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A B S T R A C T

Over the past few decades, the phase-field method for fracture has seen widespread appeal due to the many
benefits associated with its ability to regularize a sharp crack geometry. Along the way, several different models
for including the effects of pressure loads on the crack faces have been developed. This work investigates the
performance of these models and compares them to a relatively new formulation for incorporating crack-face
pressure loads. It is shown how the new formulation can be obtained either by modifying the trial space in
the traditional variational principle or by postulating a new functional that is dependent on the rates of the
primary variables. The key differences between the new formulation and existing models for pressurized cracks
in a phase-field setting are highlighted. Model-based simulations developed with discretized versions of the
new formulation and existing models are then used to illustrate the advantages and differences. In order to
analyze the results, a domain form of the J-integral is developed for diffuse cracks subjected to pressure loads.
Results are presented for a one-dimensional cohesive crack, steady crack growth, and crack nucleation from a
pressurized enclosure.
1. Introduction

The propagation of pressurized fractures is a physical phenomenon
of interest or concern in many different fields of engineering. Some
examples include hydraulic fracture (fracking) treatments in the oil
and gas industry [1,2], pressure vessel rupture [3], fracture in con-
crete dams [4] and fuel fracture in nuclear reactors [5,6]. Therefore,
predictive simulation tools for this phenomenon have been intensively
studied in recent years. One of these tools is the phase-field method for
fracture [7]. Initially developed for traction-free cracks, the method has
since been extended to account for pressure loading on the surfaces of
cracks, as in [8–12]. These works propose various formulations that
exhibit real differences in terms of their structure and form when
it comes to how the pressure loads are incorporated. The objective
of this manuscript is to examine the impact of the various choices,
and to compare them to a relatively new formulation for pressurized
crack surfaces in a phase-field for fracture context [13]. The main
contributions of this work are: (a) to show that established formulations
for pressure-driven fracture in the phase-field context have limitations
when cohesive processes are involved; (b) to demonstrate that the
new formulation, derived from variational principles, can address these
limitations and be easily combined with phase-field models of cohesive
fracture; and (c) to illustrate the advantages and disadvantages of the
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various models in terms of accuracy in obtaining various quantities of
interest.

Phase-field methods for fracture regularize sharp crack represen-
tations through the use of a scalar phase or damage field whose
evolution is governed by minimization principles. Such methods first
appeared, in different forms, in the works of Bourdin et al. [7] and
Karma et al. [14]. The model introduced in Bourdin et al. [7] was
obtained by a regularization of the variational formulation of fracture
developed in Francfort and Marigo [15], using ideas from Ambrosio
and Tortorelli [16]. It has been widely adopted in the mechanics
community and extended for use in a variety of fracture mechanics
problems, such as ductile failure [17–21], hydraulic fracture [19,22–
25], desiccation problems [26–29], dynamic fracture [30–36], fracture
in biomaterials [37–41] and many more. Some recent reviews can be
found in [42–44].

With regard to the use of the phase-field method for hydraulic
fracture problems, one challenge concerns how best to incorporate
surface loads that result from pressures on crack faces that are diffuse.
One approach is to regularize the resulting surface tractions with an
approach that is very similar to how the crack surface energy is regular-
ized. Early work along these lines focused on crack surfaces loaded by
constant pressures, as in Bourdin et al. [8] and Wheeler et al. [9]. Since
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these early developments, these models have been used extensively
for the study of pressurized fractures, for example, in [45–48]. They
were also extended and modified to account for fluid flow inside
the fractures and poroelasticity in the surrounding medium [19,22–
25,49,50]. The reader is referred to the recent review by Heider [51]
for additional works on phase-field methods for hydraulic fracture.
The various models all employ some form of ‘‘indicator function’’ that
assists in the regularization of the surface load itself. Despite several
different indicator functions being proposed, the implication of the
particular choice of indicator on the accuracy of the models has yet
to be thoroughly examined.

In this manuscript, a new formulation for the study of pressurized
fractures, first proposed in the thesis of Hu [13] is also examined.
In particular, it is studied in combination with a cohesive version of
the phase-field for fracture method, which was proposed in the recent
works of [52–54]. This facilitates the study of pressurized fracture
in quasi-brittle materials and reduces the sensitivity of the effective
strength to the regularization length. To ensure that the cohesive
fracture behavior is preserved, the implicit traction–separation law
is evaluated for a simple one-dimensional problem and shown to be
insensitive to the applied pressure with the new formulation. Fracture
initiation and propagation examples are also examined to highlight
advantages and limitations of the model.

As part of the analysis conducted to evaluate the various formula-
tions, the J-integral is used to verify the extent to which mode-I crack
propagation occurs when the energy release rate reaches the critical
fracture energy. The contour form of the J-integral and its modifications
for some common cases of phase-field fracture has been examined
by others, see e.g. the work of [55–57]. In the case of pressurized
cracks, the contour version of the J-integral is not path independent.
Some works have proposed modifications to the contour integral for
pressurized cracks in the sharp case [58–60]. Additional works have
focused on developing domain forms of the J-integral for sharp cracks
that are domain independent [61,62]. In this work, a domain form
of the J-integral that is suitable for pressurized phase-field cracks is
developed for the first time.

The paper is organized as follows. In Section 2, a simple model
for pressure-induced fracturing is presented and the new phase-field
formulation is derived in two different ways. Section 3 provides the
derivation of the domain form of the J-integral for pressurized phase-
field cracks. In Section 4, the discretization scheme using finite ele-
ments is presented. Then, in Section 5 some fundamental examples
involving crack nucleation and propagation are used to illustrate the
performance of the various models and choices of indicator functions.
Finally, some concluding remarks and directions for future work are
discussed in the last section.

2. Model

The formulation for treating pressurized cracks in a phase-field
setting, first introduced by Hu [13], can be derived in two different
ways. In what follows, it is first derived based on energy minimiza-
tion in quasi-static conditions in Section 2.1. This illustrates the main
difference in the underlying hypothesis for this new model compared
to the widely used formulations of [8,10], for example. A second
derivation based on a maximum dissipation principle is then provided
in Section 2.2.

The following assumptions are invoked for both derivations. A
linear elastic body 𝛺 ∈ R𝑛 (𝑛 = 2 or 3), containing cracks denoted
by 𝛤 is considered (Fig. 1). The boundary 𝜕𝛺 is partitioned as 𝜕𝛺 =
𝜕𝛺𝐷 ∪ 𝜕𝛺𝑁 , where 𝜕𝛺𝐷 represents the portion of the boundary where
displacements are prescribed and 𝜕𝛺𝑁 the portion where tractions are
applied. Deformations and rotations are assumed to be small, so that a
small-strain formulation is appropriate. For simplicity, body forces are
neglected.
2

Fig. 1. Generic body containing cracks loaded in pressure.

2.1. Quasi-static derivation

The quasi-static derivation of the formulation begins by considering
the potential energy of a body with cracks which are internally loaded
with a pressure 𝑝. Crack propagation is associated with a critical
fracture energy density, 𝐺𝑐 . The total potential energy is given by

𝑈 (𝐮) = ∫𝛺
𝜓𝑒(𝝐(𝐮)) dV + ∫𝛤

𝐺𝑐 dA

−∫𝛤
𝑝𝐧 ⋅ 𝐮 dA − ∫𝜕𝛺𝑁

𝐭 ⋅ 𝐮 dA, (1)

in which 𝐮 are the displacements, 𝝐(𝐮) = ∇𝑠𝐮 denotes the infinitesimal
strain, 𝜓𝑒 the strain energy density, 𝐭 the externally applied tractions
and 𝐧 the unit normals of the crack set 𝛤 (oriented outwards from 𝛺).

In a phase-field for fracture setting, the crack surface 𝛤 is regular-
ized with the aid of a scalar phase (or damage) field 𝑑(𝐱) ∈ [0, 1]. In this
work, 𝑑 = 0 represents intact material (away from the crack surface)
and 𝑑 = 1 fully-damaged material (inside the crack). The damage
field is employed in the approximation of the surface integrals in (1)
as volume integrals. For the energy associated with fracture, several
common formulations are encapsulated by the approximation

∫𝛤
𝐺𝑐 𝑑𝐴 ≈ ∫𝛺

𝐺𝑐
𝑐0𝓁

(

𝛼(𝑑) + 𝓁2∇𝑑 ⋅ ∇𝑑
)

dV, (2)

where 𝛼(𝑑) denotes a local dissipation term, 𝓁 is the regularization
length, and 𝑐0 is a normalization constant given by 𝑐0 = 4 ∫ 1

0

√

𝛼(𝑠)𝑑𝑠.
Such a regularization implies that the distinct crack surface 𝛤 is

no longer defined. As such, the third integral on the right of (1) also
needs to be approximated as a volume integral in some manner. This is
effected with the use of an indicator function 𝐼(𝑑). The surface integral
involving the pressure is then approximated as

∫𝛤
𝑝𝐧 ⋅ 𝐮dA ≈ ∫𝛺

𝑝
(

− ∇𝑑
‖∇𝑑‖

)

⋅ 𝐮‖∇𝐼(𝑑)‖dV. (3)

Note that the crack surface normal 𝐧 is approximated as −∇𝑑∕‖∇𝑑‖,
whereas the differential surface element dA becomes ‖∇𝐼‖dV. The
indicator function must satisfy 𝐼(0) = 0, 𝐼(1) = 1 and be monotonically
increasing. In Bourdin et al. [8], 𝐼(𝑑) = 𝑑 was firstly proposed. Wheeler
et al. [9] provide a derivation that avoids an explicit approximation of
the normal, such as (3), but is in fact equivalent to using the indicator
function 𝐼(𝑑) = 2𝑑 − 𝑑2. In Peco et al. [11] and Jiang et al. [12],
𝐼(𝑑) = 𝑑2 is used, with the motivation that 𝐼 ′(0) = 0 is required to
avoid the effects of pressure in undamaged areas.
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Fig. 2. (a) Unloaded virtual crack. (b) Pressure loaded virtual crack.
Combining the approximation in (3) with the traditional phase-
field approximation of fracture based on the Ambrosio–Tortorelli func-
tional [7] and applying the chain rule, the regularized counterpart of
(1) is given by

𝑈 (𝐮, 𝑑) = ∫𝛺
𝜓𝑒(𝝐, 𝑑) dV + ∫𝛺

𝑝∇𝑑 ⋅ 𝐮 𝐼 ′(𝑑)dV

+∫𝛺
𝐺𝑐
𝑐0𝓁

(

𝛼(𝑑) + 𝓁2∇𝑑 ⋅ ∇𝑑
)

dV − ∫𝜕𝛺𝑁
𝐭 ⋅ 𝐮 dA, (4)

where the explicit dependence of the strain on the displacements has
been dropped.

Often, the strain energy density is split and part of it is degraded
with the damage, i.e.

𝜓𝑒(𝝐(𝐮), 𝑑) = 𝑔(𝑑)𝜓+
𝑒 (𝝐(𝐮)) + 𝜓

−
𝑒 (𝝐(𝐮)), (5)

where 𝑔(𝑑) denotes the degradation function, and 𝜓+
𝑒 (𝝐(𝐮)) and 𝜓−

𝑒 (𝝐(𝐮))
denote the ‘‘active’’ and ‘‘inactive’’ parts of the energy. The above
form encapsulates most of the strain decompositions used in the litera-
ture [63,64] to introduce asymmetry in the fracture behavior in tension
and compression.

Typically, a minimization principle is applied to (4) to extract
the governing equations for the displacements 𝐮 and the damage 𝑑.
According to this principle, a pair (𝐮, 𝑑) is a valid state if and only
if all neighboring states (𝐮+𝛿𝐮, 𝑑+𝛿𝑑) have a greater potential energy.
In the case of pressurized cracks, a subtle consideration leads to the
formulation proposed herein. Consider the two scenarios indicated in
Fig. 2, where 𝑎 denotes the crack length and 𝑑𝑎 an infinitesimal
crack increment. In the situation depicted in Fig. 2(b), the pressure
load (applied in the areas colored in blue), is assumed to accompany
any crack propagation. Therefore, in an energetic analysis, the virtual
crack extension 𝑑𝑎 is assumed pressurized. By contrast, in Fig. 2(a),
the pressure load is assumed to remain confined to the original crack
geometry during propagation. As a result, the virtual crack extension
𝑑𝑎 is not subject to any surface load.

In terms of the resulting formulation, the difference between the two
scenarios shown in Fig. 2 translate into the question of whether or not
the damage variation 𝛿𝑑 should enter the pressure work contribution
(3).

For the family of formulations that were developed based on the
early work of [8,9], the scenario depicted in Fig. 2(b) is assumed as a
consequence of including the damage variation 𝛿𝑑 in (3). The proposed
model in this work, by contrast, assumes the case indicated by Fig. 2(a).
While in a discrete crack model these competing views may lead to the
same energy release rate when taking the limit 𝑑𝑎→ 0, their phase-field
regularizations give rise to different sets of governing equations. As
demonstrated in the numerical examples in Section 5, this can translate
into significant differences in the results from model-based simulations.

In what follows, the formulation associated with Fig. 2(a) will be
referred to as the Unloaded Virtual Crack formulation, or UVC for short.
3

In the UVC formulation, the variation of the pressure work is simply,1

𝛿
(

∫𝛺
𝑝∇𝑑 ⋅ 𝐮 𝐼 ′(𝑑)dV

)

= ∫𝛺
𝑝∇𝑑 ⋅ 𝛿𝐮 𝐼 ′(𝑑)dV. (6)

the variation of the potential energy 𝛿𝑈 can then be written as,

𝛿𝑈 (𝝐, 𝑑) = ∫𝛺
𝜕𝜓𝑒
𝜕𝝐

∶ 𝛿𝝐 dV + ∫𝛺
𝑝∇𝑑 ⋅ 𝛿𝐮𝐼 ′(𝑑) dV

−∫𝜕𝛺𝑁
𝐭 ⋅ 𝛿𝐮 dA + ∫𝛺

𝑔′(𝑑)𝜓+
𝑒 (𝝐)𝛿𝑑 dV

+∫𝛺
𝐺𝑐
𝑐0𝓁

(

𝛼′(𝑑)𝛿𝑑 + 2𝓁2∇𝑑 ⋅ ∇𝛿𝑑
)

dV, (7)

and, with the help of the divergence theorem,

𝛿𝑈 (𝝐, 𝑑) = ∫𝛺

(

−∇ ⋅
𝜕𝜓𝑒
𝜕𝝐

+ 𝑝𝐼 ′(𝑑)∇𝑑
)

⋅ 𝛿𝐮 dV

+∫𝜕𝛺𝑁

(

𝜕𝜓𝑒
𝜕𝝐

⋅ 𝐧 − 𝐭
)

⋅ 𝛿𝐮 dA

+∫𝛺

(

𝑔′(𝑑)𝜓+
𝑒 (𝝐) +

𝐺𝑐
𝑐0𝓁

𝛼′(𝑑) − ∇ ⋅
2𝐺𝑐𝓁
𝑐0

∇𝑑
)

𝛿𝑑 dV

+∫𝜕𝛺
2𝐺𝑐𝓁
𝑐0

(𝐧 ⋅ ∇𝑑)𝛿𝑑 dA. (8)

The local minimization principle requires the variation of the po-
tential energy 𝛿𝑈 to be non-negative for any admissible state 𝐮, 𝑑. In
other words, 𝛿𝑈 (𝝐, 𝑑) ≥ 0, giving rise to the following equation and
boundary condition for 𝐮, since the variation of the displacement field
𝛿𝐮 is arbitrary:

∇ ⋅ 𝝈 − 𝑝𝐼 ′(𝑑)∇𝑑 = 𝟎 in 𝛺, (9)

𝝈 ⋅ 𝐧 − 𝐭 = 𝟎 on 𝜕𝛺𝑁 . (10)

In the above, 𝝈 denotes the Cauchy stress, defined as 𝝈 =
𝜕𝜓𝑒
𝜕𝝐

.
For the damage variable, it is assumed that the process is irre-

versible, such that 𝑑̇ ≥ 0. As such, only positive variations in the
damage are admissible, and 𝛿𝑈 (𝝐, 𝑑) ≥ 0 implies

𝑔′(𝑑)𝜓+
𝑒 (𝝐) +

𝐺𝑐
𝑐0𝓁

𝛼′(𝑑) − ∇ ⋅
2𝐺𝑐𝓁
𝑐0

∇𝑑 ≥ 0 in 𝛺, (11)

2𝐺𝑐𝓁
𝑐0

𝐧 ⋅ ∇𝑑 ≥ 0 on 𝜕𝛺. (12)

Eqs. (11) and (12) are identical to those of the standard phase-field
model for traction-free cracks. This is the main difference between the

1 On the other hand, if the assumption of Fig. 2(b) is chosen, as in [8], two
additional terms have to be accounted for,

𝛿
(

∫𝛺
𝑝∇𝑑 ⋅ 𝐮 𝐼 ′(𝑑)dV

)

= ∫𝛺
𝑝∇𝑑 ⋅ 𝛿𝐮 𝐼 ′(𝑑)dV

+∫𝛺
𝑝∇𝛿𝑑 ⋅ 𝐮 𝐼 ′(𝑑)dV + ∫𝛺

𝑝∇𝑑 ⋅ 𝐮 𝛿𝑑 𝐼 ′′(𝑑)dV
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

additional terms

.
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new formulation and existing ones derived from [8] or [9], for example,
in which the governing equation for the damage field contains addi-
tional terms to account for the pressure loads on the virtual cracks. In
what follows, we refer to that as the Loaded Virtual Crack formulation,
or LVC. In the boxes below, the governing equations for the UVC are
compared to those of the LVC.

Unloaded Virtual Crack Formulation (UVC)

∇ ⋅ 𝝈 − 𝑝𝐼 ′(𝑑)∇𝑑 = 𝟎 in 𝛺, (13)

𝝈 ⋅ n − t = 𝟎 on 𝜕𝛺𝑁 . (14)

𝑔′(𝑑)𝜓+
𝑒 (𝝐) +

𝐺𝑐
𝑐0𝓁

𝛼′(𝑑) − ∇ ⋅
2𝐺𝑐𝓁
𝑐0

∇𝑑 ≥ 0 in 𝛺, (15)

2𝐺𝑐𝓁
𝑐0

n ⋅ ∇𝑑 ≥ 0 on 𝜕𝛺. (16)

Loaded Virtual Crack Formulation (LVC)

∇ ⋅ 𝝈 − 𝑝𝐼 ′(𝑑)∇𝑑 = 𝟎 in 𝛺, (17)

𝝈 ⋅ n − t = 𝟎 on 𝜕𝛺𝑁 . (18)

𝑔′(𝑑)𝜓+
𝑒 (𝝐) +

𝐺𝑐
𝑐0𝓁

𝛼′(𝑑) − ∇ ⋅
2𝐺𝑐𝓁
𝑐0

∇𝑑

− ∇ ⋅ [𝑝u 𝐼 ′(𝑑)] + 𝑝∇𝑑 ⋅ u𝐼 ′′(𝑑) ≥ 0 in 𝛺, (19)

n ⋅
(

2𝐺𝑐𝓁
𝑐0

∇𝑑 + 𝑝𝐼 ′(𝑑)u
)

≥ 0 on 𝜕𝛺. (20)

It is readily apparent that the governing equations for the displace-
ents are identical in the UVC and the LVC. The main difference is

n the absence of the additional pressure-dependent terms in the evo-
ution equation for the damage field and the accompanying boundary
ondition.

In Appendix, an analytical study of the energy release rate of a crack
ropagating under an arbitrary pressure load 𝑝(𝑥) is provided, under

the assumptions of the UVC formulation and linear elastic fracture
mechanics. The results of the study show that it is possible to recover
the classic relationship between the energy release rate and the stress
intensity factor with the UVC formulation. This ensures the consistency
of the proposed formulation (UVC) with many theoretical works [65–
69] in the field of hydraulic fracture, where the stress intensity factor
is used as the propagation criterion.

2.2. Derivation using the maximum dissipation principle

In this subsection, an alternative approach to derive the (UVC) for-
mulation is presented. It is based on the construction of a total potential
functional which depends on the rates of the internal variables 𝝐̇, 𝑑̇ and
ccounts for the work of the pressure load as an external dissipation
4

echanism. This approach is described in more detail in [13,21], where
it is used to derive a variationally consistent phase-field model for
ductile fracture.

The total potential is postulated as

𝐿(𝐮̇, 𝑑̇) = ∫𝛺
𝑢̇(𝝐̇, 𝑑̇)dV − 𝑒𝑥𝑡, (21)

here 𝑢 is the material internal energy density, which relates to the
elmholtz free-energy 𝜓 through 𝑢̇ = 𝜓̇ + 𝑇̇ 𝑠, where 𝑇 is the tem-

perature and 𝑠 the entropy. In this work, only isothermal processes
are considered, therefore, 𝑢̇ = 𝜓̇ . The term 𝑒𝑥𝑡 denotes the external
ower expenditure. If cracks were represented by internal boundaries
instead of a damage field, one could write,

𝑒𝑥𝑡 = ∫𝜕𝛺∪𝛤
𝐭 ⋅ 𝐮̇dA = ∫𝜕𝛺

𝐭 ⋅ 𝐮̇dA + ∫𝛤
𝑝𝐧 ⋅ 𝐮̇dA. (22)

However, in a regularized setting this integral over 𝛤 is once again
transformed into a volume integral over 𝛺, as in (3),

∫𝛤
𝑝𝐧 ⋅ 𝐮̇dA ≈ ∫𝛺

𝑝
(

− ∇𝑑
‖∇𝑑‖

)

⋅ 𝐮̇‖∇𝐼(𝑑)‖dV

= −∫𝛺
𝑝∇𝑑 ⋅ 𝐮̇𝐼 ′(𝑑)dV. (23)

Recalling the equivalence between the internal energy and the
elmholtz free-energy, the Coleman-Noll procedure can be applied and,

n combination with (22) and (23), leads to the following expression for
as a function of 𝜓 :

(𝐮̇, 𝑑̇) =

∫𝛺

(

𝜕𝜓
𝜕𝝐

∶ 𝝐̇ + 𝜕𝜓
𝜕𝑑

𝑑̇ +
𝜕𝜓
𝜕∇𝑑

⋅ ∇𝑑̇ + 𝑝∇𝑑 ⋅ 𝐮̇𝐼 ′(𝑑)
)

dV

−∫𝜕𝛺
𝐭 ⋅ 𝐮̇dA. (24)

The evolution process is postulated to follow the minimizers of this
otal potential, with the supplemental conditions that damage is an
rreversible process and that the displacements 𝐮 are prescribed over
subset 𝜕𝛺𝐷 of the boundary. In other words,

̇ , 𝑑̇ = argmin
𝐮̇,𝑑̇

𝐿(𝐮̇, 𝑑̇), subject to 𝑑̇ ≥ 0 and 𝐮 = 𝐠 on 𝜕𝛺𝐷. (25)

Using the Euler–Lagrange equations, the following general evolution
equations can then be obtained in terms of the free-energy function 𝜓 :

∇ ⋅
𝜕𝜓
𝜕𝝐

− 𝑝𝐼 ′(𝑑)∇𝑑 = 𝟎 in 𝛺, (26)

∇ ⋅
𝜕𝜓
𝜕∇𝑑

−
𝜕𝜓
𝜕𝑑

≥ 0 in 𝛺, (27)

with the boundary conditions
𝜕𝜓
𝜕𝝐

⋅ 𝐧 − 𝐭 = 𝟎 on 𝜕𝛺𝑁 (28)

𝐧 ⋅
𝜕𝜓
𝜕∇𝑑

≥ 0 on 𝜕𝛺. (29)

To be consistent with the derivation in Section 2.1, the Helmholtz
free-energy is postulated as,

𝜓(𝝐, 𝑑) = 𝜓𝑒(𝝐, 𝑑) +
𝐺𝑐
𝑐0𝓁

(

𝛼(𝑑) + 𝓁2∇𝑑 ⋅ ∇𝑑
)

, (30)

ollowing the regularization based on the Ambrosio–Tortorelli func-
ional. In this case, the general equations (26)–(29) take the form

⋅ 𝝈 − 𝑝𝐼 ′(𝑑)∇𝑑 = 𝟎 in 𝛺, (31)

′(𝑑)𝜓+
𝑒 (𝝐) +

𝐺𝑐
𝑐0𝓁

𝛼′(𝑑) − ∇ ⋅
2𝐺𝑐𝓁
𝑐0

∇𝑑 ≥ 0 in 𝛺, (32)

with the boundary conditions

𝝈 ⋅ 𝐧 − 𝐭 = 𝟎 on 𝜕𝛺𝑁 , (33)

𝐧 ⋅ ∇𝑑 ≥ 0 on 𝜕𝛺. (34)

By inspection, (31)–(34) are identical to (9)–(12).
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2.3. Constitutive choices of the phase-field formulation

In the previous subsection, the proposed model for pressurized
cracks was developed for a general phase-field regularization of the
variational approach to fracture [15], with a free-energy of the
form

𝜓(𝝐, 𝑑) = 𝑔(𝑑)𝜓+
𝑒 (𝝐) + 𝜓

−
𝑒 (𝝐)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜓𝑒

+
𝐺𝑐
𝑐0𝓁

(

𝛼(𝑑) + 𝓁2∇𝑑 ⋅ ∇𝑑
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜓𝑓

, (35)

here 𝜓𝑓 is used to indicate the part of the free-energy associated with
racture. In what follows, the constitutive choices used in the example
roblems provided in Section 5 are described.

.3.1. Elastic energy and decomposition
First, in terms of the solid bulk response, an elastic energy of the

ype (5) is assumed. When the material is undamaged, it reduces to a
urely linear elastic energy, that is,

𝑒(𝝐(𝐮), 0) = 𝜓+
𝑒 (𝝐(𝐮), 0) + 𝜓

−
𝑒 (𝝐(𝐮), 0) =

1
2
𝝐(𝐮) ∶ C ∶ 𝝐(𝐮), (36)

where C is the elasticity tensor.
When damage is present, a decomposition of the energy is often

assumed. In many cases, when the applied load to a fracturing body
is predominately tensile, the ‘‘no-split’’ case given by,

𝜓−
𝑒 (𝝐(𝐮), 𝑑) = 0 → 𝜓𝑒(𝝐(𝐮), 𝑑) =

1
2
𝑔(𝑑)𝝐(𝐮) ∶ C ∶ 𝝐(𝐮), (37)

is capable of correctly predicting the material response, while leading
to a simpler set of governing equations. However, in a wide range of
scenarios, compressive forces are present, and an energy split is needed
to prevent crack formation in zones of high compression, as well as
to allow for the transmission of compressive forces across fractured
faces.

In Section 5, one of the example problems will employ the spectral
split of Miehe et al. [64], given by

𝜓+
𝑒 (𝝐(𝐮), 𝑑) =

1
2
𝜆 ⟨Tr 𝝐⟩2+ + 𝜇𝝐+ ∶ 𝝐+, and (38)

−
𝑒 (𝝐(𝐮), 𝑑) =

1
2
𝜆 ⟨Tr 𝝐⟩2− + 𝜇𝝐− ∶ 𝝐−. (39)

Here, ⟨⋅⟩+ and ⟨⋅⟩− denote the positive and negative parts of a
umber respectively, while 𝝐+ and 𝝐− are the positive and negative
arts of an additive decomposition of the strain tensor based on the
igns of its eigenvalues. A more detailed description, including the
erivation of the stiffness matrix in this case, is provided by Jiang
t al. [70].

.3.2. Brittle fracture
The first and more traditional phase-field model with an energy of

he type (35) was proposed in [7]. It was developed to approximate
he brittle fracture process of linear elastic materials in the limit of
anishing 𝓁. In its original form, the degradation function

(𝑑) = 𝜉 + (1 − 𝜉)(1 − 𝑑)2, (40)

s used in combination with a quadratic local dissipation 𝛼(𝑑) = 𝑑2, in
hat is now called the AT-2 formulation. However, the use of, 𝛼(𝑑) = 𝑑,

widely referred to as the AT-1) comes with the advantage of a purely
lastic response before the onset of damage and a compactly supported
amage field. Therefore, it will be employed in the example in Section 5
here brittle fracture is investigated. The parameter 𝜉 > 0 in (40) is a

mall residual stiffness used to avoid a loss of ellipticity in simulations
ith fully damaged material.
5

.3.3. Cohesive fracture
The phase-field model for cohesive fracture was first proposed by

orentz et al. [52,71]. In this model, the use of a quasi-quadratic
egradation function, given by

(𝑑) = 𝜉 + (1 − 𝜉)
(1 − 𝑑)2

(1 − 𝑑)2 + 𝑚𝑑(1 + 𝑝𝑑)
, (41)

is combined with a linear local dissipation function 𝛼(𝑑) = 𝑑. The
parameter 𝑚 is defined as 𝑚 =

𝐺𝑐
𝑐0𝓁𝜓𝑐

, where 𝜓𝑐 is the nucleation
energy, below which no damage is expected to form. The parameter 𝑝
is a shape parameter that can be used to adjust the traction–separation
response. In this work, 𝑝 = 1 is used.

3. A J-integral for pressurized cracks in a phase-field setting

This Section presents a modified J-integral, capable of retrieving
the energy release rate, denoted here by 𝐺, in the case of pressurized
cracks in a phase-field for fracture setting. The resulting integral is
then re-cast into a domain-independent form that is more amenable to
finite-element calculations.

A common form of the J-integral, derived for phase-field fracture
and applicable to traction-free cracks is given by [55,56]

𝐽 = 𝐫 ⋅ ∫𝜁

(

𝜓(𝝐, 𝑑)I − ∇𝑇 𝐮𝝈 − ∇𝑑 ⊗ 𝝎
)

𝐧ds, (42)

where 𝜓(𝝐, 𝑑) is given by Eq. (35). In the above, the vector 𝐫 denotes
the crack propagation direction, 𝜁 is a closed path around the crack tip,
I is the second-order identity tensor, 𝐧 is the normal to the closed path
𝜁 and 𝝎 = 𝜕𝜓∕𝜕∇𝑑 = (𝐺𝑐𝓁∕𝑐0)∇𝑑. Compared to the original form of the
J-integral proposed by Rice [72,73], this expression contains additional
terms to account for the phase-field parameter 𝑑.

Importantly, Sicsic and Marigo [55] show that, under certain con-
ditions, the standard form of the J-integral widely employed for sharp
cracks, viz.

𝐽 = 𝐫 ⋅ ∫𝜁

(

𝜓𝑒(𝝐, 𝑑)I − ∇𝑇 𝐮𝝈
)

𝐧ds, (43)

can be used in a regularized phase-field setting. These conditions are:

H1 : The regularization length is sufficiently small, so that a separa-
tion of scales between the solution in the damage band and the
outer solution can be achieved;

H2 : The path 𝜁 intersects the crack plane at a ninety-degree angle;
H3 : The path 𝜁 intersects the crack plane sufficiently far from the

crack tip, so that the damage field only varies in a direction
perpendicular to the crack plane.

In what follows, these same conditions are assumed, as they facili-
tate a simpler derivation of a modified J-integral capable of retrieving
the energy release rate even in the presence of pressure loads on the
crack faces. The main result of this section can then be stated in the
following way.
Claim: Consider a domain 𝛺 ∈ R2 with a straight phase-field crack
and two closed, non-intersecting paths 𝜁𝑖𝑛 and 𝜁𝑜𝑢𝑡 around the crack
tip, enclosing an area 𝛬 as shown in Fig. 3(a). Let 𝑞(𝑥) be a sufficiently
smooth function satisfying 𝑞 = 1 on 𝜁𝑖𝑛 and 𝑞 = 0 on 𝜁𝑜𝑢𝑡. Further,
assume that 𝑞 = 1 for all points inside 𝜁𝑖𝑛 and 𝑞 = 0 for all points outside
𝜁𝑜𝑢𝑡, as shown in Fig. 3(b). Finally, assume that the fracture is loaded
by a constant pressure 𝑝, and that one of the formulations described in
Section 2 holds. Then, if conditions H1, H2 and H3 hold for 𝜁𝑖𝑛 and
𝜁𝑜𝑢𝑡, the energy release rate can be approximated by the integral

𝐽 = 𝐫 ⋅ ∫𝛬

(

𝜓𝑒(𝝐, 𝑑)I − 𝑝∇𝑑 ⋅ 𝐮𝐼 ′(𝑑)I − ∇𝑇 𝐮𝝈
)

⋅ ∇𝑞 dA, (44)

with an error that vanishes as 𝓁 → 0. The proof can be established in

three steps, as detailed below.
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Fig. 3. (a) The contour paths 𝜁𝑖𝑛 and 𝜁𝑜𝑢𝑡 and subdomain 𝛬, in the vicinity of a regularized crack; (b) Color contour plot indicating the assumed variation in the function 𝑞.
Proof. Define 𝐓𝑝 = 𝜓𝑒(𝝐, 𝑑)I−𝑝∇𝑑 ⋅𝐮𝐼 ′(𝑑)I−∇𝐮𝑇 𝝈. Using the divergence
theorem, one can show that

∫𝛬
∇ ⋅ (𝑞𝐓𝑝)dA = ∫𝜁𝑖𝑛∪𝜁𝑜𝑢𝑡

𝑞𝐓𝑝 ⋅ 𝐧 ds = 𝟎 − ∫𝜁𝑖𝑛
𝐓𝑝 ⋅ 𝐧 ds, (45)

because 𝑞 vanishes on 𝜁𝑜𝑢𝑡 and the normal 𝐧 to 𝜁𝑖𝑛 points inward to 𝛬,
as shown in Fig. 3(a). Multiplying both sides by the crack direction 𝐫
and applying the chain rule yields

− 𝐫 ⋅ ∫𝛬

(

𝐓𝑝 ⋅ ∇𝑞 + 𝑞∇ ⋅ 𝐓𝑝
)

dA = 𝐫 ⋅ ∫𝜁𝑖𝑛
𝐓𝑝 ⋅ 𝐧 ds, (46)

which completes the first step of the proof.
The second step consists of showing that the term 𝑅 = 𝐫⋅∫𝛬 𝑞∇⋅𝐓𝑝 dA

is zero. Expanding the expression for 𝐓𝑝 and using the chain rule
yields

𝑅 = 𝐫 ⋅ ∫𝛬
𝑞∇ ⋅

(

𝜓𝑒(𝝐, 𝑑)I − 𝑝∇𝑑 ⋅ 𝐮𝐼 ′(𝑑)I − ∇𝑇 𝐮𝝈
)

dA =

∫𝛬
𝑞
(

𝜕𝜓𝑒(𝝐, 𝑑)
𝜕∇𝑠𝐮

⋅ (∇(∇𝑠𝐮)𝐫) +
𝜕𝜓𝑒(𝝐, 𝑑)

𝜕𝑑
∇𝑑 ⋅ 𝐫

−(∇ ⋅ 𝝈) ⋅ (∇𝐮𝐫) − 𝝈(∇(∇𝐮)𝐫) − 𝑝∇𝑑 ⋅ (∇𝐮𝐫)𝐼 ′(𝑑)

−𝑝𝐮∇(𝐼 ′(𝑑)∇𝑑)𝐫
)

dA. (47)

Re-arranging some terms, one can write,

𝑅 = ∫𝛬
𝑞
[(

𝜕𝜓𝑒(𝝐, 𝑑)
𝜕∇𝑠𝐮

− 𝝈
)

⋅ (∇(∇𝑠𝐮)𝐫)

−
(

∇ ⋅ 𝝈 − 𝑝𝐼 ′(𝑑)∇𝑑
)

⋅ (∇𝐮𝐫) +
𝜕𝜓𝑒(𝝐, 𝑑)

𝜕𝑑
∇𝑑 ⋅ 𝐫

−𝑝𝐮∇(𝐼 ′(𝑑)∇𝑑)𝐫
]

dA. (48)

For any elastic material, the definition of stress implies 𝝈 =
𝜕𝜓𝑒(𝝐, 𝑑)
𝜕∇𝑠𝐮

, and due to Eq. (26), ∇ ⋅ 𝝈 − 𝑝∇𝑑 = 𝟎, so, the expression
above reduces to

𝑅 = ∫𝛬
𝑞
(

𝜕𝜓𝑒(𝝐, 𝑑)
𝜕𝑑

∇𝑑 ⋅ 𝐫 − 𝑝𝐮∇(𝐼 ′(𝑑)∇𝑑)𝐫
)

dA. (49)

Assuming a separation of scales, the domain 𝛬 can be separated into
two regions: (i) 𝛬𝑏𝑎𝑛𝑑 , which consists of the intersection between 𝛬 and
the support of the damage field representing the crack and (ii) 𝛬𝑜𝑢𝑡𝑒𝑟,
which denotes the remainder of 𝛬, outside of the damage band. In the
asymptotic limit as 𝓁 → 0, the material in 𝛬 behaves as purely
6

𝑜𝑢𝑡𝑒𝑟
elastic. Within 𝛬𝑜𝑢𝑡𝑒𝑟, one has 𝑑 ≈ ∇𝑑 ≈ 0, and therefore,

𝑅𝑜𝑢𝑡𝑒𝑟 = ∫𝛬𝑜𝑢𝑡𝑒𝑟
𝑞
(

𝜕𝜓𝑒(𝝐, 𝑑)
𝜕𝑑

∇𝑑 ⋅ 𝐫 − 𝑝𝐮∇(𝐼 ′(𝑑)∇𝑑)𝐫
)

dA ≈ 0. (50)

For the 𝛬𝑏𝑎𝑛𝑑 region, by condition H3, ∇𝑑 is purely perpendicular to
the crack direction, so, ∇𝑑 ⋅ 𝐫 ≈ 0. Therefore,

𝑅𝑏𝑎𝑛𝑑 = ∫𝛬𝑏𝑎𝑛𝑑
𝑞
(

𝜕𝜓𝑒(𝝐, 𝑑)
𝜕𝑑

∇𝑑 ⋅ 𝐫 − 𝑝𝐮∇(𝐼 ′(𝑑)∇𝑑)𝐫
)

dA ≈ 0. (51)

Since 𝛬 = 𝛬𝑏𝑎𝑛𝑑 ∪ 𝛬𝑜𝑢𝑡𝑒𝑟, we must have

𝑅 = 𝑅𝑜𝑢𝑡𝑒𝑟 + 𝑅𝑏𝑎𝑛𝑑 ≈ 0. (52)

This completes the second step.
The final step of the proof begins by invoking the separation of

scales to decompose the contour integral in (46) via

𝐫 ⋅ ∫𝜁𝑖𝑛
𝐓𝑝 ⋅ 𝐧 ds = 𝐫 ⋅

(

∫𝜁𝑏𝑎𝑛𝑑𝑖𝑛

𝐓𝑝 ⋅ 𝐧 ds + ∫𝜁𝑜𝑢𝑡𝑒𝑟𝑖𝑛

𝐓𝑝 ⋅ 𝐧 ds
)

. (53)

On the 𝜁𝑜𝑢𝑡𝑒𝑟𝑖𝑛 portion of the path, damage effects can be neglected and
the integral simplifies to the standard (sharp) J-integral. In the case of
a uniformly pressurized crack [58], this gives

∫𝜁𝑜𝑢𝑡𝑒𝑟𝑖𝑛

𝐓𝑝 ⋅ 𝐧 ds = 𝐺 − 𝑝𝑤, (54)

where 𝑤 denotes the crack aperture at the intersection of the crack and
the contour 𝜁𝑖𝑛.

The other portion of the integral can be re-written as

𝐫 ⋅ ∫𝜁𝑏𝑎𝑛𝑑𝑖𝑛

𝐓𝑝 ⋅ 𝐧 ds =

𝐫 ⋅ ∫
𝐵

−𝐵
(𝜓𝑒I − ∇𝑇 𝐮𝝈) ⋅ 𝐧𝑑𝑥 − 𝐫 ⋅ ∫

𝐵

−𝐵
𝑝(∇𝑑 ⋅ 𝐮𝐼 ′(𝑑)) ⋅ 𝐧𝑑𝑥, (55)

where 𝐵 is the half-length of the damage band and condition H2 is used
to transform the integral over 𝜁𝑏𝑎𝑛𝑑𝑖𝑛 to a simple real integral from −𝐵 to
𝐵. Here, both 𝐫 and 𝐧 are unit vectors that point in opposite directions,
and therefore, 𝐫 ⋅ 𝐧 = −1, so,

𝐫 ⋅ ∫𝜁𝑏𝑎𝑛𝑑𝑖𝑛

𝐓𝑝 ⋅ 𝐧 ds = ∫

𝐵

−𝐵
(𝜓𝑒I − ∇𝑇 𝐮𝝈)𝑑𝑥 + 𝑝∫

𝐵

−𝐵
(∇𝑑 ⋅ 𝐮𝐼 ′(𝑑))𝑑𝑥. (56)

Following [8], the second integral on the right approaches the crack
aperture 𝑤 as the regularization length decreases, while the first in-
tegrand on the right is bounded [55], and therefore this term is
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𝑂(𝐵), so,

𝐫 ⋅ ∫𝜁𝑏𝑎𝑛𝑑𝑖𝑛

𝐓𝑝 ⋅ 𝐧 ds = 𝑂(𝐵) + 𝑝𝑤 = 𝑂(𝓁) + 𝑝𝑤, (57)

since the damage band half-length 𝐵 scales with the regularization
length 𝓁. One can now go back to (53), and substitute (54) and (57) to
obtain,

𝐫 ⋅ ∫𝜁𝑖𝑛
𝐓𝑝 ⋅ 𝐧 ds = 𝐺 + 𝑝𝑤 − 𝑝𝑤 + 𝑂(𝓁). (58)

Finally, combining (46), (52) and (58), one obtains

− 𝐫 ⋅ ∫𝛬
𝐓𝑝 ⋅ ∇𝑞 dA = 𝐺 + 𝑂(𝓁), (59)

which concludes the proof.

4. Finite element implementation

In this Section, the details of the finite element discretization used
to obtain approximations to the solution of the proposed model (UVC)
are described. For analogous equations for the model (LVC), the reader
is referred to [12].

First, the strong form of the governing equations, derived from the
general free-energy (35) using the KKT [74,75] conditions is presented.

Strong form

Linear momentum balance:

∇ ⋅ 𝝈 − 𝑝∇𝑑 + b = 𝟎, ∀𝑥 ∈ 𝛺, (60)

𝝈 =
𝜕𝜓𝑒
𝜕𝝐

, ∀𝑥 ∈ 𝛺, (61)

𝝈 ⋅ n = t, 𝜕𝛺𝑁 , (62)

u = u𝑔 , 𝜕𝛺𝐷, (63)
Fracture evolution:

𝑑̇
(

∇ ⋅
2𝐺𝑐𝓁
𝑐0

∇𝑑 −
𝐺𝑐
𝑐0𝓁

𝛼′(𝑑) − 𝑔′(𝑑)𝜓+
𝑒 (𝝐)

)

= 0,∀𝑥 ∈ 𝛺, (64)

∇ ⋅
2𝐺𝑐𝓁
𝑐0

∇𝑑 −
𝐺𝑐
𝑐0𝓁

𝛼′(𝑑) − 𝑔′(𝑑)𝜓+
𝑒 (𝝐) ≤ 0,∀𝑥 ∈ 𝛺, (65)

𝑑̇ ≥ 0, ∀𝑥 ∈ 𝛺, (66)

∇𝑑 ⋅ n = 0, 𝜕𝛺, (67)

𝑑(0, x) = 𝑑0, 𝛺. (68)

For the derivation of an equivalent weak form, trial spaces for 𝐮 and
𝑑 are first defined. Although the derivation is confined to quasi-static
loadings, the spaces are indexed by a discrete load step parameter 𝑡.
The trial spaces are given by

 𝑡 = {𝐮 ∈ 1(𝛺)𝑑 ∣ 𝐮 = 𝐮𝑡 on 𝜕𝛺𝐷}, (69)

𝑡 = {𝑑 ∈ 1(𝛺) ∣ 𝑑𝑡−1(𝑥) ≤ 𝑑𝑡(𝑥) ≤ 1, ∀𝑥 ∈ 𝛺}, (70)

and the accompanying weighting spaces  and  are

 = {𝐰 ∈ 1(𝛺)𝑑 ∣ 𝐰 = 𝟎 on 𝜕𝛺𝐷}, (71)

 = {𝑐 ∈ 1(𝛺) ∣ 𝑐(𝑥) ≥ 0, ∀𝑥 ∈ 𝛺}. (72)

The condition of monotonicity in the space 𝑡 is used to prevent
damage healing and is the weak enforcement of the condition 𝑑̇ ≥ 0,
n a time discrete setting. Denoting the inner product in 1(𝛺) and
1(𝛺)𝑑 by (⋅, ⋅) and its restriction in the boundary by ⟨⋅, ⋅⟩, the weak

orm of the problem can be written as
7

c

Weak form

Find u ∈  𝑡 and 𝑑 ∈ 𝑡, such that ∀w ∈  and ∀𝑐 ∈ ,

(∇w,𝝈) − (w, 𝑝∇𝑑) − (w,b) − ⟨w, t⟩𝜕𝑡𝛺 = 0, (73)

2𝓁
𝑐0

(

∇𝑐, 𝐺𝑐∇𝑑
)

+ 1
𝑐0𝓁

(

𝑐, 𝐺𝑐𝛼
′(𝑑)

)

+
(

𝑐, 𝑔′(𝑑)𝜓+
𝑒 (𝝐(u))

)

= 0, (74)

with the initial damage condition,

(

𝑐, 𝑑(0, x) − 𝑑0
)

= 0. (75)

Observe that (74) is an equality rather than an inequality, such as
(65). This reflects a view ahead, towards discretization, where in the
present work the irreversibility constraint is enforced with an active-set
strategy. The active set strategy effectively partitions the domain into
active (where 𝑑̇ = 0) and inactive (where 𝑑̇ > 0) parts. Only the inactive
part requires a discretization of the damage condition (65), where it is
indeed treated as an equality. A detailed description of this constrained
optimization algorithm is given by Heister et al. in [76], and some
additional details pertinent to phase-field for fracture discretizations
can be found in Hu et al. [77].

Finally, these function spaces can be discretized over a finite ele-
ment mesh, that gives rise to the discrete function spaces  ℎ

𝑡 ⊂  𝑡,
ℎ ⊂  , ℎ

𝑡 ⊂ 𝑡, ℎ ⊂ . These are then used to construct the discrete
form of the problem using the Galerkin method:

Spatially discretized form

Find uℎ ∈  ℎ
𝑡 and 𝑑ℎ ∈ ℎ

𝑡 , such that ∀wℎ ∈ ℎ and ∀𝑞ℎ ∈ ℎ,

(

∇wℎ,𝝈ℎ
)

−
(

wℎ, 𝑝∇𝑑ℎ
)

−
(

wℎ,b
)

−
⟨

wℎ, t
⟩

𝜕𝑡𝛺
= 0, (76)

2𝓁
𝑐0

(

∇𝑐ℎ, 𝐺𝑐∇𝑑ℎ
)

+ 1
𝑐0𝓁

(

𝑐ℎ, 𝐺𝑐𝛼
′(𝑑ℎ)

)

+
(

𝑐ℎ, 𝑔′(𝑑ℎ)𝜓+
𝑒 (𝝐(u

ℎ))
)

= 0, (77)

with the initial damage condition,

(

𝑐ℎ, 𝑑ℎ(0, x) − 𝑑0
)

= 0. (78)

In this work, bilinear finite elements are used to approximate the
amage and displacement fields.

The coupling between the two discrete equations (76) and (77)
s handled by an alternating minimization scheme. A detailed de-
cription of this scheme is given in [77]. This solution scheme is
mplemented using RACCOON [78], a parallel finite element code
pecializing in phase-field fracture problems. RACCOON is built upon
he MOOSE framework [79,80] developed and maintained by Idaho
ational Laboratory.

. Results

We now present results for a set of problems that highlight the
dvantages, as well as some limitations, of the various models for
ressurized cracks in a phase-field for fracture setting. In the first
roblem, the cohesive fracture of a uniaxial specimen in a pressurized
nvironment is analyzed. We then consider the problem of crack nucle-
tion from a pressurized hole in a medium subjected to far-field, biaxial

ompression.
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Fig. 4. Uniaxial cohesive bar.

Table 1
Material properties for uniaxial bar.

Value Unit

Young’s modulus (E) 4.0 ×105 MPa
Poisson’s ratio (𝜈) 0.2 –
Nucleation energy (𝜓𝑐 ) 5.6 ×10−5 mJ mm−3

Critical fracture energy (𝐺𝑐 ) 0.12 mJ mm−2

Residual stiffness (𝜉) 1.0 ×10−8 –

Finally, a crack propagation example is studied to verify that in
he limit of a vanishing regularization length Griffith-like behavior is
ecovered with the new model. In all cases, plane-strain conditions are
ssumed to hold.

In the course of explaining the results obtained with the cohesive
hase-field model, it will be useful to characterize the effective cohesive
trength 𝜎𝑐 of the material. To that end, we will rely on the following
elationship between the cohesive strength and the nucleation energy:

𝑐 =

√

2𝐸𝜓𝑐
(1 − 𝜈2)

, (79)

here 𝐸 denotes Young’s modulus and 𝜈 Poisson’s ratio. This equation
esults from the analysis of a one-dimensional system subjected to
niaxial loading [53], and should be viewed as an approximation to
he cohesive strength in more general loading conditions.

.1. Uniaxial bar under traction in a pressurized environment

We consider the fracture behavior of a cohesive material with
ressure loading on the crack faces. The example is intended to examine
he extent to which the pressure loading can artificially influence the
pparent traction–separation law on the crack surface.

The problem consists of a bar under a displacement controlled load
n a pressurized chamber, as shown in Fig. 4. The bar is assumed to be
ade of a linear elastic material that undergoes cohesive fracture, with
traction–separation law 𝐹 (𝑠).

The bar has an undeformed length 2𝐿 = 400 mm and width
𝑊 = 2 mm. The material properties are given in Table 1. Symmetry

oundary conditions are invoked to reduce the computational domain
o the top-right quarter of the bar. The applied load is modeled as

displacement boundary condition on the right end of the domain.
he mesh consists of rectangular elements of size ℎ along the length

direction and size 1 mm in the width direction. The initial applied dis-
placement increment is 𝛥𝑢 = 5× 10−4 mm. The displacement increment
is adaptively refined when convergence is not obtained within a fixed
set of iterations. A more detailed description of the adaptive stepping
procedure is provided in [79–81].

Damage localization is triggered by introducing a small initial defect
(𝑑 = (𝜖)) on the left side of the domain. In what follows, results are
reported using 𝓁 = 𝐿∕20 = 10 mm and ℎ = 𝓁∕10 = 1 mm. This choice
of regularization length and mesh spacing was found to yield spatially-
converged results. Different values of pressure, ranging from 0 to 𝜎𝑐∕3
are considered.
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Table 2
Material properties, geometric parameters and applied loads for crack initiation
problem.

Value Unit

Young’s modulus (E) 19.0 ×103 MPa
Poisson’s ratio (𝜈) 0.2 –
Nucleation energy (𝜓𝑐 ) 7.96 ×10−4 mJ mm−3

Critical fracture energy (𝐺𝑐 ) 7.70 ×10−2 mJ mm−2

Cavity radius (𝑅) 400 mm
Specimen length (𝐿) 5.0 ×103 mm
Horizontal stress (𝜎𝐻 ) 5.0 MPa
Vertical stress (𝜎𝑉 ) 2.5 MPa

The problem is simulated using discretized versions of both the
(UVC) and (LVC) formulations.

For the indicator function 𝐼(𝑑), results are reported for: (1) 𝐼(𝑑) = 𝑑,
used for example in [8]; (2) 𝐼(𝑑) = 𝑑2, used in [12] and (3) 𝐼(𝑑) = 2𝑑−
2, used in [9]. The effective traction–separation laws extracted from
he set of simulations are shown in Fig. 5. To generate these curves,
he traction is computed as the internal force measured in the center
f the bar. The separation 𝑠 is the opening of the crack, calculated as
= − ∫ ∞

−∞ 𝐮 ⋅ ∇𝐼(𝑑)dx [8].
The results for the various models are shown in Fig. 5, with tractions

nd pressures normalized by the critical stress 𝜎𝑐 from (79). As shown
n Fig. 5, the proposed model (UVC) exhibits minimal sensitivity to the
ressure magnitude in the traction–separation behavior. By contrast,
ith the (LVC) formulation, only the case with 𝐼(𝑑) = 2𝑑 − 𝑑2 exhibits

omparable results. In the other two cases (Figs. 5(a) and 5(b)), the
pparent traction–separation law shows a spurious dependence on the
pplied pressure. This is evident in the variations in the results as well
s the presence of jumps in the aperture at sufficiently high pressures.
he latter occurs due to an instability of the partially damaged solutions
s 𝑑 approaches 1. More precisely, shortly after the damage at the
enter of the bar reaches 𝑑 ≈ 0.8, it jumps to 𝑑 = 1, which in
urns lead to a jump in the aperture. This jump is indicated via the
quares that appear on selected curves in Figs. 5(a) and 5(b). The use
f smaller displacement increments was not observed to significantly
mpact these results. By contrast, such instabilities were not observed
or the simulations reported in Figs. 5(c) and 5(d).

.2. Crack nucleation from a pressurized hole

Consider a square plate of dimensions 𝐿×𝐿, with a circular hole in
he center subjected to an internal pressure 𝑝, as shown in Fig. 6(a). This
roblem is motivated by oil and gas wellbore systems. Far field stresses
𝑉 and 𝜎𝐻 are applied as tractions on the boundaries as shown. The
ressure is increased until it reaches a ‘‘breakdown pressure’’ 𝑝𝑏. When
hat happens, cracks initiate in the direction parallel to the maximum
n-situ stress. Assuming 𝜎𝐻 > 𝜎𝑉 , this is expected to occur along a
orizontal axis passing through the center of the hole. In this work, the
ressure in the hole is assumed to follow the crack faces as the fracture
rows into the interior of the domain.

The material properties selected for this problem, along with the
imensions and loading parameters are listed in Table 2. The material
roperties are taken to be representative of a Bebertal sandstone, as
nspired by the experiments of [82].

The symmetry of the problem is exploited to reduce the computa-
ional domain to the top-left quarter. An unstructured triangular mesh
s used, with local refinement along the 𝑥-axis, as shown in Fig. 6(b).
he element size in the refined area is 10 mm, whereas the phase-field
egularization length is 𝓁 = 40 mm. For the results reported in this sec-
ion, the phase-field model employs the cohesive formulation [52,53]
sing the degradation function (41) and the spectral split of [64].

Intuitively, the magnitude of the pressure load required to initiate
racture in this problem is expected to be independent of whether or not
he pressure follows the crack evolution. After initiation, the pressure
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Fig. 5. Traction–separation curves for pressurized uniaxial cohesive bar problem, obtained with various phase-field models: (a) (LVC) with linear indicator function; (b) (LVC)
with quadratic indicator function; (c) (LVC) with 2𝑑 − 𝑑2 indicator function; and (d) Proposed approach (UVC) with linear indicator function.

Fig. 6. (a) Problem schematic; (b) Mesh used in the computations, exploiting symmetry.
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Fig. 7. (a) Final crack pattern using proposed model; (b) Damage field using the model from [8].
effects become important and the fracture propagates unstably. Due
to this unstable behavior, it is very difficult to numerically capture
the crack path after the pressure 𝑝𝑏 is reached. In order to have a
glimpse into what this path looks like, a viscous term 𝜂𝑑̇ is added to
the phase-field equation, as in [64], with 𝜂 = 10−3 mJ mm−3 s.

It bears emphasis that the Eqs. (9) and (11) indicate that, in the
absence of any damage, the proposed model for pressurized cracks
reduces to the standard phase-field fracture model for traction-free
cracks. Therefore, one should expect the proposed model to capture
fracture initiation properly in this scenario. On the other hand, for the
(LVC) formulation, this only occurs if the indicator function satisfies
𝐼 ′(0) = 0. Among the many works which use the (LVC) formulation,
only a few such as [11,12] used an indicator function satisfying this
condition. In [12], the authors were indeed able to predict fracture ini-
tiation from pressurized holes. To highlight the implications of having
𝐼 ′(0) ≠ 0 in the model (LVC), the results for this problem will also
be presented using the (LVC) formulation with the indicator function
𝐼(𝑑) = 𝑑.

The final damage patterns obtained using the (UVC) formulation
and the (LVC) formulation are shown in Fig. 7. With the (UVC) for-
mulation, damage localizes along the midplane when the hoop stress
is approximately 85% of 𝜎𝑐 . This is not unexpected, as the expression
(79) is based on a one-dimensional state of stress and strain which
differs significantly from the state near the corner of the hole. The same
comparison is not performed for the simulation using the model (LVC),
since damage forms only on the boundary in the first steps leading to
spurious rigid body motion.

The main takeaway is that the proposed model (UVC) allows one
to study crack nucleation and subsequent propagation under a pressure
load, whereas formulation (LVC) leads to spurious damage formation if
𝐼 ′(0) ≠ 0. The presence of the term 𝑝∇ ⋅ 𝐮𝐼 ′(𝑑) in the damage equation
(19) drives crack formation in areas which are not stressed. For this
specific problem, this issue can be circumvented using for example
𝐼(𝑑) = 𝑑2, as shown in [12], but this option introduces a spurious
dependence of the cohesive response of the material on the applied
pressure, as indicated in the last section (Fig. 5(b)).

5.3. Stable propagation of a pre-existing crack

Consider a strip of material with a pressurized crack, as shown
in Fig. 8(a). The rectangular strip has a width 𝑊 , height 𝐻 and a
crack with initial size 𝑎 (values provided in Table 3), and is loaded
10
by the ‘‘surfing’’ boundary condition 𝑈𝑦(𝑥, 𝑦, 𝑡) on its top and bottom
surfaces [57]. The boundary condition is given by

𝑈𝑦(𝑥, 𝑦, 𝑡) = 𝑈𝑦(𝑥 − 𝑉 𝑡, 𝑦), (80)

where

𝑈𝑦(𝑥, 𝑦) = 𝑈̂𝑦(𝑟, 𝜃) =

√

𝐺𝑐𝐸′

2𝜇

√

𝑟
2𝜋

(𝜅 − cos 𝜃) sin 𝜃
2
, (81)

and where 𝑟 and 𝜃 are polar coordinates with respect to the origin,
taken to be the midpoint of the left edge of the domain. The constant
𝑉 > 0 is the target crack speed, prescribed by moving the boundary
condition following (80). The Kolosov constant is defined as 𝜅 = 3− 4𝜈
in plane strain and the shear modulus 𝜇 = 𝐸∕(2 + 2𝜈). The pressure 𝑝
applied to the crack faces as the crack evolves is given by

𝑝 = 1
2

√

𝐺𝑐𝐸′

𝜋𝑎
, (82)

in which 𝑎 denotes the initial crack length. This value corresponds
to half the critical pressure for an infinite plate with a pressurized
crack of size 𝑎. This magnitude ensures that the applied pressure is
considerably large, but not so large as to drive the problem beyond
the stable propagation regime.

To calculate the energy release rate, the domain form of the J-
integral (44) developed in Section 3 is used. The function 𝑞 is con-
structed by taking advantage of the finite element interpolation. In
essence, the domain for the J-integral is taken to be a single rectangular
region of dimensions 𝑎 × 𝐻∕2, centered on the initial crack tip. The
value of 𝑞 for all nodes outside of this region is set to 0, while 𝑞 = 1
for all nodes inside. Using the finite element interpolation, this gives
rise to a 𝑞 function whose value changes continuously from 0 to 1 on
the elements cut by the rectangular path. This function is illustrated in
Fig. 8(b).2

In order to verify that Griffith’s law is approached as 𝓁 → 0, simu-
lations are performed for this problem using a sequence of decreasing
regularization lengths, ranging from 𝓁 = 𝑎∕20 to 𝓁 = 𝑎∕160. The mesh is
locally refined along the 𝑥-axis, where the element size is set to ℎ = 𝓁∕4.
The symmetry of the problem is exploited and only the response in the
top half of the domain is simulated.

2 Due to mesh refinement near the crack surface, the width of the band
where 0 < 𝑞 < 1 diminishes near the horizontal centerline of the domain.
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Fig. 8. (a) Geometry and boundary conditions for pressurized crack propagation problem; (b) J-integral domain function 𝑞.
Table 3
Parameters used for pressurized crack propagation problem.

Value Unit

Young’s modulus (E) 3.0 ×104 MPa
Poisson’s ratio (𝜈) 0.2 –
Critical fracture energy (𝐺𝑐 ) 0.12 mJ mm−2

Initial crack length (𝑎) 1.6 m
Specimen width (𝑊 ) 8.0 m
Specimen height (𝐻) 4.0 m
Target crack speed (𝑉 ) 0.4 m/s

In terms of constitutive choices of the phase-field model, the AT-1
formulation is employed without any decomposition of the strain.

As in the previous examples, this problem is analyzed using the
formulations (LVC and UVC), and the following choices of indicator
function 𝐼(𝑑):

• 𝐼(𝑑) = 𝑑
• 𝐼(𝑑) = 𝑑2

• 𝐼(𝑑) = 2𝑑 − 𝑑2

To evaluate how well the models approach Griffith’s law, the ratio
between the energy release rate measured by the J-integral and the
effective critical fracture energy 𝐺𝑒𝑓𝑓𝑐 = (1 + 2ℎ∕𝑐0𝓁)𝐺𝑐3 is plotted in
Figs. 9 and 10. In all figures, the time is scaled by a characteristic
time 𝜏, defined as 𝜏 = 𝑎∕𝑉 . The results using the traditional (LVC)
formulation are presented in Fig. 9. They indicate convergence towards
𝐽∕𝐺𝑒𝑓𝑓𝑐 = 1 as the regularization length is reduced, especially when
the indicator function 𝐼(𝑑) = 𝑑 is used. This is expected given the
results obtained in [8]. Nevertheless, these results serve to verify the
implementation of the J-integral presented in Section 3. They also
provide an estimate for how small the regularization length has to
be in order to achieve a certain level of accuracy with these types of
phase-field models.

For the case of proposed formulation (UVC), the results shown in
Fig. 10 indicate a slower convergence towards a 𝐽∕𝐺𝑒𝑓𝑓𝑐 = 1 response.
In contrast with the (LVC) formulation, the curves converge from
above, and therefore, the fracture toughness is slightly overestimated
when larger regularization lengths are used. Nevertheless, they all seem
to approach a Griffith-like response in the limit 𝓁 → 0. In Fig. 11, an
even finer result, using (UVC) with 𝐼(𝑑) = 𝑑 and 𝓁 = 𝑎∕320 is added,

3 in fact, phase-field cracks actually dissipated a slightly larger energy per

unit length in numerical models. A correction factor of
(

1 + 2ℎ
𝑐0𝓁

)

is then

applied to 𝐺𝑐 , following [48]. The factor of 2 here comes from the symmetry
boundary condition employed.
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Table 4
Absolute error in 𝐽 vs. 𝐺𝑒𝑓𝑓

𝑐 for the pressurized crack propagation problem, as a
function of regularization length.
𝓁∕𝑎 Error Error𝑘+1∕Error𝑘
1/40 0.067 –
1/80 0.052 0.78
1/160 0.040 0.77
1/320 0.031 0.77

to ensure that the convergence rates indicated in Fig. 10 persist. In
Table 4, the relative errors are provided, indicating a convergence rate
of approximately 0.4 with respect to 𝓁.

One potential explanation for the slower convergence rate is related
to the different assumptions regarding the trial cracks, as discussed in
Section 2. Although the different assumptions converge to the same
propagation rule in the limit of an infinitesimal crack increment, in the
discretized case, the minimal crack increment is finite and related to
the mesh spacing ℎ and regularization length 𝓁. In this case, a slightly
different propagation behavior, resulting in slower convergence rates
towards 𝐽∕𝐺𝑒𝑓𝑓𝑐 = 1 is not surprising.

6. Concluding remarks

This manuscript examines various models for phase-field fracture
incorporating pressure loads on diffuse crack faces. This includes the
analysis of a new formulation that can be obtained by assuming that
the pressure load does not act on the virtual extension of a crack, or
alternatively through a careful accounting in the minimization proce-
dure. The new formulation is referred to as the ‘‘unloaded virtual crack
formulation’’(UVC). In order to verify the accuracy of the various mod-
els for propagating cracks, a new form of the J-integral for pressurized
cracks in the phase-field context is derived.

The (UVC) formulation proposed herein allows for a unified treat-
ment of crack nucleation and propagation in scenarios involving either
brittle or cohesive fracture, and provides for better accuracy in some
problems compared to existing formulations of the (LVC) type. As it
allows for the use of the same governing equation for the damage
parameter, its computational implementation within existing phase-
field solvers is also simpler. Although the examples considered in
the current manuscript are all two-dimensional, the extension of the
(UVC) formulation to three-dimensional problems is trivial. In future
work, its applicability to problems involving plastic deformation and
strength-based fracture nucleation will be studied. In addition to that,
modifications to accelerate the convergence of the model with respect
to the phase-field parameter 𝓁 will also be considered.
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(

Fig. 9. Reference results with the (LVC) formulation. Curves with 𝓁 = 𝑎∕160 are not shown, as they are almost identical to the ones with 𝓁 = 𝑎∕80. (a) 𝐼(𝑑) = 𝑑; (b) 𝐼(𝑑) = 𝑑2;
c) 𝐼(𝑑) = 2𝑑 − 𝑑2.
Fig. 10. Results with the proposed formulation (UVC) (a) 𝐼(𝑑) = 𝑑; (b) 𝐼(𝑑) = 𝑑2; (c) 𝐼(𝑑) = 2𝑑 − 𝑑2.
i
G

Fig. 11. Convergence of the proposed formulation with 𝐼(𝑑) = 𝑑.
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Appendix. Equivalence to SIF condition

In this appendix, the energy release rate for a single, straight
crack under an arbitrary pressure load 𝑝(𝑥) is computed, assuming that
nfinitesimal crack increments are traction free, as shown in Fig. 2(a).
riffith’s criterion states that propagation should happen whenever this

nergy release rate, which will be denoted by 𝐺, reaches 𝐺𝑐 . This will
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give rise to a condition for propagation based on the pressure distribu-
tion 𝑝(𝑥), the crack size 𝑎 and Young’s modulus 𝐸′.4 The purpose of the
ollowing derivation is to demonstrate that this condition is equivalent
o the stress intensity factor criterion [83].

Initially, consider the Sneddon–Lowengrub solution for the aperture
f a pressure loaded crack in an infinite plate, under plane strain
onditions,

(𝑥) = 4𝑎
𝜋𝐸′ ∫

1

0
𝑝(𝑠𝑎)𝑍(𝑥∕𝑎, 𝑠)d𝑠 (A.1)
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(A.2)

is a convolution kernel. The work done by the pressure load is then,

𝑊𝑝 = ∫

𝑎

−𝑎
𝑝𝑤d𝑥 = ∫

𝑎

−𝑎
𝑝(𝑦) 4𝑎

𝜋𝐸′ ∫

1

0
𝑝(𝑠𝑎)𝑍(𝑥∕𝑎, 𝑠)d𝑠d𝑦. (A.3)

Clayperon’s theorem [84] states that the potential energy is negative
half of the work exerted in the boundary, which, in this case is only
𝑊𝑝. Hence

𝑈 = −1
2
𝑊𝑝 = −1

2 ∫

𝑎

−𝑎
𝑝𝑤d𝑥

= − 4𝑎2
𝜋𝐸′ ∫

1

0
𝑝(𝑎𝑟)∫

1

0
𝑝(𝑠𝑎)𝑍(𝑟, 𝑠)d𝑠d𝑟. (A.4)

Let us write the energy release rate, assuming that the pressure field
oes not vary as the crack advances by a small amount d𝑎. That is,

𝑎+d𝑎(𝑥) =

{

𝑝𝑎(𝑥), if 𝑥 ≤ 𝑎
0, if 𝑎 ≤ 𝑥 ≤ 𝑎 + d𝑎

(A.5)

𝑑𝑈 = 𝑈 (𝑎 + d𝑎, 𝑝𝑎+d𝑎) − 𝑈 (𝑎 + d𝑎, 𝑝𝑎), (A.6)
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Using the definition of 𝑝𝑎+d𝑎 given above,
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By symmetry, both tips of the crack propagate with the same energy
elease rate, so, one can write,
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The term between parenthesis can be re-written as,
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The second term contains a singularity, which can be removed if
one re-writes it as,
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This expression can be plugged back into (A.8) to obtain,
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Hence,
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Now, the terms in the numerator can be expanded with a Taylor
series,
√

(𝑎 + d𝑎)2 − 𝑥2 =
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leading to,
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which, after using a Taylor expansion, simplifies to,
1
d𝑎
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Now, we can finally go back to the energy release rate,

𝐺 = −𝑑𝑈
d𝑎
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. (A.15)

From [85], the stress intensity factor under these same conditions
s,

𝐼 = 2
√

𝑎
𝜋

(

∫

1

0

𝑝𝑎(𝑎𝑠)
√

1 − 𝑠2
d𝑠

)

(A.16)

From a simple inspection, one can see that 𝐺 = 𝐾2
𝐼 ∕𝐸

′, which guar-
antees the equivalence of the energy release rate criterion under the
same assumption as the UVC formulation and the stress intensity factor
condition. If instead, one assumes that the pressure load in the vicinity
of a propagating crack behaves as in Fig. 2(b), this equivalence between
the energetic criterion and the stress intensity factor may be violated.
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