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1 Introduction

The quantum gravity in asymptotically AdS spacetime can be described by a conformal field
theory living on its conformal boundary. There has been a lot of interest in generalizing
these ideas to asymptotically flat spacetime (some of the developments have been made
in [1-16] and [17-26]). In 4d asymptotically flat spacetime, the “CFT” (called CCFT) is
proposed to live on the celestial sphere S?. The development in this direction is mainly
bottom-up. The scattering in bulk 4d spacetime can be written as a correlation function
of operators on the celestial sphere. The operators on the celestial sphere are defined by
extrapolating the bulk fields. For massless fields, the operators on the celestial sphere are
written in terms of a Mellin variable conjugate to the energy. For massive fields, one uses the
bulk to boundary propagator of AdS3 to go from momentum basis to celestial basis. The
celestial basis diagonalizes boost rather than momenta. The operator product expansion of
these operators can be obtained by the collinear limit of the amplitude where two particles
become parallel. Using the existing results in the collinear limit of amplitudes in gauge
theory and gravity, these authors [14, 27-30] found OPE coefficients. Most of the results
in the literature are based on tree-level scattering. The complete description of the CCFT
which is dual to QCD or gravity has not been constructed. Nevertheless, there are some
interesting toy models for CCFT mainly in the self-dual sector of QCD and gravity [31-33]
and even on the string world-sheet [34].



In the exploration of CCFT, soft theorem plays an important role. The statement
of soft theorems becomes the Ward identity on the celestial sphere [35-51]. Hence, these
theorems manifest some conserved currents in CCFT. The scattering states in flat space-time
are usually written in momentum space. The massless states are written as |p*, +h), here
p* is the momentum and +h is the helicity of the particle. This basis diagonalizes the
translation generator. For CCFT, it is useful to look at the states which diagonalize Lorentz
transformation. The reason is the Lorentz group SUT(3,1) = SL(2,C)/Zs becomes the
global conformal transformation on the celestial sphere. So, the states in CCFT are boost
eigenstates rather than momentum eigenstates. One can go from a momentum eigenbasis
to a boost eigenbasis by doing a Mellin transformation. Pasterski and Shao showed that
boost eigenstates form a complete basis with Klein-Gordon norm if A € 1+ i\, A € R [8].
There is a special place for soft operators/theorems.

The study of soft theorems began in the early work of [52]. And there has been a lot of
renewed interest since the work of Cachazo and Strominger [37, 38, 53, 54]. Soft theorems have
been generalized to the generic theory of quantum gravity (see [55—65]). One can also write
the conformal soft theorem using the Mellin transformation of momentum space soft theorem.
The conformal soft operators have A = {1,0,—1,—2,---} [4, 14, 66-70]. This is true even
if we incorporate the loop corrections in the scattering amplitude. So, these soft operators
are genuine currents in CCFT. Recently, it has been shown that only a discrete set of states
with A € Z (conformal primary wave functions) form a basis of massless states [71, 72| under
some assumptions on the fall-off behavior of these primary wave-functions. Equipped with
the knowledge of operator content, the next step is to understand the OPE of these operators.
The problem of finding the OPE translates to the collinear limit of the scattering amplitudes.
In the collinear limit, the amplitudes factorize in terms of the lower point amplitudes combined
with splitting functions. The collinear splitting function (leading) for graviton scattering
in Einstein gravity is all-loop exact. In QCD, the collinear splitting functions receive loop
corrections. One goal of this paper is to understand the implication of these corrections on
the operator product expansion of conformal soft operators in gauge theory and gravity. See
some previous works on loop correction to celestial amplitudes in refs. [2, 73, 74]

In this paper, we are going to study the 1-loop correction to the OPE of gluons and
gravitons on the celestial sphere. Bhardwaj et al. [75] have found the loop correction to the
celestial gluon OPE which has generic conformal dimensions. We will take the soft limit of
these OPEs. We have two types of conformal soft operators with simple poles and double
poles in the A plane. Both operators have the same conformal weight. We will find the
OPE of these conformal soft operators. At the loop level, these OPEs will become more
complicated, and their residues are written in terms of Polylogs and Harmonic numbers. In
the graviton OPE, the tree level OPE is all loop exact because the splitting functions don’t
receive any loop correction. But soft operators do receive loop correction and we have two
sets of conformal soft graviton operators with simple poles and double poles. We found the
OPE of these conformal soft operators and their mode algebras. This gives us another set of
wedge subalgebra of wy, algebra on top of w4 algebra already found by Strominger [28].

In section 2, we will provide details about the soft operators at the loop level. The
conformal soft operator still has the discrete conformal dimension but the simple pole in



OPE will be generalized to higher poles. This is a huge simplification compared to generic
hard operators, which lie on the principal series. In section 3, we will review the OPE
of gluons with generic conformal dimensions which was obtained in [75]. In section 4, we
will take the soft limit of these OPEs. There are three sets of OPE to consider, which
are discussed in subsections. In section 5, we studied the conformal soft graviton OPE
and found a new set of wy, algebra. We finish the article with discussions and outlook in
section 6. In appendix A, we have discussed the properties of Mellin and inverse transform
which are essential to our discussion. The details regarding the soft gluon theorem at one
loop are sketched in appendix B.

Note added. We are aware of an upcoming work by Bhardwaj and Akshay Srikant on
“Loop corrections, soft factors, and logarithmic descendants in celestial CFT” which may
have overlapping results to ours.

2 Soft operators at loop level

The amplitudes involving massless particles in D = 4 spacetime have infrared divergences.
The first question we need to address is the meaning of soft theorems if amplitudes are
divergent. There are many ways to address this question. Bern et al. [76] started with
the divergent amplitudes and have divergent soft factors. These soft factors upon Fourier
transform correspond to memory effects on the asymptotic infinity [40, 48, 77]. These memory
effects can be observed experimentally in future experiments. Therefore, an infrared finite
observable is required for this purpose. For an infrared-finite soft factor, we follow a strategy
laid out in the very early work of Grammer and Yennie [78]. It was proven to be very useful
in QCD in understanding the Sudakov form factors among other things [63]. These methods
have been revived to understand the soft theorem [60, 79]. The goal of Grammer and Yennie
was to find a good prescription to compute the IR finite S matrix. The concept entails
expressing the massless gauge boson propagator in two distinct parts, denoted as K and G.
The amplitudes with only G photon/graviton propagator are infrared finite. The amplitudes
with K propagators contain all the divergences and get exponentiated. Now, the idea is
to factor out these diverging exponentials and define a finite S- matrix. The soft theorem
relates two sets of amplitudes with and without extra soft particles denoted as A, 1 and
A,. For example, in QED this factorization can be written as

AN = exp{Kem} AR e AN = exp{Kem} AR ke - (21)

In the above equation, K¢y contains the full IR divergent contributions. It is important to
note that we have the same K¢, factor in both amplitudes. The explicit expression of Kepy

. N N 4
i a1 (20— 0) - (2p; + 0)
Kem = 5 i€ . , — . 2.2

2; ]z:lee] /(27r)4 02 —ie (2p; - £ — 02 +ie)(2p; - £+ 02 — ie) (22)

J#i

Here e; and p; are the electric charges and momenta of the particle. After this factorization,
we can compare the IR finite amplitudes as

AN Soft factor x AN (2.3)



One can study these soft factors at various orders in QFTs as well as in gravity. The leading,
subleading and subleading soft factors at various loops have been analysed in [55, 60, 64, 79—
82]. In QCD, the Grammer-Yennie (KG) decomposition was studied a long time ago by
Sterman and Collins [83, 84] and then used by Sen to study the form factors [63]. We use
these methods to learn more about the soft theorems.

In this article, we will analyze one-loop corrections to the soft theorem. For gluons, it
was established by Catani [76, 85, 86] that even the leading soft gluon current gets loop
corrected. The tree level contribution to soft factor is proportional to gyy while one loop
part comes with g3,;. They have the explicit IR divergence in the soft factor because they
were analyzing the theory in dimensional regularization. In the appendix B, we will analyze
the gluon soft theorem directly in D = 4 using the Grammar-Yennie decomposition. After
factoring out the divergent parts, the soft theorem can be written as

1—loop, IR—finite __ tree tree 1—loop, IRfinite 1—loop 1—loop tree
ANt = (SO + 57 )AN + Sy +5; AN (2.4)

Here Sy and S represent the leading and subleading soft gluon factor. The only fact that we
are going to need is S§™* oc L and S ~loop 1Tog[w]. It is reasonable to think that S{™° oc w°
and S} 7°°? & Log[w]. Here w is the energy of the extra gluon in the n + 1 point amplitude.
This concludes our discussion of soft factors in the momentum space. But for celestial
CFT, we need to analyze the soft theorems in boost eigenstates. This can be achieved by
doing the Mellin transform of all the incoming/outgoing states.
Oa = /oo d—wwAf(w) (2.5)
0 w

Here f(w) could be a plane wave or a wave packet. The soft operators are special in celestial
holography as they have A € {1,0,—1,—2,---}. Usually, the soft operators are identified
by doing the Mellin transformation of whole amplitudes. In the soft limit, amplitudes have
a formal asymptotic expansion (we know only up to a few orders) in w'Log’[w]. Doing the
Mellin transformation of soft factors produces poles in A plane (see appendix A for details
about loop corrections). In this section, we will truncate the expansion at one loop. Then,

the soft operator has the following expansion
0" (z,2) e 0"%(z,2)
(A+i) (A2

Here the various labels of Oi_’(i(z, Z) are as follows. The i label is related to the dimension of

OA’a(Z, 5) ~ Ci 0 (2.6)

the conformal soft operator, a labels the color index, and an additional index which is —1
describes the order of the poles. The ¢; o and ¢;; are constants and could be a function of
coupling constants as soft factors depend on coupling constants. Just as an example i = 2
means the (sub)? leading theorem which corresponds to A = —2.

But for gravitons, the leading soft theorem is all loop exact. Hence, the leading soft
operator will have only simple poles in the Mellin basis. But subleading and higher soft
theorem do receive 1-loop correction. After truncating the expansion at one loop, the soft
graviton operator has the following expansion
G' (2, %) G (2, 2)

W Ci’lm (27)

GA(Z, Z) ~ ¢ip



But here ¢ € {0,—1,—2,---}. The conformal soft operators are defined as the residues at the
poles. The coefficients G* {(z, z) and G* 5(z, z) will become the conformal graviton operator.
The presence of higher poles was already anticipated in prior work of [5, 23]. However, the
connection to the explicit conformal operator was not established. In this work, we have
identified the conformal operator which corresponds to simple and higher poles. Having
identified the operators on the celestial sphere, now we will try to find the OPE of these
operators. This can be achieved by finding the collinear limit of the amplitudes.

3 Loop level gluon OPE using collinear limit

In this section, we will study the OPE of the positive helicity gluons.! The Lorentz symmetry
of Minkowski spacetime manifests as global conformal transformation SL(2, R);, x SL(2, R)r
on the celestial sphere. The SL(2, R), will get enhanced to Virasoro thanks to the subleading
soft gravitons which generate superrotations. But we only have the chiral half Viry as we
are working with just positive helicity.? Hence, we will work in Viry x SL(2, R)r formalism.
The soft currents form a representation of these algebras.

We will start with positive helicity gluons with conformal dimension A = k which

transforms under (2 — k) dimensional representation of SL(2, R)r [27, 28]. The states with
k-1

lowest weight has h = 5~ and the states with highest weight has h = % The mode
expansion of these currents/operators can be written as
1—k
5 Oa,+ z
Of(z2) = >, L’",f,} (3.1)
e 2T
=5
here A =k =1,0,—1,---. We are keeping the arbitrary z dependence of these operators.
Now we define conformal soft operators as the limits of the soft operators.
k—1 1—k
Ryt (2) = lim ¢ Opten(2), k=0,1,-1,-2..., —5 - Sn<—— (3.2)

More precisely the conformal soft operators are defined as the residues at the poles. We
have added one more label to highlight the simple and double poles.

RZ:—1(2) = i

At the loop level, we have higher poles; therefore, the definition would be

dA .,
Ox1,(2) (3.3)

2mi

dA

Rih a(2) = § 5 (A= ROKL() (3.4)

!The negative helicity particles generate the analogous currents to positive helicity ones. The OPE of
opposite helicity particles depends on the order of limit.

2Virg are generated by negative helicity gravitons/gluons. We will treat z and z as independent variables,
hence the right signature of spacetime will be (2,2). It is also reasonable to think that these symmetries will
survive the loop correction. The reason is SL(2, R)r is part of the Lorentz group and Viry is generated by a
loop-level subleading soft theorem which is universal and one loop exact.



The corresponding conformal soft operators after summing over the modes can be written as

1-k 1-k
& RE0) & R ,0)
, — k,n,—1 , — k 2
szfl(z,z): Z 7:_7, sztQ(Z,Z): Z 77’:_77 (35)
— 2 _ 2
= =

Both operators RZ:tl(z, z) and RZ:fz(z, Z) (Just to be clear the labels here are as follows-
a is the color index, + is the helicity of the gluons, k is the conformal dimension A of
the conformal gluons and —1 and —2 labels the order of the poles) have conformal weight

s (hh) = (k;lk;)

Gluon OPE. We will start with the OPE for positive helicity gluons as calculated in [75]
(see eq. 3.52)3

abc
0% (21, 71) 0% (22, 22) ~ i 1+ aHY +aC D2, | CP05 A,
fabc abcale (1)
Y aco OA1+A2 S O—OA1+A2 1 (3.6)

The last term in the above OPE is a little different, as it contains the — helicity, which is
unexpected based on the understanding of tree-level OPE. The terms in the OPE written
above are the most singular in (z12). One could ask whether this OPE has a convergent
expansion in z12. We don’t know the answer to this question. All the factors in the above
OPE (3.6) are listed here

N.
= B(A—1,A0-1), a=2 o) = -2,

2
T 1 1 ng N
HY) = —13 208,05, cst = 3 (1 N Nf> B(Aq,Ay)
N 1 A2
Digo = 0, +0a, +0a + LOg —212212—% 2 (3.7)

The operator 1512 has a derivative dn which acts on OZJr. In this case the operator OZJF
assumed to be independent of Ay, Ao. After taking the derivative we should evaluate the
expression at A = A; + Ag — 1. The Oa,, 0a, derivative acts only on the B(A; — 1, Ay —1).
In the above equation, ns and ny correspond to the number of scalars and fermions in the
fundamental representation of the gauge group.

Some comments about the Log term. The appearance of log can be traced back to the
loop-level splitting functions. Splitting functions have two kinds of terms: factorizing and non-
factorizing. In the OPE, the Log term came from the non-factorizing part. The p represents
the renormalization scale. The parameter A is introduced to make w is dimensionless.
From the OPE (3.6), We can see that OPE coefficients have a pole whenever Ay, Ay =
{1,0,—1,---}. The conformal soft operators are defined by the residue at these poles.

3The addition of SL(2, R) g descendants to (3.6) is very subtle at loop level. We thank Rishabh Bhardwaj
for the discussion on this point.



4 Conformal gluons OPE

In this section, we are going to study the OPE of conformally soft gluons which are defined
as the residues at the poles. There are two types of residues: for the simple pole, we have
R%*k,—1(z,z), and for double poles, we have R**k, —2(z,2). With these conformal soft
operators, we encounter three different types of OPE

_ b _
o« RyT (a1 20 R (22, 22)
_ b _
. RZ:fQ(zh Zl)Rl:jz(ZQ, Z9)
_ b _
o Ryt(z1,2)RT (22, 22)
We will study these OPEs in the subsequent subsections.

4.1 First type OPE

First, we are going to analyse the OPE of Rzzfl(zl,él)RZ’fI (22,%2). This is the OPE
of conformal soft operators having simple poles. This can be evaluated from the OPE
in (3.6) using the contour integration. The contour integral that we are taking is f(k fl) =
2($. §,+ $ 4.). This way of taking the contour integral matches with the direct computation
by making the dimension as k + ¢,l + € and taking the ¢ — 0 limit whenever this limit
is non-vanishing.

Let’s start with the tree type term in the (3.6)%

RZ:J—rl(zh zl)RZ: (22,22) ~ fikjl{ OZT(ZL 51)02—;(22, Zs)

.fabc 2 k—1 B
e WRHZ 1,-1(22,22)

1 ns  ng\ (=k=0! 7r2 2—k-1)!
§(1+N N)( (=) 12 (1—k)!I(1— )]Rkﬂl—l

g2Nc fabc
87‘(’2 212

+i

2 abc
¢®?N. (2—k-1) f A
T A= (1=0)! 712 lLog { 212212 QHR,H_I 1.1

2 abe
g Ne f°1 ns np\ (=k=D)! o
1672 23, g( ) (—k)I(=0)! Zl?Rk_H_L_l (4.1)

+i

Next, we will consider the terms in (3.6) which contain two derivatives (in total) which
might be Ja,0a, acting on the Beta function or a0 acting on the operator or any other
combinations. All the contributions are summed and written compactly as

Ryt (21, 20)RY T (22, 22)

7{ ]{O (21,21)0 (22,22)

NG f T(=k—143)
2 212 F<271)F(7k‘+2)

™

<1/)(0)( k+2)’ [RkH 13RS 2w(0)<7k7l+3)}7R;’++lfl,71(H1—l*H—k—l+2)2

“Here by tree type, we mean the term without any derivative with respect to A, Ay, As.



2Ry 0O (k20O (—h=143) — Ry 0O (k= 143)7 2R oW (—k—143)
FRY WD (—k+2)+ Ry, 1,— WM @=D+RET 1o (Hiy—H_j—112)

| (= Hogemi) 24300 (k= 143) =300 (2-0) | 43R5, 9@ (—k+2)6© (=k—143)?
+3R;, 1, O (—k+2) [¢(1)(_k_l+3)_¢(1)(—k+2)}

— By O (R =18 O (k=14 3) 43R,y [6 0 (—h+2) — oD (—k—1+3)]

_2R274r+l—1,721/)(2)( k— l+3)—|—RkH - ¢0)(_k+2)3

FR VP (SR 2) R ¢2)(2—1)) (4.2)

The OPE of conformal operators having simple poles generates the conformal operator
having double poles. This is the curious aspect of our calculation. The @ (x) are the poly
gamma functions and H, are the Harmonic numbers. These functions can be written as

)y 0GR e N L _ 5O
z/J(z)—F(Z), Y (z) = T H) —Zz::lir, and H, = H,

The one derivative term either with Oa,, 0a, acting on the Beta function or da acting on
the operator can also be evaluated. This term has explicit Log[—z12212 2—;] which distinguishes

it from other terms. This OPE can be evaluated using the manipulation with total derivative
and contour integration. The total contribution with one derivative term is

Ryt (21,2 Ry (22, 22)

Nf %OAI zl,zl (22,22)

(3 QNC abc B A2
wa Log[—2122’12?] (Hl—l [Rk:l 1, 1+2Rk+l L= H_k_l”}

872 219
+ H 11 [Rz,i_l—l,—l + 2Rz7——:l—l,—2H*k*l+2} - 2R2’L—1,—1H7kfl+2
N 2Rz’il—l,—2 (Hop-142)* = R;L_L_Q (Ho+1)® = RZ’L—L—2 (Hi1)?
- 2RZ’++1—1,—2¢(1)(—7€ —1+3)+ RZ’:l—l,—zw(l)(—k +2)

I R C I, ws

Hence, the total OPE of R{'F, (21, El)Rf’fl(zz, Zo) is the sum of (4.1), (4.2) and (4.3). In
summary, this OPE receives contributions from both the tree level and the loop level. We

will work out the special case of leading and subleading soft operators.

Leading and subleading soft operators. For the leading soft theorem we have to set
k =1 =1, and then the OPE of leading soft operators will become

Ry (21, 21)RYY (22, 2)

~ Oa’+ 21, 21 Ob’+ 29, 22
(k=1 Ji=1) Aq ( ) ) AQ( ) )



.fabc ot B .g2Nc fabc 7T2 ot .QZNC fabc ) - A2 ot
~ 1 o RL_l(zg, 22) +1 872 21 EETI Rt ? 1672 215 Log [—2127312?] R1,_1
2N abc
+ilf T et (14 (4.4)
12

Here ~ is the Euler Gamma. In this example of the OPE of leading soft operators, we can
observe its essential features. The OPE of simple poles in conformal soft operators results
in conformal soft operators with higher poles. In the OPE given by (4.4), the origin of
the first term is at the tree level, while the second, third, and fourth terms arise from loop
corrections. The theory dependence can also be seen from the explicit factor of N. which
represents the gauge group as SU(N,).

In the next example, we will consider the OPE of leading with subleading operators
which amounts to &k = 1,1 = 0.

R (21, 21)R8’i1(22, Z2)

~ Oa’+ 21, 21 Ob’+ 29, 22
Ok @0k 2
'fabc ot - .gQNC fabc 1 ( N nf) 7.(.2 ot
~ R ’ R — 1 2 _ _J o R )
! Z12 0’_1(22 ZQ) e 872 z12 |3 + NC Nc 12 0,-1

2 abc 2
g°N. f 9 _ A
" 1672 21 [Log [~E0d qu] B

2N fabc 1 ny N ) fabc
75 A Rc— c 3 _3 4 Rc’+
6 25,3 ( N. N, ) 12y 1 Wz 2106+ (=30 ~ )Ry,
(392Nc> fabc A2
~ g o, rosls zl?zl?ﬂg]RO it (4.5)

Here v is the Euler Gamma. This OPE has loop corrections, theory dependence, and the
presence of higher poles from the OPE of simple pole operators.

4.2 Second type OPE

Now we are going to evaluate the second type of OPE Rk 2(,21, zl)R? +2(22, Z9) which comes
strictly from the loop corrections. First, the term without any derivative in (3.6) won’t
contribute. Next, the term with two derivatives in total can be written as

Ryt (21, 20) By (22, 22)
N]{fm_ (Do—1)O% (21,5)0% (22,7)

2N ) fabc
87T Z12

I'(—k—1+3)
T(2—)I(—k+2)
(4.6)

Dz

(9R2L 1ol =2H o+ H i+ Hi ) -8RE], 1—1)

We observe that the OPE of the conformal operator with double poles yields a conformal
operator with both simple and double poles. Next, the term with single derivative which



contains an explicit factor of log will give the following OPE

Rk: 2(21,21) ZQ,ZQ f%Al AQ—Z)O (21,2’1)02—2’—(2’2,52)

(g*Ne) [ _ ATk —143) ) ey
L —_— —_— K
2! 212 219 og|—212%12 ,uz] re—-nr(-k+2) By,

(4.7)

Interestingly, this OPE only produces conformal operators having double poles. Therefore,
the complete OPE of RZ’:Q(zl, Zl)R?’L(zg, Z9) is the sum of (4.6) and (4.7).

Leading and subleading soft operators. For the leading soft operators, we take k =
1.l =1

R?jf2(21,21)R1{jf2(22,52)ka Sy (A1=E) (A2 —)OXT (21,21) 0% (22, 22)

( QN)fabcR i ( QNC) fabc
72 219 b _1 212 219

_ A2 C +
Log[_Z12212?]R1:—2 (48)

Next, we are going to calculate the OPE of leading with subleading operators (k = 1,1 = 0).

RYT (21,20 Ry 5 (22, 22) ~ 7{ )(Al— (Ao —1OXF (21,21) 0% (22, 22)
k=1J1=0
(g2N,) fobe - (gPNe) ot IV G
~ 17 87T2 1 ( 9R1_ —8R1 _1) 271'2 1 LOg[—Zlgzlzﬁ}Rl’_Q

(4.9)
In these examples, we observe the effects of loop corrections and the presence of the gauge
group factor N.. The OPE of conformal operators with double poles leads to the appearance
of conformal operators with both simple and double poles.

4.3 Third type OPE

Next, we are going to evaluate the mixed OPE between the conformal soft operators having
the double and simple poles Rthz (21, El)R?’: (22, 22). This OPE has contributions from both
trees and loops. We will separate the contributions of trees and loops as the expressions are
cumbersome to write in a single equation. The tree-level contributions can be written as before

RZ’J:Q(Zl,Zl)R?’f (22,%2)

Nj{ j{ Al— 21,21)021(22,52)

fabc 2 k— l) ot B
= (1 )1l k=1 (22, 22)

g>N, fobe 1 ns ng\ (k=0 7% (2—k-1)! ot
S l?» (HNC_NC)( (=) 12 (1—k)!(1 z)}RW 1-1

2 abc 2
g°N. (2—k=0! f ) A
_ Loe2(— A°
"1672 (1=K (1=1)! 212 0g[—212712 MQ] Ryl 1,-1
2N fabc 1 N ny ( k l) -
NN Ry 4.10
"1672 Zu3(+N N)(MKU“QHFMl (4.10)



The contribution of two derivative terms to the OPE can be written as

Ryty (21, 2Ry (22, 22)

Nf. jlé Al— (Zl,zl)OZ;r(ZQ,Zz)

( QN)fabc

By
812 219

( 5021 [RkH -1 7T 2Ry 1, Ok —1+ 3)} — O (=k +2)

[ngL o1 T 2R zw(o)(—k‘—l+3)] +ARY WO (—k—1+3)
+ 1RGO (k=14 32 + 1R, oM (—k —1+3)

+16R;, 0V (—k +2) = 16R oW (—k +2) = 5Ri w02 1)

+6RH11QWU@—D><—F££;NQZ?Q> (4.11)

The contribution of one derivative term to the OPE can be written as

j{ j{ (A1—k) 21721)02—;(22,52)

. 2Nc abc ~ A2
Dz( ) f LOg[—ZleQ?]

871'2 Z12

P(—k—1+3) -
T2 (—k+2) (Rk:-i-l L1t [4Hkl+2—5Hk+1+HllD (4.12)

Therefore, the OPE of le’g(zl, 21)Rl_’bl(z2,22) is the sum of (4.10), (4.11) and (4.12).

Leading and subleading soft operators. First we will start with OPE of leading soft
operators having £k = [ = 1.

R(i’fg(zl, El)le’il (22, 22)

) = b7 =
~ - lzn(Al—k)OZj(zl,zl)OAj(zz,zz)
fabc ~ .92Nc fabc 71’2 ot .92Nc fabc 5 ~ A2 ot
TRt - Log?[—210%12 — ]| RS
212 1 (22722) T 872 219 12 1,—1 11671'2 212 08 [ 12212 2] 1,—1
(g2 N) fobe AN
1 Log|—z12z10—5 | R7 - 4.13
o . gl—212 12M2] 1o (4.13)

The OPE of leading with subleading operators (k = 1,1 = 0) can be written as

R‘f’fQ(Zh 51)R8’t (22, 22)

~ Al ]{?)O (21,21)02—;(22,22)
(k=1 J1=0)
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~1

F et - g°N, [ |1 ns Ny Lol -
219 R07_1(225 22) + 1 87T2 1o 1 _|_ - _ 4 o RO’_l

—1
167T2 Z12

2N abc 1 QN abc
g°N. f L (1 i s nf) 212R87:1 _9; (g c) f Rc,+

2N abc A2

"1672 22, 3 N. N. : 872 z1p O
(g*Ne) fo A e +
+1 87[.26 - Log[—zlgzm?](Ra,l + 5R87,2) (4.14)

Summary. In this section, we found that the OPE of conformally soft gluons has simple
and double poles. We worked out an explicit example of leading and subleading soft gluon
operators. The essential features of these OPEs are the mizing of simple pole and double
pole operators. This mixing comes essentially from loop corrections. The theory dependence
can also be observed from the presence of factors like N, ng,ny.

5 Loop level graviton OPE

In the gravitational scattering, the leading collinear limit remains all loop exact [86]. Hence the
graviton-graviton OPE won’t get modified. The proof of cancellation of collinear divergence
in gravity is established in [87]. The intuitive idea is the graviton interaction vertices come
with two powers of momenta, which “softens” the divergence. This fact is true irrespective
of the signature of spacetime. The OPE of two gravitons remains unchanged and it is
given by [14, 27]°

1-k 7., n+1
_ _ K z — _

Gzl(zl,zl)GXQ(ZZ,zQ)N%HZB(AllJrn,Azl)(liL)'8 Ghon(e23)  (51)
n=0 '

The effects of the loop will make simple poles in the soft operators to higher poles. At one
loop level, We will have simple poles and 2nd order poles in the expansion of the soft operator.
The higher poles come with an additional x? = 327G relative to the simple (tree) poles. The
definition of conformally soft graviton with their modes can be written as [27]

dA dA
Hy _ Z)= ¢ —G z Hy _ Z)= ¢ —(A-k)G z
w1(22) = § 55Ga22), Hia(a) = § 5o (A= B)Ga(2)
2—k 2—k
. 2 Hr]f—1(z) . 2 Hr]f—2(z)
Hya(2,2)= ) — ey Hee(z2) = > p— (5.2)
nek=2 % 2 nek=2 % 2
2 2

For the second case Hj, _2(z, %) the conformal dimension k € {0, —1,—2,---}. The reason
lies in the fact that the leading soft graviton theorem doesn’t get loop corrected. We will
start with the OPE of simple pole operators following [27]

kA 2-k—l-n)! (Z)"™
2219 g (1=k—n)i(1-)!  n!

H,:f_l(z1,21)HZr_1(22,22)N— E”H,L_l’_l(zg,ég) (5.3)

5To avoid any subtlety, we are making a statement only for the OPE of positive helicity gravitons. The
OPE for opposite helicity gravitons is left for future exploration.
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For higher poles conformal operators we have an additional OPE

FoNt @ckelon)l (E)" o,

H,;72(21,§1)HIJ’11(22,22) ~ —4212 (1 =) =) o k+l (22,22) (5.4)

The OPE of H;_Q(zl,il)HZr_2(22,§2) vanishes.

Notice that we have an additional factor of % as compared to tree-level OPE. The origin
lies in the symmetrization of the contour. Again we can write down the commutators of
the modes similar to the [27]

k U1 Ao oy G omt B 1) (35 m +27+ —1)’ et
[Hm,—an,—l} =53 [n(2—k)—m(2-1)] (22k m)! (2771770, ( ) ( )! m+n,—1
(5.5)
The other commutator can be written as
22k 42 —n—1)! (24 mt 25 1)
Hk Hl :_E 2_k)— 21 ( 2 Hk’-i—l
[ m,—2> n,fl} 4[”( )—m( )] ( ) (27 ) (%_‘_m)(%l_Fn) m-+n,—2
(5.6)
and after doing the light transform as in [28]% (notice the dependence on k)
1 3.9
w1 =—(=n=1Dp+n-1)H, e (1, 20 (5.7)
p 1 \H 2p+4 3 .5
Then the above commutator (5.5) can be written as
[wh, 1wl 4] = [m(g = 1) = n(p— D]uwh 42, (5.9)
The other commutator (5.6) can be written as
1 —2
0l ol 1) = lmla — 1)~ nlp — D]l (5.10)

The central generator wﬁl’_2 with p = % commutes with all other generators. The modes

labelled by m are restricted as % <m < % Hence the algebra presented in (5.9) is
the wedge sub-algebra of w1 algebra. The algebra in (5.10) is also a wedge subalgebra
of wy algebra.

This concludes our discussion on the graviton OPE at the one loop level. The higher loop
let’s say 2-loop contribution won’t change the subleading soft graviton theorem but it can
change the sub-subleading soft theorem. Up to 2-loop the sub-subleading soft theorem has a
dependence like wLog?[w]. This will translate to the 3rd order pole but again at A = —

5Strominger [28] has added the central generator with k = 2 or p = 1 with the corresponding mode as
HZ(z) which is a current with (k, h) = (2,0). It is central in supertranslation algebra (5.5) with k= 1,1 = 1.
In our case, we have the mode algebra as (5.6). The commutator with k& = 0,] = 1 gives a graviton mode
H,,ln+n’,2. Hence we can also central generators Hﬁly,z with k =1,m = i% (not to confused with leading soft
graviton operator which has & = 1 but doesn’t receive any loop corrections). We are tempted to add another
central generator H{i_g but it is not being inferred by the OPE (5.6). Hence, we won’t add it to the OPE.
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Then again we have a new conformal soft graviton operator Hj, _3 but k € {-1,—-2,-3,---}.
The new commutator will be”

1 L 5 7
sl = Smla—1) —nlp— DIt a2 e {535,k (G11)

So, up to 2 loop order, the resulting symmetry algebra will become the sum of the above
algebra as

2
wht w2t w2 gt ) =([mla — 1) = iy — DIl

1 -2
+ glmla— 1) = nlps ~ DIutz{
1 -
+almlg =1 —nlnm - DBE) (512)

pi + q — 2 should belong to the appropriate sector as calculated above. This structure will
get generalized to higher loops.

Conclusions. In this section, we have seen that the wedge subalgebra of w4 algebra
found at tree level get duplicated. We found an anthoer set of wedge subalgebra of we
algebra at one loop level. A similar structure persists at a higher loop as well. But we don’t
think it is Wi oo~ the quantum deformation of wi4ee-

6 Discussions and outlook

In this article, we have initiated the study of loop-corrected celestial soft gluon and graviton
algebra. We started with the generic one loop gluon OPE found by [75] and made the operator
soft by taking conformal dimension A € {1,0,—1,---}. One can ask the following question,
what if we study the double soft theorem and make them collinear? These two limits commute
or not. We believe these two limits commute. Here we will present an argument in support of
this belief. The argument comes from an existence of CCFT at celestial sphere for soft gluons.

The conformal operators Oa(z, Z) live on the celestial sphere. The soft operator having
dimension A € {1,0,—1,---} is one of them. The collinear limit translates on to the OPE
limit. And OPE of two operators do commute.® So, we need a CCFT description for soft
gluons. Happily, the CCFT description for QCD in the soft and collinear sectors is first
presented by Magnea [88]. This CCFT is just the Lie algebra valued free fields (see section-4
of [88]). To really test the CFT description, Magnea calculated the splitting anomalous
dimension from free field OPE. This calculation mimics the bulk gauge theory calculation
of splitting functions and its anomalous dimensions. The answer one gets from the CFT
description matches with the bulk gauge theory calculations. It also establishes the fact that
the collinear limit depends only on the particles involved in the splitting and color correlations
with other particles vanish in the leading order. The free field OPE in CFT encodes the

5 3
"We can add central generators as w3, _3, which is needed from the commutator of w2, _, and w2 _,.
8Here we are assuming the conformal operators are bosonic.
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collinear factorization theorem? of gauge theory (see eq. 229 of [90]). One can do a similar
analysis in gravity following [91]. We will leave the detailed analysis for future work.

In summary, the soft gluon operator gets the loop corrections. The tree level operator
when changed to Mellin basis only has simple poles in the A plane. But the Loop effects

Log[w]

contribute as g3y . The loop correction has an extra g%,; compared to the tree-level

Log[w]

operator. The , when expressed in the Mellin basis, exhibits double poles, precisely
at the same locations as those observed at the tree level (A = k). We can see even though
loop correction changed the nature of poles but still, soft operators still lie on the same
discrete points A = {1,0,—1,---}. It lies exactly at the same place even if we keep on
adding the higher loop corrections.

With this input, we obtained the OPE of conformal soft operators. We have two types
of conformal soft operators Ry _, and Ry _, depending on simple poles or higher poles.
We obtained their OPE in section 4. One needs to be very careful about the addition of
SL(2, R)r descendants as loop level collinear limit is more subtle in split signature. Luckily
for gravitons, the leading order-splitting functions obtained at the tree level are all loop
exact. But subleading soft gravitons have loop corrections (one loop exact), which translates
to the second-order poles in the A plane. We found the tree and loop-corrected conformal
soft operators and their OPE. The loop correction added a new set of wedge subalgebra
of we, algebra to the existing wedge subalgebra of wi4.,. The higher loop correction will
follow suit. The algebra written in (5.12) looks like some extension of wj~ algebra than
the qunatum Wi, algebra.

There are many future directions we would like to follow.

e The collinear splitting functions for gluons and gravitons are known at all loop order in
planar N’ =4 SYM (see [75]). One can do a similar analysis as done in this paper to
find the mode algebras of the conformal soft operators.

e The loop corrected stress tensor and their OPE with other operators has been obtained
in [13, 92, 93]). Recently, Agrawal et al. [94] have found the connection between the
logarithmic soft theorems and superrotation Ward identity. One can speculate whether
higher soft theorems can be recast in terms of Ward identities or not. It would be very
interesting to understand the BMS flux algebra for higher logarithmic soft theorems.
This will complement the analysis of graviton OPE done in this paper.

o It has been found in [72] that the operator lying on discrete conformal dimensions
more precisely the memory and goldstone modes form the basis of conformal primary
wavefunctions provided the news and shear follow certain fall-off conditions (gravitational
signal belonging to Schwartz space). This sounds a little problematic from the view
of gravitation tail memory which is not exponentially suppressed at late time and
hence doesn’t belong to the Schwartz space [80]. This can be traced back to the
relationship between gravitational waveform and soft theorem. As the soft theorem

9The factorization theorem states that amplitudes in QCD factorize as hard-collinear-soft. Hence, the
study of the soft theorem can be done independently of the collinear limit and vice versa (See [89] for some
recent explicit results).
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gets loop correction, we can see the gravitational memory also gets corrected. We wish
to understand the completeness of the memory and goldstone modes at the loop level.

e There is a well-developed theory effective theory for soft and collinear modes of QCD
and gravity called soft-collinear effective theory (SCET). We think SCET can be very
helpful in understanding the loop correction of celestial algebra. In the factorization
theorem of [90], the soft theorem is obtained using the smeared Wilson lines.

YJT(ZL') = P exp [ig/o dsnj. A(x"” + snj)e” (6.1)

when n; is along the null direction, then the Wilson line looks more like light-ray
operators. The soft theorem can be obtained after expanding the matrix elements of
these Wilson lines. This will strengthen the relationship between light ray operators and
soft theorems (see a recent discussion about light ray operators and soft theorem [95, 96]).
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A Some properties of Mellin transform

In this section, we will give some reviews of the Mellin transform and its inverse properties.
More details and proofs of the theorem can be found in [5].
The Mellin transform is defined by

AA) = / T AU (w) (A1)
0 w
If A(w) is integrable then the only singularities of the above integral are at w = Oand oo.
Hence A(w) will admit an asymptotic expansion
Alw) =% Z ¢i jw'Log? [w] + O(wP)
p>i>—a
Aw) 272 > dijw'Log! [w] + O(w?) (A.2)
q>i>—b
The convergence of (A.1) requires a < b. This defines a fundamental strip (a, b) for A(A). The
¢;,; are some constants but they could be a function of coupling constants for the soft theorems.
For the study of the soft theorem, we always have a = 1. The behavior of amplitude at
w — oo can be constrained using Froissart bound. But this bound is valid only in certain
kinematic regimes. Nevertheless, the fundamental strip (a,b) is not empty. For this strip
A is analytic in the complex A plane.
The inverse Mellin transform can also be defined as

1 c+100 % ~

A(w) = ~A(A) (A.3)

270 Je—ico W

here A(A) be integrable on the imaginary line ¢ 4 iR, and a < ¢ < b.
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In soft theorem analysis, we have an asymptotic expansion near w — 0. Using this
asymptotic expansion near w — 0, we will establish some of the properties of A(A).

Theorem 1. Let A(A) be the Mellin transform of A(w) with a non-empty fundamental strip
as (a,b). And if A(w) admits an asymptotic expansion in the form of (A.2) around w — 0
as well as at w — 0o, then one can continue fl(A) to a meromorphic function in the strip
(—p, —q), with this singular expansion

A(A)x Z (_17)39'_,_ Z dm.(_li)jj! (A.4)

Cij S ST
Sy I C R ey SR C S

The theorem also has a converse (called inverse mapping theorem), which states that
the asymptotic form of f(w) can be obtained from the pole structure of f(A) under suitable
conditions. We are not going to need the details of the converse. Interested readers can
look at [5].

In our discussion of the soft theorem in section 2, we have established that the amplitudes
have an asymptotic expansion near w — 0 as cijjwiLogj [w]. It is exactly like the expansion
in (A.2) with an appropriate choice of p and a. Hence, we can use the theorem (A.4). On
the A basis, the soft expansion will become

. ) — 1)j 5!

- iLogd |

chw Log’ [w] — ch( T (A.5)
One immediate consequence that can be reached here is the soft operators still line on

the discrete series A = 1 — Z, but with higher order poles. The order of higher poles is given

by the power of (log) in the asymptotic expansion. It is very important to note that the

whole A dependence of soft operators is written as % and ¢; ; are just some coefficients

which could be a function of coupling and other data of theory like gauge group, matter,

etc. Building from this intuition, we will write the soft operator as an expansion in the A

plane. The soft operator can have celestial coordinate dependence (z, z).

07(z,2) Lo 07 2%(z,2)
(A+i) (AT

Oa(2,2) ~ ¢ (A.6)
One can explicitly find the coupling constant dependence of these soft operators. The tree
level soft operator has gyn dependence, while one loop level has g%)}M dependence. We have
incorporated these coupling constants information in c¢; ;.

In the graviton case, the leading operator doesn’t receive loop correction, hence we have
i = —1,j = 0. The subleading operator has both tree and loop parts. So, we have both
cio and ¢;1 terms. In the gluon case, the leading soft theorem also gets corrected. In this
article, we have just focused on one loop contribution, so the leading operator has both ¢; o
and c¢;1 terms. The higher loop will produce higher poles.

B One loop soft gluon theorem

In this section, we are going to sketch the one-loop soft gluon theorem. The leading soft gluon
theorem has been studied very extensively (see [85] and the references therein). The soft
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Figure 1. Diagrams containing 3-gluon vertex contributing to AW+ after regulating the IR-
divergence considering detector resolution as the explicit IR cut-off. The solid lines represent massive
particles and the dashed lines represent gluons. The picture is taken from [79].

factor is calculated in dimensional regularization and the leading term diverges as 6% The
Grammer-Yennie prescription ([78]) allows us to separate the soft divergence as they tend
to exponentiate. The divergences are captured by K gluon propagator and we will simply
factor out these divergences from A, 1 and A,,. The remaining G gluon piece will give us a
finite contribution to the amplitude. Hence one should study the soft theorem for these finite
amplitudes (see [63] and the reference therein for K-G decomposition for gluons).

Here we are mostly interested in studying the leading soft theorem at one loop. The
relevant question we want to address is the logarithmic correction to the % behavior. The

leading soft theorem will be proportional to Loglw]

where w is the energy of the real soft gluon
emitted. Ideally one should be able to demonstrate this in QCD with fermions and scalars.
But as a proof of principle, we will carry out the calculation in scalar chromodynamics where
the scalars are in the fundamental representation of the gauge group. We will simply sketch
the logarithmic corrections to the leading soft theorem. The contributions come from three
gluon vertices. We will analyze the diagrams drawn in figure 1. We will introduce the explicit
IR cutoff R~! which is like the resolution of the detector in the loop momentum integration.
We will split the momentum into three regions as [¢#| € [R™1,w], |(¢ + k)*| € [R™1,w],
and “reg”= |#| € [w, |p!|]. In the soft limit, using the symmetry of the first diagram in
figure 1, the momentum integration in the regions |[¢#| € [R™!,w] contributes equally to
|(¢ + k)*| € [R™!,w]. After simplifying the propagators in the appropriate regions we have

the expected L%M contributions
wodte 1 1 1 (V)
k) (pie)=2(pi.k)(pje)| ;. < (pi,p4
agYM” o = o o P ie prie T P P2 = 2ik) (03| T i)
1#£] (Bl)

The integrals can be evaluated following [60].

/w v 1 1 1
r-1 (2m)* 02 —iep;l +ie L.k — ie

2
= _417rp21k ]n(wR) |f$7h7_1 o In <(plp;)2>‘| + O(wil) (B 2)



After doing the integrals, we have

2 N ; 2
—9ywm brpe [ Pi-€ _ Pj-€ [ D (N)
1 R ;T; =“— |6y, 1—— In| —— T (pi, ps
iséj (B.3)
the convention here is n; = +1 for the ingoing and n; = —1 for outgoing particles.

There is an easy and ad hoc way to find these factors directly from the results obtained
from dimensional regularization prescriptions. We will start with the soft current obtained

€
in eq. 53 of [85]. The finite contribution can be extracted from expanding <m> )
( j'

The finite part of the soft current upon contraction with polarization can be written as

1

I H
D; Dj 2 4p;.p;
TbTC i I S L B B.4

e-J,=—

But in Grammer-Yennie formalism the soft factor comes from the G gluon part. The K
gluon part which exponentiates also has a finite term which goes as Log[w]. The easiest way
to see this is to look at the explicit form of Kg,.

' die 1 (2pi — 0) - (2p; +0)
u= IT, : B.
gl zz:l ]2:1 J 271')4 02 — e (Qpl- =02+ Z'E)(ij 402 — 7;6) ( 5)

JFi

The integral runs from |¢| € [0,00]. But we can break the regions of integrations like
|t#] € [0,w] and “reg”= |¢¥| € [w,|p'|]. The regions |¢#| € [0,w] have IR divergences that we
have already taken care of by taking the finite part of the dimensionally regularized integral.
The other regions “reg”= |¢*| € |w, |p!'|] will give us Log[w] as finite contributions. It contains
all the other parts as well. But in our ad-hoc approach we will just take the Log[w] as finite
contributions. Hence, the finite soft factor from dimensionally regularized theory will look like

1 p P 4p;.p; 4pi.p;
- J TbTC i Vool —2 7 Vool —
< e X T 6y ZZfabC; A (pi.k: pj.k:> Og(?pi.kzpj.ke” & 2pi.kpj.ke ™
L s S TP LA Wi g (B.6)
T 167 1672 " abe Py A pi-k  pj.k o8 2pi.kpj.ke i glu ’

In the Grammer-Yennie prescription for soft theorem, we factor out the Kgj,. Hence the
soft factor has only L%M dependence. This is not the best way to find out the soft factor.
Earlier in this section, we sketched how one can do explicit calculations to find out these
soft factors. This is exactly analogous to the case for soft factor in QED and gravity which
is already discussed in [60, 65, 79].
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C Some useful integrals

Here we have written some of the integrals and identities that we have used for the mode
algebra of graviton modes.

d21 _n—i—% —m 1—]{7
—Z Z19=0, 0<m<———n
?{;,1|<E 2mi 1 12 2
| _
= e — _2)m+”+%, %—n<m<1—k
(C.1)
The other identity we will use is the contour integral with Zzs.
dgg _m+n+%+n’+FT3 fe4-1— _
- QU RitI—Le
S N
B dZzy 2m+%+n+n’+l‘738m 22: R (22)
|Z2|<e 270 %2 e 2;n L EE=2
1-k 1-1 /
St —=n+ 5 —n')! _
__(5 2 ) REFIILC (). (C.2)
(ﬂ—n—i-ﬁ—n’—m)' o
2 2 :
Some of the identities we have used when summing over the descendants are
I'(e)l'(c—a—b)
Fi(a,b;c;1) = R R b C.3
2 1(&7 ;G ) ]_—‘(C—].)F(C—b)’ G(C)> €(a+ ) ( )
The identities of the Gamma function which we have used
I'(—2)r@
P(z—n) = (1t +2) g (C.4)

Fn+1—2) "~
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