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1 Introduction

Dark matter (DM) direct detection experiments seek evidence for non-gravitational in-
teractions between DM particles and ordinary matter. In particular, the search for DM
interactions with nuclei has seen tremendous progress in the past few decades in prob-
ing DM masses above the proton, with one- to multi-ton scale detectors now leading the
search [1–3]. In this mass range, typical searches look for DM particles scattering elasti-
cally off the nuclei in the detector, as the resulting nuclear recoil energies are sufficiently
large to be above detector thresholds. However, for DM with masses below the GeV-scale,
the small recoil energies from elastic DM-nucleus scatterings is challenging to detect, lead-
ing to much weaker constraints when compared to those for heavier DM [4, 5]. Instead,
stronger constraints on DM-nucleus interactions can be obtained by searching for inelastic
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DM processes, in which the DM can transfer an O(1) fraction of its kinetic energy to the
target [6–8].

For DM-nucleus scattering, one can make use of the Migdal effect, in which the small
nuclear recoil is accompanied by a prompt electron emission, which can absorb most of the
DM kinetic energy [8–14]. The first experimental results are promising [15–25] and there
is a clear path for improvement [26]. In addition, proposals exist to discover and calibrate
the Migdal effect in the laboratory with neutrons [27–32]. However, while the theoretical
description of the Migdal effect has improved significantly in the past few years [17, 31, 33–
47], a general description of the Migdal effect for low-mass DM (mχ . 50MeV) in solid-state
crystal (semiconductor) targets is still lacking. In this region, the DM transfers very little
energy and momentum to the nucleus and is unable to dislodge it from its lattice site. A
proper description of this region, which includes the possibility of phonon production, is
required. In this paper, we will provide such a description based on an effective field theory
(EFT).

The outline of the paper is as follows. In section 2, we review the kinematics of the
Migdal effect in semiconductors, provide an overview of the various theoretical calculations
available in the literature, and contrast these with our effective field theory approach. In
section 3, we derive the effective Hamiltonian for the Migdal effect in semiconductors, and
use it to derive an expression for the DM scattering rate in terms of the dynamic structure
factor, S(q, E), a measurable quantity that depends only on the material’s properties. In
section 4, we discuss how to obtain the dynamic structure factor from data and theoretical
estimates. In section 5, we show for low DM masses the total DM-nucleus Migdal scattering
rates, as well as the differential rates, in electron recoil energy and in phonon energies for
silicon and germanium targets. In section 6, we summarize our main findings and conclude
with future directions. In the appendices, we present additional derivations, as well as
a discussion on the prospects of using neutron scattering to obtain comprehensive data
quantifying the dynamic structure factor.

2 The Migdal effect in semiconductors in the low momentum regime

Semiconductors are excellent DM direct-detection targets. Their bandgaps, denoted here
by ωg, are O(eV), so that DM with masses as low as O(MeV) (which have kinetic energies
1
2mχv

2
χ ∼ O(eV), assuming vχ ∼ 10−3) can deposit sufficient energy to excite an electron

across the bandgap and create an electron-hole pair. The excitation energies are smaller
than the ionization threshold of free atoms, which are O(10 eV). However, extending the
description of the Migdal effect for a free atom to semiconductor targets requires a careful
treatment of the fact that the nuclei are bound [45, 46], the electrons are not localized [36],
and the boost operator inducing the ionization in the free-atom treatment cannot simply
be applied in a crystal with a preferred rest frame [17]. Recent work [44, 45] has shown that
the Migdal effect in semiconductors can be described by a process of DM-nucleus scattering
in association with a nucleus-electron Coulomb interaction, the latter being responsible for
the ionization of one of the electrons in the material. In particular, it has been shown
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that the well-studied energy loss function (ELF) can be used to encode the screening from
valence electrons.

The recent work [44, 45] resolves two of the three subtleties introduced by semiconduc-
tors, but does not fully address the bound nature of the nuclei. In the treatment presented
in [44, 45], the final state of the nucleus is treated as a plane wave, hence ignoring the effects
coming from the rest of the crystal lattice and any collective effects (phonons) that can be
generated along with the Migdal electron during the DM scattering event. The approxi-
mation of treating the final state of the nucleus as a plane wave is usually dubbed impulse
approximation (ia), although within this approximation, the treatment of the initial state
of the nucleus in the literature varies. In what [45] call impulse approximation, the initial
state of the nucleus is treated as the ground state of an harmonic crystal. In [44], instead,
impulse approximation refers to treating both the initial and final states as plane waves.
In this paper, our definition of the impulse approximation is consistent with that in [45],
whereas we label the treatment in [44] as the free-ion approximation. To summarize, in
this paper, we assume:

impulse approx.: final (initial) state of nucleus is plane wave (harmonic crystal)
free-ion approx.: final (initial) state of nucleus is plane wave (plane wave)

Both approximations are only good approximations when DM-nucleus collision hap-
pens over time scales, tcoll, much shorter than the typical time scale characterizing the
dynamics of the lattice, i.e., for

tcoll ∼ 1/Er � tph ∼ 1/〈Eph〉 (impulse approximation) , (2.1)

with the free-ion approximation breaking down faster than the impulse approximation (see
figure 1). Here 〈Eph〉 is the average phonon energy and Er is the energy of the recoiling
nucleus,

Er = q2

2mN
(2.2a)

∼
m2
χv

2
χ

2mN
' 0.04 eV

(
mχ

50 MeV

)2 (28 GeV
mN

)
, (2.2b)

where q is the momentum lost by the DM, mN is the mass of the nucleus (taken to be the
approximate mass of a silicon nucleus in the second line), and we assume a DM velocity of
vχ ∼ 10−3. Combining eqs. (2.1) and (2.2a), the impulse approximation is valid for q �√

2mN 〈Eph〉. For silicon and germanium, the average phonon energies are 〈ESi
ph〉 ' 0.04 eV

and 〈EGe
ph 〉 ' 0.025 eV, respectively. Combining eqs. (2.1) and (2.2b), we find

mχ � 50 MeV
√

mN
28 GeV

√
〈Eph〉

0.04 eV (impulse approximation) . (2.3)

We see that the condition in eq. (2.3) is no longer satisfied for DM candidates with
masses mχ . 50MeV. Given that DM candidates with masses as small as O(MeV) are
still kinematically able to excite an electron in a semiconductor via the Migdal effect,
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Figure 1. Schematic representation of the regimes of validity of the different approximations
discussed in this work. Here mN is the nucleus mass, a the lattice spacing, 〈Eph〉 the typical average
phonon energy, and ωg the semiconductor gap. Both the impulse and the free-ion approximation
are valid when the momentum transfer is much larger than the typical momentum scale set by
the crystal, q �

√
2mN〈Eph〉. However, the free-ion approximation is parametrically slower than

the impulse approximation at converging to the corresponding approximate value. Corrections
to the free-ion approximations are, in fact, proportional to

√
〈Eph〉/Er, while corrections to the

impulse approximation are proportional to 〈Eph〉/Er (see section 4.1.2 for details). The harmonic
approximation is, instead, valid in the opposite regime, q �

√
2mN〈Eph〉, where corrections to the

atomic potential that are higher than quadratic in the positions are neglected, and the displacement
of the nucleus by the DM scatter is small compared to the inter-atomic spacing. The incoherent
approximation applies to processes where the momentum exchanged is, instead, much larger than
the inverse lattice spacing, q � 1/a, when the scattering particle is able to discriminate each
single nucleus and hence does not scatter coherently off multiple lattice sites. Finally, the EFT
presented in this work is valid when the separation between the lattice energy levels excited by
the DM, ∆Eλ, is much smaller than the energy of the Migdal electron, ω — i.e., for momentum
transfers q �

√
2mNωg. Note that close to the boundaries of the indicated regions of validity, the

approximations will receive O(1) corrections. The numerical values are estimated for the case of
silicon, for which mN ' 28GeV, ωg ' 1.2 eV, and 〈Eph〉 ' 0.04 eV. The typical DM velocity is taken
to be vχ ' 10−3.

it is imperative to have a robust theoretical understanding of the Migdal effect also for
1 MeV . mχ . 50 MeV, where the impulse approximation fails.

In figure 1, we show a schematic representation of the break-down of the impulse
approximation as a function of the momentum transfer and of the dark matter mass, and
overlay it with the regime of validity of the EFT approach we employ in this work to extend
a description of the Migdal effect in semiconductors to the low-mass regime. Figure 1 also
shows the regime of validity of the incoherent as well as the harmonic approximations,
introduced in section 4, and which are relevant for the numerical results presented in
section 5.

In this work, we reformulate the low-momentum Migdal effect in semiconductors in
terms of an EFT, which is insensitive to the complicated short-distance details of the
crystal lattice. We are able to do so by exploiting the separation of scales between the
Migdal ionization energy, ω & O(1 eV), and the typical energy of the lattice excitations,
Eph . O(0.1 eV). By integrating out the short-distance (high-momentum) vibrational
modes, we simplify the description of the Migdal effect in semiconductors from a second-
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order effect in old fashioned perturbation theory (a DM-nucleus interaction plus a nucleus-
electron Coulomb interaction) to a first order effect with an effective Hamiltonian, the
latter being independent of the complicated interactions between the ions of the crystal.

The low-energy effective theory allows for a description of the final rate that only
depends on the dynamic structure factor of the target material, S(q, E) — a measurable
quantity that is fully characterized by the momentum transferred to the lattice, q, and the
energy deposited to the lattice, E. We make no assumptions about the initial, intermedi-
ate, or final state of the nucleus in this EFT approach. We accurately quantify the double
differential Migdal emission rate dR/(dωdE) in a semiconductor, where ω is the energy of
the ionized electron, an observable relevant for next generation detectors with sensitivity to
energy depositions to the lattice E corresponding to single- and multi-phonon excitations.
Interestingly, we use sum rules to show that the single differential rate, dR/dω, is indepen-
dent of the details of the lattice dynamics, and equivalent to the same result obtained in
the free-ion approximation.

This extends the range of validity of the description of the Migdal effect in semicon-
ductors to all kinematically accessible DM masses, mχ & 1 MeV. Additionally, the use of
an EFT allows for the systematic inclusion of higher order terms in the small frequency
expansion.

While our work was in progress, a proposal for a possible description on how to take
into effect the bound nucleus nature for small DM masses appeared in [46]. Inspired by
standard field theory, the authors derive Feynman rules for multi-phonon and electron-
phonon interactions, and show that, when the number of phonons in the final state is
large, their results are well reproduced by the impulse approximation. This approach,
however, is only applicable within the harmonic approximation for the lattice dynamics,
which treats the inter-atomic potential as purely quadratic in the positions, and where the
theory can be solved exactly. Our derivation, instead, holds generally for any crystal. As
we will show, when evaluated within the impulse approximation, our result reduces to that
of [45], while within the harmonic approximation, our analytical result agrees with [46].1

3 An effective theory for the Migdal effect

3.1 The effective Hamiltonian

As highlighted in [45], the Migdal emission of an electron in a solid state material formally
involves two interactions, one between the DM particle and the nuclei in the crystal, and
another between the nuclei and the electrons in the system, which induces their ionization.
These two interactions are mediated by a lattice vibrational degree of freedom. For a
realistic material, the intermediate lattice mode inducing the ionization is a complicated
eigenstate of the full lattice Hamiltonian, whose complete description is prohibitive. For
this reason, it is often convenient to simplify the treatment by making some assumptions,
most notably the impulse [45] and/or the harmonic [46] approximations. While they do

1The numerical results shown in v1 and v2 of [46] differ from our results in the low mass regime (1 MeV−
50 MeV). The authors omitted a term in their numerical calculation, which they included in v3 after our
correspondence. We discuss the relevant term in more detail in section 5.
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λi
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pe + ke

λf
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λ
HχL HeL +

pe

λi

pi

pe + ke

λf

pf

λ
HeL HχL '

pe

λi

pi

pe + ke

λf

pf

Heff

Figure 2. Schematic representation of the EFT procedure applied to the result of old-fashioned
perturbation theory. Each line corresponds to a state in the Hilbert spaces of the dark matter
(dashed), electron (solid), and crystal lattice (wavy). The intermediate lattice mode has high
frequency and, when integrated out, it leads to an effective Hamiltonian that is local in time and
independent on the complicated dynamics of the lattice.

make the problem tractable, both these approximations break down at given energy scales
(figure 1) and have corrections that are difficult to quantify.

Luckily, in the context of interest to us (mχ . O(100 MeV)), the problem is char-
acterized by a separation of scales: the energy of the Migdal electron is at least a few
eV,2 which is much larger than the typical energy of the lattice degrees of freedom excited
in the process, which is of the order of tens to hundreds meV. As we will show, in this
regime, the lattice degree of freedom mediating the ionization is highly off-shell. Following
the standard EFT approach, one can integrate it out, and the final effective interaction is
independent of the complicated microscopic dynamics of the crystal lattice. Operationally,
this is achieved by expanding the matrix element for large electron energy, ω, reducing the
second order interaction to a first order interaction. As we show below, the latter is such
that it does not depend on the inter-atomic potential of the crystal lattice. The schematic
EFT procedure is represented in figure 2.

Let us start by treating the problem in full generality. We will mostly adopt the
notation of [45]. In old-fashioned perturbation theory, the Migdal emission is a second
order process, whose matrix element is given by,

Mfi =
∑
λ

[〈λf ,pe + ke|HeL|λ,pe〉〈pf , λ|HχL|pi, λi〉
ω + Eλf − Eλ

+ 〈pf , λf |HχL|pi, λ〉〈λ,pe + ke|HeL|λi,pe〉
Eλi − Eλ − ω

]
.

(3.1)

Here, pi and pf are the initial and final DM momenta, pe and pe + ke the initial and final
electron (crystal) momenta, and λi, λf , and λ are the initial, final, and intermediate lattice
states, respectively. Moreover, ω is the energy gained by the electron. The Hamiltonian
HeL represents the coupling between an electron and the lattice, while HχL analogously
represents the coupling of the DM to the lattice.

2The approximate thresholds to excite two electron-hole pairs in silicon and germanium are 5 eV and
3.7 eV, respectively.
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For the range of DM masses of interest to us, the electron energy is always substantially
larger than the typical spacing between the lattice eigenvalues entering in eq. (3.1), ω �
|Eλf−Eλ| , |Eλi−Eλ|. This is because, for a given external kinematics, the matrix elements
in the numerator will suppress the contribution from intermediate states that are too far
away from Eλi and Eλf .3 We can then expand the matrix element, which reads

Mfi =
∑
λ

[( 1
ω
−
Eλf − Eλ

ω2

)
〈λf ,pe + ke|HeL|λ,pe〉〈pf , λ|HχL|pi, λi〉

−
( 1
ω
− Eλ − Eλi

ω2

)
〈pf , λf |HχL|pi, λ〉〈λ,pe + ke|HeL|λi,pe〉

]
+O

(
1/ω3) ,

= 1
ω2

[
〈pf , λf ,pe + ke|

(
HeLHL −HLHeL

)
HχL −HχL

(
HeLHL −HLHeL

)
|pi, λi,pe〉

]
+O

(
1/ω3) ,

(3.2)

where when going to the second equation we used the fact that the |λ〉’s are eigenstates of
the unperturbed lattice Hamiltonian, HL, as well as the associated completeness relation,∑
λ |λ〉〈λ| = 1. One deduces the effective interaction Hamiltonian,

Heff = 1
ω2
[
HχL, [HL, HeL]

]
+O

(
1/ω3) , (3.3)

such thatMfi = 〈λf ,pe+ke,pf |Heff |λi,pe,pi〉+O
(
1/ω3). We can now specialize our result

to the case at hand. For the DM-lattice interaction, we are assuming for concreteness
a DM-nucleus interaction due to a Yukawa coupling with a scalar (vector) mediator of
mass mφ (mA), hence allowing for both short and long range forces. Specifically, we
consider an interaction Lagrangian given by Lφint = gχφχ̄χ+gNφN̄N (LAint = gχAµχ̄γ

µχ+
gNAµN̄γ

µN ,), where N denotes the nucleus.
The DM-lattice and electron-lattice interactions are then described by [45],

HχL = −
∑
I

gχgN
4π

e−mφ|xχ−xI |

|xχ − xI |
≡
∑
I

H
(I)
χL , (3.4a)

HeL = − 4πα
V

∑
I

∑
K,K′

∑
k

ε−1
KK′(k, ω)Z(|k + K ′|)
|k + K||k + K ′|

ei(k+K)·xee−i(k+K′)·xI ≡
∑
I

H
(I)
eL ,

(3.4b)

where α is the fine structure constant, V the volume of the material, and Z(k) the effective
atomic number accounting for the tightly bound core electrons. Its momentum dependence

3This approximation clearly breaks down for sufficiently heavy DM particles, which are able to excite
lattice modes whose energy is much higher than the electron’s recoil energy — even kick a nucleus out of
the crystal, in the extreme case. If we estimate the energy given to the crystal as the recoil energy of a
free nucleus, q2/2mN, the EFT breaks down when q ∼

√
2mNωg, with ωg the semiconductor bandgap. In

the case of silicon and germanium, one has ωg ' 1.2 eV and ωg ' 0.7 eV, respectively. This corresponds
to mχ & 250MeV and mχ & 320MeV. We note that, in principle, our EFT is always valid for sufficiently
energetic electrons, ω � q2/(2mN). Here we take the most conservative value, ω ∼ ωg.
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encodes the fact that, at high momentum, one probes deeper into the core electrons, ef-
fectively experiencing a larger positive charge. Moreover, ε−1

KK′(k, ω) is the longitudinal
dielectric matrix (symmetrized over K and K ′), K(′) is a reciprocal lattice vector, while k

is confined to the first Brillouin zone. Finally, xχ, xe, and xI are respectively the positions
of the DM, the Migdal electron, and the I-th nucleus. For pedagogical reasons, we report
the derivation of the electron-lattice Hamiltonian in appendix A.

The lattice Hamiltonian can generically be written as

HL = −
∑
I

∇2
I

2mN
+ U

(
{xI}

)
, (3.5)

where ∇I is the gradient with respect to the xI position and mN the nucleus mass. From
now on, we assume identical atoms to keep the notation simple though our formalism
can easily be generalized to multi-atomic crystals such as GaAs [48, 49]. Importantly, for
a realistic material the inter-atomic potential, U , is in general a complicated anharmonic
function. Nonetheless, the effective Hamiltonian (3.3) only depends on commutators. Since
HeL andHχL are c -numbers, they commute with the potential, and the effective interaction
is therefore independent of the potential,

Heff = 1
mNω2

∑
I

∇IH
(I)
χL ·∇IH

(I)
eL +O

(
1/ω3) . (3.6)

3.2 The rate for Migdal emission

It is now straightforward to show that, given the above Hamiltonian, the corresponding
matrix element is,

Mfi = − 4παgχgN
mNω2V 2

∑
I

∑
K,K′

∑
k

q ·(k + K ′)
q2 +m2

φ

ε−1
KK′(k, ω)

|k + K||k + K ′|
Z(|k + K ′|)

× 〈λf |ei(k+K′−q)·xI |λi〉〈pe + ke|ei(k+K)·xe |pe〉

= − 4παgχgN
mNω2V 2

∑
I

∑
K,K′

q ·(ke + K ′)
q2 +m2

φ

ε−1
KK′(ke, ω)

|ke + K||ke + K ′|
Z(|ke + K ′|)

× 〈λf |ei(ke+K′−q)·xI |λi〉[pe + ke|ei(ke+K)·xe |pe]Ω ,

where q ≡ pi−pf is the momentum released by the DM, and in the second line we have used
Bloch’s theorem for the electron state [45]. In particular, |pe]Ω represents the (periodic)
Bloch wave function [e.g., 50], and the matrix element between two electronic states is to
be computed over the volume of a primitive cell, Ω, as indicated by the subscript.

At zero temperature, |λi〉 is simply the ground state of the lattice Hamiltonian, while
the initial electron state, |pe]Ω, follows a distribution fb(pe), with b labeling the electronic
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branch. Fermi’s golden rule then returns the following rate,

dΓ
dω

= 4α
V 3

(
gχgN
mNω2

)2∑
q

∑
ke

∑
K,K′

∑
Q,Q′

q ·(ke + K ′) q ·(ke + Q′)(
q2 +m2

φ

)2 Z(|ke + K ′|)Z(|ke + Q′|)
|ke + K ′||ke + Q′|

× 4π2α

V

∑
b,b′

fb(pe)
[pe|e−iQ·xe |pe + ke]Ω [pe + ke|eiK·xe |pe]Ω

|ke + K||ke + Q|

× δ(ω − Eb′,pe+ke − Eb,pe)ε−1
KK′(ke, ω)ε−1∗

QQ′(ke, ω) (3.7a)

×
∑
λf

〈λi|
∑
I

e−i(ke+Q′−q)·xI |λf 〉〈λf |
∑
J

ei(ke+K′−q)·xJ |λi〉

× (2π)δ
(
Epi − Epf + Eλi − Eλf − ω

)
= 4α
V 3

(
gχgN
mNω2

)2∑
q

∑
ke

∑
K,Q

q ·(ke + K) q ·(ke + Q)(
q2 +m2

φ

)2 Z(|ke + K|)Z(|ke + Q|)
|ke + K||ke + Q|

× Im
(
− ε−1

KQ(ke, ω)
)∑
λf

〈λi|
∑
I

e−i(ke+Q−q)·xI |λf 〉

× 〈λf |
∑
J

ei(ke+K−q)·xJ |λi〉(2π)δ
(
Epi − Epf + Eλi − Eλf − ω

)
,

(3.7b)

where Eb,pe and Eb′,pe+ke are the initial and final electron energies, and Epi and Epf the
initial and final DM energies. In the second equality we used Lindhard’s formula for the
imaginary part of the dielectric matrix [45, 51, 52], corresponding precisely to the second
and third lines of eq. (3.7a).4 The function Im

(
− ε−1

KQ(ke, ω)
)
is the ELF.

Now, in the space of reciprocal lattice vectors, the ELF has small off-diagonal ele-
ments [45]. For this reason, we can set Q ' K in the last two lines of eq. (3.7b).5 After
doing that, we obtain our final expression for the rate of Migdal emission in a semiconduc-
tor:

dΓ
dω

= 8παNT
V 3

(
gχgN
mNω2

)2∑
q

∑
ke

∑
K,Q

q ·(ke + K) q ·(ke + Q)(
q2 +m2

φ

)2 Z(|ke + K|)Z(|ke + Q|)
|ke + K||ke + Q|

× Im
(
− ε−1

KQ(ke, ω)
)
S(q − ke −K, Epi − Epf − ω) , (3.8)

where NT denotes the number of ions in the target, and S(q, E) is the partial dynamic
structure factor of the lattice [e.g., 53], i.e.

S(q, E) ≡ 1
NT

∑
λf

∣∣∣∣〈λf |∑
I

eiq·xI |λi〉
∣∣∣∣2δ(Eλi − Eλf − E) . (3.9)

4The generalization of Lindhard’s formula to the reciprocal lattice actually includes an extra term,
associated to the possibility of absorbing an initially free electron (cf. appendix A in [45]). In the ground
state the density of initially free electrons is negligible, and this term does not contribute.

5For DM particle with mχ & 10MeV, this approximation becomes even better, since one has q �
|ke + K|, |ke + Q| and one can neglect the electron momenta in the last lines of eq. (3.7b). The electron
momentum supported by the ELF is, in fact, never larger than around 20 keV [21] for valence electrons
which dominate the ionization probability for mχ . 100MeV.
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The advantage of expressing the rate in terms of the dynamic structure factor lies in the
fact that, for many-body systems, it encodes the complicated inter-particle correlations,
and only depends on the active degrees of freedom in the target system that are excited
given a momentum transfer q [54]. In principle, one could define and attempt to measure a
dynamic structure factor that incorporates the Migdal effect directly, by considering elec-
tronic degrees of freedom in its definition. This is practically challenging, both theoretically
and experimentally. For this reason, in our discussion we keep the lattice and electronic
degrees of freedom separated. The former are encoded in the structure factor, while the
latter in the ELF.

4 The dynamic structure factor

In principle, the dynamic structure factor can be measured through neutron scattering ex-
periments, in which case no further assumptions would be necessary — eq. (3.8) can be used
without detailed knowledge of the lattice dynamics. In practice, however, comprehensive
data over the relevant range in q (10 keV− 100 keV) does not yet exist.6

In appendix B, we discuss the experimental prospects of taking those measurements.
In this section, instead, we present an overview of the different approximation schemes that
one can employ to model the structure factor.

4.1 The incoherent and harmonic approximations

In the absence of data, we get as much analytical understanding as possible by evaluating
S(q, E) in a simple context. Specifically, we use the incoherent and the harmonic approx-
imations. The former neglects interference effects coming from the scattering off different
lattice points. This is a fair assumption as long as the momentum transfer is substantially
larger than the (inverse) inter-particle separation, a condition that is satisfied for all DM
masses considered here (see figure 1). In particular, the incoherent approximation implies

S(q, E) ' 1
NT

∑
λf

∑
I

∣∣∣〈λf |eiq·xI |λi〉∣∣∣2 δ(Eλi − Eλf − E) . (4.1)

The harmonic approximation, on the other hand, neglects corrections to the atomic
potential, U({xI}), that are higher than quadratic in the positions, and it holds when the
atomic displacements are small compared to the inter-atomic spacing. This is only true
for the lightest DM particles (say, mχ . 30MeV [55]), while for DM particles with rates
dominated by higher momentum transfers, anharmonicities can give large corrections [55].
This latter assumption is hence employed only to gain some analytical understanding of
the physics, and to estimate the event rates in a simplified setting.

Let us briefly review how to construct the dynamic structure factor within the approx-
imations outlined above. The position of each atom in the lattice can be decomposed as

6For q < 10 keV, the dynamic structure factor is dominated by elastic scattering and the phonon density
of states, which has been measured through neutron scattering experiments as well as calculated in ab initio
calculations for silicon and germanium.
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xI = x0
I + uI , where x0

I is the equilibrium location of the I-th atom, and uI its relative
displacement. When evaluated for an harmonic crystal, eq. (3.9) simplifies to [e.g., 53]

S(harm)(q, E) = 1
NT

∑
I

∫ ∞
−∞

dt

2πe
−iEte−2W (q)e〈q·ûI(0) q·ûI(t)〉 , (4.2)

where ûI(t) is the displacement operator in the Heisenberg picture, responsible for the
creation or annihilation of a single phonon degree of freedom. Moreover, W (q) ≡ 1

2
〈
(q ·

û0(0))2〉 is the Debye-Waller factor. The correlators appearing in eq. (4.2) can both be de-
termined in terms of the phonon density of states, g(Eph), normalized as

∫∞
0 dEph g(Eph) =

1. In particular, within the assumptions of identical atoms and cubic symmetry, the unequal
time correlator is independent of the lattice point and of the direction of the exchanged
momentum, and it is given by [56, 57],

〈q · ûI(0) q · ûI(t)〉 = q2

2mN

∫ ∞
−∞

dE′ph
g(E′ph)
E′ph

(
n(E′ph) + 1

)
eiE

′
pht ≡ q2

2mN
f(t) , (4.3)

where n(Eph) is a Bose-Einstein distribution. At the low temperature environments nec-
essary for DM direct detection n ' 0.7 From the equation above it follows that the
Debye-Waller factor is

2W (q) = q2

2mN

∫ ∞
0

dE′ph
g(E′ph)
E′ph

(
2n(E′ph) + 1

)
≡ q2

2mN

〈
E−1

ph
〉
, (4.4)

where, from now on, we indicate averages over phonon energies as 〈Enph〉, for some n.

4.1.1 Exact recursive procedure
To compute the structure function, one can expand the factor e〈q·ûI(0) q·ûI(t)〉 order by
order, i.e. [55–58],

S(harm)(q, E) =
∫ ∞
−∞

dt

2πe
−iEte−2W (q)∑

p

1
p!

(
q2

2mN
f(t)

)p
(4.5)

= e−2W (q)

δ(E) + q2

2mN

(
g(E)
E

(
n(E) + 1

))
+
∑
p≥2

1
p!

(
q2

2mN

)p
Tp(E)

 .

Each term in the sum above corresponds to the contribution due to a final state with
definite number of phonons — specifically, p of them. The density of states depends on
the material properties of the semiconductor, and can be obtained either experimentally
(through neutron scattering, for example [59, 60]) or from ab initio calculations [61]. The
functions Tp(E) are, instead, determined by the recursion relation [56–58]

Tp(E) =
∫ +∞

−∞
dE′ T1(E − E′)Tp−1(E′) , (4.6)

where T1(E) = g(E)
(
n(E) + 1

)
/E. This is computationally expensive, especially for large

phonon numbers.
7Many experiments operate at cryogenic temperatures, where n ' 0 is an excellent approximation; even

for SENSEI, which operates at a much higher temperature of T = 130 K, one gets (for a typical phonon
energy of 〈Eph〉 = 40 meV) n ' 0.03, which is also negligible.
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4.1.2 Free-ion approximation

The free-ion approximation assumes that the incoming and outgoing state of the nucleus are
well described by a plane wave, in analogy to the treatment of a free atom. Strictly speaking
this is never accurate for a nucleus in a quadratic potential, yet for energy deposition of
Er � 〈Eph〉 the approximation performs well. In this approximation the dynamic structure
function is simply given by:

S(free ion)(q, E) ' δ(E − Er) . (4.7)

Note that both the impulse and the free-ion approximations are valid for Er � 〈Eph〉.
However, as we will show in eqs. (4.8) and eq. (4.9), the corrections to the former scale by
〈Eph〉t ∼ 〈Eph〉/Er, while the latter is rather controlled by ∆/Er =

√
〈Eph〉/Er. Therefore,

as a function of recoil energy, the free-ion approximation breaks down parameterically faster
than the impulse approximation.

4.1.3 Impulse approximation

When the energy given to the lattice is sufficiently large (E � 〈Eph〉), it is possible to
further simplify the harmonic structure factor in eq. 4.5 by using the impulse approximation
(ia) [45, 56, 57]. The integrand in eq. (4.3) has support on a range of energies close to
the typical phonon energy, 〈Eph〉. If the energy released to the crystal is E, the scattering
process happens over time scales t ∼ 1/E. When E � 〈Eph〉 one can expand eq. (4.3)
around t = 0, to obtain

f(t) = 〈E−1
ph 〉+ it− 〈Eph〉t2

2 +O
(
〈Eph〉2t3

)
. (4.8)

One can justify this procedure more rigorously through a steepest descent analysis [55–
57]. When used in eq. (4.2), this returns the dynamic structure factor in the impulse
approximation, where it is well described by a Gaussian envelope centered around the
recoil energy expected in an elastic recoil of a free nucleus, Er = q2/2mN. Specifically,

S(ia)(q, E) ' 1√
2π∆2

e−
(E−Er(q))2

2∆2 , (4.9)

where the width of the Gaussian is determined by ∆2 ≡ Er〈Eph〉.
The impulse approximation can be intuitively understood due to the following fact

(see also our discussion in section 2): when the collision happens over times much shorter
than the typical time scale characterizing the lattice dynamics (the inverse phonon energy),
the final nucleus does not have time to probe the lattice potential. Its wave function can
therefore be treated as a free plane wave. While this considerably simplifies the problem,
it breaks down for small momentum transfers, i.e., when q2/2mN . 〈Eph〉. For lower
momenta, the full lattice potential becomes important, and phonon excitations must be
properly accounted for in the dynamic structure factor.
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4.1.4 Improved impulse approximation

Within our simplifying assumption of an harmonic crystal, there exists an additional
method to calculate the dynamic structure factor that combines the two strategies out-
lined in subsections 4.1.1 and 4.1.3, and allows us to extend the analytical calculation to
small momentum transfers. This procedure eases the computational burden necessary to
recursively compute high orders of Tp(E) (eq. (4.6)). The following result is known in the
neutron scattering literature [57], but has not yet been applied in the DM direct detection
context. The idea is that, following the standard Wentzel-Kramers-Brillouin (WKB) ap-
proach, the wave function of sufficiently excited final states closely resembles a plane wave.
For such states one then recovers the conditions of applicability of the impulse approxima-
tion, as explained above. The operative procedure is then to keep the exact elastic, single
phonon, and up to pex multi-phonon response in eq. (4.5), and to only expand f(t) in small
t for higher order terms, i.e.

∑
p≥pex

1
p!

(
q2

2mN
f(t)

)p
'
∑
p≥pex

(
2W (q)

)p
p!

(
1 + i

〈
E−1

ph
〉−1

t−
〈
E−1

ph
〉−1 〈Eph〉t2

2

)p

≡
∑
p≥pex

(
2W (q)

)p
p! exp ,

(4.10)

where x = i
〈
E−1

ph
〉−1

t − 1
2∆̃2t2 + O

(
〈Eph〉3t3

)
, with ∆̃2 ≡ 〈Eph〉

〈
E−1

ph
〉−1 −

〈
E−1

ph
〉−2.8

Writing the total structure factor as S(q, E) =
∑
p Sp(q, E), this leads to an improved

impulse approximation (iia), such that

S
(iia)
p≥pex

(q, E) ' e−2W (q)
(
2W (q)

)p
p!

1√
2πp∆̃2

e
−

(
E−p/〈E−1

ph 〉
)2

2p∆̃2

≡ e−2W (q)
(
2W (q)

)p
p! T (n,iia)

p (E) ,

(4.11)

where we defined the normalized T (n) function as T (n)
p (E) ≡ Tp(E)/

〈
E−1

ph
〉p. The total

structure function can now be calculated easily up to arbitrary order by combining eqs. (4.5)
and (4.11).

To compare this improved impulse approximation with the exact recursive procedure
we compute the T (n)

p (E) evaluated with these two methods for the case of silicon, see
figure 3. The results highlight how the exact higher order terms calculated by the recursive
procedure in eq. (4.5) lose sensitivity to the features of the material-specific phonon density
of states. For silicon, multi-phonon terms larger than p = 10 no longer exhibit features
distinguishing them from a simple Gaussian, and even smaller multi-phonon terms, down
to p = 4, are decently well captured by the improved impulse approximation.9

8Note that ∆̃2 ≥ 0 is always guaranteed by the Cauchy-Schwarz inequality.
9The slight difference in peak position between the improved impulse approximation and the exact result

is also present in the regular impulse approximation and can be analytically accounted for [46, 62].
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Figure 3. Comparison of the (normalized) multi-phonon terms, T (n)
p (E), obtained through the

exact recursion relation in eq. (4.5) (solid) and through the improved impulse approximation (iaa)
(dashed) for silicon. The improved impulse approximation performs poorly for terms with p ≤ 3
(left panel); however, already around p ≥ 4 the approximation provides a fairly accurate descrip-
tion. Eventually, for p ≥ 10 the exact multi-phonon terms no longer show any features that differ
from a Gaussian, and are well described by the improved impulse approximation (right panel).

The key difference between the improved impulse approximation and the standard
one lies in keeping more information about the phonon density of states. While the stan-
dard approximation only depends on 〈Eph〉, the procedure presented here also depends on〈
E−1

ph
〉
, which enters through the width of the individual Gaussian multi-phonon terms, ∆̃2.

Additionally, by keeping the exact terms up to a fixed order, the structure factor is guaran-
teed to be accurate for all momentum transfers, q. In the large momentum limit the total
structure function is the weighted sum of Gaussians centered around each multi-phonon
term, which matches onto the regular impulse approximation.

4.2 The dynamic structure factor in silicon

As input for our rate calculations, we evaluate S(q, E) in the harmonic approximation
using eq. (4.5), where we recursively calculate the multi-phonon terms up to order p = 10,
and then use the improved impulse approximation for all higher order terms in the sum.
The results are reported in figure 4. As one can see, when transitioning towards small
momentum transfers, the multi-phonon contribution becomes subdominant with respect
to the elastic one, S0(q, E) = e−2W (q)δ(E), where the crystal recoils as a whole. Such
elastic response has received less attention in the existing DM literature on the Migdal
effect (although see e.g. [38, 43]). However, it is possible for a scattering event to lead only
to ionization, without exciting any phonons in the crystal. In fact, for DM for masses mχ .
50MeV those events dominate over scattering events that are double inelastic processes,
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Figure 4. Dynamic structure factor, S(q, E), in silicon as a function of energy deposition, E, and
for different values of the momentum transfer, q. We show the changes in S(q, E) as the momentum
transfer transitions from the small (W (q) � 1) to the large momentum (W (q) � 1) regime. To
illustrate the relative contribution of the elastic term in eq. (4.5) we convolve it with a Gaussian
envelope, S0(q, E) = e−2W (q)δ(E) → e−2W (q)e−E2/2δ2

/
√

2πδ2, where we set δ2 = 10−3∆̃2. Note
that for the bottom right figure, q = 90 keV, the purely elastic scattering with E = 0 is negligible,
but it becomes increasingly important for lower momentum transfers.

i.e., processes that produce both a Migdal ionization as well as phonons. We emphasize the
importance of this contribution, noting that previous work targeting the low mass regime
did not include it in their numerical evaluation of the differential rates, leading to a large
discrepancy between the estimates obtained with the free-ion approximation compared to
the exact result accounting for lattice dynamics [46]. The latest version of [46] now presents
the corrected result.

5 Results

After deriving the expression for the Migdal rate within an EFT in section 3 in terms
of the dynamic structure factor, which we discuss in detail in section 4, we now apply
our analytical result to calculate the full and differential rates we can expect in upcoming
experiments. To obtain the total rate per target mass, R, we divide by the detector mass

– 15 –



J
H
E
P
0
1
(
2
0
2
3
)
0
2
3

MT, average over the DM’s initial velocity, and multiply by the number of DM particles
in the detector such that

R = nχ
V

MT

∫
dω

∫
d3vfχ(v)dΓ(v)

dω
, (5.1)

where nχ is the local DM number density, and fχ is the DM’s velocity distribution. To
evaluate eq. (5.1), we drop the off-diagonal terms, K 6= Q, in eq. (3.8) to reduce com-
putational burden.10 We also take the infinite volume limit, and replace our sums with
integrals. The rate per target mass can then be written as,

R = nχ
MT

∫
d3vfχ(v)

∫
dω

∫
d3q

(2π)3

∫
d3ke
(2π)3

∑
K

8παNT

(
gχgN
mNω2

)2
(5.2)

× Z2(|ke + K|)(q ·(ke + K))2(
q2 +m2

φ

)2 Im
(
− ε−1

KK(ke, ω)
)

|ke + K|2
S
(
q − ke −K, q ·v − q2

2mχ − ω
)
.

Assuming for both the velocity distribution and structure factor to be isotropic (see ap-
pendix C for details), this equation simplifies to

R =
∫
dω

αA2σ̄nnχNT
m2

Nµ
2
χnω

4MT

∫
d3v

fχ(v)
v

∫
dq q3F 2

DM(q)
∫
d cosθqk cos2 θqk

×
∫

d3ke
(2π)3

∑
K

Z2(|ke + K|) Im
(
− ε−1

KK(ke, ω)
)

×
∫ Emax

0
dE S

(√
q2 + |ke + K|2 − 2q|ke + K| cos θqk , E

)
.

(5.3)

In particular, we replaced the couplings with a reference cross section, σ̄n, as follows:
(gχgN)2 = πA2σ̄n

(
q2

0 +m2
φ

)2
/µ2

χn, where q0 = mχv0 is the typical DM momentum, A is the
mass number, and µχn the reduced DM-nucleon mass. We also introduced the form factor
FDM(q) ≡

(
q2

0 +m2
φ

)
/
(
q2 +m2

φ

)
. Here we assume that the scalar mediator couples equally

to protons and neutrons. One obtains the result for a vector rather than scalar mediator
by replacing mφ with mA in eq. (5.2). For a dark photon we would make the replacement
(gχgN)2 = πZ2σ̄p

(
q2

0 +m2
A

)2
/µ2

χp.
The electron momentum appearing in the structure factor satisfies |ke+K| . 20 keV [21].

For sufficiently heavy DM (mχ & 10 MeV) one can then neglect it with respect to the mo-
mentum transfer, q � |ke + K|. In this regime one can evaluate the angular integral
analytically, which simplifies the rate to a factorized expression,

R '
∫
dω

2αA2σ̄nnχNT
3m2

Nµ
2
χnω

4MT

∫ vmax

vmin
d3v

fχ(v)
v

∫
d3ke

(2π)3

∑
K

Z2(|ke + K|)Im
(
− ε−1

KK(ke, ω)
)

×
∫ qmax

qmin
dq q3F 2

DM(q)
∫ Emax

0
dE S(q, E) . (5.4)

Near the kinematic endpoint, for low momenta when q ∼ |ke+K|, this factorization breaks
down and one should evaluate the full multi-dimensional integral in eq. (5.3).

10The combined neglected contribution is at most comparable to the diagonal terms [63].
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Figure 5. The differential DM-nucleus Migdal scattering rate expected for 100 g of material and
1 year of exposure, computed for a heavy (left panel) and a light (right panel) mediator, for
silicon (cyan) and germanium (red), and for two different DM masses, mχ = 5 MeV (dashed),
and mχ = 10 MeV (solid). The DM-nucleon reference cross-section defined below eq. (5.3) is set
to σ̄n = 10−36 cm2. The vertical lines indicate the approximate ionization threshold required to
produce two electron-hole pairs in the detector for silicon (dotted, 5.0 eV) and germanium (dot-
dashed, 3.7 eV) [66].

To numerically compute eq. (5.3), we quantify the partial dynamic structure factor
as described in subsection 4.1.4 and illustrated in figure 4. For the isotropic DM velocity
distribution, we assume a standard truncated Maxwell-Boltzmann distribution, boosted
by the Earth velocity with respect to the galactic rest frame which we average over the
angular distribution

fχ(v) = 1
4π

∫
dΩv

1

π
3
2 v2

0

v0 erf(vesc
v0

)− 2vesc√
π
e
− v

2
esc
v2
0

e
− (v+ve)2

v2
0 Θ(vesc − |v + ve|) , (5.5)

where we set ve = 240 km/s, v0 = 220 km/s, and vesc = 500 km/s. We also take the DM
number density to be nχ = 0.4 cm−3 (1 GeV/mχ). For the electron momentum integral
we use the data tables provided in DarkELF [21], which specify Z(|ke + K|) and Im

(
−

ε−1
KK(ke, ω)

)
, calculated via time-dependent density functional theory methods with the

GPAW package [64, 65] for silicon and germanium. Then we use quasi-adaptive Monte
Carlo integration to evaluate the multi-dimensional integral over ke, cos θqk, E, q, v and
ω, with the following limits of integration,

qmin = mχv

(
1−

√
1− 2ω

mχv2

)
, qmax = mχv

(
1 +

√
1− 2ω

mχv2

)
,

vmin =
√

2ω/mχ , vmax = ve + vesc , Emax = qv − q2

2mχ
− ω .

Our results for the differential ionization rate, dR/dω, for silicon and germanium are
shown in figure 5. The differential ionization rate peaks at energies slightly above the
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band gap, and then drops with increasing ω, an expected feature due to the scaling with
respect to ionization energy dR/dω ∝ 1/ω4. The decrease is more pronounced for lighter
DM masses as light DM has diminished phase-space available to impart large ioniziation
energies. Experiments measure an ionization signal Q, the number of electron-hole pairs
(denoted as Qe−) produced in an event, rather than ω directly. We map from one onto the
other using the approximation [66]

Q(ω) = 1 +
⌊(ω − Egap)

ε

⌋
, (5.6)

where we take ε, the mean energy per electron-hole pair, to be 3.8 eV and 2.9 eV for silicon
and germanium, respectively. We assume the band gap energies ESi

gap = 1.2 eV and EGe
gap =

0.67 eV.
In figure 6 we, instead, show projections for the exclusion limits on the DM-nucleon

cross-section, σ̄n, in the low mass region for a 100-g-year detector made out of silicon and
germanium for a heavy and a light mediator. The exposure corresponds to the current
plans of the SENSEI detector, which consists of a silicon target. The germanium line
depicts a hypothetical detector. For our projections, we assume zero background events
for the bins with ≥ 2e−, but Nbgk = 105 single-electron background events; we assume
the same number of background events for SENSEI as for the hypothetical germanium
detector. This background estimate corresponds to the number of single-electron events
anticipated at SENSEI for the displayed exposure. The projections are dominated by
the background free 2e−-threshold shown in figure 5 for masses mχ & 2 MeV, where we
integrate the differential rate shown from the displayed 2e−-threshold to ∼ 20 eV to obtain
the projected number of events. Our 90% C.L. corresponds to an upper limit of 2.3 events.
For smaller masses, the 1e− bin eventually delivers dominant constraints (seen as the kinks
in the curves). We also recast the constraints from SENSEI taken at Fermilab near the
MINOS hall (“SENSEI@MINOS”) [20]. Since [20] presented results for the 1e−, 2e−, 3e−,
and 4e− bins, we calculate the limit from each of these bins and show the best one in
figure 6. We find that the limit is dominated by the 2e−-bin, for which we show the cross-
section σn that leads to more than 9.3 events per 2.1 g-day exposure (we expect an analysis
that combines multiple bins to yield a slightly stronger constraint).

The shaded bands in figure 6 correspond to the treatment in [21, 45], where the dy-
namic structure factor is computed within the impulse approximation, and the momentum
integral IR cutoff is varied between qmin = 2

√
2mN〈Eph〉 and qmin = 3

√
2mN〈Eph〉, the

threshold approximating the break down of the impulse approximation. We find that this
prescription underestimates the rate, since it artificially excludes the low-momentum re-
gion, which is still above the kinematic threshold. The effect is more prominent for the light
mediator projections, as the rate scales as 1/q leading to a large enhancement precisely
in the small-momentum region, which then dominates the rate.11 This cutoff-dependent
rate suppression is illustrated in the right panel of figure 6, comparing the impulse approx-

11We stress that this underestimation is inherently due to imposing a cutoff on the momentum integral,
rather than to the particular approximation used to describe the structure factor. We find, in fact, a similar
underestimation of the full rate when using the free-ion approximation with a cutoff.
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Figure 6. Projections using the Migdal effect of the 90% C.L. on the DM-nucleon cross-section for
a heavy (left panel) and light (right panel) mediator for SENSEI (100-g-year silicon detector)
(cyan) and a hypothetical 100-g-year germanium detector (red) with 1e−1 thresholds (see text for
details). We find no difference in the total rate between using the exact dynamic structure factor
(eq. (4.2)) and the one obtained in the free-ion approximation (eq. (4.7)) — see text for details. For
comparison we show projections for “LBECA,” a proposed 100 kg-year xenon detector, with a 2e−

threshold (green, dashed) [17]. The shaded cyan and red regions correspond, respectively, to the
result for silicon and germanium reported in [45], where the authors used the impulse approximation
and imposed an IR cutoff on the momentum integral when the approximation breaks down. The un-
certainty band corresponds to varying the cutoff from qmin = 2

√
2mN〈Eph〉 to qmin = 3

√
2mN〈Eph〉.

The gray-shaded regions correspond to current constraints from XENON10 [67], XENON1T [68],
and a recast of XENON1T data for cosmic-ray up-scattered DM [69]. The cyan shaded region
indicates our recast of the SENSEI@MINOS [20] constraints.

imation for silicon and germanium. Although germanium has a larger rate than silicon
(solid lines), the uncertainty band obtained by varying the cutoff indicates a smaller rate
than silicon. This is due to the cutoff qmin being larger for the heavier germanium atom,
artificially suppressing the rate.

Interestingly, we find that both the total rate, R, and the differential rate, dR/dω, are
insensitive to whether the dynamic structure factor is computed within the simple free-ion
approximation of eq. (4.7), or the more accurate harmonic one, as in eqs. (4.5) and (4.11).
We also notice that R and dR/dω are insensitive (up to sub-percent corrections) to whether
one used the complete expression in eq. (5.3) or the approximate one in eq. (5.4). This
is true even for small DM masses, such that q ∼ |ke + K|. The reason for this lies in
the fact that, for most of the parameter space of interest, the maximum energy that can
be deposited to the crystal is much larger than the region where the structure factor has
non-zero support, i.e., Emax � Eph, Er. Consequently, one can use the exact sum rule
obeyed by the structure factor,

∫∞
0 dE S(q, E) = 1.12 Moreover, for small momentum

12One can check this analytically using, for example, the free-ion expression for the structure factor.
In this case, the energy integral simply changes the limits of integration over the momentum transfer,
qmin/max = mχv

(
1∓

√
1− 2ω

mχv2

)
→ µχNv

(
1∓

√
1− 2ω

µχNv2

)
. For mχ . 100 MeV the two coincide with

very good accuracy.
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transfer, when Emax ∼ Eph, the rate is anyway dominated by the elastic term (where the
entire lattice recoils), which still satisfies the previous sum rule. Therefore, for the entire
kinematic region of interest, the event rate can be written in a simple factorized form,

dR

dω
(ω) = nχNT

mNMT

∫ qmax

qmin
dq

∫
d3vvfχ(v)dσ

dq
(q) dP

dω
(q, ω) , (5.7)

in terms of the differential cross section

dσ

dq
= A2σ̄n
µ2
χnv

2 qF
2
DM(q) , (5.8)

and the ionization or shake-off probability (see also [21, 45]),

dP

dω
(q, ω) = 2αq2

3ω4mN

∫
d3ke
(2π)3

∑
K

Z2(|ke + K|) Im
(
− ε−1

KK(ke, ω)
)
. (5.9)

As we just showed, the event rates inclusive in the energy released to the lattice, E,
are insensitive to the detailed properties of the structure factor, as long as the structure
factor obeys the sum rule. Extrapolating the impulse approximation S(ia)(q, ω) to small
momentum transfers underestimates the rate by up to a factor of two since

∫∞
0 dES(ia)(q →

0, ω) ' 0.5.
Nonetheless, our expression (5.3) can be used also to extract additional information

about the exclusive observable of the differential energy distribution deposited to the lattice
dR/dE, which instead strongly depends on the structure factor. Specifically,

dR

dE
=
∫
dω

2αA2σ̄nnχNT

m2
Nµ

2
χnω

4MT

∫
d3v

fχ(v)
v

∫
dq q3F 2

DM(q)
∫ 1

−1
d cosθqk cos2 θqk

×
∫

d3ke
(2π)3

∑
K

Z2(|ke + K|) Im
(
− ε−1

KK(ke, ω)
)

× S
(√

q2 + |ke + K|2 − 2q|ke + K| cos θqk , E
)

Θ(Emax − E) .

(5.10)

Next-generation detectors, e.g., those employing transition edge sensor technology [70], aim
at measuring phonon and multi-phonon energy depositions. Such detectors are expected
to be sensitive to both the ionization as well as the lattice-energy deposition due to a DM
particle hitting a nucleus in a semiconductor. We expect this multi-channel signal to be
a powerful tool to discriminate between a DM signal and backgrounds (see also [38]). In
figure 7, we show the differential rate dR/dE for silicon, for the case of a heavy mediator.
In particular, we contrast the spectrum obtained using the free-ion approximation with
the result obtained from the harmonic dynamic structure factor. The two spectra are
drastically different, both in shape and in maximum energy deposits allowed, with the
more accurate harmonic approximation predicting much larger ones. We also show that
neglecting or not |ke + K| in the structure factor generally has no appreciable effects
on the differential rates. This is particularly advantageous, since neglecting the electron
momentum in eq. (5.10) makes its evaluation much less computationally demanding.
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Figure 7. We show the differential rate dR/dE, measurable by next-generation detectors, as
function of energy E deposited to the lattice, contrasting the harmonic dynamic structure factor
with the free-ion approximation for DM with masses mχ = 10 MeV (left panel) and mχ = 5 MeV
(right panel). We set the reference cross section to σ̄n = 10−36 cm2 and the minimum electron
energy to ωmin = 5 eV. The harmonic dynamic structure factor accurately captures the non-zero
probability of phonon excitations energies above the allowed threshold in the free-ion approximation,
illustrating the break-down of the free-ion approximation. Neglecting the electron momentum in the
dynamic structure function results only in small differences even for the lightest DM, mχ = 5 MeV,
where the electron momentum is of order of the total momentum transfer. Consistent with figure 3
we convolve the elastic scatterings with no energy deposition S

(harm)
0 = δ(E) with a Gaussian to

illustrate the shift from phonon depositions to elastic scatterings off the crystal.

6 Summary and discussion

When searching for sub-GeV dark matter with semiconductor targets, the distinction be-
tween high- and low-energy physics is not sharp anymore, requiring a framework that can
quantify ionization O(& eV) and phonon O(∼ 10meV) signals at the same time. A robust
theoretical understanding of these detection channels is key for ensuring the continued suc-
cess of experiments such as SENSEI, DAMIC-M, SuperCDMS, CDEX, and others, as well
as future experiments such as Oscura [71] and SPICE [70]. In this work, we extend the
regime of validity of the description of the Migdal effect in semiconductors to the lowest
mass regime (mχ = 1 − 50 MeV) that is kinematically able to give rise to ionization. We
accurately incorporate the bound nature of the nucleus in a crystal by taking advantage of
the large separation of scales between the final electron energy and the typical energies of
the excitations of the crystal lattice, formulating the problem in an EFT. The EFT allows
us to write the rate for Migdal emission in a way that is universal and independent of the
detailed knowledge of the inter-atomic interactions. Specifically, the vibrational modes of
the crystal are all encoded in the dynamic structure factor, while the electronic dynamics
is encoded in the energy loss function. Both quantities are a priori directly measurable.
Comprehensive data quantifying the dynamic structure factor is not yet available but is
obtainable through neutron scattering experiments. In the absence of data we utilize the
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harmonic approximation, which neglects higher order corrections to the atomic potential,
to illustrate how to model the dynamic structure function in all regimes.

Whether the free-ion approximation accurately captures the Migdal rate in the low
mass regime had been an open question in the literature [44–46]. We find that the exact
inclusive rate expression for the Migdal effect in a semiconductor agrees with the result
one obtains by extrapolating the free-ion approximation, which we prove to be a conse-
quence of an exact sum rule obeyed by the structure factor. When studying the differential
rate in the energy deposited to the crystal, dR/dE, the above sum rule does not apply,
and the harmonic structure factor predicts energy depositions to the lattice substantially
larger than what is found from the naïve free-ion approximation. In the future, the small
energy deposits to the lattice may become an accessible observable, in which case it will
be imperative to use the exact result we have derived in this work.
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A The electron-lattice Hamiltonian

In this appendix, we show how to derive the general interaction between valence electrons
and the rest of the lattice, eq. (3.4b). In our discussion, we treat core and valence electrons
separately, where the former are localized around each nucleus, while the latter are not.
The dielectric function is defined through the response of the material to a given electric
field. Specifically, under the application of an external field, Eext, the material responds
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with a macroscopic field [72],

E(x, ω) =
∫
d3y ε−1(x,y, ω)Eext(y, ω) , (A.1)

or, in Fourier space,13

E(p, ω) =
∑

q

ε−1(p, q, ω)Eext(q, ω) . (A.2)

We work for simplicity in the isotropic approximation, where the dielectric function is just
a scalar (rather than a tensor). The general case can be treated in a similar way.

The dielectric function must be invariant under discrete translations by a lattice vector,
say a: ε−1(x + a,y + a, ω) = ε−1(x,y, ω). For its Fourier transform, ε−1(p, q, ω), this
implies that the difference p− q is a reciprocal lattice vector. Alternatively, one can write
p = k + K and q = k + K ′, with K and K ′ belonging to the reciprocal lattice and k

limited to the first Brillouin zone. Therefore, eq. (A.2) can be rewritten as

E(k + K, ω) =
∑
K′

ε−1(k + K,k + K ′, ω)Eext(k + K ′, ω) . (A.3)

In order to find the Hamiltonian for a valence electron, we need to compute the electric
potential generating the field above. In momentum space, electric field and potential, ϕ,
are related by E(p) = ipϕ(p), and from the equation above one gets,

ϕ(k + K, ω) =
∑
K′

(k + K) · (k + K ′)
|k + K|2

ε−1(k + K,k + K ′, ω)ϕext(k + K ′, ω)

=
∑
K′

ε−1
LL(k + K,k + K ′, ω)ϕext(k + K ′, ω) ,

(A.4)

where we have introduced the so-called longitudinal dielectric function,14 ε−1
LL(p, q, ω) ≡

(p · q/p2)ε−1(p, q, ω). We now consider the nuclei and the core electrons as being a source
of an external potential which, following standard electromagnetism, is given by

ϕext(x) = 1
4π

∫
d3y

∑
I ρ(|y − xI |)
|y − x|

=⇒ ϕext(p) =
∑
I

ρ(p)
p2 eip·xI , (A.5)

with ρ the charge density, which we assume is isotropic and centered around each ion in
the crystal. Introducing the symmetric dielectric matrix, ε−1

KK′(k, ω) ≡ ε−1
LL(k + K,k +

K ′, ω)|k + K|/|k + K ′|, the macroscopic electric potential reads

ϕ(k + K, ω) =
∑
I

∑
K′

ε−1
KK′(k, ω)

|k + K||k + K ′|
ρ(|k + K ′|)ei(k+K′)·xI . (A.6)

To obtain the Hamiltonian of a valence electron we go back to real space, and multiply
the potential by the electron charge, −e. Defining also ρ(k) ≡ eZ(k), the result is

HeL = − 4πα
V

∑
I

∑
K,K′

∑
k

ε−1
KK′(k, ω)Z(|k + K ′|)
|k + K||k + K ′|

ei(k+K)·xee−i(k+K′)·xI . (A.7a)

13We are defining the Fourier transform of the dielectric function as ε−1(p, q, ω) =
V −1 ∫ d3xd3y ε−1(x,y, ω)eip·x−iq·y.

14We are grateful to Simon Knapen and Tongyan Lin for pointing this quantity out to us.
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Figure 8. Blue shaded region: the energy-momentum phase space that can be probed kine-
matically with a 1.5 eV neutron beam at ARCS for a silicon sample. Green shaded region: the
relevant energy-momentum parameter space where the dynamic structure factor in silicon is non-
zero. Also shown are the momenta that correspond to the Debye-Waller factor, W (q), equal to 0.2,
1, and 5.

B The dynamic structure factor from neutron spectroscopy

We expressed the Migdal scattering rate as eq. (3.8), which depends on the dynamic struc-
ture factor, S(q, E), which incorporates the phonon degrees of freedom in the material.
While we discussed several simplifying assumptions for S(q, E) in section 4, we discuss
here how inelastic neutron scattering in crystals can probe S(q, E). Typically, the neutron
scattering cross section in a monatomic crystal can be written as [56],

d2σ

dΩdE = σa
4π

kf
ki
S(q, E) , (B.1)

where q and E are the momentum and energy lost by the neutron, ki (kf ) is the initial
(final) momentum of the neutron, and σa is the total scattering cross section of a neutron
with an individual atom in the crystal. Thus, a measurement of the neutron scattering
rate for a monochromatic neutron beam in a crystal as a function of the final energy and
the direction of the neutron can directly provide a measurement of the structure factor.

This measurement can be performed at a neutron spectroscopy experiment [73]. Typ-
ically, a neutron beam is incident on the target material, and the scattered neutrons are
detected within a certain angular region. The energy and the momentum lost by the initial
neutron can be determined from the measurement of the time-of-flight and the angular
deflection caused by the scattering.

Here we consider the example of the spectrometer ARCS [74]. ARCS can generate a
monochromatic neutron beam with typical initial energies in the range 15meV–1500meV.
The angular range in the horizontal plane is from 0◦ (forward scattering) to 135◦ (back-
scattering). Assuming perfect resolution on the final neutron energy, the energy-momentum

– 24 –



J
H
E
P
0
1
(
2
0
2
3
)
0
2
3

phase space that can be probed kinematically with a 1.5 eV neutron beam at ARCS for a
silicon sample is shown in figure 8. We also show the region in energy-momentum space
for which the dynamic structure factor in silicon is expected to be appreciably different
from zero. We estimate this domain using the simple Gaussian description obtained within
the impulse approximation, as in eq. (4.9). We also show the momenta that correspond to
the Debye-Waller factor W equal to 0.2, 1, and 5, which represent the transition from the
harmonic regime to the impulse regime.

We see that with a 1.5 eV neutron, the energy-momentum parameter space where the
dynamic structure factor is non-zero in silicon can be probed up to momenta of ∼ 100 keV.
Importantly, this covers the region where the Debye-Waller factor transitions from values
much smaller than 1, where the dynamics are dominated by the elastic response of the
entire crystal, to values much higher than 1, where the dynamics are dominated by the
impulse approximation and the elastic nuclear recoil. The transition region between these
two extremes is susceptible to theory uncertainties and anharmonic effects. Thus, a direct
measurement of the dynamic structure factor in this region would be valuable.

C The isotropic approximation

In this appendix, we derive eq. (5.3). We start with the rate per target mass given in
eq. (5.2), and assuming an isotropic velocity distribution fχ(v), we first separate the integral
over v into radial and angular components. This gives,

R = nχ
MT

∫
(2π)v2dvfχ(v)

∫
dω

∫
d3q

(2π)3

∫
d3ke
(2π)3 8παNT

(
gχgN
mNω2

)2

×
∑
K

Z2(|ke + K|)(q ·(ke + K))2(
q2 +m2

φ

)2 Im
(
− ε−1

KK(ke, ω)
)

|ke + K|2

×
∫
d cos θvq S

(
q − ke −K, qv cos θvq − q2

2mχ − ω
)
.

(C.1)

Changing variables in the last integral to the phonon energy, E = qv cos θvq − q2

2mχ − ω,
we get,

R = nχ
MT

∫
(2π)v2dvfχ(v)

∫
dω

∫
d3q

(2π)3

∫
d3ke
(2π)3 8παNT

(
gχgN
mNω2

)2

×
∑
K

Z2(|ke + K|)(q ·(ke + K))2(
q2 +m2

φ

)2 Im
(
− ε−1

KK(ke, ω)
)

|ke + K|2

× 1
qv

∫ Emax

0
dE S(q − ke −K, E) ,

(C.2)

where Emax is the maximum possible phonon energy given by,

Emax = qv − q2

2mχ
− ω . (C.3)
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We then also split the integral over q into radial and angular components, and get,

R = nχ
MT

∫
(2π)v2dvfχ(v)

∫
dω

∫ (2π)q2dq

(2π)3

∫ 1

−1
d cos θqk

∫
d3ke
(2π)3 8παNT

(
gχgN
mNω2

)2

×
∑
K

Z2(|ke + K|)q
2|ke + K|2 cos2 θqk(

q2 +m2
φ

)2 Im
(
− ε−1

KK(ke, ω)
)

|ke + K|2
(C.4a)

× 1
qv

∫ Emax

0
dE S(q − ke −K, E)

= nχ
MT

∫
(2π)vdvfχ(v)

∫
dω

∫
q3dq

(2π)2

∫ 1

−1
d cos θqk cos2 θqk

∫
d3ke
(2π)3 8παNT

(
gχgN
mNω2

)2

×
∑
K

Z2(|ke + K|)
Im
(
− ε−1

KK(ke, ω)
)(

q2 +m2
φ

)2 ∫ Emax

0
dE S(q − ke −K, E) . (C.4b)

Now, we replace (gχgN)2/(q2
0 +m2

φ)2 = πA2σ̄n/µ
2
χn, where σ̄n is the reference DM-nucleon

cross section evaluated at q0 = mχv0, and the momentum-dependence of the interaction is
encoded in the DM form factor FDM(q) = (q2

0 +m2
φ)/(q2 +m2

φ). This gives

R =
∫
dω

2αA2σ̄nnχNT
m2

Nµ
2
χnω

4MT

∫
(2π)vdvfχ(v)

∫
dω

∫
q3dq F 2

DM(q)
∫ 1

−1
d cos θqk cos2 θqk

×
∫

d3ke
(2π)3

∑
K

Z2(|ke + K|)Im
(
− ε−1

KK(ke, ω)
) ∫ Emax

0
dE S(q − ke −K, E) . (C.5)

Finally, restoring the full integral over v assuming an isotropic fχ(v), and also assuming
the dynamic structure factor only depends on the magnitude of the momentum argument,
we get

R =
∫
dω

αA2σ̄nnχNT
m2

Nµ
2
χnω

4MT

∫
d3v

fχ(v)
v

∫
dq q3F 2

DM(q)
∫ 1

−1
d cosθqk cos2 θqk

∫
d3ke
(2π)3

×
∑
K

Z2(|ke + K|)Im
(
− ε−1

KK(ke, ω)
)

×
∫ Emax

0
dE S

(√
q2 + |ke + K|2 − 2q|ke + K| cos θqk , E

)
,

(C.6)

which is eq. (5.3).
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