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Fine dimensional properties of spectral measures

Michael Landrigan and Matthew Powell

Abstract. Operators with zero dimensional spectral measures appear naturally in the theory
of ergodic Schrodinger operators. We develop the concept of a complete family of Hausdorff
measure functions in order to analyze and distinguish between these measures with any desired
precision. We prove that the dimension of spectral measures of half-line operators with positive
upper Lyapunov exponent are at most logarithmic for every possible boundary phase. We show
that this is sharp by constructing an explicit operator whose spectral measure obtains this dimen-
sion. We also extend and improve some basic results from the theory of rank one perturbations
and quantum dynamics to encompass generalized Hausdorff dimensions.

1. Introduction

The classification of measures using the classical power-law Hausdorff measures and
dimensions has found many applications within spectral theory ([4,5, 10-13, 16, 17,
30, 31] and others). While this classification theory has been very useful in many
situations, notably when the Hausdorff dimension is positive, it has not been gen-
eral enough to understand the differences between zero-dimensional spectra. This
has been explored in recent papers by Mavi [24], who studied logarithmic dimen-
sion bounds for the disordered Holstein model, and Avila, Last, Shamis, and Zhou [1],
who studied the modulus of continuity of the integrated density of states for the almost
Mathieu operator using a logarithmic dimension.

Our primary purpose in this paper is to develop general tools to study these
and even finer spectral questions. Explicitly, we consider different kinds of singular-
continuous measures based on a more general notion of Hausdorff measure and
dimension. The relevant definitions are discussed in Section 2.

One of the advantages of our approach is that it allows us to distinguish between
measures that are classically termed “zero-dimensional.” These broad questions are
very relevant to the study of quantum dynamics, where the fractal properties of spec-
tral measures are usually connected with anomalous transport properties (e.g. [2,23]),
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while “zero-dimensional” spectral measures naturally occur when studying ergodic
Schrodinger operators with positive Lyapunov exponent (see e.g. [9, 12,13, 17, 28]).
In particular, a general result due to Simon [28] says that the spectral measures, g,
associated to an ergodic family of Schrodinger operators, Hg, on [2(Z) with positive
Lyapunov exponent are supported on sets of logarithmic capacity 0. This implies that
the spectral measures are zero-dimensional.

Results pertaining to dynamics have always been closely tied to the dimensional
characteristics of spectral measures, so a finer distinction between dimensions should
also provide additional tools to strengthen dynamics results. Additionally, recent work
by Jitomirskaya and Liu [15] leads us to expect that the existence of phase reson-
ances in quasiperiodic models implies very deeply zero-dimensional spectral meas-
ures whose dimensional properties cannot be well understood with classical notions,
or even the log-dimension which was developed by one of the authors in his thesis [22]
and has been studied in recent papers [1,24].

The generality of our analysis is only possible because of our development and
exploration of a complete family of Hausdorff dimension functions (Definition 2.3).
In particular, a key technical component of our theory is Theorem 2.2, which only
discusses a single Hausdorff measure. This theorem only becomes useful in practice
once we restrict our attention to a suitable collection of Hausdorff measures, rather
than all possible Hausdorff measures, since it is not possible to compare all Hausdorff
measures to one another. This has been done in the past by considering powers of
suitable gauge functions, such as (In(1/¢))~!, but this is not suitable for our fine
analysis; for example, the dimension of a set with respect to the two families #; =
{(In(1/2)) *:a > 0} and F2 = {(In(1/2) InIn(1/¢))~%: > O} will always coincide.
Determining which of the two is “closer” to the actual dimension requires a more
general type of family.

While we are interested in an abstract theory, we are especially motivated by two
phenomena that we know yield zero-dimensional spectra:

1. Schrodinger operators with positive Lyapunov exponent;
2. local perturbations of systems with exponentially localized eigenfunctions.

We also extend the theory of quantum dynamics to our more general setting, but
we save applications to our sequel. We will also save the study of operators with
positive Lyapunov exponent for our sequel, and here we will instead consider the case
where the upper Lyapunov exponent is positive (see (9) for the relevant definition).

We are motivated by one particular question when considering the regime of pos-
itive upper Lyapunov exponent:

Question 1. Does positive upper Lyapunov exponent imply an upper bound on how
singular the spectral measure must be?
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In 1999, Jitomirskaya and Last [12] proved that spectral measures for half-line
Schrédinger operators with phase boundary condition 6 and positive upper Lyapunov
exponent must be zero Hausdorff dimensional (in the classical sense of Hausdorff
dimension) for every 6.

In 2001, one of the authors [22] introduced the notion of logarithmic dimen-
sion, and proved that spectral measures for half-line Schrodinger operators with phase
boundary condition & and positive upper Lyapunov exponent must have logarithmic
dimension at most 1 for every 6. The results of the thesis [22] were never pub-
lished previously and are incorporated here. In our current framework, the logarithmic
dimension coincides with dimg when ¥ = {(In(1/¢))7*:0 < o < o0}.

In 2007, Simon [28] proved that, given a family of ergodic Schrodinger operators
Hy with positive Lyapunov exponent, the spectral measure ;19 must be supported on a
set with zero logarithmic capacity for a.e. 6. This immediately yields the upper bound
on Hausdorff dimension obtained in [12] when Lyapunov exponent, rather than upper
Lyapunov exponent, is considered. The ergodicity and positive Lyapunov exponent
conditions in [28] are more restrictive than our requiring positive upper Lyapunov
exponent. Hence, Simon’s result still leaves us with the question of what (finer) upper
bounds on the dimension are possible in the setting of positive upper Lyapunov expo-
nent, as well as what happens on the excluded Lebesgue null set.

These results lead us to consider the following, more refined question:

Question 2. Does positive upper Lyapunov exponent imply that the spectral measure
is always singular with respect to the (In(1/t))~'-Hausdor{f measure?

In this paper, we answer this in two ways for half-line operators with phase
boundary condition 6. We prove that dimg (1g) = 1, when considering the family
F ={(n(1/t))"*:0 < a < oo} (Theorem 2.4), and that, more generally, the spec-
tral measure must be at least (In(1/¢) InIn(1/7)?)~'-singular (Theorem 2.3), where
both results hold for every phase 6. Furthermore, we construct half-line operators
with phase boundary condition 6 and positive upper Lyapunov exponent for every 6
such that dimg(ug) = ap for Lebesgue a.e. 6 and any complete family of
Hausdorff dimension functions, ¥ = {py:a € I}, such that (In(1/1))™! = py, € F
(Theorem 2.4). These show that the ideal bound lies somewhere between (In(1/¢))~!
and (In(1/¢)(Inln(1/¢))?)~!. These are the main results of our paper.

This, therefore, extends Corollary 4.2 from [12] in a natural way. Moreover, it
shows that the bound is sharp for log-dimension, in the sense that we cannot do bet-
ter in general. However, this sense of sharpness might not necessarily be true for
our more refined notion of dimension. Furthermore, the recent work of Jitomirskaya
and Liu [15] leads us to expect that phase resonances in quasiperiodic models implies
very singular, but not necessarily pure-point, spectral measures. The existence of such
phenomena would make obtaining lower bounds for our refined notion of dimen-
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sion exceptionally difficult—perhaps even impossible—for general operators unless we
consider additional assumptions on the potential, which is why we only obtain general
results for upper bounds on the dimension. In comparing our results to Simon’s [28],
we are drawn to two major differences: (1) we do not assume ergodicity and (2) we
do not exclude a Lebesgue null set.

The salient point here is that we arrive at a result similar to that in [28] without the
assumption of ergodicity or positivity of the Lyapunov exponent; we just need positive
upper Lyapunov exponent. It is possible to view an ergodic family of operators as
similar to a family of operators with a phase boundary condition. This surface analogy
would lead us to believe that the result in [28] should be the same as the result in our
situation, but this is not the case. Moreover, if there were an analogy between the
ergodic parameter and the phase boundary parameter, then Simon’s result would lead
one to believe that a Lebesgue null set of phases needs to be excluded; our result
shows that this is not true. We are able to obtain a logarithmic bound for all boundary
phases.

We are also interested in local perturbations of systems with exponentially local-
ized eigenfunctions and the following question:

Question 3. Suppose A:1%(Z") — 1%(Z") is self-adjoint with semi-uniformly local-
ized eigenfunctions, and let | = Lo be the spectral measure for 8y. If Ay = A +
A{80, )80 is a rank one perturbation at the origin, and if |, is the spectral measure
for 8y associated to Ay, is there an upper bound on how singular |, is?

In 1996, del Rio, Jitomirskaya, Last, and Simon proved that ;) must be zero
Hausdorff dimensional (in the classical sense of Hausdorff dimension) for every A.

We refine this answer in the following way (Theorem 2.5): not only are the spectral
measures zero-dimensional (see Definition 2.8), but the spectral measures p, are in
fact (In(1/¢))~"®-singular for every A and & > 0.

We also rigorously extend the quantum dynamic theory of Last from the power-
law setting to the general Hausdorff dimension setting (section 7). A similar result
extending quantum dynamics appears in Mavi [24]. We believe that these results,
especially Theorem 2.6, can lead to a strengthening of existing dynamics results for
quasiperiodic models (cf. [9, 14, 16, 17]). Indeed, in [18], Jitomirskaya and one of
the authors showed that, under the assumption of positive Lyapunov exponent, cer-
tain general quasiperiodic operators possess moments of the position operator which
exhibit sub-logarithmic growth, which improved the classical results in [9, 14,16, 17]
which established sub-polynomial growth.

The starting point for our analysis is the decomposition theory of Rogers and
Taylor [25,26]. Classically, any o-finite measure can be decomposed into pure point,
singular continuous, and absolutely continuous parts via the Lebesgue decomposition
theorem; Rogers and Taylor took this further and decomposed the singular continu-
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ous part into measures that are singular or continuous with respect to the power-law
Hausdorff measures.

Briefly, a measure u is said to have exact power-law dimension « € [0, 1] if and
only if u(E) = 0 for every set S with power-law Hausdorff dimension 8 < « and if
W is supported on a set a power-law Hausdorff dimension «. In the terms used in this
paper, this is equivalent to the upper and lower dimensions with respect to the family
F = {t*:0 < a} coinciding.

Measures with exact dimension O or 1 are often viewed as “close” to pure point
or absolutely continuous measures, respectively, but they do not need to be pure
point or absolutely continuous. Relevant examples include the spectral measures of
1D quasiperiodic Schrodinger operators. It is known that the spectral measure is
0-dimensional for every irrational frequency, yet there exist frequencies for which
the measure is not pure point [13]. Much of the work applying this theory to spectral
theory has been unable to address how close these measures are to these two extremes.

It is known, however, that more general Hausdorff measures can be defined by
replacing ¢* in the definition with a suitable gauge function p(z).

One of the authors has explored a generalization using (In(1/¢))™* in the defin-
ition of Hausdorff measures to create a logarithmic dimension and used it to study
spectral questions in his thesis [22]. This has already found applications in [3]. We
take these concepts and generalize them even further using modern ideas into what
we believe is the most natural general framework (complete families of Hausdorff
measure functions). Using these general families of Hausdorff measures, a similar
notion of dimension can be developed to address these more delicate situations. Full
details are presented in Section 2.

With this theory, we are able to extend the Gilbert—Pearson and Jitomirskaya—Last
theories of power-law subordinacy (Theorem 2.2), and we prove that half-line oper-
ators with positive upper Lyapunov exponent have at most a logarithmic dimension
(Theorem 2.3). Moreover, we are able to construct half-line operators that achieve
any given dimension for Lebesgue a.e. boundary phase (Theorem 2.4). We have not
extended this analysis to every boundary phase, but we believe that the removal of a
null set of boundary phases is simply a limitation of our proof methods.

Moreover, in Theorem 2.3, we obtain a (InIn(1/¢))? correction term, which is
lacking in all of the existing results that just use a log-dimension. The proof heavily
relies on the fact that the spectral measure of an operator of the form (2) is suppor-
ted on the set of energies, E, for which there exists a solution u; to Hu; = Eu;
satisfying:

u1(0) =0 and u;(1)=1
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and, for every § > 0,

lim sup —||u1 ”%

L>oo L(InL)'+s

where || - ||z is defined by (8) below. This is the origin of the (Inln(1/7))' 4 correction
term, and reveals when we expect this correction term to be unnecessary: whenever
we can improve (1) on certain length scales. This is precisely what we do in our proof
of Theorem 2.4 (iii). The potentials constructed in Theorem 2.4 do not exhibit this

o0, )

correction term for a.e. 8, so is would be of interest to know if there are potentials that
yield spectral measures that achieve a dimension with this correction term.

The rest of our paper is organized in the following way. In Section 2, we build a
general Hausdorff dimension framework, and introduce the major definitions, models,
and results of our paper. In Section 3, we relate the Hausdorff dimension of a meas-
ure to tangential limits of its Borel transform. In Section 4, we apply these notions
to derive a subordinacy theory for half-line operators, proving Theorem 2.2 and the
first part of Theorem 2.3. In Section 5, we analyze the dimension of spectral meas-
ures associated to operators with sparse barrier potentials and prove Theorem 2.4. In
Section 6, we discuss the behavior of spectral measures under rank-one perturbations
and show that, under local perturbations, the spectrum of systems with exponentially
localized eigenfunctions remains at most a logarithmic-power dimension. Finally, in
Section 7 we use our general Hausdorff dimension framework to extend the quantum
dynamics theory of Last [23] to encompass our more general notion of dimension.

2. Preliminaries and main results

Now, we will give an overview of the relevant definitions for a discussion of general-
ized Hausdorff dimension.

Our analysis begins with the decomposition theory of Rogers and Taylor [25,
26]. The classical Lebesgue decomposition theorem provides a way to decompose
any measure into three pieces: an absolutely continuous piece, a singular continuous
piece, and a pure point piece. Rogers and Taylor used Hausdorff measures to further
decompose the singular continuous piece.

Definition 2.1. A Hausdorff dimension function, or gauge function, is a strictly
increasing differentiable function p: (0, co) — (0, co) with

lim p(7) = 0.
Jim, p(1)

Definition 2.2. The p-dimensional Hausdorff measure, 1”, is defined on the Borel
o-algebra as

—0 §-covers

W(F) = lim inf {3 p(FD).
i=1
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Observe that if p(z) = t* then we arrive at the usual a-dimensional Hausdorff
measure.

Consider the family of all Hausdorff dimension functions, # and the partial order,
<, on J given by p < £ if and only if

im 28 _
t—o0+ £(¢)

It is easy to see that if lim,_, o+ % = 0, then £ < p. Additionally, we will define an
equivalence relation, ~, on # by p ~ & if and only if

p(t)

0< lim —= < o0.

t—o+t &(1)
We say that p < £ifand only if p < E or p ~ £.

Definition 2.3. We say ¥ C K is a complete one-parameter family of comparable
Hausdorff dimension functions if ¥ is a totally ordered subset of # which is order
isomorphic to a subinterval / C R. That is, if every pair p, § € ¥ obeys either p < &
or £ < p, and if there exists an interval / C R such that there is an order-preserving
bijection from ¥ to /. Particularly, we can write

F ={paia el py <pg < a<§p}.

For simplicity, since these are the only families we will work with in this paper,
we will simply call these comparable families or complete comparable families.

Remark 1. We may relax the order isomorphism condition slightly to allow for order
isomorphisms with boxes in R”, for 1 < n < 0o, along with the lexicographical order.
All of our applications, however, use n = 1.

From this point forwards, we will restrict our attention to such families. Typ-
ical examples include the usual functions {r*},.g used to define the usual Hausdorff
dimension, and even more generally, families of the form {p(#)*},-, for some fixed
p(t) e K.

We can use the completely ordered family (¥, <) to generalize the Hausdorff
dimension of sets and measures in a way that reduces, in a sense, to the classical
definition when ¥ = {*:0 < o < 1}:

Definition 2.4. Let ¥ = {py:a € I C (0,00), py < pg iff & < B} . The F -dimen-
sion of a set S, denoted dimg (.5), is given by

o ifa’ el,
dimg(S) =40 ife’d/ando’ <aforalla €1,

oo ifa’ glanda’ > aforalla €1,

where o' = sup{a € I: uP*(S) = oo} = inf{a € I: uP=(S) = 0}.
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Remark 2. It is natural to ask that a “good” definition of the dimension of a set be
well defined for any Borel set and agree with the usual Hausdorff dimension when
applicable. We require the order isomorphism to be with an interval (or more gen-
erally, a box) to avoid the pathological behavior caused by the presence of “gaps,”
which can be illustrated in two examples:

1. first, we have the case of ¥ = {t*:« € [0, 1]\Q}, which is unable to describe
the dimension of sets with usual Hausdorff dimension 1/2, since the notion of
supremum and infimum are not defined on ¥;

2. second, we have the case of ¥ = {t*:« € (0,1/3] U [2/3, 1]}, which is also
unable to describe the dimension of sets with usual Hausdorff dimension 1/2,
since the supremum and infimum will not agree.

Observe that this is a precise generalization of the normal Hausdorff dimension
when ¥ contains only functions of the form #*.

Unlike sets, a measure need not have an % -dimension, which motivates the fol-
lowing definitions:

Definition 2.5. We say that a measure u is p-singular if there exists some set G such
that w(R\G) = 0 and u?(G) = 0. Similarly, we say that a measure u is p-continuous
if () = 0 for every set S with u?(S) = 0.

This leads us the notion of upper and lower dimension:

Definition 2.6. The upper ¥ -dimension of a measure i, denoted dim} (u), is given
by
B ifp el,
dim}(ﬂ) =4 00 iff ¢l andp’ > «foreveryw €I,
0 ifp'¢glandf <aforeveryw €1,

where 8’ =inf{o € I: p is py-singular}. Similarly, we define the lower & -dimension
of a measure ., denoted dimyg (1) is given by

/

y' ify' e,
dimg(u) =30 ify’ ¢ Iandy <aforeveryw € 1,
oo ify'glandy’ > aforalla €1,
where y' = sup{a € I: jt is py-continuous} .
We can now define the ¥ -dimension of a Borel measure jt.
Definition 2.7. The ¥ -dimension of a Borel measure u, denoted dimg (), is given
by
dimf(n)  if dim} (n) = dimy (),

dimg (n) =
undefined  if dim} (1) # dimy (u).
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Related concepts we will occasionally use are the idea of zero-dimensional and
positive-dimensional Hausdorff measure functions.

Definition 2.8. We say a function p € J is a zero-dimensional Hausdorff dimension
Sunction if p < t¥ for every a > 0. Analogously, we say a function £ € J is a positive-
dimensional Hausdorff dimension function if t* < & for some o > 0.

Our approach here is, as far as we know, novel. Past work in this direction has
always dealt with studying the singularity and continuity of a measure with respect to
families of the form {p*},; , whereas our notion of a complete family of Hausdorff
dimension functions allows us to consider more varied families, which allows us to
gain sharper results.

2.1. 1D Operators

First, we will examine dimensional properties of discrete Schrodinger operators on
the half-line. We define

(Hoy)(n) = y(n = 1) + ¥ (n + 1) + V()¢ (n), 2
along with a phase boundary condition
Y (0) cos @ + (1) sinf = 0, 3)

where —% < 6 < % and the potential V' = {V(n)},2, is a sequence of real num-
bers. The study of operators of the form (2) along with the boundary condition (3) is
equivalent to the study of (2) with a Dirichlet boundary condition

v(0)=0, y(1)=1, “
along with a rank-one perturbation at the origin
V(1) — V(1) —tan®.

So, without loss of generality, we will confine our attention to operators of the form (2)
on [2(Z™") along with the Dirichlet boundary condition (4) and interpret the boundary
phase as applying the corresponding rank-one perturbation at the origin.

For these operators, it is known that the vector §;, which is 1 forn = 1 and 0
otherwise, is cyclic, so the spectral problem reduces to the study of the spectral meas-
ure (4 = g, . The behavior of this spectral measure is related to the behavior of the
Weyl-Titchmarsh m-function, which in our case coincides with the Borel transform

of u:
d
Fu(z) = / 1), )

X —Z
R
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When there is no ambiguity, we will usually omit the dependence on p and express
the Borel transform as F(z). For a full discussion of this relationship, we refer the
reader to Simon [27]. Of particular note is that the Borel transform of a measure u

exists whenever 4
/ px) ©)
|x| + 1
We will assume all measures considered in this paper satisfy this condition.
Our first results will extend the Jitomirskaya—Last theory of power-law subordin-
acy [12], which is itself an extension of the Gilbert—Pearson theory [7, 8, 19], both of

which relate spectral properties of the operator (2) to solutions of the corresponding
Schrodinger equation

un —1) +ur+ 1)+ Vn)un) = Eu(n). @)

More specifically, we will let ||u| ;, be the norm of u over the lattice interval of L.

That is,
LL]

1/2
hulle = (3o (ueDP + (L = [LDIu(LL] + D) ®)
n=1
where | L] is the integer part of L. We say that a solution u of (7) is subordinate if
Julle _
L—oo [|v]lL

for any other linearly independent solution v. The Gilbert—Pearson theory related
the absolutely continuous part of the spectral measure p to those energies E for
which (7) has no subordinate solutions; likewise, the singular part of the spectral
measure  is supported on the set of energies for which the solutions to (7) with the
Dirichlet boundary condition are subordinate. The Jitomirskaya—Last theory refined
the treatment of the singular part of the spectral measure to consider different kinds
of singular-continuous spectral measures based on the classification of those meas-
ures with respect to the usual power-law Hausdorff measures and dimensions using a
decomposition theory developed by Rogers and Taylor [25, 26]. Our treatment goes
further still and considers decompositions with respect to arbitrary families of Haus-
dorff measures, not just the usual power-law measures.

Given Hy of the form (2), and £ € R, we define u; to be the solution to (7)
obeying the Dirichlet boundary condition

u1(0) =0, u(1)=1;
and let u, be the solution of (7) obeying the orthogonal boundary condition:

uz(O) =1, uz(l) =0.
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Given any ¢ > 0, we define the length scale L(g) € (0, 00) as the length that yields
the equality
iz lu2llz e = 26
Another useful tool in studying operators of the form (2) is the n-step transfer
matrix ®,(0, E). This is the matrix

ur(n +1) uz(n + 1))
®,(0,F) = .
O R
With this, we can define the upper Lyapunov exponent,
1
L*(6,E) =limsup —In ||®,(0, E)|. ©)]
n—oo N

We know of no explicit link between the operator H and the local scaling behavior
of the spectral measure p in this regime, so we begin with an important technical result
relating the generalized Hausdorff dimension of a Borel measure to growth properties
of its Borel transform:

Theorem 2.1. Define Ag = {0}, A1 = (0,00), and A, = {00} . Suppose p is a Haus-
dorff dimension function satisfying p(t) < t%,a < 1. We have

po—exte)

lim sup Aj
e—0t P(S)
if and only if
limsupLImF(x +ie) € A;,
e—0t p(g)
withi =0,1,2.

Our first core result is a subordinacy theory extending the work of Jitomirskaya
and Last [12, 13], which links the generalized Hausdorff dimension of the spectral
measure | to growth properties of u; and u5;:

Theorem 2.2. Let uy and u, be solutions of the equation Hu = Eu for E € R
obeying u1(0) = 0,u1(1) = 1,u2(0) = 1, and u(1) = 0. Let p(t) be a Hausdorff
measure function. We have

lim sup LF(E +ig) =00
e—>0  p(&)

if and only if
timinf p(ua 7" a2 [ = 0.

Our second key result is a bound on the upper spectral dimension of a half-line
operator with positive upper Lyapunov exponent:
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Theorem 2.3. Let ¥ = {py: o € I} be a family of comparable Hausdorff dimen-
sion functions such that for some 8, & > 0, we have ay, 0 € I such that f5(t) =
Py &()78 = py, € F, where

1
In(1/¢)(In(In(1/¢)))1+6

fs(t) =

and

1
In(1/1)

If the upper Lyapunov exponent is positive for every E in some Borel set A then

g(t) =

dim;@ (u(AN ) < ay. Moreover, there exists an operator of the form (2) with positive
upper Lyapunov exponent whose spectral measure i obeys dimg (i) > as.

This improves upon an earlier result from [12] which was only able to conclude
that the power-law dimension was 0, and earlier results from Landrigan, which were
only able to conclude that the log-dimension was at most 1. There are two immediate
consequences of this result: (i) the lower dimension bound shows that Landrigan’s
log-dimension result is sharp; (ii) our upper dimension result reveals that there may be
examples of operators with positive upper Lyapunov exponent that have a dimension
strictly larger than 5.

While we do not know which of these bounds is sharp, by considering an operator
with a suitably sparse barrier potential, we are able to show that, with respect to a
suitable family, %, the lower dimension above can coincide with the actual dimen-
sion for Lebesgue a.e. boundary phase. Let 8(x) be a non-negative increasing convex
function such that In(f8(x)) is still convex. For example, we could take B(x) = e*.
Moreover, suppose that G(¢t) = 1/871(1/t?) defines a zero-dimensional Hausdorff
dimension function. Let f/ denote B~ composed with itself j-times. We will con-
sider any family of Hausdorff dimension functions, ¥ = {p,: @ € I}, such that there
are a1, @, and a3 € I such that py, = G()Y/" f7(1/t?)7', pa, = G(t)1~9/7 and
Pas = G()V7/(In(B~1(1/1)))' 8. That is, G()V/"f7(1/t*)71, G(t)(1~9/" and
G()'"/(n(B~'(1/1)))'*% € ¥ for some j > 1 and 5,8 > 0. Define length scales
inductively by L; = 2, L,+1 = B(L,)" and define a potential

B(Lr)" n = Ly,

Vin) =
! {o n g (L),

A theorem of Simon and Spencer [29] ensures the resulting Schrédinger oper-
ator with potential as above has no absolutely continuous spectra, since one has
lim, 00 |V(n)| = 00. Moreover, this potential does not satisfy the criterion for pres-
ence of pure point spectra from [21]. These two observations make the following
theorem particularly meaningful.
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Theorem 2.4. Let n, B, G(1), F, pay s Pas» Puz and V(n) be as above. Let jig be
the spectral measure of the half-line operator (Hopu)(n) = u(n + 1) +u(n —1) +
V(n)u(n) with boundary phase 6. Then

i.  for every boundary phase 0, the spectrum of Hg consists of the interval
[—2,2] (which is the essential spectrum) along with some discrete point spec-
trum outside this interval;

ii. forevery 0,
@y < dimg (ne((—2.2) N +)) < dimy (ug((—2.2) N ) < a3

iii. for Lebesgue a.e. 0, dim; (n) <oa.

In particular, if we take B(x) = e*,n = 1, then Theorem 2.4 proves the second
part of Theorem 2.3.

One of the most interesting parts of this theorem is that we only prove an exact
dimension result for a.e. boundary phase 6. This is a limitation of our proof, where
we carefully study the existence of suitably decaying solutions in the case 6§ = 0, and
interpret different boundary phases as consequences of particular rank-one perturba-
tions; by considering rank-one perturbations, we are able to deduce the existence of
similarly decaying solutions for other boundary phases, but lose a Lebesgue null set in
the process. A similar result is known to hold for every boundary phase when positive
power-law Hausdorff dimensions are considered, but the only proof we are aware of
requires more involved arguments involving quantum dynamics [31].

2.2. Systems with exponentially localized eigenfunctions

We then turn our attention to fractal properties of Schrodinger operators on the lattice
12(Z2”),v > 1.

First, we study what happens to the dimensional properties of spectral meas-
ures when we apply rank-one perturbations to operators with exponentially localized
eigenfunctions. More specifically, by the spectral theorem it is known that every
bounded self-adjoint operator on a Hilbert can be realized as A: L?(du) — L*(dp),
¥ > Y - x, for some suitable measure . If we let ¢ € L?(d ) be a cyclic unit vector,
then we can easily define the rank-one perturbation of 4 by ¢ as

Ay =A+ Mo, )o, AeR.
If we let w,; denote the spectral measure of A, associated to ¢, and F) the Borel

transform of 1), then it is known that

Fo(2)

BO=153R0
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which, in conjunction with our work relating dimensional properties of a measure to
growth properties of Borel transforms, allows us to study how the dimension of a
spectral measure is affected when it is under the effect of a rank-one perturbation.
We say that a self-adjoint operator on /?(Z") has semi-uniformly localized eigen-
functions (SULE) if and only if there is a complete set of orthonormal eigenfunctions,
{gon}f,o:l ,thereisa > 0andm, € Z",n > 1 and foreach § > 0, a Cs > 0 so that

|@n(m)| < Cedmnl=elm=mal

forallm € Z¥, and n > 1. Here | - | on the right hand side denotes any Z" norm.

It is known, [6], that if an operator H:[%(Z") — [?(Z") has SULE, if H; =
H + (8o, )80, and if u and w) are the spectral measure for H and H) respectively
associated to &g, then ), is zero-dimensional. We are able to improve this into

Theorem 2.5. Suppose H:1%(Z") — 1*>(Z") has SULE and let ¥ = {(In(1/t))™%:
0 <a <oo}.Let Hy = H + A{(8o,)80. Let d be the spectral measure of H asso-
ciated to 8y, and let djv) be the corresponding spectral measures for H). Then, for

every A, dimg (supp(di;)) < v.

2.3. Quantum dynamics

We now turn our attention to dynamical properties of Schrodinger operators on the
lattice /2(Z"), v > 1. Our main interest in this setting is in dynamical properties of
operators of the form

(HY)(n) =Yy (m) + V()y(n),

[n—m|=1

though much of our discussion applies to any self-adjoint Hamiltonian. A theory
based on the power-law dimension was developed by Last [23]. Notably, the the-
ory establishes an extremely useful connection between the continuity of a spectral
measure and the average growth of the moments of the corresponding position oper-
ator (see, e.g., [4,20,30,31]). Our starting point is that the original theory of Rogers
and Taylor was actually developed in the generality that we are using; in particular,
the decomposition theory and the critical [23, Theorem 4.2] exist in our general set-
ting once a suitable notion of uniform Holder continuity with respect to a general
Hausdorff dimension function is realized. This allows us to proceed in much the same
manner as Last.

A common application of Last’s theory is the notion of a transport exponent,
which relates to the average power-law growth of the p” moment of the position
operator. One of our most important results in this direction is the following.
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Theorem 2.6. If H is self-adjoint on 1*(Z") and Pycr # 0, where P, is the ortho-
gonal projection on H ¢, then for each m > 0, there exists a constant C = C(y, m)
such that for every T > 1

{(|XI™)r > Cp(1/T)™™/". (10)

We refer readers to Section 7 for the definition of J{,. and the left hand side
of (10). This may be used to define a more general notion of transport exponent than
has previously been studied. Analysis of this transport exponent has been of central
importance in many dynamical results (see, e.g., [4,20,30,31]) and we hope to extend
this analysis in future work.

3. General Hausdorff dimension of sets and measures

The following characterization dates back to the original work of Rogers and Taylor
[25,26]
Theorem 3.1. Let A be a Borel set, and let ;1 be a Borel measure. Then

1. u(- N A) is p-singular if and only if

. p(x —e x +¢)
limsup—— =
e—>0 p(e)
for pu-a.e. x € A;
2. wu(-N A) is &-continuous if and only if

. nx—e,x+e)
lim sup ———

§—>0 £(e)
for p-a.e. x € A.

When pu is the spectral measure of some self-adjoint operator A, we know of no
direct relation between the local scaling behavior of p and spectral properties of A.
To bridge the gap between the two, we will need to introduce the Borel transform, as
in [5]:

Definition 3.1. The Borel transform of a measure , denoted F,(z), is

Fute) = [ 0

x—z
R

It is known that the Borel transform provides an alternate characterization to The-
orem 3.1 for the usual Hausdorff dimension, but it in fact applies to our more general
notion. Notably, we may now prove Theorem 2.1:
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Proof of Theorem 2.1. Let Mﬁ (x0) = u(xo — 68, xg + 8). By definition, we have

[o¢]
. du(y) 1
ImFM(X() +l8) =¢& / m = 2—8M;:(X()),
—0Q
SO ME (x0)
X0 <
<2 Im F(xo + i¢).
p(e) M) g
Thus
, M (xo)
lim sup < 2limsup — Im F,(xo + i¢).
e—0T pLe e—>071 ,O( )

Hence, if the left hand side equals co, then so does the right hand side. Analogously,

if the left hand side equals 0, then so does the right hand side.

On the other hand, suppose lim sup,_,, ME((;;O) < 00. Then we know that

M} (x0) < Cp(3),
for ¢ sufficiently small, so we have

lim sup —— Im Fj (xo +i¢e) <lim sup |FM(x0 +ig)

. € du(y)
=< lim sup p(g)_é [(XO _ y)2 + 82]1/2

i )

ly=xol>1  |y—xo|=1
= limsup — / A7)
() [(xo — y)2 +&2]1/2"

|[y—xol=<1

(11)

Here (11) follows from the observation that

¢ dp(y) ¢
@ / [(xo — )2 + £2]1/2 = o(2) C(x0) = 0

[y—xo0l>1

where the inequality is a consequence of (6) and the limit is a consequence of p <
¢ <t.

We can then evaluate the remaining integral by integrating by parts, and by
observing that the boundary term at O vanishes:

lim sup — ° / du(y)
p(e) [(x0 — y)? + €2]1/2

[y—x0l=<1
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= lim sup M;i (x0)d$

1
5 ]
o(e) 0/ (62 + 82)°2

1
. P §0(8)
<l C ds.

Now, we break the integral into two pieces: fos + [ 81 and observe that the first piece is
uniformly bounded. The second piece can be bounded as

1
5p(8) 45 < Cf p(3)

1
£
1i C — | —=d6.
st p(s)/ 2 +622°° =" 00 ] 8

Observe that either this is immediately obvious to be finite, or de I’Hopital’s rule
applies to

L [e®)
p(e)/e) &

Applying de I’'Hopital’s rule, the limit will coincide with

i PE®
=0 p(g)'e — p(e)
This will be finite as long as
p(e)
p(e)'e
is bounded away from 1. Now, rewrite as

o'/p
1/e"

Since p < t%, we know that
lin}) In(p(e))/In(e) < a.
&—>

However, de I’Hopital’s rule also applies to this limit, which implies the desired
boundedness property.

This finally implies that the two desired lim sup are either both finite or infinite.
Moreover, if lim sup,_, o+ % = 0 then the constant C above may be taken to be
arbitrarily small, ensuring that lim sup, _, o+ ﬁ Im F), (xo + ie) = 0. This completes

our proof. u
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4. Half-line subordinacy

Let Hy be the self-adjoint operator defined on /2(Z ™) by
(Hou)(n) = u(n —1) + u(n + 1) + V(n)u(n),
where {V(n)},;2, is a sequence of real numbers along with the phase boundary con-
dition
u(0)cos @ 4+ u(1)sinf = 0.
Definition 4.1. We define the length scale L(¢) as the length that yields the equality
lurll gy luall g, = 2.

Theorem 4.1. Let uy and u, be solutions of the equation Hu = Eu for E € R
obeying u1(0) = 0,u1(1) = 1,u2(0) = 1, and u(1) = 0. Let p(t) be a Hausdorff
measure function. We have

lim sup %F(E +ig) =00

e—0 pP\€
if and only if
timinf p(ljur " u2liz D) ur |17 = 0.
L—>o0
Proof. This follows from [12, Theorem 1] and Theorem 2.1 above. ]

We now have two applications of this theorem to zero dimensional Hausdorff
dimension functions and positive dimension Hausdorff dimension functions.

Theorem 4.2. Let f(L) be a continuous, strictly increasing function such that
L. f(0) =0,
2. limg 00 f(L) = 00, and

3. limz o0 % =0 foreveryoa > 1,

andlet g(t) = W Suppose that for every E in some Borel set A, we can find a
solution, v = auy + bu,, to Hv = Ev that satisfies

, lvliz

lim sup > 1.

L—o0 f(L)
Let ¥ = {py:a € I} be any family of comparable I;Icmsdorﬁr dimension functions
such that there is ay € I such that py, = g(f~1( lllilllzgt_z)),for some constant |b|

and 0 < & < 1/|b|. Then dim;(u(A Nn-) <a.
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Proof. 1t is known that u is supported on the set of energies E for which u; satisfies
the inequality

2
u
lim sup s “L

_— , 12
Ty ATET A (12)

for every § > 0, so we may restrict our attention to those energies. For every E € A, v
must be a linear combination of u; and u,, say v = au; + bu,. Thus, for every L,

Ivllz < lalllurlle + |bllluz]lL.

By our choice of f, and our restriction on the energies, E, we see that we must have
b #0,s0
[vlie —lalllull

|b]

luzllr =

Hence, we must also have

. luzll7 1
lim sup > —
Lo Sf(L)  |b|?

for all such E. Now, (12) implies

(13)

lurll < CLY?(n L) 4972
for some constant C > 0, and (13) implies
5 1

lu2llz, > (7 —¢)f(Ln)
|b]

1
bI2°
Now, consider &, such that L,, = L(s,). We have

for some sequence L, — oo andevery 0 < ¢ <

2
Ly 1] 2 1 r2 2
o/ (o 2 e 2, )12,
el
_ b|2 _ b|2
S G 12, 02, ) (nCF =) (Rl |2, a2, )) 1+

- Ln(InL,)'** B
Y NS La) In( TS (L))

Thus, if g(f_l(l_lll’llflzst_z)) < p(t) it is easy to see that

. 2 2 2
Jim p(nl, ezl b, = 0.

We now finish by appealing to Theorem 2.2. |
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Corollary 4.1. Let f(t),g(t), and F be as in Theorem 4.2. Moreover, suppose pq, as
before with |b| = 1. Let ®,(0, E) be the n-step transfer matrix associated to Hu =
Eu along with the boundary condition 8. Suppose

1
lim sup
L—oo f(L)

L
Y ®a(0. B)|* = 2
n=1

for every E in some Borel set A. Then dim} (u(AnN-)) <oa.

Proof. Recall that

O L)

u(n) uz(n)

SO
19 (6, E)I* < |ur(n + DI + [ur (n)|* + [ua(n + D|* + |uz(n) %,

and summing yields

L
> 1@a(0. E)IZ < 2(lurl} + luzll?).

n=1
Thus, we conclude that (13) holds, so Theorem 4.2 yields our result. n
Using Corollary 4.1, we can now prove Theorem 2.3:
Proof of Theorem 2.3. Positive upper Lyapunov exponent yields
|®n (8. E)| > "BV
for some subsequence 7. Thus, we may apply the corollary with

F(L) = oL (L™ (E)/2)

to see that

2
L*(E) In(755¢72)(InQ2 In(755172)) 18/ L*(E))’

dim} (u(A N ) <

Note that

1n(1 18z—2) —1n(r"2) — In(1 — ¢)

and

(m(z 1n(1Lz—2)))1+‘s — (In4— ln(% In(1 — &) + In(r~ 1)) 14,

— &
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In both of these, the In(1 — ¢) and In 4 terms do not contribute meaningfully to the
limit as t — 0, so we can see that
2 1
L*(E) In(=172)(In2 In(=¢=2))1 8 /L*(E))  In(1/1)(In(In(1/1)))!+8’

where ~ here is meant as the equivalence relation defined on the family of all Haus-
dorff dimension functions, . The second part of the theorem follows from The-
orem 2.4, which is proved in the next section. |

We also have
Theorem 4.3. Let f(L) = L&D be a continuous, strictly increasing function such
that (1) f(0) > 0and (2) limsup; _,, g(L) = o € (1,00). Let
12/(+B)
pp(t) = (nt)2B/G+H)
and suppose ¥ is a family of comparable Hausdorff dimension functions that contains

pg for some B < a. Suppose that for every E in some Borel set A, we can find a
solution, v, to Hv = Ev that satisfies

lim sup vl > 0.
L—oo f(L)

Then dimJ- (u(AN-) < B.
Proof. As before, we have the following bounds on ||u; ]| and ||u2||:
hellz S L2 InL

and
2
lu2llz, 2 f(Ln)
for some sequence L, — oo. Taken together, we have

2 1+
ey |27+

— —1 2
pp Iz ez iz e 2, =
a2/ (nlaey 12, ez 12,))28/ 092/ (1 + B)

) LEIGHB) g 2B/ 1+B)
~ LETIOEBY (gL Y In(L,))2B 0B

B—g(Ln)
Ln 1+8
g(Ly)™F

We now finish by appealing to Theorem 2.2. ]

There is also an analogous version of Corollary 4.1.
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5. Proof of Theorem 2.4

Let B(x) be a non-negative increasing convex function such that In(8(x)) is still
convex. For example, we could take B(x) = e*. Moreover, suppose that G(t) =
1/B871(1/t?) defines a zero dimensional Hausdorff dimension function. Let f/
denote B! composed with itself j-times. We will consider any family of Hausdorff
dimension functions, ¥ = {py: o € I}, such that there are o1, o2, and a3 € I and
j >1,1n,8 > 0 such that

pay = GOV FI(1/1H)71,
par = G(t) 17O/,
Pay = G()'/"/(In(B~1(1/1)))" 2.

Define length scales inductively by Ly = 2, L,+1 = B(L,)" and define a potential

B(Li)" n = Ly,
0 n ¢{Lk}120=1'

We will begin with an elementary lemma which will be useful:

V(n) = {

Lemma 5.1. Let B(x) be defined as above. Then B~ (xy) < B~ (x) + B~1(y) for
every x,y > 0.

Proof. Since B is increasing, this inequality is trivial if x = 0 or y = 0, so suppose
x,y > 0. Then we can write x = e*! and y = e”! for some x; # —y; € R. Since
In(B(x)) is convex, the inverse, B! (e*), is concave. Define f(x) = B~ !(e*). Then

we have
B~ (xy) = f(x1+ y).

Since positive concave functions are subadditive, we have
@ +x2) < fx) + flx2) = B + B
Hence, 871 (xy) < B~ 1(x) + B~1(»). "
Now, we may turn our attention to a proof of Theorem 2.4:

Proof of Theorem 2.4 (). It is well known [12] that the essential spectrum is con-
tained in the interval [—2, 2], so it just remains to prove the dimension result. ]

Proof of Theorem 2.4 (ii). For simplicity, we will prove the theorem for n = 1. The
proof of the general case is similar. Let I = [a, b] C (=2, 2) It suffices to prove the
theorem for pg (1 N -).

Let a(x) be defined such that f(x) = x*™).
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First, we will prove that dim; (ng(I N+)) < a3 for every boundary phase 6. For
every E € I,m >k >0, let

Piem(E) = Tn(E)Tn—1(E) -+ Ti 41 (E)

where

I.(E) = (E —V(n) —1)'

1 0

Since det(®x m (E)) =1, it follows that [| @} (E) || = [|Pxm(E)||~". Forany n € Z*,
it Lp <k <m < Lpyy, then @ ,,(E) is the same as the transfer matrix for the
free Laplacian. In particular, there exists some constant C;, depending only on the
interval 7, such that 1 < ||®g ,,(E)|| < Cr for any such k,m and E € I. Moreover,
forany n € ZT, we have

®p,-1,0,(E) = Ty, (E) = (E —V(Ly) —1)’

1 0

and so
max {1, V(Ly) — 2} < || T1,,(E)|| < V(Ln) + 3.

If we consider some n € Z* and L,, < m < L,41, then we have
Pom(E) = Pr,mTL, PrL, ,L,~1TL,_, + Pry,L,—1TL, Po,L, -1
Thus, we see that
2 ‘ a(Ln)
|on(E) < CpH [TV (L) +3) < ¢ [T 5™ < cp( H )
k=1 k=1 k=1

where C; is some constant. Similarly, for large n, we also have

n—1 _
[on(E)] = (¢ TV +3) (VL) ~2)
k=1

_ Cz_n(('i_[ Lk>_1Ln>a(Ln),

k=1

where C, is some constant. Since L,4+1 = B(L,)", we see that we can take n suffi-
ciently large so that

1 n
Le) Lo<||Le <L, (L.
pIm <H ) =l
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Similarly, for any ¢ > 0 and n large enough we have CJ' < B~!(L,)® and CJ <
B~Y(L,)%. Hence, forany L, <m < L1,

a(Ln)

n a(Lp) _ _ _
()™ B L = 10 = (Lo L) 57 Lo, 10

'(Ln)
Set h(m) = B(m). By taking m = L,,, we have

L 2a(Lp)
2 a(Ly) -1 —2¢
om )§:||<1>k|| 2 1,5 (o) AT )
= Lyt gl (Ly) 20728 (15)

By our assumptions on 8, (15) — oco. Corollary 4.1 now yields
dim (119 (1 1) < 3.

for every boundary phase 6 as desired.
Now, we will prove that dimg (ig(I N -)) > a3 for every boundary phase 6. By
Theorem 2.2, it suffices to prove that for every E € [

tim inf(8~" (|lur |7 2 7))~ a7 > 0.

First, note that we have |11 (m)|? + |uz(m)|? > || @, (E)| 2. We see, by (14) and
our choice of L, for sufficiently large n and L, <m < L4+,

lurlln > %((Ln L 1)(/3%1%11))_20((%_1) +1(%>—2a(m>

Ln Ln —2a(Ln)
> 1
2 =) (16
where [ = m — L, + 1. Similarly, we have
lu2)l2, < Lu(Ly—1B ™ (Ln=1))**En=0 4 (L, B~ (Ly))>*Em
< LB N (L) + I(Ln 7 (L)) 2@ &), (17)

For simplicity, let

A . Ln B . Ln _205(Ln)
" B~ (Lyn) " (lg_l(Ln)> ’

Cn = LaP ™ (Ln), Dn= (Lnf~"(Ln))?*Em,

so that (16) becomes |u1||2, > A, + [ B, and similarly (17) becomes [[u2 |2, < Cy +
[ D,,. By combining (16), (17) and (12), and letting 1 </ < L,,4+1 — L, + 1, we obtain
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G Az A e A
> (B ((Cu + D) (m(In(m))*))* ! (An + 1 Bn)
B An + 1By
" (B (Cp + D) (I + Ly — D)(n(l + Ly — 1))2))173

We now need to analyze lower bounds for F, s(/)for 1 </ < L,41 — L, + 1,

= Fus(0).

so consider the two cases:
Case 1. [B, < Ay;
Case 2. [B, > A,.

We can see that Case 1 is equivalent to the case where [ < D, C, L;zs and Case 2 is
equivalent to the case where [ > D, C, L, %¢.
Considering Case 1, we have

Ap
Fn S(Z) >
’ (B~ (Cn + CoLy22D2)(I + Ly — )(In(l + L, — 1))2))1¢
Ap
>
~ (BH(2Cy L2 D2)(2D,Cy L;;26) In(2D,, Cy L, 28))) 18
Ap
~ (BTI(4D3C2L; 4 In(2D, C, L;26))1-8
An

A%

(/3_1(4D3+1/2C7,2+1/2L;48_1/2))1_8 '
We can now appeal to Lemma 5.1 and the fact that D,, = ,B(L,,)z(”s)Lfl to obtain

An Ly

for some constant K > 0. Since we may take ¢ arbitrarily small by taking n sufficiently
large, we conclude that this limits to oo for every § > 0.
Now, considering Case 2, we have

A, + 1B,
Frsl) 2 (B~U(KID,(21)(In(21))2))! -3
- A, + 1B, S oo
~ (BUK) +2B71(0) + B~1(Dn) + B~1((In(21))2))1 -8 '

Thus, for every § > 0, F,5(l) — oo as n,l — oo, which completes our proof. [ ]

Proof of Theorem 2.4 (iii). Once again, we will consider n = 1. We will show that for
Lebesgue a.e. E, and a.e. 6, the equation Hu = Ewu has solutions with appropriate
decay properties.
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Fix 0y = 0, and let H = Hy,. Foreachm € Z, let G, be the operator on /*(Z™)
given by
(6i.Gm;) = 8i.m—10j,m + Si—1,m8j m—1.

For each k € Z ™, define new operators
H,=H—-Gy, and Hy=H—Gr, —Gp 41,
and for every z € C, define the resolvent operators
G(z)=(H—-2)"1Gj(z) = (H, —2z)"" and G(z) = (Hy —2)~".
Moreover, for i, j € Z, let the corresponding Green’s functions be given by
G(i, j.z) = (8. G(2)8)).
Gi(i. j.2) = (8i, Gi(2)8)),
Gi(i. j.2) = (6:. G(2)5;).
Now, considering some n > L, we can use the resolvent identity

G(z) = G1(2) — G(2)GL, G (2)

to obtain
G(l,n,z) = =G(1,Lx — 1,2)G; (L. n, z). (18)

A similar computation with G, (z), yields the identity
G(2) = Gi(2) — Gr(2)GLi41G(2).
so we have
G, (Lk,n,z) = =Gy (Lg, Ly, 2)Gy(Li + 1,n,2)

Together, (18) and (19) yield

G(l,l’l,Z) = G(l,Lk — I’Z)G]/C(Lk + l,n,Z)m.

Whenever z = E +ig, e > 0, we see that G(i, j, z) and G,’((i, J, z) have the form (5)
and thus are Borel transforms of signed measures. We know (see, e.g., [28] for details)
that Borel transforms have finite non-tangential limits a.e. on the real axis:

|G, j, E)| =|G(@, j, E+i0)] < +oo
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and
|G (i, j. E)| = |G (i. j. E +i0)| < +oo0.

Let us also recall Boole’s equality for Borel transforms of singular measures: if
F(z) is the Borel transform of a singular measure on R such that u(R) = 1, then for
any A > 0, we have | {E: f(E) > A} | = 2/A. Since we have already shown that the
spectral measures of H for any vector §; are singular (Theorem 2.4 (ii) above), we
conclude that

HE:|G(, j,E)| > A}l <4/A and |{E:|Gi(i, j, E)| > A}| < 4/A.
From this, we deduce that forany j > 1,y > 0,k > 1,n > Ly and E € (-2,2),
AUNAT.
V(Ly) =217 fi(Lg)r/?

where f(x) = B~!(x) and f/(x) is the j-fold composition of f with itself. Let us
now fix j > 1. By our choice of Lg, Y e, (f7(Lx))™"/? < oo forevery j > 1 and
y > 0. By the Borel-Cantelli lemma, for Lebesgue a.e. E € (=2, 2), there exists a
K(E, j) such that forany k > K(E, j)andn = Ly + 1l or Ly + 2,

S (Ly)?
V(L) —2

HE: G(1,n, E)| >

|IG(1,n,e)| < (20)

Now, if E is such that the sequence u, = {G(1,n, E)},~, exists, it necessarily
solves the equation Hu = Eu forn > 2. Thus, forany Ly +2 <n < Ly, we can
recover G(1,n, E) using G(1, Ly + 1, E) and G(1, L + 2, E) and the action of the
free transfer matrix:

G(l.n+1,E)\ _ G(1,Ly +2,E)
( G(l.n,E) )_(DL"“’”(E)(G(I,Lk-i-l,E))'

Since we know that the free transfer matrix is bounded, we have || ®r, 15 ()l <
C(E)forLy +2<n<Lgyqand E € (—2,2). Hence, for Ly <n < Lg41, (20) holds
for the same full measure set of E as above and k > K(E).

It now follows that for Lebesgue a.e. E € (=2, 2), there exists a solution v of
Hu = Eu with [v(0)|?> + |v(1)|?> = 1 and a constant C = C(E), such that for suffi-
ciently large k and n > Ly,

fI (L)

lv(n)| < C V(Lo)

= Cf (L) B(L) ™ = Cf T (L) L )E.

Moreover, since there can be at most one subordinate solution of Hu = Eu with the
normalization property |v(0)|? + |v(1)|?> = 1 which is decaying, v must be the unique
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subordinate solution of Hu = Eu. We also have, form € Z*,L,, <m < L, 1 with
n sufficiently large,

w2, =Z|v<j)|2

LME)

= Z v(j)? +Z|v<n|2

j= L/\(E)-i-l

<C(E.v)+C Z Livi f7 (L)Y L7
i=k(E)
< C(E,v) + Cf/ (Ln)* Lyt1.

Now, we return to considering Hg, where 6 can vary. Recall that we can view Hy
as H along with an appropriate rank-one perturbation at the origin. By the theory of
rank-one perturbations (again, we refer readers to [28] for full details), it is known
that for any set A C R with |A| = 0, we have u(A) = 0 for Lebesgue a.e. boundary
phase 6. Since the set of energies for with the solution v above does not exist is
a Lebesgue null set, we can conclude that for a.e. boundary phase 6, the associate
spectral measure p is supported on the set of £ where the solution v above exists.
Furthermore, since p must also be supported on the set of energies for which u; is
subordinate, it follows that for a.e. 6 and a.e. E with respect to u, 1 must coincide
with v above.

For thisu; andm = L, + LnLiér"l, we have

ur |12, = Z|u1(1>|2+ Z i ()P

Ly+1
< c<E, V) + Cf 7 (Lp-1)? L + C(m — L) f7 (L) L, 2"
= C(E,v) + Cf/ (Ly-1)* Ly + Cf/(Lp)Ly

< C(1+ f7(Ln)* Ly).
On the other hand, a similar analysis yields

||u2 ”2 = LnIB(Ln)zﬂ_l (Ln)_l

2
form = L, + L,,Lni”l.
2/n

Thus, if gx(x) = (B~1(1/x?) f*(1/x?))"  andm = L, + L,L;",, then

gl ezl D e |17,
C(1+ f7(Ln)* Ln)
= B LaBLay?B (L) D S (LaBLa) B L) )
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_ Ca+ f7(Ln)* L)
T 2L, fR (L)

Since this limits to 0 whenever k < j, and since j > 1 was arbitrary, we conclude that
dim}(u(A Nn-) <o. [

6. Rank one perturbations: general results

We will now consider a probability measure ¢t on R and the self-adjoint operator
H:L?*(du) — L?(du) given by multiplication by x. Let ¢ be any cyclic unit vector
in L2(d ). We define the rank one perturbation of H by ¢ as

H, = H+ Mg, )p, AeR.

We will let it denote the spectral measure associated to Hj and ¢. Let F;, denote the
Borel transform of u), and write Fy = F. Then

_ F(@©
F(z) = TTAFQ)
_ ImF(2)
Im F,(z) = m

1
diy(x) = lim —Im F(x +ie)dx,
x—>et T

I3, sing 18 supported by {x: F(x +10) = —1/A}.

In addition to the Borel transform, we define

d
G0 = / (x/i(iif

It is well know that

{x: Gx) <oo, F(x +i0) = —)L_l} = set of eigenvalues of H).

Lemma 6.1. Let ¥ be a family of comparable Hausdorff measure functions and let
f = pa; € F. Suppose that for a family of intervals A, we have

[An| < f71(bn)
where b, > 0 is a summable sequence of real numbers. Then dimg (limsup A,) < a;y.

Proof. Fix g € ¥ suchthat f < g. Thatis, lim f(t)/g(t) = 0o, so g(¢) < f(t). Thus,
g7 1(t) = f~(¢). Since f is a Hausdorff dimension function, f~!(f) — O ast — 0.
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Hence, |A,| — 0, so given 8, we can choose Ny so that |4,| < § for n > Ng. Then,
form > Ns, U;o=m Ay is a §-cover of lim sup 4,,. Thus,

Z g(|4n)) < Z g(f 7 (bn)) < Zg(g '(bn)) < o0.

n=1

Thus, as m — oo, we have Y > ¢(|A,|) — 0. We conclude that

lim inf {Zg(|F|)}

§—0 §-covers

Thus, dimg (limsup A,) < pg for every B > a1, so dimg (limsup 4,) < ;. ]

Theorem 6.1. Let f(t) be a zero dimensional Hausdor{f dimension function, let ¥ =
{pe = f(t*): 0 > 0}, and suppose di(E) = Y o2, and8g, (E) where a, obeys the
condition that

lan| < f_l(bn)’

where by, is a summable sequence of positive real numbers. Then, for every A, we have
dimg (supp(dup)) < 2.

Proof. Let G(x) be defined as above and let S = {x: G(x) = 0o, x €{E;}{2,}. Then,
the Aronszajn—Donoghue theory [27] says that, for any A # 0, du3¢ is supported by S,
Thus, the spectral measure d) is supported by S U {eigenvalues of H,} . Since the
set of eigenvalues is countable, it will not contribute to the dimension of supp(dt}),
so it suffices to prove that S has dimg (S) < 2.

Fix ¢ > 0, let ¢y e = %|an|1/2_8 and let A5 = [Ey, — Cn,es En + Cn.gl. Then,

|Afz| — zcn,a — |an|1/2—s < f—l(bn)l/Z—e.
Now, by Lemma 6.1, for every ¢ > 0 and every f(t2/(1729)) < g(t) we have
& (limsup 4;) = 0.

Now, it remains to show that S C limsup A for every ¢. That is, it remains to
show that if x ¢ limsup A% and x & {E,}n—; , then G(x) < co. If x ¢ limsup A%,
then, for some Ny, we must have x & Uff’: N, A? . Now, observe that

G(x) = Z| E|2 Z|X_E|2+Z|X—E|2

<C +Z <C —|—22a,216 <C +sz—1(b,,)28.

n=~No n € n=No n=~No
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The first sum is bounded because x & {E,},—, . Since f is a zero dimensional Haus-
dorff dimension function, t* < f~1(¢) forevery « > 0, so f~1(b,)?® is summable, so
we have G(x) < oo. Thus, S C limsup A?, for every e. Thus, dimg (S) <2/(1 — 2¢)
for every & > 0. By our definition of %, it follows that dim# (S) < 2. n

By considering the larger family € = { f(t%)#:«, B > 0}, we can actually take
b, = 1/n in the above theorem and conclude with the same result, for a suitably
redefined choice of indices p, .

Definition 6.1. Let H be a self-adjoint operator on [2(Z"). We say that H has
semi-uniformly localized eigenfunctions (SULE) if H has a complete set {¢y}ne;
of orthnormal eigenfunctions, there is « > 0 and m,, € Z",n = 1,..., and, for each
6 > 0, a Cs so that

lon(m)| < Cset?Imn\—a\m—mn\

forallm € Z¥ andn = 1,2, ....

Lemma 6.2 ([5]). Suppose that H has SULE. Then, there are C and D and a labeling
of eigenfunctions so that

¢n(0)] < C exp(—Dn'/).

Theorem 6.2. Suppose H has SULE and let ¥ = {(In(1/1))7%:0 < a < 00} . Let
Hj) = H + A{6o,-)80. Let diu be the spectral measure of H associated to 8¢, and let
div), be the corresponding spectral measures for H . Then, for every A,

dimg (supp(dup)) < v.

Proof. Let u be the spectral measure associated to H and g, and u, the spectral
measures of H). Observe that we have

8o = ¢a(0)pn.

n=1

Set a, = ¢,(0). We can see that
oo
du(E) =Y andsg,.
n=1

where Ej, is the eigenvalue associated to the eigenfunction ¢,. By Lemma 6.2, we
have |a,| < C exp(—Dn'/¥) = C/f~'(n). We can see that f(n) = (%("))"; so, by
Theorem 6.1, we conclude that, for every A, dimg (supp(dpy)) < v. ]



M. Landrigan and M. Powell 1286
7. Dynamical bounds

Consider a separable Hilbert space H and H: H — 3 a self-adjoint operator. Let us
fix a vector ¥ € H with || || = 1. The time evolution of i is given by

V() =My
We now introduce the following notation:
(4) @) = (¥ (1), Ay (1))

for any operator A on HH, and

g = (fO)r / F()di

for any measurable function f.
We also have the moments of the position operator in /2 (Z"):

X7 = 3 (17 (8, )60
nezv

Definition 7.1. Let u be a finite Borel measure, and let p be a Hausdorff dimension
function. We say the measure w is uniformly p-Holder continuous (UpH) if there
exists a constant C > 0 such that (1) < Cp(]/|) for sufficiently small intervals /.

Definition 7.2. Let H be a self-adjoint operator on a Hilbert space J{. We denote the
p-continuous subspace as

Foe := {¥ € H: py is p-continuous}.

Theorem 7.1 (Rogers and Taylor [25]). Let u be a finite Borel measure on R and let
p be a Hausdorff dimension function. Then [ is p-continuous if and only if for each
& > 0 there are mutually singular Borel measures 15, 15, such that dp = du§ + dus,
ui is UpH, and p5(R) < e.

Theorem 7.2. Let p be a Hausdorff dimension function and
Hun(p) = {2 ny is UpH}.

Then
f]'Cuh (,0)

is a vector space and
:H:uh (P) = Hpe
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Proof. The only non-trivial vector space property is that H,; (p) is closed under lin-
ear combinations, so that is all we will prove here. Let ¥1, ¥» € H,,(p), and let
¢ = ay1 + by,. By assumption, there are constants C; and C, and § > O such
that py, (I) < Ci1p(|1]) and py, (I) < Cop(|1]) for all intervals / with |/| < §. For
such I, let Pr denote the spectral projection on /. Then,

po(l) = (¢, Pro)
= {ay1 + by, aPryy + bPryr)
<\lal®(Y1, Pryn) + b1 (Y2, Pipa) + 2lal|b||(¥1, Priv2)|.

Now,

(W1, Prv)| < v (¥, Prvn) (o, Prn)
1
5((%, Piyr1) + (Y2, Prvr2)),

IA

so we have

po(I) < lal*(Y1, Pryn) + b1 (Y2, Piv2) + 2lallbl(y1, Pr)]
< (lal* + lallb) (1, Pryn) + (161 + lallb]) (2. Pri2)
= (la]* + lal|b)py, (1) + (I* + lallb) ey, (1)
< Ci(lal* + lallb)p(1 ) + C2(1b1? + |allbDp(| 1)
= Cp(|1]).

Thus, H,,;(p) is a vector space.

Since Theorem 7.1 implies that H,,,(0) C Hpye, we have Hy,p(p) C 9{—,,6. Since
Hpe is closed, we have 3,5 (p) C Hpe. By Theorem 7.1, we can decompose d iy, ¢ €
Hpe, into a sum of mutually singular measures: dj, = duj + dus, where duj is
UpH and du5(R) < e. Let S, be a Borel set that supports u$ such that u§(Sg) = 0,
and let Pg_ denote the spectral projection on S,. We have

¢ = Ps,¢ + (1 — Ps,)p

with Ps,¢ € Hyup(p) and ||(1 — Ps,)@||*> < e. Thus, ¢ is the norm-limit of vectors in
Hun(p), so g{pc C Hyun(p) u

Lemma 7.1. If uy is UpH, then there exists a constant C = C(y) such that for any
¢ € Hwith |l¢| <1, we have

({e. v )P < Cp(1/T).

Remark 3. This is simply [23, Lemma 3.2] converted into the general gauge function
setting. The proof is identical, but we will provide it below for convenience.
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Proof. The spectral theorem implies that H restricted to the cyclic subspace spanned
by v is unitarily equivalent to multiplication by x on L?(R, dpy ). Thus, for each
@ € H, there exists f, € L*(R, dpy) with || f,|l2 < [l¢] such that

(0.0 0) = lo.e9) = [ fy )iy ).
By definition, in conjunction with the above,

Mo v @O))r = / / o To e T2y, () djy (x)

R R

< / / | fo | fo ()| eGP T2 8= T2 8 gy () dpny (x).
R R

Applying the Cauchy—Schwartz inequality in the y variable yields
—(x—v)2T2
ey )1 = [ [ 1P T ey (0 ().
R R

Since w4 is UpH, we have

[o¢]
(x—v)2T2 (v —v)2T2
/e CT Ry (v) = ) / eI  dpy (y)
R n=0 2T <|x—y|<(n+1)/2T
<Cp(1/T).

Thus,
Ko v ) P)r < Cp(l/T)/ | fo () Pdpy (x) < Cll fpll2p(1/T)
<Cp(1/T). n

Theorem 7.3. Suppose 1y, is UpH. Then there exists a constant C = C(Yr) such that
for any compact operator A, p € N, and T > 0,

(AT < CYP | Allpp(1/ TP,

Proof. Since A is compact, the spectral theorem guarantees the existence of orthonor-
mal bases {Vn}ne1> {#¥n}ne; » and a monotonely decreasing sequence {Ep ),
E, > 0, such that A is given by the norm-convergent sum

A= Z En{(@n, ) ¥n.
n=1
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Moreover, ||A|, = || Ex||;». Thus, we have

)

ZEn (Pn, Y ONY (), Yn) )T

AT = (| D2 Enlon v )Y (). ¥)
n=1

=1

b

A

Z ({@n WO U (0. ) [PV 7) V2.

If welet p,q € N be suchthat 1/p + 1/q = 1, then we may apply Holder’s inequality
to obtain

AT < 1Ealliz 1CH@ns v @O V2 {0 (0), ¥n) 2 7) 2 14
< 1Al 1@, v @O 2 I (0), ) ) 21122 1)

Moreover, by Lemma 7.1, we have

({en. wO)) T < CW)Pp(1/T) and ([(¥(0). ¥u)*)T < C(¥)p(1/T).

Since the v/, and ¢, form orthonormal bases, and since e “#* is unitary, we have
> len. w0 Z WO )P = lv)? =
Thus
1(H@n, W27 e < (C)p(1/ T, (22a)
KW @) )11y < (C@W)p(1/TH. (22b)

Putting (22) and (21) together, we have
(A7 < 141l (C)p1/ THUD = C(y) 7| All,p(1/ TV,
which completes our proof. ]

Now, we can prove Theorem 2.6.

Proof of Theorem 2.6. Let Yrpe = Pper, Yps = (1 — Poe)y. By Theorem 7.1, there
exist mutually singular Borel measures, i1, w2 such that duy,,. = dpy + dpo, where
n1 is UpH and uz(R) < %prc”z. Let S; be a Borel set that supports w; and
12(S1) = 0. Let Pg, denote the spectral projection on S; and set ¥y = Pg, ¥y



M. Landrigan and M. Powell 1290

and ¥, = (1 — Ps,)Y¥pe + Yps. Clearly, v = 1 + ¥ and 1 L ¥». Moreover, we
have dyuy, = du1, so Y1 is UpH and

1
Wl = [y = [ diie = [ dia = 310 P

and

L= vill” + Iy

Let Py be the projection on the sphere of radius N € [0, 00), defined by

Py =) (n.)bn.

[n|<N

We can see that

Tr(Pn) =Y (8u PNSa) = D (8ns Y (8k.8n)8k)

nezv nezv |[k|<N
= > > B8k Bu) = D 1=c,N”,
nezZv \k|<N |n|<N

where ¢, depends only on the space dimension v. Thus, Py is compact and it follows
from Theorem 7.3 that there exists a constant C;, which depends only on v, such
that for T sufficiently large and N > 0,

(1PN Y1 OIP)T = (Y1), Py (D)7
<CiTr(Pn)p(1/T)
<¢,CyNYp(1/T).

Moreover, we have

(PN OIP) T < (PN VL] + 1PN Y2() D) 7
< {((IPNv1O] + V21D 7
=<(

VAUPN Y1) + 921D

Now, if we set

(it
V= (Gcrepirm)

then we have

v 2 A
8 64

1 1
< lv2l* + §||W1||2 =1- §||W1||2-

2 1
PNy )7 < (P2 + vl + 1l + Z v Pl
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Since
PNy 1) + (10 = Py )y (0P = 1,
we have :
(11 = Py @)% > S I
Hence
(X1 = (v @) X Inl" G v )5)
neZ”
= (v, Yo NP v,
In|=N7
= N7 (¥ (1), (1 = PNy )V (D)7
1
= S IlP Ny
1
=S lvl? (;';2 I* ) p(1/T)™™/".
This completes our proof. =
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