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Abstract: We develop a new method to prove absolute continuity of the integrated
density of states of quasiperiodic operators, leading to the absolute continuity result
for frequency-independent analytic perturbations of the non-critical almost Mathieu
operator under arithmetic conditions on frequency.

1. Introduction
Analytic one-frequency Schrédinger operators on £2(Z) are given by,
(HV,oc,xu)n =Upt1 +Up—1+ VX +nau,, necZ, (1.1)

where o € R\Q is the frequency, x € T := R/Z is the phase, and V € C*(T, R)l is
the potential.

The central and most extensively studied such operator is the almost Mathieu operator
(AMO),

(Hy qxt)n = Ups1 + Up—1 + 21 co82m (X + na)u,, n € Z. (1.2)

Sometimes called the drosophila of the subject. It is a model that is responsible for both
the origins of the field and much of its ongoing significance in physics [14,44,57,61].
The almost Mathieu family is prototypical in the sense of Avila’s global theory, with its
separate regimes A < 1, A = 1, and A > 1 lending names to global classification of
analytic SL(2, C) cocycles [3].
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At the same time this family has a very special symmetry, self-duality with respect to
Aubry duality (e.g. [40]), that links {H,, 4 x}x and {H, -1 , ,}, and stems from the gauge
invariance of the underlying two-dimensional model [56]. A number of remarkable
results have been obtained, exploiting this symmetry, thus with methods not extendable
to the general analytic class. This includes the ten martini problem [8, 10,59], non-critical
dry ten martini problem [9, 13], the absolute continuity of the integrated density of states
in the non-critical case [6,9] and others. See also [2,47] for some other recent progresses.
Aubry duality enables one to combine the reducibility (|A| < 1) and the localization
(JA] > 1) techniques. However, already for small perturbations of the AMO, most of the
proofs involving self-duality of the AMO family break down. Itis therefore an interesting
question whether self-duality is just a convenient tool or of intrinsic importance to the
AMO results. Indeed, a few properties of the AMO are destroyed after perturbations,
for example the Lyapunov exponent is no longer a constant on the spectrum, in general,
making it particularly significant to identify those that are stable.

Another (intersecting) group of important results exploits the fact that the potential
of the AMO is given by a first degree trigonometric polynomial which allows for some
powerful considerations not available in the general case. This includes metal-insulator
transitions [12,33,46,48,49], and was also exploited in the ten martini proofs [8,9,59]
and other arithmetic results, e.g. [39]. Here, by arithmetic we mean results under an
explicit arithmetic condition on the frequency.

In contrast, for general analytic one-frequency Schrodinger operators, the current
state-of-the-art results for all the above problems in the positive Lyapunov exponent
regime are measure-theoretic in « [17,37,38]. The biggest issue is that one needs to
eliminate frequencies « in a highly implicit way, technically due to the need to get rid
of the so-called “double resonances”.

At the same time, the almost Mathieu operator coming from physics, it is natural
to expect that its physically relevant properties hold at least for its small perturbations.
In this respect it is particularly important that the allowed perturbations are uniform
in o within the Diophantine class.” Results with uniform dependence on Diophantine
« are often called non-perturbative (e.g. [19]), even when the parameters involved are
otherwise small, while the ones without such dependence are called perturbative.

The paper is the first of a multi-part project to extend various spectral properties of
the almost Mathieu operator that have so far been proved in an AMO-specific way, to
the analytic neighborhood of the almost Mathieu operators in a non-perturbative way,
so that, in particular, to confirm their relevance to physics. Namely, we consider

(Hf’a‘xu),, = Upsl +Up—1 + (2Acos 2 (x + na) + ev(x + na))u,, n ez, (1.3)

where v is a 1-periodic real analytic function. An additional aim is to develop different
techniques to investigate the spectral properties of operators (1.3) in the zero/positive
Lyapunov exponent regimes in a way that does not use self-duality or low degree of the
potential, with an expectation that some of the techniques will also turn out to be useful
for global results.

Technically, from the point of view of Avila’s global theory [3], the AMO family
has one more important feature: the acceleration (see (1.4)) is bounded by 1 on the
spectrum. An important goal of the present project is to show that it is exactly this
feature that governs many of the spectral properties for operators (1.3), that prevents, in

2 A result where the strength of the allowed perturbation depends, say, on the Diophantine constants of o«
is clearly not robust with respect to small changes of the Diophantine frequency and requires various positive
measure exclusions if a.e. frequency is fixed.
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particular, the occurrence of the double resonances, thus confirming the importance of
the notion of acceleration in the spectral theory of analytic quasiperiodic operators.
The acceleration is defined as

Ly(E) — Lo(E)

w(E) = lim (1.4)
y—0*F 2y
where L, (E) is the complexified Lyapunov exponent:
1
Ly(E) = lim —/ In||Ax+iy+(mn — Da)--- A(x +iy)|dx, (1.5)
n—oon Jr

with

AGr) = <E—1V(x) —01).

One of the key conclusions in [3] is that the acceleration is always an integer. Moreover,
for the almost Mathieu operator, for all E in the spectrum, we have

1. x| < 1: L(E) = 0 and w(E) = 0.
2. Al =1: L(E) = 0 and w(E) = 1.
3. Al> L L(E) =In|x| > 0 and w(E) = 1.

For general one-frequency Schrodinger operators, one can similarly divide the spectrum
into three regimes:

1. The subcritical regime: L(E) = 0 and w(E) = 0.
2. The critical regime: L(E) = 0 and w(E) > 0.
3. The supercritical regime: L(E) > 0 and w(E) > 0.

Now, for the analytic perturbations of the non-critical almost Mathieu operator (1.3),
as was also proved in [3], for all E in the spectrum, one has

1. |A] < 1 and € small enough: L(E) = 0 and w(E) = 0.
2. |A] > 1 and ¢ small enough: L(E) > O and w(E) = 1.

We would like to mention that the spectral properties of non-critical operators (1.3)
were well studied in the perturbative regime, i.e., assuming |A| sufficiently large de-
pending on «. For a fixed Diophantine frequency, we refer readers to [28,29,63] for the
proofs of almost sure Anderson localization, to [32] for the arithmetic version of An-
derson localization in the case the potential is even, to [28,65] for the proofs of Cantor
spectrum, and to [15,55,64,66] for the positivity and (Holder) continuity of the Lya-
punov exponent, all even holding for much rougher C? potentials as long as they stay
cos-type.

In the present paper, we want to study the regularity of the integrated density of states
(IDS) in the global sense (|A| does not need to be large) and non-perturbatively.

The IDS is defined in a uniform way for the above one-frequency Schrodinger oper-
ators (Hy 4,x)xeT by

N(E) = / ix (—o0, Eldx,
T

where 1, is the spectral measure associated with Hy o , and §p. Roughly speaking, the
density of states measure N ([E, E»]) gives the “number of states per unit volume” with
energy between E; and E».
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Regularity of the IDS is a popular subject in the spectral theory of quasiperiodic
operators, especially the absolute continuity [4,6,9] and the Holder regularity [1,9,36,
37]. It is also closely related to many other topics. For example, absolute continuity
of the IDS is closely related to purely absolutely continuous spectrum in the regime
of zero Lyapunov exponent [23,52]. Holder continuity of the IDS is closely related to
homogeneity of the spectrum [24,25,54]. Before formulating our results, we first give
precise arithmetic assumptions on «. A frequency o € R will be called («, 7)-strongly
Diophantine (denoted by o € SDC(«, 7)) where k > 0, 7 > 1 if

dist(ka, Z) > Vk € 7)\{0}. (1.6)

K
lk|(In [k[)T’
We will use the notation

spC:= | J SDC(k.1).

k>0; t>1

Clearly, SDC is a set of full Lebesgue measure.
We have

Theorem 1.1. Let « € SDC, |A| # 1 and v be real analytic. There is go(A, v) > 0,
such that if |e| < &g, then the integrated density of states of operator (1.3) is absolutely
continuous.

Remark 1.1. The strong Diophantine condition on « can be relaxed to the usual Dio-
phantine condition, or even to the Bruno condition where we believe the method in this
paper still works. We only use it to invoke the existing homogeneity results and to keep
the paper short.

Remark 1.2. We expect that Theorem 1.1 holds for all irrational «. However, for ex-
tremely Liouvillean «, the method in this paper is not effective since the spectrum is not
homogenous [11]. We expect to develop techniques to approach the case of the Liouville
« in the future work.

Remark 1.3. This paper mainly deals with the perturbations of the supercritical AMO.
For the perturbations of the subcritical AMO, absolute continuity of the IDS is a corollary
of the almost reducibility conjecture (ARC), announced by Avila [3]. However, to keep
the paper self-contained, we give a short proof of it, independent of the ARC.

Remark 1.4. If A = 0, Theorem 1.1 follows from [9].
Remark 1.5. Note that g( actually depends only on A and the analytic norm of v.

In fact, we only use a single special feature of the AMO, and effectively prove the
following theorem:

Theorem 1.2. Suppose every E in the spectrum of operator Hy o x with real-analytic V
given by (1.1) is non-critical, and satisfies w(E) < 1. Let W be real analytic. There is
eo(V, W) > 0, such that if « € SDC and |e| < €, then the integrated density of states
of operator Hy 4+¢w «.x is absolutely continuous.

Remark 1.6. Proof of Theorem 1.1 works verbatim to prove the supercritical part of
Theorem 1.2. As for the subcritical part of Theorem 1.2, one needs to invoke the ARC,
because our short self-contained argument in Sect. 4.1 only works for perturbations of
the AMO.
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Finally, we briefly introduce the main ideas of our proof. In the subcritical regime, the
absolute continuity of the IDS is non-trivial, but not surprising and can be obtained, as
mentioned, as a corollary of the absolutely continuous spectrum for individual spectral
measures, which is in turn a corollary of the almost reducibility conjecture (although
we do provide a self-contained proof, not using the almost reducibility conjecture). The
main novelty of this paper is in the new method for the supercritical case where the
individual spectral measures are not absolutely continuous.

Previously a method to prove absolute continuity of the IDS in the supercritical regime
was developed in [37] through the use of the large deviation estimate and avalanche
principle for the determinants of the truncated operator. Very involved technically, this
method however cannot avoid some singularities for any fixed frequency « and thus
only works in a measure-theoretic sense. Other methods [6,9] are very almost Mathieu
specific. We note that even establishing non-perturbative positivity of the measure of the
spectrum in the supercritical regime is a highly non-trivial argument [16].

Here we present a new approach that deals with this problem in an elegant yet general
way, provided the spectrum is a homogeneous set in the Carleson sense. The method
involves the properties of the non-tangential maximal function to study the normal
boundary of the averaged Green’s function (see Sect.3 for the definition). Previously,
integrability of the s > 1 power of the imaginary part of the normal boundary of the Borel
transform has been used fruitfully to establish absolute continuity of spectral measures
in certain settings [51,62]. Here we use a criterion of absolute continuity of a measure
supported on a homogeneous compact set based on the integrability of the real part of
the normal boundary of the Borel transform [35].3 This has also previously been used
to establish absolute continuity of certain spectral measures.

How can one apply it to establish absolute continuity of the /DS? For operators with
homogeneous spectrum, it would follow from the integrability of the real part of the
normal boundary of the Borel transform of the IDS, i.e., the real part of the normal
boundary of the averaged Green’s function. Thouless formula connects the averaged
Green’s function to the derivative of the Lyapunov exponent, but only for complex
energies. However, the integrability problem itself is hard to deal with. Until now it was
only known in the zero Lyapunov exponent regime, via the celebrated Kotani theory. In
the positive Lyapunov exponent regime, whether the normal boundary of the averaged
Green’s is integrable is a difficult problem since Kotani theory is no longer applicable.
Of course, for the almost Mathieu operator, one can study the normal boundary of the
averaged Green’s function in the positive Lyapunov exponent regime using Aubry duality
and Kotani theory for the dual operator, however this is no longer applicable even for
small perturbations because their duals are infinite-range quasiperiodic operators for
which one does not even know how to build the Kotani theory.

Here we develop harmonic analysis tools to show that the study of the normal bound-
ary of the averaged Green’s function can be reduced to certain properties of the Lyapunov
exponent on the spectrum, this reduction (see Sect. 3) being the key technical part of the
paper. Based on this reduction, it remains to show that the Lyapunov exponent is differ-
entiable on the spectrum in the Whitney sense. We note that the spectrum is expected to
be a Cantor set, and the Lyapunov exponent is not a differentiable function on the whole
real line even for the almost Mathieu operator [60]. However, Avila’s global theory [3]
comes to the rescue, allowing to show that the Lyapunov exponent is even analytic on
the spectrum under our assumptions.

3 with the argument apparently going back to Zinsmeister [67] and also discovered by different means in
[58].
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2. Preliminaries

2.1. Quasiperiodic cocycles and the Lyapunov exponent. Given A € C®(T, SL(2, R))
and o € R\Q, we define the quasiperiodic SL(2, R)-cocycle (a, A):

T x R? - T x R?
x,v) > (x+a,Ax)-v)

(a, A): {

The iterates of («, A) are of the form («, A)" = (na, A,), where

Ax+(n—Da)---Ax +a)A(x), n>0
A x+na)A '+ (n+ Do) AN (x —a), n <0

An(x) = {

1
The Lyapunov exponent is defined by L(x, A) := lim — / In||A,(x)|dx.
n—>oon Jr
A basic fact about quasiperiodic SL(2, R)-cocycle is the continuity of the Lyapunov

exponent:

Theorem 2.1 ([18]). The functions R x C®(T,SL(2,R)) > (o, A) — L(x, A) €
[0, 00) are continuous at any (o', A’) with a’ € R\Q.

2.2. The rotation number. Assume that A € C”(T, SL(2, R)) is homotopic to the iden-
tity. (o, A) induces the projective skew-product F4: T x S! — T x S!

A(x) - w
Falx,w) =({x+0, ——— |,

|A(x) - w]
which is also homotopic to the identity. Thus we can lift F4 to amap Fa: TxR > TxR
of the form Fa(x,y) = (x +a, y + ¥ (y)), where for every x € T, ¥ is Z-periodic.
The map ¥ : T x T — Ris called a [ift of A. Let u be any probability measure on T x R
which is invariant by F4, and whose projection on the first coordinate is given by the
Lebesgue measure. The number

plas A) = / V() du(x. y) mod Z
TxR

depends neither on the lift ¥ nor on the measure u, and is called the fibered rotation
number of (a, A) (see [43,50] for more details).
A typical example is represented by the Schrodinger cocycles (a, S]‘S/), where

SV (x) = (E -/ _01> , EcR.

Schrodinger cocycles are a dynamical equivalent of the eigenvalue equations Hy o yu =
Eu. Indeed, any formal solution u = (u,),cz of Hy o xu = Eu satisfies

Up+l | _ oV Un
( ", ) = Sp(x +na) (Wl)’ VnelZ.
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The spectral properties of Hy 4 » and the dynamics of (e, Sg) are closely related by
the Johnson’s theorem: E € Xy ,* if and only if (a, Sg) is not uniformly hyperbolic.
Throughout the rest of the paper, we set L(E) := L(«, S}Y/)5 and p(E) = p(a, Sg)
for brevity. It is also well known that p(E) € [0, %] relates to the integrated density of
states as follows:

N(E) =1 —2p(E). 2.1

3. Proof for the Supercritical Case

The proof of Theorem 1.1 contains two parts, based on two different methods. In this
section, we deal with the perturbations of the supercritical almost Mathieu operators.

Theorem 3.1. Let « € SDC, |A| > 1 and v be real analytic. Then for € small enough,
depending on A and v, the IDS of operator (1.3) is absolutely continuous.

Define

Lol
aj(n)z{o Z#j

For any £ € R and n > 0, one can define the averaged Green’s function of operator
(1.1) as

1
| = — ] -1 = — /
G@,0,E+in) /T(So, (Hy,qx — (E+in))” 80)dx / E—(E+ in)dN(E ).

Let us recall that a Herglotz function is a holomorphic mapping of C* = {z € C : 3z >
0} to itself. One can easily check that G (0, 0, z) is a Herglotz function. Thus for almost
every E € R, the normal boundary of G (0, 0, z) exists and one can define

G(0,0,E+i0) = lim G(0,0, E +in).
n—0%

Before we give the proof of Theorem 3.1, let’s recall two interesting theorems. Given a
compact set S C R, we say S is homogenous if there is og > 0 such that for any o < oy
and E € S, we have

1
(E—o0,E+0)NS| > 50.
Theorem 3.2 (Theorem H of [25]). Assume o € SDC, V is real analytic and L(E) > 0

forall E € R, then Xy , is homogeneous.

Remark 3.1. As explained in [25], the strong Diophantine condition on « can be relaxed
to the usual Diophantine condition.

4 By minimality, the spectrum of Hy 4  denoted by X, v, is a compact subset of R, independent of x if
(1, @) is rationally independent.

5 We sometimes identify Lo(E) (see (1.5)) and L(E).
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Theorem 3.3 (Theorem 3.3 of [35]). Let £ C R be a compact homogenous set and f a
Herglotz function with representation

f(z)=/M, eC,,
¢ E—z

where d i is a finite measure with supp(dj) C E. Let f(E +i0) = lim,_,o+ f(E +in)
be the a.e. normal boundary of f and assume that

Rf(-+i0) e L' (&, dE).
Then d is absolutely continuous.

Theorems 3.2 and 3.3 indicate that to prove absolute continuity of the IDS, we need
to study the regularity of the real part of the normal boundary of the averaged Green’s
function. It’s easy to see that RG (0, 0, E+i0) is well-defined and real analytic outside the
spectrum. Beyond that, the key statement of the celebrated Kotani theory [52], says that
G (0,0, z) is averaged reflectionless in the zero Lyapunov exponent regime. This means
that for almost every E in the zero Lyapunov exponent regime, RG (0, 0, E +i0) = 0.

However, in the positive Lyapunov exponent regime, the regularity of RG (0, 0, E+i0)
remains widely open. Indeed, in this case RG (0, 0, E +i0) as a function of E may in
principle be as bad as possible, since the spectrum is purely singular. In particular, before
the integration, we have |(Hy o » — E)10,0, E + i0)| — oo a.e. with respect to the
spectral measure. It turns out that this common intuition is completely wrong. Indeed,
we have the following surprising theorem.

Theorem 3.4. Let o € R\Q, |A| # 0, 1 and v be real analytic. Then for & small enough,
MG, (0,0, E +i0)® almost surely coincides with an analytic function on the spectrum.

Here we say f is a real analytic function on a set S if it is the restriction of some real
analytic function defined on an open neighborhood of S.

Remark 3.2. Let X7, be the spectrum of Hy , . We actually effectively prove that the
Whitney derivative of L(E) on X} L denoted by L/W (E), exists and is analytic where

L(E") — L(E)

T E E'EeZX;, 3.1

Ly (E) = EI’IEIE
Moreover,
RG.(0,0, E+i0) = Ly (E)
forae. E € X7 .

6

G¢(0,0,E+i0) = lim G¢(0,0, E+in),
n—0%

and

G (0, 0,E+in)=/(50, (Hf ,  — (E+in)~'8o)dx.
- @,
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Remark 3.3. The property of averaged reflectionless is just the same result, but with the
analytic function being 0. In this sense, almost sure analyticity can be viewed as the
generalized notion of averaged reflectionless.

Note that Theorem 3.1 follows from Theorem 3.4.

Proof of Theorem 3.1. For the supercritical AMO, it is well known that the Lyapunov
exponent is positive for all £ € R [3,18]. Thus by Theorem 2.1, there is go(X, v) > O,
such that if |e| < &g, then

L(Ol, S%)\coshev) -0

for any E € R. By Theorem 3.2, if @ € SDC, then X7 , is homogenous where X7

is the spectrum of H; , .. On the other hand, by Theorem 3.4, there is €1(A, v) >
0, such that if |e| < 81, then NG (0,0, E +i0) almost surely equals to an analytic
function on the spectrum. Thus for |¢| < min{eg, €1}, we have Z’f’ 18 homogenous and

NG, (0,0, E +i0) € L'(X¢ ). Note that

1
GE(O, O, Z) = / E—_Zng(E), Z e (C+.

Thus by Theorem 3.3, we have N, (E), the IDS of operator (1.3), is absolutely continuous.
|

In the remaining part of this section we prove Theorem 3.4. The foundation is the
following remarkable result of Avila in [3], on the analyticity of the Lyapunov exponent.

Theorem 3.5 ([3]). Let A > 1 and v be any real analytic function. Then for ¢ small
enough and for every a € R\Q, L(«, S?‘ COSFEVY yestricted to the spectrum is a positive
real analytic function.

On the other hand, there is the following relation between the Lyapunov exponent and
the Green’s function, see [50,52,53],

AL(E +i
ILE+IM) _ 60,0, E +i),
IE

Roughly speaking, the real part of the normal boundary of the averaged green’s function
is exactly the normal boundary of the derivative of the Lyapunov exponent. We will now

show that %E”O) is almost surely analytic. To prove this, we will need some ideas
from hard analysis.

3.1. Non-tangential Maximal Functions

Definition 3.1. The non-tangential maximal function takes a function F' defined on the
upper-half plane

={x+iy:xeR,y >0}
and produces a function F* defined on R via the expression

F*(xo)= sup |F(x+iy)l.

[x—xo|<y
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Note that for any fixed xo, the set {(x, y) : |x — xo| < y} is a cone in ]Ri with vertex
at (xp, 0) and axis perpendicular to the boundary of the x-axis. Thus, the non-tangential
maximal operator simply takes the supremum of the function F over a cone with vertex
at the x-axis.

Definition 3.2. The Hardy space H? where 0 < p < 00, on the upper half-plane C,

is defined to be the space of holomorphic functions F on C, with bounded norm, the
norm being given by

o0 L
|F|Hp=sup</ |F(x+iy)|”dx> .
y>0 —00

Proposition 3.1 (Page 1 of [41], Theorem 1 of [20]). Let F be an analytic function on
the upper-half plane, and of the class HP where 0 < p < 0o. Then

/00 (F*(x)Pdx < C, sup/ - |F(x+iy)|Pdx.

—00 y>0J—o0

Note that G (0, 0, z) is an analytic function on the upper-half plane. Thus one can define
the corresponding non-tangential maximal function

G*(E)= sup |G(0,0,E +in)|.
|[E'—E|<n

Proposition 3.2. For each o > 0,

O

{E :G*(E) > o}| = —.
o4

for some D > 0 (does not depend on o ).

Proof. Using (3.2), one can check that G(0, 0, -) € H? for any % < p < 1. Thus by
Proposition 3.1, there is D > 0 such that

f (G*(E)1dE < D.
Thus
o7 |{E : G*(E) > o} 5/ (G*(E)1dE
(E:G*(E)>0)

< /OO (G*(E)1dE < D.

—00
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3.2. Proof of Theorem 3.4 Now we are ready to prove Theorem 3.4. For simplicity, we
will omit ¢ in the notations. Note that by the spectral theorem, for any z € C\R, we
have

G(0,0,z) =/E;_ZdN(E). (3.2)

On the other hand, denoting

w(z) = /ln(E —2)dN(E).
The Thouless formula [21,22,42] says
L(z) = /1n |E — z|dN(E) = Rw(z).
The followings are some basic facts on G*(E),
1. G* is lower semicontinuous and in particular,
Uy, ={E : G*(E) > o}

is open.
2. By Proposition 3.2, R = U, U where we say A = B if |A\B| = |B\A| = 0.

Note that C,, := U N [—n, n] is compact. We define
n(E) =dist(E, Cy).
One can easily verify that
In(E) = n(EN| < |E — E'|
forany E, E’ € R. By Rademacher’s theorem, 1 (E) is an absolutely continuous function
and is differentiable almost surely.

On the other hand, C, is open, thus C; = U;(a;, b;), and we have

0 E € Co\ ({ai} U {bi}),
I Eeu(a @b
€ i <al, T>7

—1 EGU,‘(alzl,b,').

For any fixed § > 0, we consider the function f5(E) = L (E +i(n(E) + §)), which
is obviously Lipschitz. Thus

n'(E) = (3.3)

Ey

f5(E1) — fs(E2) = /

E;

oL . oL . /
3E (E+i(n(E)+0))+ o (E+i(m(E)+48))n (E)dE.
n

The following Lemma plays a crucial role.
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Lemma 3.1. For any E1, E; € Cp, we have

Ey
L(El)—L(E2)=/ g(E)dE,

E;
where
lim 2% (E +i6) E € Cy,
gE) =57 oL . , G4
o8 (E+in(E) + 52 (E+in(E)n(E) E ¢ Cy.
Proof. Since E1, E; € C,, forall E € (E, E3), by the definition of n(E), we have

E+iE)+8) e | {x+iyeCilx—E| <y}
E'eCy

Thus by the definition of G*(E), C,, and the fact that
dL . .
—(E+in) =G(0,0, E +in),
dz

we have

aL . aL . '
ﬁ(E+l(n(E)+5))+%(E+I(H(E)+5))n(E) < 2n, (3.5)

uniformly for all § > 0. Thus the result follows from dominated convergence by letting

5§ — 0. |
Now, we apply Lebesgue’s theorem on differentiation of integrals to g € L.’
B
8(E) = El,iglE o E/E 8(E)dE, (3.6)

fora.e. E € R.

We may assume |C, N Z‘i’ ol > 0 (otherwise there is nothing to say). Then by
Lebesgue’s density theorem, fora.e. E € C,,N Z‘f‘a, thereis asequence E; € C,N Ef‘a
such that

Jj—>00
Now combining (3.6), (3.7) with Lemma 3.1, fora.e. E € C, N Z‘f’a, we can find a
sequence E; € C, N X7, such that

. L(E)) - L(E)
§(B) = Jim (3.8)

Note that by Theorem 3.5, there is an analytic function f : U — R such that L(E) =
f(E) on E)f’a C U where U is open. Thus by (3.4) and (3.8), we have for a.e. E €
C,NxXy

Ao
. . 0L . /
RG(0,0, E +i0) = lim ——=(E +in) = ¢(E) = f'(E).
n—0t OF

Note that f/(E) is also analytic. This completes the proof.

7 1t follows from (3.5) and the definition of g.
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4. Proof of the Subcrtical Case

Absolute continuity of the IDS in the subcritical regime is actually a corollary of the
almost reducibility [4,5]. Thus the main aim of the section is to prove that the cocycle
corresponding to operators (1.3) with [A] < 1 and ¢ < 1 is still almost reducible.
This immediately follows from the almost reducibility conjecture (ARC), announced
by Avila in [3], to appear in [4,5]. However, we point out that almost reducibility of
the perturbations of the subcritical AMO follows directly from the openness of almost
reducibility and compactness. Here we give a self-contained proof which is independent
of the ARC.

Theorem 4.1. Let « € R\Q, |A| < 1 and v be real analytic. Then for & small enough,
depending on A, v, the IDS of operator (1.3) is absolutely continuous.

Remark 4.1. In this theorem, « can be any irrational number, it does not need to be
(strongly) Diophantine.

4.1. Reducibility of quasiperiodic cocycles We will only consider cocycles (¢, A) with
deg A = 0. A quasiperiodic C”-cocycle (o, A) is called C*-rotations reducible if there
exists B € C®(T, SL(2, R)) and ¢ € C?(T, R) such that

B(x +a) 'A(X)B(x) = Ry ). 4.1

We will call a cocycle almost reducible if there exist a sequence of B, € C*(T, PSL(2,
R)) and A, € SL(2, R) such that

Bu(x +a) 'A(x)B,(x) = Ay, 4.2)

moreover, A, — A for some A € SL(2, R).
Now we consider quasiperiodic Schrodinger cocycles. Define the following subset:

Rav ={E € R: (o, Sg) is C“-rotations reducible}.
We will sometimes drop the indices and simply use R, if the values of the indices are
clear from the context. We mention that (almost) reducibility has been proved to be very
fruitful [9,10,12,13,26,27,30,31,33,34,45,54].
Forevery t > 1 and y > 0, we define
O =10 e T||20 +katllgjz > ——— ke Z}
v — (kl+ DT

® = Uy>0,r>l@;-
Note that @ is a subset of T of full Lebesgue measure.

4.2. Proof of Theorem 4.1 We first prove a theorem related to rotations reducibility.

Theorem 4.2. Let « € R\Q, |A| < 1 and v be real analytic. Then for & small enough,
depending only on X, v, (a, S7**€V) is rotations reducible if p(c, S2-<**V) € O.
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Proof. We denote by

In ||k
B =B = 1imsup—w

Note that if « € R\Q, («, S%’\ €08) is almost reducible for all E € R (see Theorem 1.4
of [9] for the case B = 0 and Theorem 1.1 of [4] for the case 8 > 0). We then need the
following two known results,

Theorem 4.3 (Corollary 1.3 of [4]). Almost reducibility is stable, in the sense that it
defines an open set in R\Q x C®(T, SL(2, R)).

Note that for E € Ef’a, there is g > O such that

2) cos+ev 2. cos
SE — S% 05 lev]pg-

s « is compact and by Theorem 4.3, for ¢ sufficiently small, we have that (e, Sif cos+evy
is almost reducible if E € Ei, o+ Finally, Theorem 4.2 follows from the following
theorem.

Theorem 4.4 (Corollary 1.3 of [4]). If («, A) is almost reducible and p(a, A) € O, then
(a, A) is rotations reducible. |

Proof of Theorem 4.1. Let
Eec&= {E € TF , : pla, SPEOHY) ¢ @} .

By Theorem 4.2, we have («, S?‘ COS+EVy s rotations reducible for all E € £. Thus by
the argument in Avila-Fayad-Krikorian [7], N(E) = 1 —2p(E) is Lipschitz on £. Thus
the image of non-Lipschitz E’s under N is of zero Lebesgue measure, therefore the
IDS of operator (1.3) is absolutely continuous under the assumption that [A| < 1 and ¢
sufficiently small.® O
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