence curve of ANLS algorithm
on this case. Table II reports a breakdown of the ALNS

solution. According to this solution, 7 charging stations and a
total of 408 charging piles would be built. As a result, valet-
charging customers would have longer average travel time and
average total time for charging their EVs. The utilization rate
of the charging stations would be more than 85%, and the
sum of average long-run waiting and charging times would be
close to one hour.

2) Benefits of the Valet-Charging Business model: When
the revenue generated by valet-charging surpasses the asso-
ciated costs, a higher proportion of valet-charging can bring
increased income to the company. In this section, we discuss
the impact of valet-charging on customers’ benefits and station
utilization. To provide a clearer contrast of the effects resulting
from valet-charging, we maintain the fixed construction plan
obtained before and the total charging demand, but we vary
the proportion of valet-charging customers, denoted as k.

The results are presented in Table III. We observe that
as the proportion of valet-charging customers increases, the
average travel time for all customers also increases. However,
both the waiting time and total process time decrease. This
implies that valet-charging services enable customers to travel
to farther charging stations with shorter waiting times. For
charging stations, the utilization rate increase and average
waiting time decrease, indicating that resources are utilized
more effectively. This shows that providing valet charging
services yields positive externality.
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TABLE III
IMPACT OF VALET CHARGING ON CUSTOMERS AND STATIONS

Avg Time of Self-

Avg Time of Valet-

Avg Time of

Stations (avg)

k Charging Customers (min) Charging Customers (min) All Customers (min)
Travel Waiting Total Travel Waiting Total Travel Waiting Total p W (min)

0% 14.49 57.28 71.77 - - - 14.49 57.28 71.77 0.8273 57.98

10% 14.63 57.03 71.66 14.03 56.89 70.92 14.09 56.90 7099  0.8276 57.64

20% 14.22 56.70 70.92 14.15 56.58 70.73 14.16 56.60 70.77 0.8312 57.44

30% 14.09 56.46 70.55 14.29 56.6 70.89 14.23 56.56 70.79  0.8325 57.35

40% 14.46 56.36 70.82 14.86 55.61 70.47 14.70 5591 70.61 0.8306 56.72

50% 14.45 55.82 70.27 15.46 55.53 70.99 14.96 55.68 70.63 0.8337 56.36

60% 14.41 55.57 69.98 15.87 55.46 71.33 14.99 55.53 7052  0.8362 56.19

70% 14.62 55.69 70.31 16.03 55.45 71.48 15.04 55.62 70.66  0.8378 56.04

80% 14.94 55.33 70.27 15.99 55.49 71.48 15.15 55.36 70.51 0.8422 55.90

90% 15.12 55.24 70.36 16.48 55.23 71.71 15.26 55.24 7050  0.8415 55.85

100% - - 16.25 55.19 71.44 16.25 55.19 71.44  0.8460 55.77

TABLE IV
ANALYSIS ON TOTAL DEMAND > ; (A0 + 1))
Demand Avg Time of Self- Avg Time of Valet- .
(EVs/min) Cost (10° CNY) Chargifg Customers (min) Chargi%lg Customers (min) Stations (avg)
> ()\? + )\zl) Construction  Operation Total Travel Waiting  Total  Travel Waiting  Total s p W (min)

2 12.059 20.099 32.159 17.09 60.15 7724 17.57 59.70 7727 29.8  0.8240 61.86
3 18.639 28.553 47.192 14.88 58.26 73.14 1491 58.29 7320  30.7  0.7968 59.35
4 23.839 38.136 61.975 15.07 58.14 73.21 15.43 58.01 7343 393  0.8397 58.81
5 29.099 46.685 75.783 14.57 57.76 7234 15.52 57.52 73.03  57.8  0.8408 58.29
6 34.499 55.549 90.047 14.96 57.48 7244  15.07 57.53 7260 68.6  0.8579 58.42
7 40.848 63.992 104.84 14.09 56.46 7055  14.29 56.60 70.89 583  0.8378 57.35
8 45.978 73.479 119.457  14.59 56.00 7059  14.63 55.99 70.63 653  0.8677 56.34
9 51.578 82.378 133955  14.99 55.33 70.32 15.21 55.23 7044 733  0.8629 55.86
10 57.557 90.867 148.424  13.73 55.98 69.71  14.15 55.95 70.11  63.6  0.8615 56.73
11 63.057 99.583 162.640  13.59 55.50 69.09  14.78 55.69 7047  69.7  0.8638 56.20
12 68.857 107.457 176.313  13.81 54.87 68.69  14.09 55.01 69.10 76.1  0.8562 55.90
13 73.117 118.521 191.638  14.68 55.00 69.68  15.62 55.17 70.79  91.0  0.8857 55.19
14 80.336 125.194 205.530 13.18 55.40 68.58 13.73 55.29 69.02 72.6 0.8668 55.98
15 84.616 133.016  217.633 14.24 54.87 69.11 15.03 55.00 70.02 1054 0.8845 55.34

This phenomenon aligns with economic intuition. When
individuals in a system aim to minimize their own interests,
there might result in a prisoner’s dilemma situation, preventing
the attainment of global optimality. Thus, valet charging
promotes more efficient resource utilization and improves
customers’ charging convenience while maximizing company
profits.

Note that we can extend the conclusions to other scenar-
ios. For example, with the advent of Autonomous driving
technologies, the entire charging process would only involve
electric AVs without drivers. We think the valet-charging
service would turn to a “centralized charging routing and
scheduling” service provided by the EV company. This new
service associated with AVs would be similar to valet-
charging, where the only difference is that no real valet
staff is needed. We argue that this new service benefits
from increasing the average utilization rate of the charging
stations, which is conceptually similar to the effect of having
the valet-charging service. This is a preliminary analysis.
In practice, a comprehensive consideration of AVs requires
delving into numerous intricate details. For instance, many
valet parking facilities that could support valet charging are
located underground, leading to uncertainties arising from
communication issues [47]. We leave a numerical study
on the new service associated with AVs in the future
work.

3) Impact of Valet- and Self-Charging Demand Changes:
The number of private EVs is fast growing and relevant tech-
nologies are rapidly evolving. For several parameters in the
above study, even if we can estimate them well for now, they
may change in the near future. Therefore, in this subsection,
we assess the potential economic and service performance
impacts of changes in these parameters.

First, we vary the total demand. We keep the demand ratio
of the two types of customers, i.e., > ; A2/ >, 1!, unchanged
at 7:3. However, we vary the total demand >, (A? ~|—A}) to
take on values 2, 3, ...,15 EVs per minute, and observe
the impact of this variation on the solution and service
measures. We report our results in Table I'V and describe major
observations in the following.

As the total demand increases, the value of each compo-
nent in the objective function increases accordingly. In terms
of service operations, the average long-run travel time of
either type of customers would decrease accordingly. This
is because more charging stations would be built and the
time to visit them would decrease. In addition, the average
long-run travel time among valet-charging customers is always
longer than the average among self-charging customers. This
is because valet-charging service is controlled by the company
and its recipients can be arranged accordingly to help improve
system-wide service quality, e.g., reducing the waiting times
for charging. Next, individual optimality among valet-charging
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ANALYSIS OF THE PROPORTION OF VALET-CHARGING CUSTOMERS k

TABLE V

Cost (108 CNY)

Avg Time of Self-

Avg Time of Valet-

Stations (avg)

k Charging Customers (min) Charging Customers (min)
Construction Operation Total Travel Waiting Total Travel Waiting Total p W (min)
10% 40.438 60.516 100.954 14.77 55.73 70.50 16.68 55.74 7242 0.8600 56.19
20% 40.638 62.113 102.751 14.86 55.32 70.18 15.55 55.29 70.83 0.8542 56.00
30% 40.848 63.992 104.84 14.09 56.46 70.55 14.29 56.60 70.89  0.8378 57.35
40% 40.438 66.536 106.974 14.95 55.74 70.69 15.37 55.80 71.18 0.8691 55.79
50% 41.518 68.736 110.254 14.52 56.14 70.66 15.46 56.09 71.55 0.8325 56.80
60% 41.818 70.960 112.778 14.37 56.29 70.67 15.74 56.07 71.82  0.8400 56.31
70% 41.678 72.723 114.401 15.52 55.24 70.76 16.03 55.35 71.38 0.8309 55.64
80% 42.158 75.253 117.411 14.29 56.47 70.76 15.45 56.51 71.95 0.8310 56.71
90% 42.458 77.397 119.855 14.22 56.38 70.60 15.70 56.33 72.03 0.8282 56.36

staff is sacrificed for global optimality of the system. Con-
sequently, valet-charging customers would be assigned to
charging stations farther away to relieve the congestion at
nearby stations. As a result, self-charging customers would
benefit. Finally, as the total demand increases, the average
long-run waiting time would decrease for both types of cus-
tomers, thus the total time including travel and waiting would
also decrease.

In terms of facility construction, the average capacity and
utilization of each charging station would increase as the total
demand increases. Meanwhile, the demand increase would
lead to reduction on the average long-run waiting time. Since
the growth rate of the capacity is lower than that of the
total demand, the utilization would increase. Meanwhile, the
waiting time would increase with the utilization and decrease
with the capacity by (13). We find that the capacity increase
is less than the utilization increase, which is attributed to
efficient arrangement of valet-charging customers. Therefore,
the waiting time would reduce along with the demand increase.
In summary, when demand increases, resources would be
utilized more efficiently, and customers would have shorter
waiting times.

DI
> (A7)
that use valet charging. We keep the total demand >, (X? + A})
constant with 7 EVs per minute. We report our results in
Table V and describe major observations in the following.
First, since the operating cost coefficient of valet-charging
customers c; is higher than that of self-charging customers c,
as k increases, the operating cost would increase accordingly.
Then same as the result of the demand increase, the waiting
time of self-charging customers would be smaller than that
of valet-charging customers. Second, the resource utilization
would decrease along with the increase of k. This is because
when more valet-charging customers become available, more
effectively arrangement for them could be done to use the
system resource in a more efficient way. However, interest-
ingly, we find that despite the increase in k, there would be
no significant change in the expected waiting times of the two
types of customers. This is because the added valet-charging
customers could be efficiently allocated according to the
demand, so it would not likely cause a significant change in
the expected waiting time.

4) Impact of Operating Cost Changes: Operating cost
includes valet-charging labor cost and charging inconvenience
penalty for self-charging customers. The unit-time operating

Next, we vary k := the proportion of customers

costs of the two types of customers, ¢y and c¢;, are
set to be (cg,c1) = (27, 36) CNY/h at the baseline.
We vary each parameter independently to take on values
0.1, 0.2, 0.5, 2, 5, 10 times of the baseline value, while
fixing the other values at the baseline. We report our results
in Table VI and describe major observations in the following.
An increase in either ¢y or ¢; would lead to an increase in
the construction cost. Consequently, more charging stations
would be established to reduce the total charging time to
offset the construction cost increase. In fact, all time-related
measures in the objective function would decrease due to the
same reason, as well as the average utilization rate among
stations. The average total charging time for a valet-charging
customer would still be longer than that of a self-charging
customer. However, we find that the total charging time gap
would decrease when c¢; increases more in relation to cg.
If ¢; is significantly greater than cg, then this gap would be

very small.
5) Construction Planning Analysis: In this subsection,

we evaluate two construction strategies in response to future
demand increase. Strategy 1 is to build charging stations
according to the current demand, and expand the charging
infrastructure when facing demand increase in the future.
Strategy 2 is to build charging stations according to the
forecast of future demand at the beginning of construction.

Study 1 — What if the total demand increases in the future?
We consider this planning matter over two periods.
We assume that the total demand remains constant at each
period, but there is a difference between the two period. We set
the total demand to be A, = 7 EVs/min over period 1 and
the demand is projected to increase to Ay € {8,9,...,15}
EVs/min over period 2. We also assume that the proportion of
customers that use valet-charging remains at k = 30%.

To compute the cost of strategy 1, we first solve the opti-
mization problem under the total demand of period 1 to obtain
an initial construction plan s = {sj(.l)} and its corresponding
cost, termed as period 1 cost. We then solve the optimization
problem under the total demand of period 2 and subject to
additional constraints s; > s;l) for all charging stations j.
We thus compute period 2 cost to be the sum of the operating
cost of period 2 and the incremental construction cost.

To compute the cost of strategy 2, we first solve the opti-
mization problem under the forecast total demand of period 2
to obtain a one-time construction plan s = {s}z)} that would
be applied to both periods. To compute the operating cost,

Authorized licensed use limited to: Purdue University. Downloaded on May 27,2024 at 15:01:53 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

TABLE VI
ANALYSIS OF UNIT-TIME OPERATING COST ¢y AND ¢

Operating Cost Cost (106 CNY)

Avg Time of Self-

Avg Time of Valet- Gap of

Stations (avg)

(CNY/h) charging Customers (min) charging Customers (min) Total Time
co c1 Construction Operation  Total Travel Waiting Total Travel Waiting Total (min) p W (min)
2.7 36 39.018 29.171 68.189  15.08  59.83 7491 1526  59.73 74.99 0.08 0.8784  61.85
54 36 37.798 34.041 71.839 1747  58.67 76.14 1743  58.73 76.15 0.01 09161  60.69
135 36 38.998 45.118 84.116 16.09  56.41 7249 1640 56.42 72.82 0.33 0.8952  56.80
27 36 40.848 63.992 104.84 14.09  56.46 70.55 1429  55.60 70.89 0.43 0.8378  57.35
54 36 41.178 104.238 145416 14.32  55.60 6991 1444  55.67 70.11 0.2 0.8410  56.47
135 36 47.118 216.870  263.988 13.76  53.34 67.10 1444  53.38 67.82 0.72 0.7432 5343
270 36 50.778 406.210 456.988 14.10 52.16 66.26 1491  52.30 67.21 0.95 0.6839  52.34
27 3.6 39.778 44210 83.988 1522  56.31 7154 2237  60.85 83.22 11.68 0.8802  61.19
27 72 39.238 46.513 85.751 1456  57.17 7173 1734 5737 74.71 2.98 0.8899  57.84
27 18 40.238 53.365 93.603 1591  55.61 71.51 1639  55.63 72.02 0.51 0.8600  56.59
27 36 41.078 63.992  105.070 14.09  56.03 70.12 1458 5597 70.55 0.43 0.8530  56.11
27 72 41.578 87.329 128907 14.79 5541 70.20 15.14 5531 70.44 0.24 0.8372  55.81
27 180 43.878 154.198 198.076 1479  54.14 68.93 1492  54.09 69.01 0.08 0.7954  54.18
27 360 45.438 264.335 309.773 1492 52.99 6790 1501 5294 67.95 0.05 0.7704  53.06
TABLE VII TABLE VIII

CoOST WITH RESPECT TO THE INCREASE IN TOTAL DEMAND (106 CNY)

COST WITH RESPECT TO THE INCREASE IN VALET-CHARGING
CUSTOMERS PROPORTION (10° CNY)

N Strategy 1 Strategy 2 Gap

f7prdT prd2 NEV prd1 prd2 NFV prd 1 prd 2 NFV Strategy 1 Strategy 2 Gap
8 105.070 78.966 205.050 107.757 73.479 202.787 2.687 —5.487 —2.263 2 prd1 prd2 NFV prd1 prd2 NFV  prd 1 prd 2 NFV
9 105.070 93.948 220.032 112.759 82.378 217.689 7.689 —11.570 —2.343 40% 105.07 66.233 192.317 105.005 66.536 192.542 —0.065 0.303 0.225
10 105.070 108.566 234.650 117.512 90.867 231.881 12.442 —17.699 —2.769 50% 105.07 69.341 195.425 106.179 68.736 196.1508 1.109 —0.605 0.7258
11 105.070 122.694 248.778 122.440 99.583 246.511 17.370 —23.111 —2.267 60% 105.07 72.177 198.261 106.949 70.96 199.2988 1.879 —1.217 1.0378
12 105.070 136.123 262.207 128.205 107.457 261.303 23.135 —28.666 —0.904 70% 105.07 73.72 199.804 106.442 72.723 200.4534 1.372 —0.997 0.6494
13 105.070 151.074 277.158 132.950 118.521 278.061 27.880 —32.553 0.903 80% 105.07 76.897 202.981 107.324 75.253 204.0418 2.254 —1.644 1.0608
14 105.070 164.765 290.849 139.288 125.194 292.340 34.218 —39.571 1.491 90% 105.07 79.355 205.439 107.379 77.397 206.2518 2.309 —1.958 0.8128

15 105.070 176.837 302.921 143.462 133.016 305.170 38.392 —43.821 2.249
Gap = Strategy 2 — Strategy 1

we resolve the optimization problem under the total demand of
each period, respectively, and subject to additional constraints
s; = s}l) for all charging stations j. In this case, period 1 cost
is the sum of the construction cost of period 1 and the
operating cost of the period; whereas period 2 cost is just
the operating cost of period 2.

We consider the length of each period to be one year and use
an opportunity cost rate ip = 20% to quantify the monetary
value of time. We compute the Net Future Value (NFV) to
compare the two strategies, i.e., NFV = period 1 cost x
(1 +ip) + period 2 cost. We report our results in Table VIIL.

When comparing strategies 1 and 2 in terms of period 1 cost,
strategy 1 incurs a lower cost than strategy 2, since strat-
egy 1 would build the infrastructure more closely following the
present demand. However, when comparing the two strategies
in terms of period 2 cost, since strategy 2 would build
the infrastructure more closely following the future demand,
strategy 1 would lead to a higher construction cost and a
higher operating cost than strategy 2. Hence, there would
be a tradeoff between the two strategies. In our case, when
the forecast demand of period 2 is small (8 — 12 EVs/min),
strategy 1 is less costly overall; otherwise, strategy 2 is a better
choice.

Study 2 — What if the proportion of valet-charging customers
increases in the future?

We consider an increase of the proportion of valet-charging
customers in the future. We still consider this planning matter
over two periods. We assume that the total demand is kept
at 7 EVs/min. We further assume k; = 30% in period 1,

Gap = Strategy 2 — Strategy 1

and k increases to kp € {40%, 50%, ..., 90%} in period 2.
We apply the same two strategies as before. We report our
results in Table VIII.

Strategy 2 is always worse than strategy 1 regardless.
As noted before, this is because valet-charging customers can
be allocated more flexibly than self-charging customers. In this
study, period 1 has more self-charging customers compared to
period 2. Hence, strategy 1, which focuses on period 1 more
than strategy 2, would naturally achieve a lower cost.

VI. DISCUSSION OF CHOICE BETWEEN
SELF- AND VALET-CHARGING

We admit it is likely people to become more sensitive to
charging process time as the technology becomes mature and
its implementation in real world becomes more noticeable. The
price sensitivity may significantly affect their choices on the
charging station. The decision between self- and valet-charging
will move from exogenous to endogenous. In other words, the
assumption could become less justifiable as the technology
moves along. We thus added the following discussion in the
revised manuscript to point out the limitation of the current
work depending on the exogenous assumption.

We consider the following utility functions:

Uy = R — F(P)
Us=R—G(T)—-T

where Uy represents the utility of choosing valet-charging,
incorporating the reward of charging an EV (denoted as R)
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and a disutility function of service cost P (denoted as F(P)).
Us is the utility of choosing self-charging; G(T') is a disu-
tility function of charging process time 7', consisting of both
travel time and waiting time; and I" represents the charging
inconvenience. We assume that I follows a distribution with
a cumulative distribution function (CDF) H. When Uy > Uy,
in other words, if ' > F(P) — G(T), users choose to use
valet-charging service, and vice versa.

We assume that the total demand at node i is denoted as A;.
At equilibrium, self-charging customers at demand point i
have a charging process time of 7, and we assume that
I'f = F(P) 4+ G(T). Consequently, the demand of the two
types of customers at demand node i can be expressed as:

A =M HT))

Under the above, we can incorporate the customer choice
between self- and valet-charging into the model. Currently,
there are several challenges as we move forward. First,
we need explicit expression of functions F(P), G(T), and the
distribution H. To suggest meaningful management insights,
we would need to conduct thorough and comprehensive cus-
tomer surveys to obtain sufficient data to fit H. Second,
the resultant lower-level problem would become a double
equilibrium problem, which becomes more challenging to
analyze than the problem discussed in our current paper.
We would need to prove the existence and uniqueness of
equilibrium to ensure the feasibility of the upper-level location
problem. Third, even if the problem is feasible, a new efficient
algorithm has to be designed for the lower-level problem. For
example, we could consider an alternating iterative algorithm,
which alternately computes the equilibrium between choosing
the self- and valet-charging services for customers, and the
equilibrium among self-charging customers in their choice of
charging stations.

Due to the above challenges, we consider this part as a
future research direction.

VII. CONCLUSION

In this paper we present a novel facility location optimiza-
tion problem in the area of electric vehicle charging infrastruc-
ture development, by considering two different EV-charging
service modes (i.e., self-charging and valet-charging). While
previous studies on EV charging station location optimization
considered these charging service modes, no study incor-
porated them simultaneously in the same charging station
location optimization model. The model formulated in this
paper is a bi-level location optimization model, where the
lower level problem is a game that models self-charging cus-
tomers’ station choice behaviour. Existing commercial solvers
can only solve this model on a very small scale. To overcome
this difficulty, we design a construct-improve heuristic to
solve the lower level game and embed it into an adaptive
large neighbourhood search to solve the upper level location-
allocation problem. Note that in our method, the queuing
performance measure, i.e., expected waiting time, is evaluated
repeatedly in both the upper and lower level problems. Thus,

the algorithm is not affected much for solving discrete location
optimization problems where the underlying queue is assumed
to be G/G/1 or M/G/s or more complex, as long as the queuing
outcome can be expressed with a closed-form expression of
the number of servers and expected demand arrival rate.

We conduct a case study in a sizable district of Shanghai,
and examine how sensitive the optimal location solution is to
changes in the total demand, demand distribution between the
two customer types, and hourly operating costs. In response
to possible changes in future demand, we propose and com-
pare two construction planning strategies. We draw meaning
insights including a framework to help charging assistance
service providers choose strategies under different opportunity
cost rates and demand forecasts.

In the future, we propose to pursue the following research
items. First, the impact of charging time on the utility of
self-charging users is expected to become more significant
in the future. Hence, it is worthwhile considering the choice
between self- and valet-charging for the users. Second, we will
consider additional EV charging modes such as battery swap-
ping in the facility location context. The introduction of battery
swapping stations will not only result in multiple service
modes, but also expand the options and strategies for charging
infrastructure development. It is further challenging to model
diverse customer behaviors in choosing these service modes
and conduct data-driven modeling.

APPENDIX A
PROOF OF LEMMA 1

For all i e I, if T;* # mjn{tlfj+ W(aj, sj)}, we must have
J
T > mjln {ti’j + W(aj, sj)}, and there must exist one jj such

that jo = argm]jn{ti’j—i-W(aj, sj)yand ¢, +W(aj,. s;,) < T7".

L

By equation (9), T W(aj,, sj,) = T* if p;j, > 0. Then
we know that p;;; < 0. Since p;;, € [0, 1], it implies that
Pij, = 0. This derivation contradicts to #/ ].O—i—W(a s Sjo) > T

if pij, = 0. The lemma result follows. [

APPENDIX B
PROOF OF LEMMA 2

Consider the following game. Each demand node i is
regarded as a participant in the game. Fraction {Pij} j is
the strategy for participant i. Payoff for each participant i
is | — max
Jj€J,pij>0
wants to minimize the longest total process time that a
self-charging customer from demand node i takes.

w (a i S j) is monotonically increasing with p;;. Thus, in this
game, when a Nash equilibrium is reached, self-charging
customers from the same demand node i will have the same
total processing time, and this time must be the minimum one
among all stations. Otherwise, participant i could adjust his
strategy by decreasing p;;’s with a higher processing time and
increasing p;;’s with lower processing time to reach a better
payoff. Therefore, this game and (P2) can be described in the
same mathematical form.

{tl{j 4 V_V(aj, sj)}), which means participant i
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Note that this new game is a pure strategy game with
continues strategy spaces. It is easy to check that this con-
tinuous game satisfies the conditions proposed by Reny [48].
Therefore, a Nash equilibrium of this game and (P2)
exists. O
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