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1 Introduction

In [1] Eberhardt introduced eight explicit instances of N = (2, 2) AdS3/CFT2, where the bulk
geometry is AdS3 × (S3 ×M4)/G, and the boundary CFT is (a marginal deformation of) the
symmetric orbifold symN (M4/G). The group G is finite and freely acting in all eight cases.
In one case M4 = K3 and G = Z2, such that M4/G = K3/Z2 is the Enriques surface denoted
ES. In the remaining cases M4 = T 4, and each of the seven choices for G corresponds to a
complex hyperelliptic surface HS = T 4/G as reviewed in appendix A. Setting G = 1 recovers
of course the standard N = (4, 4) dualities [2]. See [3, 4] for reviews of the N = (4, 4) cases.

We are interested in these dualities because they have smooth supergravity geometries
in the bulk, and explicit CFT descriptions on the boundary. Eberhardt’s paper grew out of

– 1 –



J
H
E
P
0
1
(
2
0
2
4
)
0
9
9

the earlier work [5] where N = (2, 2) examples with M = T 4 and G a dihedral group were
considered but the bulk geometries were not generally smooth. See also [6, 7] for dualities
between a tensionless limit of the bulk theories and undeformed symmetric orbifolds on the
boundary. Other examples of N = (2, 2) AdS3/CFT2 where the boundary theory is only
implicit as the IR fixed point of an RG flow across dimensions can be found in [8, 9]. For
studies of more general structures in N = (2, 2) holography involving symmetric orbifold
CFTs see [10–13] and references therein.

Aspects of these dualities have passed successful checks in [1, 5, 14]:

• the bulk BPS Kaluza-Klein (KK) spectra were matched in [1] (in the T 4/Z2 case even
earlier, see [5]) with those of the corresponding boundary operators;

• in [14] associated brane configurations were proposed whose low-energy sigma models
reproduced the bulk central charges, at the leading (O(1/GN )) as well as the subleading
(O(G0

N )) order [15, 16] in the bulk Newton’s constant GN ;

• in [14] the nontrivial boundary elliptic genus in the ES case was used for microstate
counting of the bulk black holes, and the Bekenstein-Hawking entropy (O(1/GN )) as
well as the one-loop logarithmic correction to it (O(logGN )) were matched.

In the HS cases, the elliptic genera vanish due to fermionic zero modes. So for black
hole microstate counting one must appeal instead to variants of the elliptic genus. In this
work we initiate the analysis needed for solving this problem.

The issue with fermionic zero modes and the need for modified indices has in fact already
been encountered in the standard N = (4, 4) case where M4 = T 4. In that case there are two
fermionic zero modes — one for each T 2 — and Maldacena-Moore-Strominger (MMS) [17]
proposed considering a modified index containing two helicity insertions (see (2.1) for the
precise expression). The idea is that each helicity insertion soaks up a fermionic zero mode, so
while the usual index is killed by the zero modes, this “second helicity-trace index” survives.
MMS moreover showed that long representations of the right-handed N = 4 algebra do not
contribute to the modified index, so it ought to be protected against quantum corrections
and suitable for black hole microstate counting.

Our method is essentially that of MMS adapted to the N = (2, 2) context. The target
spaces HS = T 4/G of our interest have only one fermionic zero mode, so for us a single
helicity insertion in the index would do. We thus consider the first helicity-trace index, which
we demonstrate ought to be protected with N = (2, 2) superconformal symmetry.

We focus here on the four cases where G is simply Zk (with k = 2, 3, 4, 6), leaving the
three remaining cases for future work. Elementary CFT orbifold techniques allow us to
adapt the MMS analysis to these T 4/Zk cases. To our surprise, we find that a saddle-point
analysis of our boundary indices reproduces only a fraction (respectively 1

2 ,
2
3 ,

3
4 ,

5
6) of

the bulk Bekenstein-Hawking entropies.
The saddle-point analysis also yields a logarithmic correction to the Bekenstein-Hawking

entropy, which turns out to match the macroscopic expectation from a one-loop calculation
on the near-horizon geometry [18] presented in section 3.2.

In the k = 2 case, it turns out that our helicity-trace index is related to the weak
Jacobi form ϕ−1,2 of weight −1 and index 2. This makes available an alternative approach
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to microstate counting of the bulk black branes via Rademacher expansion of ϕ−1,2. This
way we corroborate the results of our saddle-point analysis for k = 2.

We also provide numerical evidence for validity of our saddle-point results for all k.
Our conclusion is thus that Bose-Fermi cancellations prevent the helicity-trace index to
capture the full Bekenstein-Hawking entropy in these dualities. The standard argument
for supersymmetric indices encoding the full entropy [19] relies on an SU(2)R near-horizon
symmetry, and seems to be evaded in our N = (2, 2) cases due to the SU(2)R being broken
to U(1)R.

Here is a brief outline of what follows. We begin in section 2 by demonstrating that the
non-trivial SUSY index in the (2, 2) context of our interest is the 1st helicity-trace index,
denoted E1. We proceed to explain how it is evaluated for Eberhardt’s symmetric orbifold
CFTs symN (T 4/Zk). The calculation starts with finding the—(−1)F weighted — partition
function Z of the seed SUSY sigma models T 4/Zk =: HSk. This is done in section 2.1 using
elementary orbifold (S)CFT techniques found in [20] (the “Yellow Book”) and [21] (the Mirror
Symmetry book). Going from the seed partition function Z to the symmetric orbifold index
E1 is achieved in section 2.2 via the DMVV formula [22], whose content is summarized neatly

— see (2.20)—in terms of the Fourier coefficients ĉ1 of a counting function H1 introduced in
section 2.3. The asymptotic degeneracies encoded in the modified indices E1 are thus found
from the asymptotic content of the counting functions H1[HSk], which we study in section 3
and compare with macroscopic expectations. We find in particular that in the HSk case log
of the asymptotic degeneracies encoded in the modified index E1 accounts only for a fraction
1 − 1

k of the Bekenstein-Hawking entropy of the bulk black branes, while it successfully
reproduces the logarithmic correction to it. Section 4 summarizes our understanding of the
achievements and challenges in Eberhardt’s (2, 2) dualities. The four appendices contain
technical details suppressed in the main text.

2 Helicity-trace index for N = (2, 2) CFTs

In their study of the N = (4, 4) CFT with target space symN (T 4), MMS introduced the
second helicity-trace index defined as [17]

E2 := TrRR

[
(−1)2J3

0−2J̄3
0 (2J̄3

0 )2qL0 q̄L̄0y2J3
0
]
. (2.1)

Here J3
0 and J̄3

0 are the Cartans of the left- and right-handed SU(2)R current zero modes,
while L0 and L̄0 are the left- and right-handed Virasoro zero modes, and the trace is over
the Ramond-Ramond (RR) sector.

They demonstrated that long representations of the (right-handed) N = 4 algebra do
not contribute to E2. Therefore E2 is expected to be protected against quantum corrections
arising from marginal deformation of the symmetric orbifold to the strong coupling regime
dual to string theory on AdS3 × S3 × T 4. They moreover showed that, unlike the elliptic
genus, the second helicity-trace of the N = (4, 4) symN (T 4) CFT is nonzero, because the two
insertions of 2J̄3

0 inside the trace soak up the two fermionic zero modes of T 4. In this section,
we are going to adapt this analysis to the N = (2, 2) cases with target space symN (HS).
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Of the two fermionic zero modes of T 4, one survives the action of G. To see this, we
write T 4 = T 2 × T 2, and note that in all HS cases G shifts the first T 2 (leaving its fermionic
zero mode intact) while acting as in appendix A non-trivially on the second T 2 (killing its
fermionic zero mode). We will hence need only one helicity insertion inside the trace:

E1 := TrRR

[
(−1)2J0−2J̄0(2J̄0)qL0 q̄L̄0y2J0

]
, (2.2)

with J0 and J̄0 the left- and right-handed U(1)R current zero modes. This first helicity-trace
index is zero for the (4, 4) case of T 4 (because it does not soak up one of its fermionic zero
modes), but will be non-zero for the (2, 2) cases of our interest. It is moreover protected
against quantum corrections, as we now demonstrate.

Let us take a closer look at the right-handed supersymmetry algebra. This is the part
of the SUSY algebra responsible for the cohomological structure with respect to which we
want to show E1 is an index. In the context of our interest, where there is a fermionic
zero mode, the CFT target space has a U(1)2 isometry which descends to a current algebra
enhancing the usual N = 2 symmetry. The zero-mode part of this enhanced algebra takes
the form (compare with eq. (3.9) of [17]):

{Ḡ+
0 , Ḡ

−
0 } = 2L̄0, {Q̄+

0 , Q̄
−
0 } = 1,

[J̄0, Ḡ
+
0 ] =

1
2Ḡ

+
0 , [J̄0, Ḡ

−
0 ] = −1

2Ḡ
−
0 ,

[J̄0, Q̄
+
0 ] =

1
2Q̄

+
0 , [J̄0, Q̄

−
0 ] = −1

2Q̄
−
0 . (2.3)

Here G± are the fermionic superpartners of the right-handed stress tensor, while J̄ is the right-
handed U(1)R current, and Q̄± the fermionic superpartners of the right-handed U(1)2 current.
The commutators of Ḡs with Q̄s vanish if we just consider states that are neutral under
U(1)2. We now demonstrate that given the zero mode algebra (2.3), long representations
do not contribute to E1.

For a long representation, we have L̄0 > 0. The Gs and Qs are fermionic in nature, so they
will behave as fermionic raising and lowering operators. The algebra (2.3) has two fermionic
creation operators b†i , corresponding to Ḡ+

0 and Q̄+
0 , which have J̄0 = 1

2 . The corresponding
lowering operators bi have J̄0 = −1

2 . Let us start with the state |0, j⟩ annihilated by the
lowering operators and obeying J̄0|0, j̄⟩ = j̄|0, j̄⟩. Acting on it with creation operators we get
two states with J̄0 = j̄+ 1

2 , and one state with J̄0 = j̄+1. The fermion number F := 2J0−2J̄0
of these states alternates. We can hence easily check that the long representations do not
contribute to the first helicity-trace index

Trlong(−1)−2J̄0 J̄0 ∝ j̄ − 2
(
j̄ + 1

2

)
+ j̄ + 1 = 0. (2.4)

Thus E1 is a protected index in the N = (2, 2) theories of our interest.1
We compute such helicity-trace indices by taking ȳ derivatives of the partition function2

Z(q, q̄, y, ȳ) = TrRR(−1)2J0−2J̄0qL0 q̄L̄0y2J0 ȳ2J̄0 , (2.5)

and then setting ȳ = 1.
1Actually, this argument does not yet guarantee protectedness of the L0, J0 quantum numbers of long×short

representations. For that we appeal to the assumptions i) L0 − L̄0 ∈ Z, and ii) quantization of J0 charge.
2As in [17] we use a notation where L0, L̄0 are zero on RR ground states. The reader familiar with the

alternative notation might want to replace L0, L̄0 with L0 − c/24, L̄0 − c/24 in the following formula.
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We would like to compute the helicity-trace index of a symmetric orbifold CFT with
target space symNM4. For that we need the partition function Z[symNM4], which can be
extracted from the DMVV formula [22]

Z[M4] =
∞∑

N=0
pNZ[symNM4] =

∞∏
i=1

′∏
∆,∆̄,ℓ,ℓ̄

1
(1− piq∆/iq̄∆̄/iyℓȳℓ̄)c(∆,∆̄,ℓ,ℓ̄)

. (2.6)

Here the prime indicates that ∆, ∆̄ are restricted so that ∆−∆̄
i ∈ Z, while c(∆, ∆̄, ℓ, ℓ̄) denotes

the coefficients of the partition function

Z[M4] =
∑

∆,∆̄,ℓ,ℓ̄

c(∆, ∆̄, ℓ, ℓ̄)q∆q̄∆̄yℓȳℓ̄, (2.7)

of the seed CFT with target space M4.

2.1 Partition function of the seed theory

The seed CFTs that we consider in this work have target spaces of the form M4 = T 4/G, with
G = Zk. Writing T 4 = T 2 × T 2, the group G shifts the first T 2 and rotates the second T 2.
Since the order-k rotation has to be an automorphism of the lattice of the torus, the complex
structure of the second T 2 must take specific values depending on k as in appendix A (except
in the Z2 case where it can be arbitrary). This is one of the reasons we have only k = 2, 3, 4, 6.

Let g be the fundamental generator of G. The partition function of the T 4/G CFT
is given by the standard orbifold formula

Z[T 4/Zk] =
1
k

( k−1∑
j,t=0

Zgt-twisted
w/ gj -insertion[T

4]
)
, (2.8)

with t labeling the twisted sectors.

Low-temperature limit. In the next section we will study the Cardy-like (q, q̄ → 1, or
“high-temperature”) limit of the symNM4 index to extract microstate degeneracies of the
associated macroscopic black branes. Here, we point out a simple consistency check for the
q, q̄ → 0 (or “low-temperature”) limit of the M4 partition function.

This limit has to capture the supersymmetric RR sector ground states contributing to
Z[M4]. These ground states are in one-to-one correspondence with the harmonic (p, q) forms
on the target space M4, and since M4 is two-complex-dimensional, they carry R-charges3

2J0 = q − dimCM

2 = q − 1, 2J̄0 = p− dimCM

2 = p− 1. (2.9)

Hence the coefficient of (−1)2J0−2J̄0y2J0 ȳ2J̄0 in limq,q̄→0 Z[M4] should reproduce h2J̄0+1,2J0+1
in the Hodge diamond of M4. Said differently, for each harmonic (p, q) form on M4 there
should be a term (−1)q−pyq−1ȳp−1 in the low-temperature limit of Z[M4].

3We are following the conventions of [21]; see eqs. (13.72)–(13.73) therein. Note that qthere
R = 2J0 and

qthere
L = 2J̄0; these relations are obtained comparing the R-charges of fermions: 2J0 = 1 for ψ, and 2J̄0 = 1 for
ψ̃ (see eqs. (11.162)–(11.163) in [21]).
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Examples. We start with T 4/Z2, which we denote as HS2. The formula (2.8) can be
worked out in detail and as we demonstrate in appendix B it yields

Z[HS2] =
1
2Θ

T 4
∣∣∣∣θ1(z, τ)

η3

∣∣∣∣4 + 2
∣∣∣∣θ2(z, τ)
θ2(τ)

∣∣∣∣2 ·ΘT 2

w/ G-insertion ·
∣∣∣∣θ1(z, τ)

η3

∣∣∣∣2
+ 2

∣∣∣∣θ4(z, τ)
θ4(τ)

∣∣∣∣2 ·ΘT 2

w/ 1/2−shifted lattice ·
∣∣∣∣θ1(z, τ)

η3

∣∣∣∣2
+ 2

∣∣∣∣θ3(z, τ)
θ3(τ)

∣∣∣∣2 ·ΘT 2

w/ G-insertion, 1/2−shifted lattice ·
∣∣∣∣θ1(z, τ)

η3

∣∣∣∣2 .
(2.10)

We are using the convention θi(τ) := θi(0, τ). The Θ functions involve sums over lattices
of the topological sectors of the compact scalar fields — see appendix B for more details. As
in [17], we restrict to the origin of the lattice (otherwise there would be non-trivial dependence
on q̄ in the modified index, in contrast to it being a BPS index with respect to right-handed
supersymmetry). This amounts to suppressing the Θ functions in the first line, and completely
neglecting the last two lines of the above equation. We end up with

Z[HS2]singlet =
1
2

∣∣∣∣θ1(z, τ)
η3

∣∣∣∣4 + 2
∣∣∣∣θ2(z, τ)
θ2(τ)

∣∣∣∣2 · ∣∣∣∣θ1(z, τ)
η3

∣∣∣∣2 . (2.11)

As a consistency check, we note that in the low-temperature q, q̄ → 0 limit,

Z[HS2]singlet →
1
2(y

1/2 − y−1/2)2(ȳ1/2 − ȳ−1/2)2 + 1
2(y − y−1)(ȳ − ȳ−1), (2.12)

with the coefficient of (−1)2J0−2J̄0y2J0 ȳ2J̄0 correctly reproducing h2J̄0+1,2J0+1 in the Hodge
diamond of HS2 as presented in appendix A.

For the G = Z3,4,6 cases also we relegate the derivations to appendix B and only present
the final results here:

Z[HS3] =
1
3Θ

T 4
∣∣∣∣θ1(z,τ)

η3

∣∣∣∣4+ ∑
j=1,2

∣∣∣∣∣θ1(z+ j
3 , τ)

θ1( j
3 , τ)

∣∣∣∣∣
2

·ΘT 2

w/ gj -insertion ·
∣∣∣∣θ1(z,τ)

η3

∣∣∣∣2

+
∑

t=1,2

2∑
j=0

(yȳ)1− t
3

∣∣∣∣∣θ1(z+ t
3τ+

j
3 , τ)

θ1( t
3τ+

j
3 , τ)

∣∣∣∣∣
2

·ΘT 2

w/ gj -insertion, t/3-shifted lattice ·
∣∣∣∣θ1(z,τ)

η3

∣∣∣∣2 ,
(2.13)

Z[HS4] =
1
4

(
ΘT 4

∣∣∣∣θ1(z,τ)
η3

∣∣∣∣4+ 3∑
j=1

4sin2
[
πj

4

]∣∣∣∣∣θ1(z+ j
4 , τ)

θ1( j
4 , τ)

∣∣∣∣∣
2

·ΘT 2

w/ gj -insertion ·
∣∣∣∣θ1(z,τ)

η3

∣∣∣∣2

+
∑

t=1,3

3∑
j=0

2(yȳ)1− t
4

∣∣∣∣∣θ1(z+ t
4τ+

j
4 , τ)

θ1( t
4τ+

j
4 , τ)

∣∣∣∣∣
2

·ΘT 2

w/ gj -insertion, t/4−shifted lattice ·
∣∣∣∣θ1(z,τ)

η3

∣∣∣∣2

+
3∑

j=0
t=2

3(yȳ)1− t
4

∣∣∣∣∣θ1(z+ t
4τ+

j
4 , τ)

θ1( t
4τ+

j
4 , τ)

∣∣∣∣∣
2

·ΘT 2

w/ gj -insertion, t/4−shifted lattice ·
∣∣∣∣θ1(z,τ)

η3

∣∣∣∣2
)
,

(2.14)
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Z[HS6] =
1
6

(
ΘT 4

∣∣∣∣θ1(z,τ)
η3

∣∣∣∣4+ 5∑
j=1

4sin2
[
πj

6

]∣∣∣∣∣θ1(z+ j
6 , τ)

θ1( j
6 , τ)

∣∣∣∣∣
2

·ΘT 2

w/ gj -insertion ·
∣∣∣∣θ1(z,τ)

η3

∣∣∣∣2

+
∑

t=1,5

5∑
j=0

(yȳ)1− t
6

∣∣∣∣∣θ1(z+ t
6τ+

j
6 , τ)

θ1( t
6τ+

j
6 , τ)

∣∣∣∣∣
2

·ΘT 2

w/ gj -insertion, t/6−shifted lattice ·
∣∣∣∣θ1(z,τ)

η3

∣∣∣∣2

+
4∑

t=2

5∑
j=0

2(yȳ)1− t
6

∣∣∣∣∣θ1(z+ t
6τ+

j
6 , τ)

θ1( t
6τ+

j
6 , τ)

∣∣∣∣∣
2

·ΘT 2

w/ gj -insertion, t/6−shifted lattice ·
∣∣∣∣θ1(z,τ)

η3

∣∣∣∣2
)
.

(2.15)

We have checked that their low-temperature limit coincides with (2.12), and therefore
reproduces the correct HS Hodge diamond as in appendix A.

2.2 Index of the symmetric orbifold CFT

Taking the derivative of Z[M4] with respect to ȳ and setting ȳ = 1 gives the generating
function of the modified index. From eq. (2.6) we get for the derivative

∂ȳZ[M4]
∣∣
ȳ=1 = ∂ȳ

 ∞∏
i=1

′∏
∆,∆̄,ℓ,ℓ̄

1
(1− piq∆/iq̄∆̄/iyℓȳℓ̄)c(∆,∆̄,ℓ,ℓ̄)


ȳ=1

=
′∑

i,∆,∆̄,ℓ,ℓ̄

ℓ̄ c(∆, ∆̄, ℓ, ℓ̄) piq∆/iq̄∆̄/iyℓ

1− piq∆/iq̄∆̄/iyℓ
Z[M4]

∣∣∣∣
ȳ=1

=
∑

i∈N,∆≥0,ℓ

ĉ1(i∆, ℓ)piq∆yℓ

1− piq∆yℓ
,

(2.16)

Above we have used Z[M4]
∣∣
ȳ=1 = 1, following from the fact that the elliptic genus of symNM4

vanishes for N > 0 in the present context. We have also defined

ĉ1(∆, ℓ) :=
∑

ℓ̄

ℓ̄c(∆, 0, ℓ, ℓ̄), (2.17)

and used ∑
ℓ̄

ℓ̄c(∆, ∆̄, ℓ, ℓ̄) = 0, for ∆̄ > 0. (2.18)

The latter identity can be checked for M4 = HS2,3,4,6 at low values of ∆ for various cases
by working out the expansion of Z[M4] as in (2.7), and then explicitly evaluating the sum.
More generally, it follows from (2.4), noting that the creation operators Ḡ+

0 and Q̄+
0 commute

with L0, L̄0, J0.
Now we can expand out (2.16) as

∂ȳZ[M4]
∣∣
ȳ=1 =

∞∑
N=1

pNE1[symNM4] =
∑

s,i∈N,∆≥0,ℓ

ĉ1(i∆, ℓ)(piq∆yℓ)s. (2.19)

Let us restrict attention to a term on the r.h.s. with the power of q a prime number n, and
the power of y another prime number j (limiting to prime numbers is only for simplicity;
we will rectify this limitation in appendix D where we allow s to take any natural number
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and observe interesting fine-grained number-theoretic structures). Then we see that it is
the s = 1, i = N, ∆ = n, ℓ = j term that encodes the degeneracy in the modified index.
We summarize this as

degeneracy of the states with ∆=n, ℓ= j encoded in E1[symNM4] −→ ĉ1(Nn,j). (2.20)

Our desired ĉ1 coefficients can be computed via their definition (2.17), using the c coefficients
of the non-holomorphic partition function Z[M4] as in (2.7). However, it turns out that
the non-holomorphic Z[M4] contains too much irrelevant information for our purposes, and
ĉ1(∆, ℓ) is actually encoded as the coefficient of q∆yℓ in the expansion of a certain holomorphic
two-variable function. The following simple calculation demonstrates this.

2.3 The holomorphic counting function

The non-holomorphic seed partition functions in our examples are (in the topologically
trivial sector) of the form

Z[HS] =
∑

j

Bj(q, y)Bj(q, y). (2.21)

Denote the coefficients of Bj by chol
j :

Bj(q, y) =
∑
∆,ℓ

chol
j (∆, ℓ)q∆yℓ. (2.22)

Then the formula (2.17) for ĉ1 can be evaluated as

ĉ1(∆, ℓ) =
∑

ℓ̄

ℓ̄

[∑
j

Bj ·Bj

]
q∆q̄0yℓȳℓ̄

=
∑

j

(∑
ℓ̄

ℓ̄
[
Bj
]
q̄0ȳℓ̄

)
[Bj ]q∆yℓ

=
∑

j

(∑
ℓ̄

ℓ̄chol
j (0, ℓ̄)

)
[Bj ]q∆yℓ =

[∑
j

bj Bj

]
q∆yℓ

.

(2.23)

The symbol [f ]xk above denotes the coefficient of xk in f . We have also defined

bj :=
∑

ℓ̄

ℓ̄chol
j (0, ℓ̄). (2.24)

Eq. (2.23) means that ĉ1(∆, ℓ) is encoded as the coefficient of q∆yℓ in the series expansion
of the holomorphic function

H1(q, y) :=
∑

j

bj ·Bj(q, y). (2.25)

These holomorphic functions are the objects of main interest in application to black hole
microstate counting.

Examples. For the HS2 case, we see from (2.11) that

Z[HS2] =
∑

j=0,1
BjBj , (2.26)

with
B0 = 1√

2

(
θ1(z, τ)
η3(τ)

)2
, B1 =

√
2 θ2(z, τ)
θ2(τ)

θ1(z, τ)
η3(τ) . (2.27)
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Explicit evaluation of (2.24) shows4 b0 = 0 and b1 = −
√
2i in this case. Hence

H1[HS2] = −2i θ2(z, τ)
θ2(τ)

θ1(z, τ)
η3(τ) = y−1 − y +O(q2). (2.28)

For the HS3 case we have

Z[HS3] =
∑

j=0,1,2
BjBj , (2.29)

with

B0 = 1√
3

(
θ1(z, τ)
η3(τ)

)2
, B1 =

θ1(z + 1
3 , τ)

θ1(1
3 , τ)

θ1(z, τ)
η3 , B2 =

θ1(z + 2
3 , τ)

θ1(2
3 , τ)

θ1(z, τ)
η3 .

(2.30)
Explicit evaluation of (2.24) gives b0 = 0, b1 = −i, and b2 = −i. Hence

H1[HS3] = −i
(
θ1(z + 1

3 , τ)
θ1(1

3 , τ)
θ1(z, τ)
η3 +

θ1(z + 2
3 , τ)

θ1(2
3 , τ)

θ1(z, τ)
η3

)
= y−1 − y +O(q). (2.31)

For HS4 we have

Z[HS4] =
∑

j=0,1,2,3
BjBj , (2.32)

with

B0 =
1√
4

(
θ1(z,τ)
η3(τ)

)2
, Bm =sin

[
πm

4

]
θ1(z+m

4 , τ)
θ1(m

4 , τ)
θ1(z,τ)
η3 , m=1,2,3. (2.33)

Explicit calculation via (2.24) yields b0 = 0, b1 = − i√
2 , b2 = −i, and b3 = − i√

2 . Hence

H1[HS4] = − i

2

(
θ1(z + 1

4 , τ)
θ1(1

4 , τ)
θ1(z, τ)
η3 + 2

θ1(z + 2
4 , τ)

θ1(2
4 , τ)

θ1(z, τ)
η3 +

θ1(z + 3
4 , τ)

θ1(3
4 , τ)

θ1(z, τ)
η3

)
= y−1 − y +O(q).

(2.34)

For HS6 we have

Z[HS6] =
5∑

j=0
BjBj , (2.35)

with

B0 = 1√
6

(
θ1(z, τ)
η3(τ)

)2
, Bm =

√
2
3 sin

[
πm

6

]
θ1(z + m

6 , τ)
θ1(m

6 , τ)
θ1(z, τ)
η3 , m = 1, 2, . . . , 5.

(2.36)
4The coefficient b0 is always zero in our examples, because it is proportional to the quantity

∑
ℓ̄
ℓ̄chol

j (0, ℓ̄)
computed for T 4, which is zero since T 4 needs two insertions of ℓ̄ to soak up its fermionic zero modes.
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Explicit calculation via (2.24) gives b0 = 0, b1 = −i
√

1
6 , b2 = −i 1√

2 , b3 = −i
√

2
3 , b4 = −i 1√

2 ,

and b5 = −i
√

1
6 . Hence

H1[HS6] =− i

6

(
θ1(z+ 1

6 , τ)
θ1(1

6 , τ)
θ1(z,τ)
η3 +3

θ1(z+ 2
6 , τ)

θ1(2
6 , τ)

θ1(z,τ)
η3 +4

θ1(z+ 3
6 , τ)

θ1(3
6 , τ)

θ1(z,τ)
η3

+3
θ1(z+ 4

6 , τ)
θ1(4

6 , τ)
θ1(z,τ)
η3 +

θ1(z+ 5
6 , τ)

θ1(5
6 , τ)

θ1(z,τ)
η3

)
= y−1−y+O(q).

(2.37)

3 Application to black hole microstate counting

3.1 Asymptotic degeneracies on the boundary

We would like to compute the asymptotics of ĉ1(∆, ℓ) for ∆, ℓ → ∞. Since we know its
generating function, our problem is a standard exercise in analytic combinatorics.

3.1.1 Saddle-point analysis

Extracting the coefficients of H1(q, y) via contour integration we have

d̃(n,N, j) = ĉ1(Nn, j) ≃
∫ 1

0
dτ
∫ 1

0
dz e−2πiNnτ−2πijz H1(q, y). (3.1)

As in [18] we anticipate that at the saddle point value of τ is parametrically small5 but
that of z is not. Taking Rez fixed inside (0, 1), let us parametrize the small-τ asymptotic
of H1 with three coefficients a0,1,2 as

H1(q, y) ≈ e−
2πi a2 z2

τ
+ 2πi a1 z

τ
− 2πi a0

τ τ, (3.2)

where we have multiplied the exponential by τ since this is the behavior that will arise in
the HS2,3,4,6 cases below. Then

d̃(n,N, j) ∼
∫ 1

0
dτ
∫ 1

0
dz e−2πiNnτ−2πijz−2πiz2 a2/τ+2πiz a1/τ−2πi a0/ττ. (3.3)

Extremizing the integrand we find the saddle point lies at

z0 = a1
2a2

− j

2a2
τ0, τ0 =

i
√
a2

1 − 4a0a2

2
√
a2Nn− j2

4

. (3.4)

The maximized exponent then turns out to have real part

Sindex = 2π

√
Nna2 −

j2

4 ·

√
a2

1 − 4a0a2

a2
. (3.5)

The saddle-point entropy also has an imaginary piece −iπja1/a2, which implies that d̃ has
phase oscillations even on the saddle point. In light of recent progress on complex saddles of

5We have checked via the estimates in appendix C that considering τ with real part parametrically close to
rationals does not improve our results.
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higher-dimensional indices (see e.g. [23–26]), we interpret this imaginary piece as a signal
that bose-fermi cancellations have not been fully obstructed on the saddle-point. We will
comment more on this in the discussion section.

Note that since the central charge of the supersymmetric sigma models symNHS of
our interest is c = 6N , the Cardy (and hence the bulk Bekenstein-Hawking) entropy is
SBH = SCardy = 2π

√
cn
6 − j2

4 = 2π
√
Nn− j2

4 . So it follows from (3.5) that

in cases where a2 = 1, Sindex =
√
a2

1 − 4a0 SBH. (3.6)

Examples. The values of a1,2 are given in table 1 for the four HS cases of our interest,
in the range where a0 = 0 as we now explain.

For simplicity of exposition, we take z ∈ R and τ ∈ iR>0, and assume analytic con-
tinuation to more general z, τ gives the correct result. We have checked that a careful
analysis justifies this assumption.

In the HS2 case, using the estimates in appendix C we find the small-τ asymptotic
of (2.28) to be (note that periodicity in z implies we can focus on z ∈ [0, 1))

H1[HS2] ≈ τ e
iπ
τ

[ϑ(z+1/2)−ϑ(1/2)+ϑ(z)] =

τ exp[ iπ
τ (−2z2 + z)], z ∈ (0, 1/2),

τ exp[ iπ
τ (−2z2 + 3z − 1)], z ∈ (1/2, 1).

(3.7)

Hence for the range z ∈ (0, 1/2) we have a0 = 0 and a2 = 2a1 = 1 as in table 1, while for
the range z ∈ (1/2, 1) we have instead a0 = 1/2, a1 = 3/2, a2 = 1. Importantly though, the
entropy following from eq. (3.5) would be the same whether we compute it with the a0,1,2
that we get for z ∈ (0, 1/2) or the ones for z ∈ (1/2, 1). Therefore we have not bothered to
record the differing coefficients in the range z ∈ (1/2, 1) in table 1.

In the HS3 case, using the estimates in appendix C we find the small-τ asymptotic
of (2.31) to be

H1[HS3] ≈ τ e
iπ
τ

[ϑ(z+1/3)−ϑ(1/3)+ϑ(z)] + τ e
iπ
τ

[ϑ(z+2/3)−ϑ(2/3)+ϑ(z)]

≈ τ e
iπ
τ
·Max[ϑ(z+1/3)−ϑ(1/3)+ϑ(z),ϑ(z+2/3)−ϑ(2/3)+ϑ(z)]

=

τ exp[ iπ
τ (−2z2 + 4

3z)], z ∈ (0, 1/2),
τ exp[ iπ

τ (−2z2 + 8
3z −

2
3)], z ∈ (1/2, 1).

(3.8)

Hence for the range z ∈ (0, 1/2) we have a0 = 0 and a2 = 3
2a1 = 1 as in table 1, while for

the range z ∈ (1/2, 1) we have instead a0 = 1/3, a1 = 4/3, a2 = 1. Importantly though, the
entropy following from eq. (3.5) would be the same whether we compute it with the a0,1,2
that we get for z ∈ (0, 1/2), or the ones for z ∈ (1/2, 1).

Similarly, in the HS4,6 cases the coefficients a0,1,2 differ for z ∈ (0, 1/2) and z ∈ (1/2, 1).
However, the resulting entropies are the same. Hence we only consider the range z ∈ (0, 1/2)
where a0 = 0.

Logarithmic corrections. To extract the logarithmic term, it is convenient to introduce
a scale parameter Λ → ∞ [18] and scale the charges as

n ∼ Λ, c = 6N ∼ Λ2, j ∼ Λ
3
2 . (3.9)

– 11 –



J
H
E
P
0
1
(
2
0
2
4
)
0
9
9

HS a2 a1 S

HS2 1 1
2 SBH/2

HS3 1 2
3 2SBH/3

HS4 1 3
4 3SBH/4

HS6 1 5
6 5SBH/6

Table 1. The coefficients a1, a2 parameterize the small τ asymptotics of H1 as in (3.2), for z ∈
(0, 1/2) where a0 = 0. The resulting entropies are compared with the Bekenstein-Hawking entropy
SBH = 2π

√
Nn− j2

4 .

The saddle point for all the hyperelliptic cases is written compactly as

z0 = a1
2a2

− J

2a2
τ0 ∼ Λ0, τ0 =

i
√
a2

1 − 4a0a2

2
√
a2Nn− j2

4

∼ Λ
−3
2 . (3.10)

To find the logarithmic correction, we also need to find all the Λ dependence in the
integrand of

d̃(n,N, j) ∼
∫ 1

0
dτ
∫ 1

0
dz e−2πiNnτ−2πijz−2πiz2 a2/τ+2πiz a1/τ−2πi a0/ττ. (3.11)

We know from (3.10) that τ0 ∼ Λ− 3
2 . By taking the second derivatives of the exponent of the

integrand above we find the standard deviations around the saddle point to scale as

∆z ∝ 1√
1/τ0

∼ Λ− 3
4 , ∆τ ∝ 1√

1/τ3
0

∼ Λ− 9
4 . (3.12)

Here ∆τ and ∆z represent the effective width of integration. Then the power of Λ arising
from the one-loop correction to the saddle-point result is

∼ τ0 ∆z∆τ ∼ Λ
−9
2 = exp

[
−9 log Λ1/2]. (3.13)

The logarithmic correction to entropy is hence

−9 log Λ1/2. (3.14)

3.1.2 Rademacher expansion for k = 2

Let us now focus on the HS2 case. Recall the counting function H1[HS2](q, y) is given by

H1(z, τ) = −2i θ2(z, τ)
θ2(τ)

θ1(z, τ)
η3(τ) . (3.15)

It turns out H1(z, τ/2) is a weak Jacobi form of weight −1 and index 2:

H1(z, τ/2) = −i ϕ−1,2(τ, z). (3.16)

We discovered this by comparing the Fourier coefficients and checking

−2i θ2(z, τ/2)
θ2(τ/2)

θ1(z, τ/2)
η3(τ/2) = (−i)θ1(2z, τ)

η3(τ) = (−i)ϕ−1,2(τ, z). (3.17)
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This identity can indeed be proven using (see appendix A.3 in [27])

θ1(z, 2τ)
η(2τ) =

1∏
k=0

θ1( z
2 + k

2 , τ)
η(τ) , (3.18)

together with 2η2(2τ) = θ2(τ)η(τ).
Details on weak Jacobi forms can be found in [28, 29]. A weak Jacobi form has a

double Fourier expansion as

ϕk,m(τ, z) =
∑

ñ,r∈Z
c(ñ, r)qñyr, (3.19)

such that c(ñ, r) = 0 unless ñ ≥ 0. This can be verified for ϕ−1,2 given above by doing
the explicit expansion in q and y with Mathematica. Weak Jacobi forms moreover have
the periodicity property

c(ñ, r) = Cν(4ñm− r2), (3.20)

where Cν(δ) depends on ν := r mod 2m, as well as on δ := 4ñm − r2.
We have a Jacobi form of weight k = −1 and index m = 2. So δ = 8ñ − r2 and

ν = rmod 4. Hence we have to consider four functions Cν , with ν = 0, 1, 2, 3. For our specific
weak Jacobi form it turns out ϕ−1,2(τ, z) = −ϕ−1,2(τ,−z), which implies

C3(δ) = −C1(δ),
C0(δ) = C2(δ) = 0.

(3.21)

We hence focus on ν = 1 and denote C1(δ) by C(δ) for simplicity. The Hardy-Ramanujan-
Rademacher expansion gives (see e.g. [29, 30])

C(δ) = 2π
(
π

2

) 5
2

∞∑
c=1

c
−7
2 Kc(δ)Ĩ5/2(

π
√
δ

2c ). (3.22)

Here Ĩ5/2 is a modification of the Bessel-I function

Ĩρ(z) =
(
z

2

)−ρ

Iρ(z) =
1
2πi

∫ ϵ+i∞

ϵ−i∞

dσ

σρ+1 exp
(
σ + z2

4σ

)
. (3.23)

For c = 1 the Kloosterman sum Kc = 1, while for c > 1 there is a complicated expression
(see e.g. [31]). Now the degeneracy is simply

1
2π (

2
π
)

5
2C(δ) =

∞∑
c=1

c
−7
2 Kc(δ)Ĩ5/2

(
π
√
δ

2c

)
. (3.24)

To find the asymptotic at large z → ∞, we just need to expand the Bessel I function. The
leading and sub-leading order contributions are found from the c = 1 term as

log[C(δ)] = π

2
√
δ − 3

2log[δ] + log
[
π

7
2

2 3
2

]
+O( 1√

δ
). (3.25)
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Since we are actually interested in H1(z, τ) = −iϕ−1,2(2τ, z), and since the power of q
in the expansion of the latter is 2ñ, we set n = 2ñ. We are thus interested in C(4Nn− r2),
the leading entropy of which follows from (3.25) to be

Sindex = π

2

√
4Nn− j2 = π

√
Nn− j2

4 . (3.26)

To extract the subleading logarithmic contribution we follow [18] and consider the scaling
limit N ∼ Λ2, n ∼ Λ1, j ∼ Λ 3

2 . After the scaling, the log Λ term in (3.25) becomes −9
2 log Λ.

Note that both the leading and the subleading logarithmic result are compatible with
the ones found above via the saddle-point analysis. They are also compatible with numerics,
as we discuss next.

3.1.3 Numerical check

The Fourier coefficients of H1[HS] can be numerically evaluated. They are defined via

H1[HS] =
∑

n,l∈Z
c(n, l)qnyl. (3.27)

Expanding the explicit H1[HSk] functions above, via Mathematica for instance, one finds
that c(n, l) is actually only a function of δ := 4n − l2 and ν := l mod 2k (we hope the k
which we use in this subsection to label various HSk does not get confused with the weight
of weak Jacobi forms denoted k in the previous subsection):

c(n, l) = Cl mod 2k(4n− l2). (3.28)

This periodicity, combined with the fact that H1[HSk](z, τ) = −H1[HSk](−z, τ), implies

C−ν(δ) = −Cν(δ),
C0(δ) = Ck(δ) = 0.

(3.29)

Moreover, only Cν(−1) is nonzero among Cν(δ < 0). This suggests that H1[HSk](z, τ/k)
might be a component of a k-dimensional vector-valued weak Jacobi form of index k, and
we indeed found this form explicitly in the HS2 case.6

We have plotted logC1(δ) as found via Mathematica, along with the saddle-point expec-
tation in figure 1. The saddle-point expectation for log of the degeneracy is a1π

√
δ − 3

2 log δ.
For various cases, the coefficient a1 is listed in table 1. To obtain the numerical plots, we
have fixed the value l = 1, read the coefficients of qn y1, plotted the log of their absolute
value against 4n− (1)2 for different values of n. We have also checked that considering other
values of l with nonzero c(n, l) leads to similar plots.

3.2 Comparison with bulk entropies

Our AdS3/CFT2 dual pairs arise from low-energy limits of back-reacting D1-D5 systems. We
spell out some of the details below, closely following sections 3.2 and 4.1 of [14].

6For HS2 because odd powers of q are absent in H1(z, τ), the function H1(z, τ/2) ends up being single-
valued, so instead of a k = 2 dimensional vector-valued weak Jacobi form we get a single weak Jacobi form.
For k = 3, 4, 6 we have checked that similar reductions do not occur, so actual k-dimensional vectors arise.
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(a) HS2 (b) HS3

(c) HS4 (d) HS6

Figure 1. The orange data points are saddle-point approximations, while the blue data points are
the numerical values found via Mathematica.

The D1-D5 system. The non-backreacted geometry is R× S1 × R2 × (C× T 4)/G. One
can wrap Q1 D1-branes on the R × S1 part of the geometry, and wrap Q5 D5-branes on
R× S1 ×D4, where D4 ∼ T 4/G is a four-real-dimensional divisor inside (C× T 4)/G.

After including the backreaction, we have a p-brane solution in IIB supergravity with
the following metric, dilaton, and 3-form flux (see e.g. [32], and note that the difference in F3
between the factors e−2ϕ there and e+2ϕ here is due to the difference between ∗6 and ∗10):

e−2ϕ = f5/f1,

ds2 = f
−1/2
1 f

−1/2
5 dx2

|| + f
1/2
1 f

1/2
5 (dr2 + r2dΩ2

3) + f
1/2
1 f

−1/2
5 dx2

T 4 ,

F3 = 2r2
5ϵ3 + 2r2

1e
+2ϕ ∗10 ϵ7,

fi := 1 + r2
i /r

2 i = 1, 5,

(3.30)

where dx2
|| = −dt2 + dx2, and x is the coordinate along the D1-branes. The radial coordinate

of R2 × C is r. The volume forms ϵ3 and ϵ7 are the volume forms of a three-cycle C3 and
the seven-cycle C7 respectively, at r = 1 inside R2 × (C × T 4)/G.

One can integrate F3 at r → ∞ in order to relate the local parameters ri to the global
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charges Qi of the D-branes. We find

Q5 = 1
4π2α′g

∫
C3
F3 = r2

5
α′g

, Q1 = 1
(4π2α′)3g

∫
C7

∗10F3 = r2
1v

α′g
, (3.31)

with g the closed string coupling. To evaluate the integrals in (3.31) we have used∫
ϵ7 = vol(S3)× vol(T 4)

|G|
, and

∫
ϵ3 = vol(S3). (3.32)

Therefore, we have

r2
5 = gα′Q5, r2

1 = gα′Q1
v

, (3.33)

which is exactly like the standard D1-D5 systems with G = 1, but now we have

v := vol(T 4)/((2π)4α′2)
|G|

, (3.34)

where |G| = k is the order of the group G = Zk. See section 3.2 of [14] for more details.
One can also calculate the value of the 3d Newton’s constant in the AdS3 space which

arises from the decoupling limit of the p-brane solution (3.30). The near-horizon limit of
the geometry is [2] (see also [33])

ds2
10 = α′(ds2

AdS3 + ℓ2dΩ2
3) + dx2

T 4
n.h.
, (3.35)

where

ds2
AdS3 = U2

ℓ2
dx2

|| +
ℓ2

U2dU
2, U = r

α′ , ℓ =
(
g2Q1Q5

v

)1/4

, dx2
T 4

n.h.
=
√
Q1
vQ5

dx2
T 4 .

(3.36)
Note that according to (3.35) the near-horizon S3 has radius RS3 =

√
α′ℓ, and should not

be confused with the unit S3 used in eq. (3.32).
The solution (3.35) is true for any value of v, including ours which is smaller than the

standard N = (4, 4) value by a factor of |G|. The reason is that the 10d supergravity equations
are local with field strengths F3 and ∗10F3. We can then compute in the near-horizon limit

GN
AdS3 =

GN
10 ·e2ϕ

vol((S3×T 4)/G)

∣∣∣∣
n.h.

= 8π6g2α′4 ·r2
1/r

2
5

2π2R3
S3×(2π)4α′2v Q1

vQ5

=
√
α′(g2Q1Q5/v)1/4

4Q1Q5
. (3.37)

The extra factor of e2ϕ in the numerator came from the transformation of the string frame
to the Einstein frame (see for example eq. (4.8) of [33]).

From (3.36) and (3.37) the Brown-Henneaux central charge [34] becomes

c0 = 3RAdS3/2GN
AdS3 = 6Q1Q5, (3.38)

where we have used RAdS3(= RS3) =
√
α′ℓ. The upshot of this calculation is that the

expression for c0 in terms of Q1 and Q5 is exactly the same as that of the standard D1-D5
systems with G = 1. (A boundary derivation of c0 confirming the bulk value (3.38) was given
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in [14] based on the relation c0 = 3
2dimMQ5

Q1
between the sigma model central charge c0 and

the dimension dimMQ5
Q1

= 4Q1Q5 of the moduli space of D1 instantons inside the D5 branes.)
In summary, on the one hand GN

AdS3
increases by a factor of |G| compared to the G = 1

case because the volume of (S3 × T 4)/G used in (3.37) is reduced by |G|; on the other hand,
to have the same Q1 flux, we need greater field strength ∗10F3 as in (3.31), which implies
larger r1 and therefore larger RAdS3 =

√
α′ℓ in the near-horizon limit. Then the ratio, the

central charge c0, for the same Q1, Q5 remains unaffected by non-trivial G.
Since AdS/CFT identifies the Brown-Henneaux central charge 6Q1Q5 with the CFT

symNHS central charge 6N , we have

Q1Q5 = N. (3.39)

The D1-D5-P system and its Bekenstein-Hawking entropy. One can also add n

units of left-moving momentum along the S1. This excited system is called the D1-D5-P
system, and has the metric (see e.g. [32])

f
−1/2
1 f

−1/2
5

(
−dt2+dx2+(fn−1)(dt−dx)2)+f1/2

1 f
1/2
5 (dr2+r2dΩ2

3)+dx2
T 4

r
, (3.40)

with

fi = 1 + r2
i /r

2, i = 1, 5, fn := 1 + r2
n/r

2, r2
n = g2α′2n

vR2
S1

, dx2
T 4

r
= f

1/2
1 f

−1/2
5 dx2

T 4

(3.41)
where RS1 is the radius of the circle.

The effect of G is twofold: i) it changes the ranges of various coordinates due to
identifications on S3 ×T 4 by G, and ii) the relation between r2

1 and Q1, and the one between
r2

n and n, change because they contain v which depends on |G| as in (3.34).
While one can reduce the Strominger-Vafa black brane on S1 × T 4 to yield a lower-

dimensional picture as a 5d black hole, in our case G mixes the T 4 with the S3, so the
only smooth lower-dimensional picture is obtained by reducing only on the S1, which gives
a 9d black brane.

The entropy of the 9d Strominger-Vafa black brane is given by the Bekenstein-Hawking
formula (cf. [4, 35])

SSV = A

4G9 · e2ϕ

∣∣∣∣
r=rn

= vol(S3) vol(T 4
r )

4G9 · e2ϕ

∣∣∣∣
r=rn

= (2π2R3
h)vol(T 4)
4G9

= (2π2r1r5rn)vol(T 4)
4G9

= 2π
√
Q1Q5n,

(3.42)

where we have used the fact that the horizon is at r = rn, and in going to the second line we
have used G9 = G10/2πRS1 = 8π6g2α′4/2πRS1 for the 9d Newton constant.

For our 9d black branes, the expression for the entropy in terms of the metric parameters
r1,5,n is smaller by a factor of |G|, because the orbifolding reduces the horizon area. However,
according to (3.33) and (3.41), when we write r1 and rn in terms of the global charges Q1
and n, we have the factors of

√
|G| which arise from the denominator of v in (3.34). Hence
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analogously to (3.42) in our case we have

SSV/G =
(
(2π2r1r5rn)vol(T 4)

)
/|G|

4G9

= 2π
√
(|G|Q1)Q5(|G|n)

|G|
= 2π

√
Q1Q5n.

(3.43)

So the BH-entropy in terms of the charges Q1, Q5, n is exactly as it was in the standard
(4,4) case of Strominger-Vafa where G is trivial. This is not surprising. Using standard
AdS3/CFT2 arguments we can argue that the entropy of the black branes is reproduced by
the Cardy formula [36], which is actually fixed by the central charge. We found in (3.38)
that the leading central charge of the (2, 2) cases in terms of Q1,5 are exactly the same as
in the standard (4, 4) cases. So the formulas for the corresponding entropies in terms of
Q1,5 should be the same as well.

Addition of angular momentum shifts Q1Q5n → Q1Q5n − j2/4 [37] and hence mod-
ifies (3.43) to

SBMPV/G = 2π

√
Q1Q5n− j2

4 , (3.44)

which using the AdS/CFT dictionary (3.39) becomes

SBH = 2π

√
Nn− j2

4 , (3.45)

as we claimed in section 3.1.1.
To recap, while general AdS3/CFT2 arguments together with the Cardy formula im-

ply that the Brown-Henneaux central charge (3.38) captures the Bekenstein-Hawking en-
tropy (3.45) in the (2, 2) cases of our interest as well, as displayed in table 1 the protected
boundary superconformal indices fail to reproduce the same result.

Logarithmic correction to the Bekenstein-Hawking entropy. The one-loop correction
to the effective action on the near-horizon region of the black brane system gives a logarithmic
correction to the entropy.7

We consider the limit where the mass M and charges Qi of the black brane are large
while its temperature is kept zero:

Qi ∼ Λ, M ∼ Λ, T = 0. (3.46)

Then the general formula for the logarithmic contribution to the entropy from a field with
kinetic operator A can be written as (see e.g. [18, 43])

(−1)F (βA − 1)n0
A log Λ1/2. (3.47)

The coefficients β are given by the formulas

βgraviton = D/2, βgravitino = D − 1, βA1 = D/2− 1, (3.48)
7While the sufficiency of near-horizon considerations is contested for asymptotically AdS black branes [38],

it is widely accepted in the asymptotically flat situations such as ours. See e.g. [39–42] and references therein.
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10d gµν Bµν Cµν C+
αβγδ

9d gµν , Aµ Bµ, Bµν Cµ, Cµν Cαβγ or Cαβγδ

5d gµν , 5Aµ 5Bµ, Bµν 5Cµ, Cµν 4Cα, 6Cαβ

Table 2. The first row contains the bosonic fields of IIB SUGRA. The second row is the 9d field
content after compactifying on the S1; note that 10d self-duality of the four-form implies that in 9d
we have either the four-form or the three-form. The 5d field content after further compactification on
T 4 is in the third row. The additional one-forms in going from 9d to 5d come from the 4 one-cycles of
T 4, or in the case of Cα from Cαβγδ wrapping the 4 three-cycles of T 4. The 6 two-forms Cαβ come
from Cαβγδ wrapping the 6 two-cycles of T 4. The Hodge diamond of T 4 can be found in appendix A.

where D is the number of “large” dimensions, growing with Λ in the near-horizon geometry.
In the cases of our interest the near-horizon geometry is of the form AdS2 × S3×T 4

Zk
× S1,

with the AdS2 and S3 parts growing as Λ → ∞, so D = 5. (For more details on the k = 1
case see [18].) The coefficients n0 denote the effective number of AdS2 zero-modes, and
are given by (see e.g. [43])

n0
graviton = −3, n0

gravitino = −2, n0
A1 = −1, (3.49)

where A1 indicates a one-form (alternatively gauge field, or vector).
Let us start by reviewing the T 4 calculation. The relevant 5d field content is summarized

in table 2. We ignore scalars and fermions, and only keep differential forms, gravitinos, and
the graviton, as they can potentially have zero modes. Using the formula (3.47) we obtain
the coefficient of log Λ1/2 in the logarithmic correction to be

(32 − 1)(−1× 27)︸ ︷︷ ︸
gauge fields

+(52 − 1)(−3× 1− 1× 4)︸ ︷︷ ︸
metric

− (4− 1)(−2× 2)︸ ︷︷ ︸
gravitino

= −12.
(3.50)

The 27 gauge fields arise from the 19 one-forms in 5d as seen in table 2, together with the 8 two-
forms which we Hodge-dualize to one-forms. That the two-forms should be Hodge-dualized
to one-forms has been related to an ensemble choice in [39]. For our purposes, the takeaway
lesson is that to obtain the correct result (3.50) compatible with microscopics [18], one has
to dualize two-forms to one-forms (since they are not equivalent quantum mechanically [44]),
and that is what we will do also for the HS cases below. The metric piece contains besides
the contribution from 1 metric, contributions from 4 gauge fields that arise from the one-form
AdS2 zero-modes that KK reduction of the 5d metric on a rotating S3 (with 4-dimensional
isometry SU(2)×U(1)) yields. Finally, the number of gravitinos follows from the amount
of supersymmetry. For more details, see the derivation of eq. (4.16) in [18].

Now on to the HS case. We adopt a low-energy perspective where only the macroscopic
AdS2 × S3/Zk part of the near-horizon geometry is visible. Then proceed as in the 5d
calculation performed in [14] for the ES case.8

8In [14] for the ES case a 9d calculation of the log correction was presented as well. The correct Hodge
duality frame in that case was inferred from comparison with the parent K3 case where a specific duality
frame was found that led to the correct result. We do not pursue the 9d computation for the HS case here
because we are not aware of a duality frame that yields the correct result (3.50) via a 9d calculation (as in [14])
for the parent T 4 case.
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10d gµν Bµν Cµν C+
αβγδ

9d gµν , Aµ Bµ, Bµν Cµ, Cµν Cαβγ or Cαβγδ

5d gµν , 3Aµ 3Bµ, Bµν 3Cµ, Cµν 2Cα, 2Cαβ

Table 3. The first row contains the bosonic fields of IIB SUGRA. The second row is the 9d field
content after compactifying on the S1. The 5d field content after further compactification on HS is in
the third row. The additional one-forms in going from 9d to 5d come from the 2 one-cycles of HS, or
in the case of Cα from Cαβγδ wrapping the 2 three-cycles of HS. The 2 two-forms Cαβ come from
Cαβγδ wrapping the 2 two-cycles of HS. The Hodge diamond of HS can be found in appendix A.

To obtain the macroscopic (5d) field content, we first reduce IIB SUGRA on the S1, and
then on HS. The bosonic 5d field content is summarized in table 3. Formula (3.47) gives
the coefficient of log Λ1/2 in the logarithmic correction as

(32 − 1)(−1× 15)︸ ︷︷ ︸
gauge fields

+(52 − 1)× (−3× 1− 1× 2)︸ ︷︷ ︸
metric

− (4− 1)(−2× 1)︸ ︷︷ ︸
gravitino

= −9.
(3.51)

Note that again the 5d two-forms have been dualized to one-forms. The 2 additional vector
fields accompanying the metric contribution arise in this case from the one-form AdS2 zero-
modes that KK reduction of the 5d metric on a (possibly rotating) S3/Zk (with 2-dimensional
isometry U(1) × U(1)) yields. Finally, the number of gravitinos is half as many as in the
T 4 case, because we have half as much supersymmetry.

The macroscopic result (3.51) is in perfect agreement with our earlier microscopic result
in (3.14).

4 Discussion: a status summary of Eberhardt’s dualities

In this work we attempted further development of the N = (2, 2) AdS3/CFT2 dualities of [1].
We close with a summary of achievements and the remaining challenges we find most pressing.

4.1 Achievements

On AdS. As reviewed in the introduction, in all eight cases the bulk BPS KK spectra have
been matched with corresponding boundary operators [1, 5], and the bulk tree-level and
one-loop effective actions on AdS yield the correct boundary central charges at the leading
and subleading order respectively [14, 16].

On BTZ. The bulk tree-level and one-loop effective actions on BTZ yield the leading
Bekenstein-Hawking entropy and the subleading logarithmic correction to it. The leading
entropy is always microscopically reproduced via general AdS3/CFT2 considerations through
Cardy’s formula [36]. However, among the dualities of Eberhardt only in the ES case
the leading entropy has been microscopically reproduced from a protected supersymmetric
index [14] (in the ES case the nontrivial supersymmetric index is the elliptic genus). In the
HSk cases (where the elliptic genus vanishes) we managed in this work to reproduce only a
fraction 1− 1

k of the leading entropy from a helicity-trace index. The subleading logarithmic
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correction to the macroscopic entropy was reproduced from the index as well in the ES
case [14], and here also we found a match at this subleading order.

4.2 Challenges

I) The Q5 constraints. In the ES case, the symmetric orbifold CFT is symNES, with
N = Q1Q5 + 1/2, where Q5 is the D5 charge coinciding with the number of D5 branes, while
Q1 is the D1 charge, related to the number of D1 branes k1 via Q1 = k1 −Q5/2 [14] (cf. [45]).
For the duality to make sense at finite N , we should hence have N = (k1−Q5/2)Q5+1/2 ∈ Z,
which in turn implies Q5 must be odd. A bulk explanation of the odd Q5 constraint is lacking
at the moment. In [14] it was suggested, in analogy with the AdS3 × S3×T 2

Z2
× T 2 case of [5],

that supersymmetry of the bulk α′ corrections might provide such an explanation, but the
details remain to be checked. From the point of view of the D1D5 system, it was pointed out
in [14] that odd Q5 guarantees that the number of Coulomb branch moduli of the bound-state
brane system agrees with the N = (2, 2) expectation. The question that remains is whether
there is a variant of the ES duality for even Q5.

In the HS cases, the symmetric orbifold CFT is symNHS, with N = Q1Q5, where Q1,5
are the D1/D5 charges, coinciding with the number of D1/D5 branes [14]. For the boundary
CFT to make sense at finite N therefore no constraint on the charges seems necessary.
Whether there are bulk constraints on Q5 in the HS cases, and if yes what is their boundary
manifestation, is not completely clear to us. If the considerations of supersymmetry in the α′

corrected sector and the number of Coulomb branch moduli of the associated bound-state
brane system are indeed relevant, they seem to suggest nontrivial constraints in the HS cases
as well. Then the question would be what is their manifestation in the boundary CFT.

II) HS microstate counting via indices. As we saw in section 3, the 1st helicity-trace
index of the topologically trivial sector does not capture the full leading entropy in the HS
cases. This raises the question whether some other observable (such as defect indices, see
e.g. [46]) can capture the black hole saddle point. Alternatively, since as mentioned below
eq. (3.5) our microscopic saddle-point entropy has a nonzero imaginary part which signals
large unobstructed bose-fermi cancellations, one may want to consider the topologically
non-trivial sectors and turn on the associated fugacities for the momentum and winding
charges of the boundary sigma models in order to obstruct those cancellations. We are
currently investigating this approach.

Another question is whether a bulk explanation can be given for the factor of 1 − 1
k

mismatch with the boundary topologically trivial sector.
It would be interesting to study also the Schwarzian sector of these N = (2, 2) dualities

in the context of [47], and in particular see whether the subtle effects arising from non-trivial
ratio (denoted r in [47]) of the minimal R-charge to that of the supercharge can be understood
in more detail through the HS dualities, and possibly be even related to the 1− 1

k mismatch.
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A Complex hyperelliptic surfaces

Complex hyperelliptic surfaces HS of our interest are obtained as quotients T 4. The cor-
responding supersymmetric sigma models have N = (2, 2) supersymmetry [1]. In our
low-temperature test of the seed partition functions, we made reference to their Hodge
diamonds. These are as follows (compare with the T 4 diamond):

HS :

1
1 1

0 2 0
1 1

1

, T 4 :

1
2 2

1 4 1
2 2

1

. (A.1)

These are also called bi-elliptic because they admit an elliptic fibration over an elliptic
curve. We can view them as a finite quotient (C×E)/G of the product of a torus C = S1×S1

and an elliptic curve E = C/Γ. The action of G on C is just a translation as written below.
The action of G on E is via some representation G → A(E). Denoting e2πi/3 by ω, these
complex surfaces are completely classified as follows [48]:

Type Γ G Action of G on E

a1 arbitrary Z2 e→ −e
a2 arbitrary Z2 ⊕ Z2 e→ −e

e→ e1, where 2e1 ∼ 0
b1 Z⊕ Zω Z3 e→ ωe

b2 Z⊕ Zω Z3 ⊕ Z3 e→ ωe

e→ e+ e1, where ωe1 ∼ e1
c1 Z⊕ Zi Z4 e→ ie

c2 Z⊕ Zi Z4 ⊕ Z2 e→ ie

e→ e+ e1, where ie1 ∼ e1
d Z⊕ Zω Z6 e→ −ωe

(A.2)

We have only studied the a1, b1, c1, d cases in this paper, to which we have referred to
as HS2,HS3,HS4,HS6 respectively. Computation of the modified index of the other cases
is left for future work.

B Details of the seed partition function calculations

B.1 Derivation of Z[HS2]

The starting point is the fact that the orbifold partition function is obtained by summing over
the two types of boundary conditions (untwisted or twisted) and projecting on G-invariant
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states (see eq. (10.83) in [20]):

Trorb = 1
2Tr+(1 +G) + 1

2Tr−(1 +G), (B.1)

where +/− denote the sectors with untwisted/twisted boundary condition around the spatial
circle, and the (1 + G)/2 factors project onto G-singlets. This is of course a special case
of eq. (2.8) where k = 2.

The first term on the r.h.s. of eq. (B.1) is half the T 4 partition function which can be
found explicitly in [17]. This is how the first term on the r.h.s. of eq. (2.10) is obtained.

The second term in (2.10) is the contribution of the untwisted sector with G-insertion.
To see this, note that writing T 4 = T 2 × T 2, the action of G on the first T 2, denoted E,
is the standard Z2 orbifold action discussed in section 10.4.3 of the yellow book [20]. As
explained there, with G-insertion the standard Z2 orbifold partition function does not receive
contributions from the topologically non-trivial sectors. Each circle of the T 2 contributes
|2η(τ)/θ2(τ)|, as eq. (10.78) of [20] for the holomorphic partition function implies.9 The first
T 2 hence contributes to Zuntwisted

w/ G-insertion as |2η(τ)/θ2(τ)|2. The fermionic partners contribute
|θ2(z, τ)/η(τ)|2. For z = 0 this is implied by the holomorphic result on the second line of
eq. (10.46) in [20]; the generalization to nonzero z is straightforward once the R-charges of
the four supersymmetric ground states are understood for instance from section 13.4.1 of [21].
See also the derivation of (B.25) below. Putting the bosonic and fermionic contributions
together, we get from the first supersymmetric T 2 sigma model a contribution

∣∣∣∣2η(τ)θ2(τ)

∣∣∣∣2 × ∣∣∣∣θ2(z, τ)
η(τ)

∣∣∣∣2 = 4
∣∣∣∣θ2(z, τ)
θ2(τ)

∣∣∣∣2 (B.2)

to Zuntwisted
w/ G-insertion.
On the second T 2, denoted C, the action of G-insertion only modifies the topological

quantum numbers of the compact bosons (see below). These quantum numbers indicate how
many times the two bosons of T 2 wind as one goes around the two cycles of the worldsheet
torus. The perturbative contribution is not affected by the G-insertion, and is therefore given
simply by

∣∣∣ θ1(z,τ)
η3

∣∣∣2. Denoting the modified topological sum as ΘT 2

w/ G-insertion we hence obtain

ΘT 2

w/ G-insertion ·
∣∣∣∣θ1(z, τ)

η3

∣∣∣∣2 , (B.3)

as the contribution of the second supersymmetric T 2 factor to Zuntwisted
w/ G-insertion.

The product of (B.2) and (B.3), multiplied by the factor of 1/2 (prefactor to Tr+ in
eq. (B.1)), gives the second term on the right-hand side of (2.10).

Let us now discuss ΘT 2

w/ G-insertion more explicitly. To this end, it will be instructive
to consider first the orbifold partition function (i.e. with the trace as in (B.1)) of a single
2πR-periodic compact scalar ϕ orbifolded by G : ϕ 7→ ϕ+ πR. Of course G simply reduces R
to R/2. Therefore we already know what the final answer for the partition function will be:

9Note the typo in eq. (10.78) of the old version of [20]: the factor of 2 should be inside the square root.
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simply replace R by R/2 in eq. (10.61) of the yellow book [20] to get

Z(R/2)= 1
2

 R√
2
Zbos(τ)

∑
m,m′∈Z

exp−πR2|(m/2)τ−m′/2|2
2Imτ


= 1

2
(
(m even,m′ even)+(m even,m′ odd)+(m odd,m′ even)+(m odd,m′ odd)

)
.

(B.4)

On the second line, guided by eq. (B.1) with which we want to make contact, we have broken
up the sum over the topological quantum numbers m,m′ ∈ Z to four separate sums. The
first sum, with m,m′ both even, gives back Z(R) precisely as expected from (B.1). Similarly,
we expect that the second sum gives the partition function with G-insertion, the third sum
the partition function of the twisted sector without G-insertion, and the fourth sum the
partition function of the twisted sector with G-insertion. To see this more directly, note that
G-insertion changes the boundary condition along the “time” circle and thus should modify
m′ which counts the winding of ϕ along the time circle. In the twisted sector, on the other
hand, we have a modification in the “spatial” winding which is counted by m.

Writing out Zbos(τ) = 1√
Imτ |η(τ)|2 , the factor multiplying 1

|η(τ)|2 in the first sum on the
second line of (B.4) would be what we would call ΘS1 . It explicitly reads

ΘS1 = R√
2Imτ

∑
m∈Z
m′∈Z

exp− πR2|mτ −m′|2

2Imτ , (B.5)

where we sum over m,m′ ∈ Z (instead of only even m,m′) because we have replaced m/2 → m,
m′/2 → m′. Then Poisson resummation of the sum over m′ yields the familiar sum over
the topological sectors

ΘS1 =
∑
m∈Z
e∈Z

q(e/R+mR/2)2/2q̄(e/R−mR/2)2/2. (B.6)

Analogously, from the second sum on the second line of (B.4) we get

ΘS1

w/ G-insertion = R√
2Imτ

∑
m∈Z

m′ odd

exp− πR2|mτ −m′/2|2
2Imτ . (B.7)

Writing ∑m′ odd =∑
m′ −

∑
m′ even, Poisson resummation of the m′ sum in (B.7) now yields

ΘS1

w/ G-insertion =
∑
m∈Z

e−2πR2m2τ2/4

∑
e∈Z

e−
4π
a

(e2+ 2be
4πi

) −
∑

ẽ odd
e−

π
a

(ẽ2+ 2bẽ
2πi

)

 , (B.8)

where τ = τ1 + iτ2, a = R2/2τ2, and b = πmR2τ1/τ2. A further simplification yields

ΘS1

w/ G-insertion =
∑
m∈Z

( ∑
e even

−
∑

e odd

)
q(e/R+mR/2)2/2q̄(e/R−mR/2)2/2. (B.9)

This is compatible with our expectation that G acts as +1 on the states with e even, and
as −1 on the states with e odd.
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Finally, what we are really interested in is ΘT 2

w/ G-insertion, where the superscript T 2 stands
for the second T 2 in T 4, namely C. Since we take C to be a direct product, we have τC as
pure imaginary and ΘT 2

w/ G-insertion = (ΘS1

w/ G-insertion)2.
The third and fourth terms of (2.10) are obtained with similar considerations, and

explicit expressions for their Θ functions can be derived as above. In both cases there are
no contributions from the topologically non-trivial sectors of the first T 2, and the lattice of
m topological charges of the second T 2 is shifted by 1/2. Therefore they do not contribute
to the m = 0 sector of our interest.

B.2 Derivation of Z[HS3,4,6]

Recall that HS = T 4/G, with T 4 = E × C. For the cases where G = Zk the action is

G

(
ϕ12
ϕ34

)
=
(

e2πi/k ϕ12

ϕ34 +
2πR(1+τC)

k

)
, (B.10)

where ϕ12 and ϕ34 are the complex scalars parametrizing E and C respectively.
As indicated by eq. (2.8), we need to compute

Zgt-twisted
w/ gj -insertion[T

4] = Zgt-twisted
w/ gj -insertion[E]× Zgt-twisted

w/ gj -insertion[C], (B.11)

where we have taken advantage of T 4 = E × C to factorize.
The action of G on C is simply a translation, so the computation of

Zgt-twisted
w/ gj -insertion[C], (B.12)

becomes a simple generalization of the Z2 case: there is a perturbative part
∣∣∣ θ1(z,τ)

η3

∣∣∣2 insensitive
to G, while the topological part is again the square of that of S1, with the latter readable
from the Zk analog of eq. (B.4).

The action of G on E is more non-trivial, and so is the calculation of

Zgt-twisted
w/ gj -insertion[E]. (B.13)

This will be discussed next.

B.2.1 A digression on T 2/Zk

The objects (B.13) are the same pieces contributing to the orbifold partition function

Z[T 2/Zk] =
1
k

( k−1∑
j,t=0

Zgt-twisted
w/ gj -insertion[T

2]
)
, (B.14)

when T 2 = E and the Zk action is as in (A.2).
Here we some comments on the structure for general k, and then specialize to k = 2, 3, 4, 6.

In fact these are the only allowed values of k because the order-k rotation of the orbifold
must be an automorphism of a two-dimensional lattice. This requirement further fixes the
complex structure of E to be τE = i in the Z4 case, while for Z3 and Z6 we have τE = e2πi/3.
See [49, 50] for discussions related to this subsection.
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The N = (2, 2) supersymmetric sigma models T 2/Zk of our interest contain a complex
scalar ϕ+(z) = ϕ1(z) + iϕ2(z) and a complex fermion ψ+(z) = ψ1(z) + iψ2(z). (The complex
conjugate fields ϕ−(z) = ϕ1(z) − iϕ2(z) and ψ−(z) = ψ1(z) − iψ2(z) give rise to the “anti-
particle” creation modes quantum mechanically, and these will be important below.) We
also have their anti-holomorphic counterparts, which in the discussions below we usually
suppress for brevity. The holomorphic fields and their oscillator modes transform under
the Zk transformations as

gjϕ± = e
±2πi j

k ϕ±, α±
n → e±

2πi j
k α±

n , j = 1, 2, · · · , k − 1, (B.15)

gjψ± = e
±2πi j

k ψ±, d±n → e±
2πi j

k d±n , j = 1, 2, · · · , k − 1. (B.16)

Let H be the Hilbert space of the orbifold theory. It is obtained by projecting onto G
invariants, via P = 1

k

∑k−1
j=0 g

j , the untwisted and twisted sectors of the un-orbifolded theory:
H = Hu

⊕
Ht. The piece of P containing gj will be implemented via gj-twisted boundary

conditions along the worldsheet time circle.
The untwisted sector. In the untwisted sector, bosonic and fermionic fields satisfy

the following boundary conditions (in our convention the worldsheet torus has periodicity
1 along the space direction and τ along the time direction)

ϕ+(1) = ϕ+(0) + Γ,
ϕ+(τ) = gjϕ+(0) + Γ,

where Γ stands for the target-space lattice generated by 1 and τE , while gj is a generator of
G. The periodicity of the fermions in the Ramond (+) and NS (−) sectors are

ψ+(1) = ±ψ+(0),
ψ+(τ) = ±gjψ+(0).

Under these boundary conditions, the solutions of the field equations have the expansions

ϕ+(z) = q+ − ip+ log z + i
∑
n ̸=0

1
n
α+

n z
−n, (B.17)

ψ+(z) =
∑

n

d+
n z

−n. (B.18)

In the bosonic sum n ∈ Z, while in the fermionic sum n ∈ Z for the R sector and n ∈ Z+1/2
for the NS sector.

The twisted sector. In the sector twisted by gt, with t = 1, . . . , k − 1, the fields satisfy

ϕ+(1) = gtϕ+(0) + Γ,
ϕ+(τ) = gjϕ+(0) + Γ.

For fermions in the R and NS sector:

ψ+(1) = ±gtψ+(0),
ψ+(τ) = ±gjψ(0),
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with the + sign for the R sector and the − sign for the NS sector. Under these boundary
conditions, the fields have expansions

ϕ+(z) = q+
f + i

∑
n∈Z+t/k

1
n
α+

n z
−n, t = 1, 2, . . . , k − 1, (B.19)

ψ+(z) =
∑

n∈Z+t/k+1/2−s/2
d+

n z
−n, s = 0 for NS, s = 1 for R. (B.20)

Here q+
f corresponds to the fixed point values of the complex scalar under the target space

quotient.

T 2/Z2 case. The action of the primitive group element g ∈ Z2 on the bosonic Hilbert space is

g|m1,m2, n1, n2⟩ = | −m1,−m2,−n1,−n2⟩. (B.21)

Here m1,2, n1,2 are the momentum and winding modes of the complex scalar. The un-
twisted bosonic Hilbert space Hu decomposes into subspaces with eigenvalues ±1 under g,
schematically as Hu = H+

u

⊕
H−

u . These subspaces are spanned by

H+
u = {α+

−k1
· · ·α+

−kl
ᾱ+
−kl+1

· · · ᾱ+
−k2j

(1 + g)|m1,m2, n1, n2⟩}

+ {α+
−k1

· · ·α+
−kl

ᾱ+
−kl+1

· · · ᾱ+
−k2j+1

(1− g)|m1,m2, n1, n2⟩}

H−
u = {α+

−k1
· · ·α+

−kl
ᾱ+
−kl+1

· · · ᾱ+
−k2j+1

(1 + g)|m1,m2, n1, n2⟩}

+ {α+
−k1

· · ·α+
−kl

ᾱ+
−kl+1

· · · ᾱ+
−k2j

(1− g)|m1,m2, n1, n2⟩} (B.22)

where ki ∈ N. Above we have suppressed the α−, ᾱ− modes, as they are incorporated similarly.
Various partition functions (B.13) can now be computed via elementary 2d CFT methods,

with the t = j = 0 case simply the usual N = (2, 2) T 2 partition function.
In the t = 0, j = 1 case the bosonic contributions come from the topological sector

m1 = m2 = n1 = n2 = 0 only. Hence, we need to evaluate the trace with a bunch of creation
operators acting on |0, 0, 0, 0⟩. The corresponding multi α+

−n oscillator sum will be of the
form 1 + eiπqn + (eiπ)2q2n + . . . = 1

1−eiπqn . Thus the multi α+
−n, ᾱ

+
−n contribution to the

bosonic piece of Zuntwisted
w/ g-insertion[E] is

∞∏
n=1

1
1− eiπqn

1
1− e−iπ q̄n

. (B.23)

Since the modes α−
−n, ᾱ

−
−n transform in a manner conjugate to α+

−n, ᾱ
+
−n, the multi

α−
−n, ᾱ

−
−n contribution can be easily added to get the full bosonic piece of Zuntwisted

w/ g-insertion[E] as

(qq̄)−1
12∏∞

n=1(1− eiπqn)(1− e−iπqn)(1− e−iπ q̄n)(1− eiπ q̄n) = 4
∣∣∣∣ η(τ)θ2(τ)

∣∣∣∣2 , (B.24)

where we have also included the Casimir energy contribution qq̄−1/12, and on the r.h.s. used
the special functions of appendix C

As for the contribution of the Dirac fermion, recall that we are interested in the RR
sector with a (−1)F insertion. In the untwisted sector there are zero modes that lead to
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vacuum degeneracy, as well as nonzero modes that can be filled or unfilled. Their contribution
to Zuntwisted

w/ g-insertion[E] can be read from eq. (11.170) in [21] as10

(qq̄)
+1
12
(
y

1
2 −e−iπy

−1
2
)(
ȳ

1
2 −eiπȳ

−1
2
) ∞∏

n=1
(1−eiπyqn)(1−eiπy−1qn)(1−eiπȳq̄n)(1−eiπȳ−1q̄n)

=
∣∣∣∣θ2(z,τ)
η(τ)

∣∣∣∣2 .
(B.25)

Combining the bosonic and fermionic contributions we get:

Zuntwisted
w/ g-insertion[E] = 4

∣∣∣∣θ2(z, τ)
θ2(τ)

∣∣∣∣2 . (B.26)

In the twisted sector, since under g : ϕ+ → −ϕ+ four points of the torus remain fixed,
we have 4 twisted ground states coming from the bosonic sector. These have h = 1

24 , h̄ = 1
24 .

For general t, k the formula is (cf. [50, 51])

h = h̄ = − 1
12 + 1

2
t

k

(
1− t

k

)
. (B.27)

Analogously to (B.24) the full bosonic piece of Zg-twisted
w/o g-insertion[E] is

4× (qq̄) 1
24∏∞

n=1

(
1− qn− 1

2
) (

1− qn− 1
2
) (

1− q̄n− 1
2
) (

1− q̄n− 1
2
) = 4

∣∣∣∣ η(τ)θ4(τ)

∣∣∣∣2 , (B.28)

with the mode indices now taking half-integer values due to the spatial twist. Similarly,
the full bosonic piece of Zg-twisted

w/ g-insertion[E] is

4× (qq̄) 1
24∏∞

n=1

(
1− eiπqn− 1

2
) (

1− e−iπqn− 1
2
) (

1− e−iπ q̄n− 1
2
) (

1− eiπ q̄n− 1
2
) = 4

∣∣∣∣ η(τ)θ3(τ)

∣∣∣∣2 .
(B.29)

The fermionic sector has the opposite ground state dimensions (cf. eq. (11.170) in [21])

h = h̄ = 1
12 − 1

2
t

k

(
1− t

k

)
, (B.30)

and the zero-point charges (cf. eq. (11.170) in [21])

2J0 = 2J̄0 = 1
2 − t

k
. (B.31)

Analogously to (B.25) the fermionic contribution to Zg-twisted
w/o g-insertion[E] can be read from

eq. (11.170) in [21] as

(qq̄)
−1
24

∞∏
n=1

(
1−yqn− 1

2
)(

1−y−1qn− 1
2
)(

1−ȳq̄n− 1
2
)(

1−ȳ−1q̄n− 1
2
)
=
∣∣∣∣θ4(z,τ)
η(τ)

∣∣∣∣2 , (B.32)

10Note that bthere = z + j
k

, while athere = t
k

. Also we take (ãthere, b̃there) = (athere, bthere).
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and similarly the fermionic contribution to Zg-twisted
w/ g-insertion[E] is

(qq̄)
−1
24

∞∏
n=1

(
1−eiπyqn− 1

2
)(

1−eiπy−1qn− 1
2
)(

1−eiπȳq̄n− 1
2
)(

1−eiπȳ−1q̄n− 1
2
)
=
∣∣∣∣θ3(z,τ)
η(τ)

∣∣∣∣2 .
(B.33)

Combining the bosonic and fermionic contributions we get:

Zg-twisted
w/o g-insertion[E] = 4

∣∣∣∣θ4(z, τ)
θ4(τ)

∣∣∣∣2 , (B.34)

and
Zg-twisted

w/ g-insertion[E] = 4
∣∣∣∣θ3(z, τ)
θ3(τ)

∣∣∣∣2 . (B.35)

Although not relevant for our purposes in this work, we can now find Z[T 2/Z2] from
the formula (B.14) as

Z[T 2/Z2] =
1
2Θ

T 2
∣∣∣∣θ1(z, τ)

η3

∣∣∣∣2 + 2
∣∣∣∣θ2(z, τ)
θ2(τ)

∣∣∣∣2 + 2
∣∣∣∣θ4(z, τ)
θ4(τ)

∣∣∣∣2 + 2
∣∣∣∣θ3(z, τ)
θ3(τ)

∣∣∣∣2 . (B.36)

T 2/Z3 case. In the Z3 case the action of the primitive element g ∈ Z3 on the Bosonic
Hilbert space is

g|m1,m2, n1, n2⟩ = |m2,−m1 −m2, n2 − n1,−n1⟩ (B.37)

The partition functions with g and g2 inserted in the trace will get contributions from
the m1 = m2 = n1 = n2 = 0 sector only. Hence, we need to evaluate the trace with a
bunch of creation operators acting on |0, 0, 0, 0⟩. Analogously to (B.24) we have the bosonic
piece of Zuntwisted

w/ gj -insertion[E] as

(qq̄)−1/12∏
n=1(1− e2πij/3qn)(1− e−2πij/3qn)(1− e−2πij/3q̄n)(1− e2πij/3q̄n)

= 4 sin2 πj

3

∣∣∣∣∣ η(τ)
θ1( j

3 , τ)

∣∣∣∣∣
2

.

(B.38)
The fermionic contribution to Zuntwisted

w/ gj -insertion[E] can be written as

(
y

1
2 − e−

2
3 πijy

−1
2
)(
ȳ

1
2 − e

2
3 πij ȳ

−1
2
) ∞∏

n=1

( (
1− e

2
3 πijyqn

) (
1− e

−2
3 πijy−1qn

) )

×
((

1− e
−2
3 πij ȳq̄n

) (
1− e

2
3 πij ȳ−1q̄n

))
=
∣∣∣∣∣θ1(z + j

3 , τ)
η(τ)

∣∣∣∣∣
2

.

(B.39)

Combining the bosonic and fermionic contributions we get:

Zuntwisted
w/ gj -insertion[E] = 4 sin2 πj

3

∣∣∣∣∣θ1(z + j
3 , τ)

θ1( j
3 , τ)

∣∣∣∣∣
2

, j = 1, 2. (B.40)

Let us now consider the twisted sector. For T 2/Z3, the target space complex structure is
τE = e2πi/3. There are three fixed points for this orbifold (one at the origin and the other
two at the 1/3 points on the longer diagonal). They lead to triple degeneracy of the bosonic
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vacua. The conformal weight for the bosonic ground states is ( 1
36 ,

1
36). Analogously to (B.28)

the full bosonic piece of Zgt-twisted
w gj -insertion[E] is

3× (qq̄) 1
36∏∞

n=1

(
1− e−

2πi
k

jqn− 1
3
) (

1− e
2πi

k
jqn− 2

3
) (

1− e
2πi

k
j q̄n− 1

3
) (

1− e−
2πi

k
j q̄n− 2

3
) , t = 1,

3× (qq̄) 1
36∏∞

n=1

(
1− e−

2πi
k

jqn− 2
3
) (

1− e
2πi

k
jqn− 1

3
) (

1− e
2πi

k
j q̄n− 2

3
) (

1− e−
2πi

k
j q̄n− 1

3
) , t = 2.

(B.41)

In the t = 1 sector, the factors with qn−2/3 come from the creation modes α+
−n+ with

n+ ∈ Z≥0 + 1/3 as indicated in (B.19), while the factors with qn−1/3 come from the (target-
space complex-) conjugate creation modes α−

−n− with n− ∈ Z≥1−1/3. In the t = 2 sector, it is
the opposite. The anti-holomorphic factors come from the anti-particle creation modes ᾱ±

−n± .
Analogously to (B.33) the fermionic contribution to Zgt-twisted

w gj -insertion[E] can be read from
eq. (11.170) in [21] as

(qq̄)
−1
36 (yȳ)

1
6

∞∏
n=1

(
1−e−

2πi
k

jy−1qn− 1
3

)(
1−e

2πi
k

jyqn− 2
3

)(
1−e

2πi
k

j ȳ−1q̄n− 1
3

)(
1−e−

2πi
k

j ȳq̄n− 2
3

)
, t= 1,

(qq̄)
−1
36 (yȳ)−

1
6

∞∏
n=1

(
1−e−

2πi
k

jy−1qn− 2
3

)(
1−e

2πi
k

jyqn− 1
3

)(
1−e

2πi
k

j ȳ−1q̄n− 2
3

)(
1−e−

2πi
k

j ȳq̄n− 1
3

)
, t= 2.

(B.42)
In the t = 1 sector, the factors with qn−2/3 come from the creation modes d+

−n+ with
n+ ∈ Z≥0 + 1/3 as indicated in (B.20), while the factors with qn−1/3 come from the (target-
space complex-) conjugate creation modes d−−n− with n− ∈ Z≥1−1/3. In the t = 2 sector, it is
the opposite. The anti-holomorphic factors come from the anti-particle creation modes d̄±−n± .

Combining the bosonic and fermionic contributions we get:

Zgt-twisted
w/ gj -insertion[E] = 3(yȳ)1− t

3

∣∣∣∣∣θ1(z + t
3τ +

j
3 , τ)

θ1( t
3τ +

j
3 , τ)

∣∣∣∣∣
2

, t = 1, 2, j = 0, 1, 2. (B.43)

T 2/Z4 orbifold. For the Z4 orbifold the complex structure of the target space torus is
τE = i. As before, the bosonic Hilbert space is made out of momentum and winding sectors.
The action of the orbifold on these ground states is

g|m1,m2, n1, n2⟩ = |m2,−m1, n2,−n1⟩ (B.44)

In the untwisted sector we have analogously to (B.40):

Zuntwisted
w/ gj -insertion[E] = 4 sin2 πj

4

∣∣∣∣∣θ1(z + j
4 , τ)

θ1( j
4 , τ)

∣∣∣∣∣
2

, j = 1, 2, 3. (B.45)

For the twisted sector, we need to find the fixed points. The square lattice has two fixed
points under the primitive g ∈ Z4, and two further under g2, but the latter two are identified
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under g. Therefore we have two vacua in the t = 1, 3 sectors and three vacua for t = 2.
Analogously to (B.28) the full bosonic piece of Zgt-twisted

w gj -insertion[E] is

2× (qq̄) 1
96∏∞

n=1

(
1− e−

2πi
k

jqn− 1
4
) (

1− e
2πi

k
jqn− 3

4
) (

1− e
2πi

k
j q̄n− 1

4
)
(1− e−

2πi
k

j q̄n− 3
4 )
, t = 1,

3× (qq̄) 1
24∏∞

n=1

(
1− e−

2πi
k

jqn− 1
2
) (

1− e
2πi

k
jqn− 1

2
) (

1− e
2πi

k
j q̄n− 1

2
) (

1− e−
2πi

k
j q̄n− 1

2
) , t = 2,

2× (qq̄) 1
96∏∞

n=1

(
1− e−

2πi
k

jqn− 3
4
) (

1− e
2πi

k
jqn− 1

4
) (

1− e
2πi

k
j q̄n− 3

4
) (

1− e−
2πi

k
j q̄n− 1

4
) , t = 3.

(B.46)
In the t = 1 sector, the factors with qn−3/4 come from the creation modes α+

−n+ with
n+ ∈ Z≥0 + 1/4 as indicated in (B.19), while the factors with qn−1/4 come from the (target-
space complex-) conjugate creation modes α−

−n− with n− ∈ Z≥1 − 1/4. The anti-holomorphic
factors come from the anti-particle creation modes ᾱ±

−n± . In the t = 3 sector it is the
opposite. The t = 2 sector is analogous. Analogously to (B.33) the fermionic contribution
to Zgt-twisted

w gj -insertion[E] can be read from eq. (11.170) in [21] as

(qq̄)
−1
96 (yȳ)

1
4

∞∏
n=1

(
1−e−

2πi
k

jy−1qn− 1
4

)(
1−e

2πi
k

jyqn− 3
4

)(
1−e

2πi
k

j ȳ−1q̄n− 1
4

)(
1−e−

2πi
k

j ȳq̄n− 3
4

)
, t= 1,

(qq̄)
−1
24

∞∏
n=1

(
1−e−

2πi
k

jy−1qn− 1
2

)(
1−e

2πi
k

jyqn− 1
2

)(
1−e

2πi
k

j ȳ−1q̄n− 1
2

)(
1−e−

2πi
k

j ȳq̄n− 1
2

)
, t= 2,

(qq̄)
−1
96 (yȳ)−

1
4

∞∏
n=1

(
1−e−

2πi
k

jy−1qn− 3
4

)(
1−e

2πi
k

jyqn− 1
4

)(
1−e

2πi
k

j ȳ−1q̄n− 3
4

)(
1−e−

2πi
k

j ȳq̄n− 1
4

)
, t= 3.

(B.47)
Combining the bosonic and fermionic contributions we get:

Zgt-twisted
w/ gj -insertion[E] = 2(yȳ)1− t

4

∣∣∣∣∣θ1(z+ t
4τ+

j
4 , τ)

θ1( t
4τ+

j
4 , τ)

∣∣∣∣∣
2

, t=1,3, j=0,1,2,3,

Zgt-twisted
w/ gj -insertion[E] = 3(yȳ)1− t

4

∣∣∣∣∣θ1(z+ t
4τ+

j
4 , τ)

θ1( t
4τ+

j
4 , τ)

∣∣∣∣∣
2

, t=2, j=0,1,2,3.
(B.48)

T 2/Z6 orbifold. For Z6 orbifold the complex structure of the target space torus is τE =
e2πi/3. As before, the bosonic Hilbert space is made out of momentum and winding sectors.
The action of the orbifold on these ground states is

g|m1,m2, n1, n2⟩ = |m1 +m2,−m1, n2,−n1 + n2⟩. (B.49)

In the untwisted sector we have analogously to (B.40):

Zuntwisted
w/ gj -insertion[E] = 4 sin2 πj

6

∣∣∣∣∣θ1(z + j
6 , τ)

θ1( j
6 , τ)

∣∣∣∣∣
2

, j = 1, 2, 3, 4, 5. (B.50)

For the twisted sector, we need to find the fixed points. The hexagonal lattice has one
fixed point under the primitive g ∈ Z6, and two further under g2 (these are the non-origin
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fixed points of the Z3 case), but the latter two are identified under g. It also has four fixed
points under g3, three of which (namely the non-origin fixed points of the Z2 case) are
identified under g. Therefore we have one vacuum in the t = 1, 5 sectors, and two vacua for
t = 2, 3, 4. Analogously to (B.28) the full bosonic piece of Zgt-twisted

w gj -insertion[E] is

1× (qq̄)−1
72∏∞

n=1

(
1− e−

2πi
k

jqn− 1
6
) (

1− e
2πi

k
jqn− 5

6
) (

1− e
2πi

k
j q̄n− 1

6
) (

1− e−
2πi

k
j q̄n− 5

6
) , t = 1,

2× (qq̄) 1
36∏∞

n=1

(
1− e−

2πi
k

jqn− 2
6
) (

1− e
2πi

k
jqn− 4

6
) (

1− e
2πi

k
j q̄n− 2

6
) (

1− e−
2πi

k
j q̄n− 4

6
) , t = 2,

2× (qq̄) 1
24∏∞

n=1

(
1− e−

2πi
k

jqn− 3
6
) (

1− e
2πi

k
jqn− 3

6
) (

1− e
2πi

k
j q̄n− 3

6
) (

1− e−
2πi

k
j q̄n− 3

6
) , t = 3,

2× (qq̄) 1
36∏∞

n=1

(
1− e−

2πi
k

jqn− 4
6
) (

1− e
2πi

k
jqn− 2

6
) (

1− e
2πi

k
j q̄n− 4

6
) (

1− e−
2πi

k
j q̄n− 2

6
) , t = 4,

1× (qq̄)−1
72∏∞

n=1

(
1− e−

2πi
k

jqn− 5
6
) (

1− e
2πi

k
jqn− 1

6
) (

1− e
2πi

k
j q̄n− 5

6
) (

1− e−
2πi

k
j q̄n− 1

6
) , t = 5.

(B.51)
Analogously to (B.33) the fermionic contribution to Zgt-twisted

w gj -insertion[E] can be read from
eq. (11.170) in [21] as

(qq̄)
1

72 (yȳ)
1
3

∞∏
n=1

(
1−e−

2πi
k

jy−1qn− 1
6

)(
1−e

2πi
k

jyqn− 5
6

)(
1−e

2πi
k

j ȳ−1q̄n− 1
6

)(
1−e−

2πi
k

j ȳq̄n− 5
6

)
, t= 1,

(qq̄)
−1
36 (yȳ)

1
6

∞∏
n=1

(
1−e−

2πi
k

jy−1qn− 2
6

)(
1−e

2πi
k

jyqn− 4
6

)(
1−e

2πi
k

j ȳ−1q̄n− 2
6

)(
1−e−

2πi
k

j ȳq̄n− 4
6

)
, t= 2,

(qq̄)
−1
24

∞∏
n=1

(
1−e−

2πi
k

jy−1qn− 3
6

)(
1−e

2πi
k

jyqn− 3
6

)(
1−e

2πi
k

j ȳ−1q̄n− 3
6

)(
1−e−

2πi
k

j ȳq̄n− 3
6

)
, t= 3,

(qq̄)
−1
36 (yȳ)−

1
6

∞∏
n=1

(
1−e−

2πi
k

jy−1qn− 4
6

)(
1−e

2πi
k

jyqn− 2
6

)(
1−e

2πi
k

j ȳ−1q̄n− 4
6

)(
1−e−

2πi
k

j ȳq̄n− 2
6

)
, t= 4,

(qq̄)
1

72 (yȳ)−
1
3

∞∏
n=1

(
1−e−

2πi
k

jy−1qn− 5
6

)(
1−e

2πi
k

jyqn− 1
6

)(
1−e

2πi
k

j ȳ−1q̄n− 5
6

)(
1−e−

2πi
k

j ȳq̄n− 1
6

)
, t= 5.

(B.52)
Combining the bosonic and fermionic contributions we get:

Zgt-twisted
w/ gj -insertion[E] = (yȳ)1− t

6

∣∣∣∣∣θ1(z + t
6τ +

j
6 , τ)

θ1( t
6τ +

j
6 , τ)

∣∣∣∣∣
2

, t = 1, 5, j = 0, 1, 2, 3, 4, 5,

Zgt-twisted
w/ gj -insertion[E] = 2(yȳ)1− t

6

∣∣∣∣∣θ1(z + t
6τ +

j
6 , τ)

θ1( t
6τ +

j
6 , τ)

∣∣∣∣∣
2

, t = 2, 3, 4, j = 0, 1, 2, 3, 4, 5.

(B.53)
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B.2.2 Compiling the pieces

As implied by (2.8) and (B.11), we have

Z[HSk] =
1
k

( k−1∑
j,t=0

Zgt-twisted
w/ gj -insertion[E]× Zgt-twisted

w/ gj -insertion[C]
)
. (B.54)

As explained around (B.12), the computation of Zgt-twisted
w/ gj -insertion[C] is rather straightfor-

ward. In the HS2 case for instance, compiling the above results for Zgt-twisted
w/ gj -insertion[E] and

Zgt-twisted
w/ gj -insertion[C] we arrive at

Z[HS2] =
1
2Θ

T 4
∣∣∣∣θ1(z, τ)

η3

∣∣∣∣4 + 2
∣∣∣∣θ2(z, τ)
θ2(τ)

∣∣∣∣2 ·ΘT 2

w/ g-insertion ·
∣∣∣∣θ1(z, τ)

η3

∣∣∣∣2
+ 2

∣∣∣∣θ4(z, τ)
θ4(τ)

∣∣∣∣2 ·ΘT 2

w/ 1/2−shifted lattice ·
∣∣∣∣θ1(z, τ)

η3

∣∣∣∣2
+ 2

∣∣∣∣θ3(z, τ)
θ3(τ)

∣∣∣∣2 ·ΘT 2

w/ g-insertion and 1/2−shifted lattice ·
∣∣∣∣θ1(z, τ)

η3

∣∣∣∣2 .
(B.55)

Similarly, for HS3,4,6 we arrive at (2.13), (2.14), (2.15) respectively.

C Theta functions and their asymptotics

The Jacobi theta functions are defined as

θ1(z,τ)=−ϑ11(y,q)=−i
∑
n∈Z

(−1)nyn+ 1
2 q(n+ 1

2 )2/2 =−iy
1
2 q

1
8

∞∏
n=1

(1−qn)(1−yqn)(1−y−1qn−1),

θ2(z,τ)=ϑ10(y,q)=
∑
n∈Z

yn+ 1
2 q(n+ 1

2 )2/2 = y
1
2 q

1
8

∞∏
n=1

(1−qn)(1+yqn)(1+y−1qn−1),

θ3(z,τ)=ϑ00(y,q)=
∑
n∈Z

ynqn2/2 =
∞∏

n=1
(1−qn)

(
1+yqn− 1

2
)(

1+y−1qn− 1
2
)
,

θ4(z,τ)=ϑ01(y,q)=
∑
n∈Z

(−1)nynqn2/2 =
∞∏

n=1
(1−qn)

(
1−yqn− 1

2
)(

1−y−1qn− 1
2
)
.

(C.1)

The transformation formula of θ1 reads (up to a constant phase)

θ1(
u

τ̃
; aτ + b

cτ + d
) =

√
−iτ̃ eiπcu2/τ̃θ1(u; τ), (C.2)

where τ̃ = cτ + d. This, using the fact that θ1(u, τ) = iq
1
8 e−iπu(q; q)θ0(u, τ) implies

θ1(u; τ) =
1√
−iτ̃

e−iπcu2/τ̃e
2πi

8
aτ+b

τ̃ e−iπu/τ̃ (q̃; q̃) θ0(
u

τ̃
; aτ + b

cτ + d
), (C.3)

again up to a constant phase. Note that

θ0(u; τ) =
∞∏

k=0
(1− e2πi(u+kτ))(1− e2πi(−u+(k+1)τ)). (C.4)
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As a result, for u ∈ R we have the τ → −d/c asymptotics

θ1(u; τ) ≈ e
iπ
cτ̃ [ϑ(cu)− 1

4 ], (C.5)

where ϑ(·) = {·}(1− {·}), and {·} := · − ⌊·⌋. The asymptotics of θ2,3,4 then follow as

θ2(u; τ) = θ1(u+ 1
2; τ) ≈ e

iπ
cτ̃ [ϑ(cu+ c

2)− 1
4 ],

θ3(u; τ) = y−
1
2 q

1
8 θ2(u− τ

2 ; τ) ≈ e
iπ
cτ̃ [ϑ(cu+ c

2 + d
2 )− 1

4 ],

θ4(u; τ) = θ3(u+ 1
2; τ) ≈ e

iπ
cτ̃ [ϑ(cu+ d

2 )− 1
4 ].

(C.6)

The analogous formula for η(τ) := q1/24∏∞
n=1(1− qn) is (see e.g. appendix A of [52]):

η(τ) ≈ e−
iπ

12cτ̃ . (C.7)

The most important case for us in the main text is of course d = 0, c = 1.

D Fine-grained discrete structure in modified indices

For simplicity of exposition we suppressed in the main text a rather intricate — though possibly
physically significant — structure in the coefficients d symN (n, j) of the modified indices

E1[symNHSk](q, y) =
∑
n,j

d symN (n, j) qn yj . (D.1)

For example, in the HS2 case it turns out (as one can easily check from (3.16)) that odd
powers of q are absent in the counting function H1(q, y). This implies via (2.20) that

E1[symNHS2] encodes no states with Nn an odd number! (D.2)

While in the main text we turned our head away from peculiar “number theoretic” phenomena
such as this, in the present appendix we explore them systematically.

The fine-grained structure is simplest for HS2, so we focus on this case. We begin with
the Fourier coefficients ĉ1(n, j) of the counting function H1[HS2] as found in section 3.1.2:

j\n odd even

odd ĉ1 = 0 ĉ1 ≈ ± exp
(
π
√
n− j2

4

)
even ĉ1 = 0 ĉ1 = 0

(D.3)

with the approximation valid as n ∼ j2 → ∞.
To go from the coefficients ĉ1 just discussed, to our desired coefficients of the (modified)

index E1(q, y), we use the (modified) DMVV formula (2.19), together with (D.1):

∞∑
N=1

pN
∑
n,j

d symN (n, j) qn yj =
∑

s,i∈N,∆≥0,ℓ

ĉ1(i∆, ℓ)(piq∆yℓ)s. (D.4)
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In the main text we limited attention to the s = 1 terms on the r.h.s. of (D.4). We now
explore the contributions from s not necessarily equal to 1. It follows from (D.4) that

d symN (n, j) =
∑

s∈FacN

d symN
s (n, j), (D.5)

where FacN = {1, . . . , N} is the set of natural factors of N , and

d symN
s (n, j) = ĉ1

(Nn
s2 ,

j

s

)
. (D.6)

Having (D.3), (D.5), and (D.6) we can now state the systematic generalization of (D.2):

in the HS2 case dsymN (n,j)

≈
∑

s±e
π
s

√
Nn− j2

4 for s∈FacN s.t. Nn
s2 ∈ 2N, j

s ∈ 2Z+1,
=0 if no such s exists.

(D.7)
For example, for j even (of the form 2m × odd with m ∈ N) it follows from (D.7) that

d symN (n, j)

≈ ± e
π

2m

√
Nn− j2

4 if Nn ∈ 22m+1N,
= 0 otherwise,

(D.8)

where on the first line we have suppressed subleading terms that might arise from s > 2m.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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