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Abstract

Older adults with Type II Diabetes Mellitus (DM) experience mild cognitive impairment, specifically in the domain of recall/
working memory. No consistent causative structural cortical deficits have been identified in persons with DM (PwDM).
Memory deficits may be exacerbated in older adult females, who are at the highest risk of cardiovascular decline due to
DM. The focus of the current study was to evaluate functional cortical hemodynamic activity during memory tasks in
postmenopausal PwWDM. Functional Near Infrared Spectroscopy (fNIRS) was used to monitor oxyhemoglobin (HbO) and
deoxyhemoglobin (HbR) during memory-based tasks in a cross-sectional sample of postmenopausal women with DM.
Twenty-one community-dwelling DM females (age =65 + 6 years) and twenty-one age- and sex-matched healthy controls
(age =66 + 6 years) were evaluated. Working memory performance (via N-back) was evaluated while study participants
donned cortical fNIRS. Health state, metabolic data, and menopausal status data were also collected. Deficits in working
memory accuracy were found in the DM group as compared to controls. Differences in HbO responses emerged in the DM
group. The DM group exhibited altered PFC activity magnitudes and increased functional cortical activity across ROIs
compared to controls. HbO and HbR responses were not associated with worsened health state measures. These data indicate
a shift in cortical activity patterns with memory deficits in postmenopausal PwDM. This DM-specific shift of HbO is a novel
finding that is unlikely to be detected by fMRI. This underscores the value of using non-MRI-based neuroimaging techniques
to evaluate cortical hemodynamic function to detect early mild cognitive impairment.
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Introduction and Prevention 2020). DM and cardiovascular disease are
hypothesized to share an underlying constellation of causes,
Over 14.3 million individuals in the United States aged  referred to as the 'common soil' hypothesis (Lebovitz 2006).
60 + are living with either diagnosed or undiagnosed Type =~ With advanced age, persons with DM (PwDM) exhibit
II Diabetes Mellitus (DM) (Centers for Disease Control losses in several functional abilities; including development
of mild cognitive impairment (MCI), amnesiac mild
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cognitive impairment (aMCI), and sensorimotor dysfunction
(van den Berg et al. 2008; Christman et al. 2009; Janoutova
et al. 2015; Gorniak et al. 2019a, b). Patients are not self-
aware of these losses (Gorniak et al. 2014) which are typical
precursors to development of dementias such as Alzheimer’s
disease or vascular dementia.

Emerging evidence reveals differences in presentation of
DM and its complications between the sexes with advanced
age (Seghieri et al. 2017; Campesi et al. 2017b; Centers
for Disease Control and Prevention 2020). Older adult
women are significantly more negatively impacted by risks,
complications, and comorbidities associated with DM,
including development of dementia (Campesi et al. 2017a).

Female participants have been largely excluded from
biomedical science for decades, as estrus has been perceived
to render females more physiologically variable than males
(Beery and Zucker 2011; Prendergast et al. 2014; Vitale et al.
2017). However, sex-based differences in DM presentation
and its complications, including cognitive impairment, is an
emerging area of interest. Sex-based differences in DM in
animal models have not translated well to humans (Campesi
et al. 2017b), which has significantly complicated attempts
to understand DM-related complications.

Cognitive impairment in memory adversely affects the
ability to manage complex daily DM self-management tasks
such as meal preparation, taking medications, and exercise
(Christman et al. 2009; Vance et al. 2011; Gold 2012).
Many of these self-care tasks involve the use of one or both
upper extremities in tasks which may require more cognitive
resources for successful task completion. Our prior work
has found that inclusion of a motor task while performing
memory-based cognitive tasks (known as dual-tasking) may
lead to reduced accuracy in both cognitive and motor tasks
(Gorniak et al. 2019a, b); however, the cortical roots of these
deficits are underexplored.

Traditional neuroimaging approaches (i.e., magnetic
resonance imaging (MRI)) have been used to search for
structural cortical roots of DM-related complications
such as MCI and sensorimotor dysfunction (Manschot
et al. 2006; Harten et al. 2006; van Harten et al. 2007;
Christman et al. 2010; Brundel et al. 2012; Biessels
and Reijmer 2014). Inconclusive structural evidence of
cortical damage via MRI in individuals with DM has led
to investigation of cortical activation differences using
functional MRI (fMRI). This is in line with the assumption
that altered hemodynamic responses due to micro- and
macro-vascular changes are the most likely source of global
behavioral changes in individuals with DM (Zochodne
2007). However, inconsistent fMRI evidence of cortical
dysfunction in individuals with DM has been reported
(Manschot et al. 2006; Harten et al. 2006; van Harten et al.
2007; Christman et al. 2010; Brundel et al. 2012). The blood
oxygenation level dependent (known as BOLD) response
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of fMRI is based on measured changes in one aspect of the
hemodynamic response—deoxygenated hemoglobin (HbR)
(Buxton 2013). fMRI is only sensitive to HbR (due to its
strong paramagnetization (Huettel et al. 2014)), whereas the
oxygenated hemoglobin (HbO) aspect of the hemodynamic
response is diamagnetic and undetected by fMRI approaches.
Acknowledging this shortcoming of fMRI, alternative
functional cortical investigations using technologies such as
functional near infrared spectroscopy (fNIRS) has revealed
altered HbO concurrent with sensorimotor dysfunction in
postmenopausal women with DM (Gorniak et al. 2020).

Our overarching hypothesis is that altered hemodynamic
function of the cortex leads to DM-complications
including cognitive and sensorimotor impairments. In
particular, postmenopausal women likely experience
significant deterioration of both hemodynamic function
and overt behaviors (e.g., cognitive function) given their
disproportionate risk of cardiovascular complications as
compared to men with DM and individuals without DM
(Kautzky-Willer et al. 2016; Raparelli et al. 2017). The focus
of this study was to evaluate changes in cortical oxygenation
indices of postmenopausal women both with and without
DM during memory-based cognitive single- and dual-tasks
via fNIRS.

In line with our previous work (Gorniak et al. 2019a, b),
we expected to see between-group differences in cognitive
function, with impaired memory/recall in the DM group
(Hypothesis #1). Concurrent with impaired cognitive
function, we expected between-group differences in cortical
oxygenation indices of oxygenated hemoglobin (HbO) and
deoxygenated/reduced hemoglobin (HbR) (Hypothesis
#2) across regions of the cortex involving memory and
sensorimotor function during tasks involving cognitive
components. No specific hypotheses regarding changes
in cortical hemodynamic function with disease state were
developed a priori, as multiple mechanistic pathways
have been suggested with different levels of support in
the evidence base (e.g., high A, hypertension, etc.). To
examine our two hypotheses, cortical hemodynamic activity
was measured via fNIRS during performance of cognitive
tasks. The goal of the study was to evaluate the relationship
between cortical hemodynamic activity and cognitive
function in persons with DM versus controls.

Materials and methods

Participants

Twenty-one postmenopausal women with DM and
twenty-one age- and sex-matched healthy controls

volunteered to participate in this case control study, see
Table 1 for demographics. Handedness was assessed by
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Table 1 Demographic and clinical characteristics of DM participants

Participant #  Age (years) Menopausal BMI (kg/mz) DM duration A, (%) Total Systole (mmHg)  Diastole (mmHg)
age (years) (months) cholesterol
(mg/dL)

63 50 27.4 60 6.7 - 151 81
2 79 45 28.3 144 7.9 - 155 75
3% 65 50 40.7 120 7.1 - 145 97
4% 66 50 29.3 186 8.7 199 111 62
5% 64 40 44.1 60 6.2 109 180 91
6 60 50 37.5 387 10.4 224 161 78
7* 60 55 33.7 245 8 143 130 70
8 57 49 36.9 41 8.6 176 130 88
9N 73 60 25.3 201 6.8 125 167 78
10 68 23 31.8 168 5.7 219 164 89
11 70 45 26.9 200 6.1 266 130 71
12 62 38 324 36 6.2 189 124 70
13 67 45 30.2 1 8 144 158 97
14+ 66 45 31.4 262 6.3 175 142 75
15% 69 55 423 298 8.4 185 139 63
16 58 51 32.8 95 7.4 143 153 89
17%* 55 27 38.6 385 7.4 126 133 68
18 67 25 30.5 1 7.7 183 148 73
19%#A 71 52 429 196 8.5 173 105 60
20 69 27 36.3 149 8.7 187 202 100
21 60 37 30.1 1 6.7 183 179 111
Mean 65 43 33.8 154 7.5 175 148 80
SD 6 11 5.6 117 1.2 39 23 14
Controls 67+6 50+7 24.1+4.5 N/A 53+0.3 200+43 147+21 86+ 14

*Indicates a clinical diagnosis of diabetic peripheral neuropathy; “Indicates a history of Prempro Rx (in addition to 3 control participants); —
Indicates lipid data collection failure; SD standard deviation, “indicates omitted fNIRS data due to lack of reliable signal

the Edinburgh Inventory (Oldfield 1971), ranging from a
laterality quotient (LQ) of —100 (strong left-handedness)
to+100 (strong right-handedness). Participants had an
LQ average of +88 and had no previous history of trauma
to the upper limbs. Both the DM and control groups
included women from self-identified underrepresented
racial and ethnic minority groups (n=24/42 (57%)).
Study participants were excluded if they reported a
history of neurological and/or musculoskeletal disorders
(Parkinson disease, Huntington’s disease, polio,
multiple sclerosis, stroke, traumatic brain injury, carpal
tunnel syndrome, rheumatoid arthritis, Monoclonal
Gammopathy of Undetermined Significance (MGUS),
Paraproteinaemic Demyelinating Neuropathy (PDN),
Myasthenia Gravis), a history of amputation, a history
of major surgical intervention to the upper extremity, or
hereditary or compression neuropathies. In accordance
with the Declaration of Helsinki, participants provided

informed consent according to the regulations established
by the Institutional Review Board at the University of
Houston (protocol #15615-01). Data collection processes
failed on five participants (e.g., a reliable fNIRS signal
was not detected (control participants #2, #7, and
#10; DM participants #9 and #19)). Data from those
participants have been excluded from fNIRS analyses but
not behavioral data for completeness of reporting.

Health status data

Blood pressure, cholesterol, and glycated hemoglobin
(A,.) values were assessed for all study participants onsite
at the onset of each session. Cholesterol and A, values
were assessed using a commercially available point of care
evaluation kit (Cardiocheck +and A, Now +kits, PTS
Diagnostics, Indianapolis, IN, USA). Blood pressure was
measured using a commercially available device (Omron
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Intellisense 10 series Blood Pressure Monitor, Model
BP785, Bannockburn, IL, USA). The presence of peripheral
neuropathy (PN status) was determined by abnormalities
on either clinical examination or EMG/NCYV testing (per
physician). A brief menopause questionnaire was also
administered regarding several aspects of menopausal
characteristics (e.g., age at onset of menopause, hormone
replacement therapy history, etc.). All study participants
declared themselves to be postmenopausal; with 11
participants claiming a history of hormone replacement
therapy (5 with a history of Prempro use). Of the 11
participants with a history of hormone replacement therapy,
4 were in the control group and 7 were in the DM group.

Baseline cognitive evaluation
Montreal cognitive assessment (MoCA)

Cognitive function of each participant was screened using
the Montreal Cognitive Assessment (MoCA) (Nasreddine
et al. 2005). This is a brief examination of the cognitive
domains: attention and concentration, executive functions,
working memory/recall, language, visuo-constructional
skills, conceptual thinking, calculations, and orientation.
The number of years of patient education is accounted for
within the MoCA scoring structure. This evaluation was
performed prior to placement of the fNIRS cap.

Experimental tasks
Working memory (N-back) evaluation (single-task)

Working memory of each participant was probed using
the working memory (N-back) evaluation while wearing
the fNIRS device. Working memory was assessed while
participants were seated in a quiet location. This test
required participants to repeat the “Nth” word back in
a list of random words presented as auditory stimuli,
consistent with our prior work (Gorniak et al. 2019a, b).
The difficulty level is controlled by requiring participants
to remember words further back in the series. Three
conditions of the N-back task were assigned to each subject
(easiest to most difficult: 0-, 1-, and 2-back conditions) in
a block randomized manner. Participants wore a headset
with headphone and microphone capabilities (Plantronics
Inc., Santa Cruz, California), through which they heard
a randomized sequence of words via audio provided by
E-prime 2.0 (Psychology Software Tools, Inc., Sharpsburg,
PA). The software program generated randomized words
through the headphones at an interval of 2 s per word.
Participants were instructed to verbally repeat the words
into the headset in the correct sequence for a task duration
of 30 s. The rate of correct responses and verbal reaction
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time were recorded by the E-prime software and extracted
to evaluate performance. Three trials were collected in each
of the N-back conditions. N-back conditions were block
randomized across all participants.

Working memory (N-back) + motor task evaluation
(dual-task)

Working memory function was probed at a baseline (single-
task) as well as during motor function evaluations (dual-
task). All single-tasks occurred prior to dual-tasks to avoid
subject confusion. Each subject was asked to perform
a series of working memory + motor task (dual-task)
interleaved by 30 s periods of rest, see Fig. 1 for details.
Presentation of visual stimuli, timing, and synchronization
TTL signals were controlled via E-prime 2.0 (Psychology
Software Tools, Inc., Sharpsburg, PA). Three trials were
collected in each of the N-back conditions for dual-task
evaluation. N-back conditions were block randomized across
all participants in dual-task conditions.

During the working memory + motor task, participants
used a precision pinch grip to exert an isometric force against
a set of force transducers. Participants were instructed to
match their pinch force to the target force line as accurately
as possible. Two different force levels were tested for the
dominant (right) hand (15% MVC and 40% MVC). Three
trials of 30 s each, were performed with at 30 s of rest/
washout periods between each block. Force level order (15%
or 40% MVC) was block randomized.

The motor task involved using digits 1 and 2 in a precision
pinch grip to produce a constant level of pinch force, with
feedback from a computer screen. All forces and moments

N-back
Task

N-back +
Motor Task

REST

Auditory N-back stimulus
presentation was block
randomized

40% MVC force production in
conjunction with auditory N-
back stimulus presentation
was block randomized

Fig. 1 Illustration of experimental stimuli during the N-back single
task and N-back+motor performance (dual-task) during fNIRS
testing. Subjects viewed a fixation cross during N-back single task
blocks; they viewed real-time feedback on their force production
during N-back 4+ motor performance (dual-task) blocks. The order of
N-back presentation was block randomized within each testing type.
N-back single task tasks always occurred prior to N-back +motor
performance dual-tasks
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of force produced were recorded simultaneously using 2
identical 6-component force-moment transducers (Nano-25
transducers; ATI Industrial Automation, Garner, NC, USA).
Instrument details have been published previously (Gorniak
et al. 2014; Ochoa and Gorniak 2014).

Cortical hemodynamics measurements

Cortical hemodynamics were measured with a continuous-
wave functional near infrared spectroscopy instrument
(NIRScout, NIRx Technologies, Glen Head, NY, USA) via
16 optical emitters and 16 optical detectors. Each emitter
consisted in a dual-wavelength LED (central wavelengths:
760 nm and 850 nm) directly coupled to the scalp, while each
detector was a silicon photodiode collecting backscattered
light from the scalp via an optical fiber. The geometrical
layout of optical emitters and detectors (collectively
referred to as optodes) is shown in Fig. 2A, alongside the
corresponding sensitivity map of the optical probing on the
cerebral cortex (Fig. 2B) estimated with Monte Carlo-based
simulation of photon migration in AtlasViewer (Aasted et al.
2015). We ensured reproducibility of placement to the best of
our ability by fitting the standard 10-10 headset (EasyCap,
Germany) with reference to anatomical landmarks (nasion
Nz, inion Iz, vertex Cz, and preauricular points LPA and
RPA), to achieve an optode landing according to the layout
depicted in Fig. 2A. We also digitized the spatial location of
all optodes and registered such position to a scalp-brain atlas
(Colin 27) to ensure placement accuracy within reasonable
range (10 mm from standard EEG labels). Regarding the
association between optode placements and cortical regions,

A Anterior

Left

Posterior

Fig.2 Cortical fNIRS layout and sensitivity map. A Geometrical
layout of sources (red) and detectors (blue) with respect to the
international 10-10 EEG system (Oostenveld and Praamstra 2001).
Bold black ovals denote the regions of interest (ROIs), which are
subsequently labeled nearby in purple boldface. ROIs included:
prefrontal cortex (PFC), supplementary motor area (SMA), primary
motor cortex (M1), primary sensory cortex (S1), and Broadmann
Area 40 (B40). Hemisphere side as well as anterior and posterior of
the cranium are noted. B Correspondent sensitivity map overlaid onto
the Colin27 brain model. Sensitivity computed and displayed with
AtlasViewer (Aasted et al. 2015)

we inferred cortical areas interrogated by each group of
optical channels (ROIs) from the sensitivity map projected
onto a Colin 27 model computed with photon migration
simulations using AtlasViewer. Although Fig. 2B shows
the sensitivity map of the entire probe, we displayed the
projections of each ROIs separately and denoted cortical
regions accordingly. This configuration resulted in 28 optical
channels (i.e., emitter-detector pairings) that interrogated the
prefrontal, motor, and somatosensory cortices bilaterally.
The geometrical distance between optode pairings ranged
from 26 to 37 mm, ensuring the interrogation of the cerebral
cortex in all optical channels (Strangman et al. 2013). Proper
scalp-optode coupling was ensured by using the PHOEBE
toolbox (Pollonini et al. 2016).

Raw optical signals were collected continuously
throughout the N-back portions of the experiment at the
frequency of 3.91 Hz from all channels at both wavelengths,
and were subsequently converted to optical density (i.e.,
logarithm of the raw intensity) and then to concentration
changes of oxygenated (HbO) and deoxygenated hemoglobin
(HbR) compared to a zeroed baseline according to the
modified Beer-Lambert Law (Cope and Delpy 1988; Delpy
et al. 1988). For each channel, HbO and HbR measurements
were analyzed separately with a general linear model
approach that estimated the scalar weight coefficient
(a.k.a., beta weight (Barker et al. 2013)) of the canonical
hemodynamic response that best fitted the measured
hemodynamic response. The general linear model approach
is described in detail in (Santosa et al. 2018). We did not
apply particular preprocessing steps to fNIRS data, since
autoregressive pre-whitening approach using iteratively
reweighted least-squares (AR-IRLS) can deal with data
outliers produced by motion artifacts and extracerebral
and physiological responses (Santosa et al. 2018). For each
subject, we considered channels as hemodynamically active
if their weight coefficient was statistically different from zero
at the significance level of 5%.

At the group level, we used a mixed linear model
to estimate the weighting coefficient of all channels to
determine which of them were hemodynamically active at a
statistically significant level. We considered the interaction
between the experimental condition (N-back condition) and
the group (DM vs. control) as the fixed effect contributing to
the weight coefficient, while the magnitude of the coefficient
of individual subjects were considered as a random effect.

We grouped optical channels into ten bilateral (right and
left) regions of interest (ROIs), namely the prefrontal cortex
(PFC), supplementary motor area (SMA), primary motor
cortex (M1), primary sensory cortex (S1), and Brodmann
Area 40 (B40) as depicted in Fig. 2A. We computed
individual-level ROI-level statistics (weight coefficient,
t-value, p-value). Positive HbO values and negative HbR
values each indicate cortical activity, respectively. Some
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ROIs did not produce significant ¢-scores in HbO or HbR.
Those data are shown as zeroes in mean and standard error
(SE) values in figures within the results section.

Statistical analysis

The data are presented as means + SE. For HbO and HbR,
statistically significant individual-level ROI ¢-scores were
compared between Groups using mixed model analyses of
covariance (ANCOVAs) via SPSS 25 (IBM Corporation,
Armonk, NY, USA). Between-subject primary factors
were Group (two levels: DM vs. controls). Within-subject
factors included Hemisphere (two levels for the cortex:
left and right) and ROI (five levels: 1 =PFC, 2=SMA,
3=M1, 4=S1, and 5=B40). For N-back data, main factors
included: Group, Task Type (two levels: one level each
for single- and dual-tasks), and Condition (three levels:
0-back, 1-back, and 2-back). Evaluation of health state
covariates was done to control for health state variability
both within and across the two sample groups. Covariates
were selected via Automatic Linear Modeling (ALM)
using forward stepwise selection functions in SPSS. ALM
was utilized to reduce the potential for expectation biases
that may occur when hand-selecting potential statistical
models. In the event of significant covariates determined
via ALM and ANCOVA, follow-up correlation analyses
were performed between the health state or performance
covariate and the measured behavior. ANCOVAs included

Fig.3 Group mean and A
standard error (SE) for MoCA

w
1=
)

health state covariates of: A, systolic and diastolic blood
pressures, total cholesterol, high-density lipoprotein (HDL)
cholesterol, disease duration, menopausal age, body mass
index (BMI), PN status (via indicator variable), history
of hormone replacement therapy (via indicator variable),
history of treatment with Prempro (conjugated estrogens/
medroxyprogesterone acetate; via indicator variable),
and working memory performance variables of response
time and accuracy (in HbO and HbR analyses). Specific
attention to use of Prempro in our work is warranted as
long-term use of Prempro is associated with development of
cardiovascular disease and potential cognitive complications
(Wells and Herrington 1999; Grady et al. 2002; Cagnacci
and Venier 2019; Manson et al. 2020). Prempro use was
largely abandoned in the early 2000’s; however, patients
with a history of Prempro use are still alive. In multiple
comparison situations, Bonferroni corrected posthocs were
used. Significant differences are denoted by the following in
figures: * at p <0.05, ** at p<0.001, *** at p <0.005, and
*EEE at p<0.001.

vy

Iy
o
1

and working memory data.
White bars indicate data from
the control group, gray bars
indicate data from the DM
group. Significant differences
between Groups at p<0.05
(*) and p<0.001 (****) are
shown. A Total MoCA scores.
B Domain specific MoCA
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Results
Cognitive evaluation
Montreal cognitive assessment (MoCA)

Via ALM, the MoCA data show a significant Group
difference (F 4,=6.45, p <0.05) in which the average total
MoCA scores were lower in the DM group as compared to
controls, Fig. 3A. Further analyses of the individual MoCA
domains indicated Group differences in working memory/
recall (F 19=7.27, p<0.05), such that working memory/
recall scores in the DM group were lower as compared to
controls. MoCA data scores can be found in Fig. 3B.

Working memory (N-back) evaluations: accuracy

Differences between single- and dual-task accuracy rates
were not found via ALM; subsequent analyses of N-back
data were performed collapsed across both single- and
dual-task conditions. Significant Group differences in
N-back accuracy were found (F; ,3,=46.73, p<0.001);
such that the DM group was less accurate than controls
(Fig. 3C). Condition (F, ,3,=142.61, p<0.001) and
Group x Condition (F, ,3,=06.29, p <0.005) effects
were found such that accuracy declined as the Condition
became more difficult; however, the decline in accuracy
was more dramatic in the DM group (Fig. 3C). When
health state covariates were included in statistical
analyses, the Condition (F, ,3=170.39, p <0.001) effect
remained significant. However, health state covariates of
Total Cholesterol (F 1,3=9.95, p<0.005), Menopausal
Age (Fi1p3=14.47, p<0.001), and Prempro Use
(F1123=13.86, p<0.001) replaced the Group effect.
These health state covariates were positively correlated
with accuracy (Total Cholesterol: r,5,=0.277, p <0.001;
Menopausal Age: r,5,=0.219, p <0.001; Prempro Use:
ry5,=0.137, p <0.05).

Working memory (N-back) evaluations: response
time

Differences between single- and dual-task response times
were not found via ALM; subsequent analyses of N-back
data were performed collapsed across both single- and dual-
task conditions. Group differences in N-back response times
were found (F, ,;,=21.20, p <0.001); such that the DM
group had longer response times than controls (Fig. 3D).
Significant Condition (F, ,;=4.72, p<0.05) and Group x
Condition (F, ,17=3.44, p <0.05) effects were found such
that response times were generally flat in the control Group

but were significantly higher in the 1-back condition for DM
group as compared to all other Conditions (Fig. 3D). When
health state covariates were included in statistical analyses,
the main effects of Group and Condition disappeared.
Instead, Total Cholesterol (Fig0= 16.92, p<0.001)
dominated the model and was negatively correlated with
response time (r,40=—0.257, p <0.001).

Cortical hemodynamic responses

Cortical hemodynamic responses during working memory
(N-back) evaluation

ALM analyses indicated significant differences in Task in the
HbO data, but not the HbR data. In the following paragraphs,
we present the HbO data first with results presented in the
single-task separate from the dual-task. Afterwards, we

A, Single Task - Control | Single Task - DM

Right
84 Left

i

=a
-

-

=

-

Em

HbO t-score
N
H
H
-
—=

» &

&
X

PFC  SMA M1 $1 B40 PFC SMA M1 S1 B40

B Dual Task - Control | Dual Task - DM

Y .
i S B T

4
; T
o 2
£ : | I
: e
~ P ]
=
64
84
-10 4
-12 :
PFC SMA M1 S1 B4 PFC SMA M1 ST B40

ROIs

Fig.4 fNIRS t-scores for HbO during single-task and dual-task
evaluations for each Group, depicted by ROI and Hemisphere. Mean
and standard error (SE) values are shown. Significant at p <0.01 (¥*),
p<0.005 (**%*), p<0.001 (¥****) are shown. White bars indicate right
hemisphere, gray bars indicated left hemisphere
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Single-Task Differences in HbO across N-back Condition
0-back 1-back 2-back

HbO t-score

-10 4 Right
Left
12 - -
PFCSMA M1 S1 B40 PFCSMA M1 S1 B40 PFCSMA M1 S1 B40
ROIs

Fig.5 fNIRS t-scores for HbO during N-back single-task evaluations
(0-, 1-, and 2-back Conditions), depicted by ROI and Hemisphere.
Data are averaged across Group. Mean and standard error (SE) values
are shown. Significant differences between N-back Conditions at
p<0.001 (****) are shown. White bars indicate right hemisphere,
black bars indicate left hemisphere

present the HbR data collapsed across Task, as Task was not
found to be a significant factor for HbR.

HbO data, single-task

During the single-task working memory evaluation,
significant effects of Group (F;4=4.07, p<0.05), ROI
(F476=35.40, p<0.001), and Condition (Fy4=35.77,
p<0.001) were found in HbO t-scores via ALM. Overall,
the data show significantly larger average HbO #-scores in
the DM Group as compared to controls; this is particularly
noticeable in PFC (between Group differences are denoted
in Fig. 4A). As the N-back Condition became more difficult
(0-back vs. 2-back), HbO ¢-scores decreased significantly
on average across ROIs except for PFC and SMA, denoted
in Fig. 5. HbO t-scores in PFC were significantly different
from S1 and M1 as N-back Condition difficulty increased
(shown in Fig. 5), supported by a near significant interaction
in Condition x ROI (Fg 7=1.77, p=0.096). No health state
covariates were found impact to HbO #-scores in the single-
task condition.

HbO data, dual-task

During the dual-task working memory evaluation, a
significant interaction effect in HbO of Group x Side x ROI
(Fi3,170=1.971, p<0.05), shown in Fig. 4B, was found when
response time and accuracy were included as covariates
within the statistical model via ALM. Posthoc analysis of
this data show significantly higher HbO t-scores by the DM
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Fig.6 fNIRS #-scores for HbR collapsed across all Tasks and
Conditions, depicted by ROI and Hemisphere. Mean and standard
error (SE) values are shown. Significant differences at p<0.005
(**%) and p<0.001 (¥***) are shown. White bars indicate right
hemisphere, black bars indicated left hemisphere

Group in the left hemisphere in the dual-task (most notably
in B40 as compared to PFC and M1), denoted in Fig. 4B.
No other health state covariates were found impact to HbO
t-scores in the dual-task condition.

HbR data, collapsed across task

With respect to HbR, a significant effect of ROI (F 1g,=2.60,
p <0.05) was found along with a significant Side x ROI
interaction (Fy 13;=3.93, p <0.005) via ALM, as indicated
in Fig. 6. HbR t-scores showed significant asymmetry in
the PFC region, as well as significant differences between
PFC and M1 activation in both hemispheres (supported
by posthoc testing). No health state covariates were found
impact HbR t-scores.

Discussion

The purpose of the current study was to evaluate changes
in cortical oxygenation indices of postmenopausal women
both with and without DM during cognitive tasks. The data
support each of our hypotheses. In support of Hypothesis
#1, cognitive impairment in memory/recall was observed in
postmenopausal women with DM as compared to controls.
Impaired memory function appeared as reduced accuracy
and did not differ if the task was performed alone or coupled
with a simultaneous motor task. In support of Hypothesis #2,
HbO values differed between groups during memory/recall
tasks; in some ROIs, differences in HbO were magnified in
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the DM group, suggesting changes in memory activation
patterns with increased functional activity of non-PFC
regions in PwDM. With respect to our exploratory arm
of the study, there is an influence of poor health state and
earlier menopausal age on poor memory function; however,
no influence of health state was found to impact HbO or
HbR. In the following paragraphs, we discuss the results
of this study regarding cortical oxygenation, functional
neuroimaging, the impact of health state markers, and
menopause in assessment of both behavior and cortical
hemodynamic function.

DM-changes in hemodynamic response and use
of fNIRS

The data indicate a significant difference in the use of HbO
concurrent with impaired memory function, such that the
DM group exhibited differences in PFC HbO activity
during dual-tasks and dedifferentiation of functional brain
activity across remaining ROIs as compared to controls.
Functional activity changes concurrent with deficits in
working memory in the DM group indicate a functional
root for memory deficits in persons with DM that is
linked to HbO. This is consistent with our recent finding
of altered cortical HbO use in PWDM in sensorimotor
tasks (Gorniak et al. 2020). Together, these data indicate
that it is a problem with the hemodynamic response that
leads to behavioral deficits in DM. This supports use of
behavioral monitoring along with fNIRS to detect early
MCI development since techniques such as fMRI rely on
the paramagnetism of HbR, thereby not fully measuring
cortical hemodynamic activity which involves both HbO
and HbR. Increased HbO use during dual-tasks is notable
in the DM group, as HbO use is not indicated by other
functional imaging techniques—including fMRI. By
its nature, HbO is diamagnetic and not attracted to any
magnetic field. Use of (f)MRI also limits the possible
sample for study participants, as implanted devices
(e.g., stents, pacemakers, etc.) commonly used to treat
cardiovascular comorbidities of DM are an exclusion
criterion for (f)MRI (Manschot et al. 2006; Harten et al.
2006; van Harten et al. 2007; Christman et al. 2010;
Brundel et al. 2012). Techniques such as fNIRS offer
better insight into cortical activity using a more inclusive
approach that may better reflect early markers of MCI
during realistic tasks similar to activities of daily living in
populations at high risk of developing dementia (Pinti et al.
2020). Aberrations in cortical activity may be a potential
biomarker for tracking changes in cognitive decline in
DM using wearable technology such as fNIRS ahead of
development of dementias such as Alzheimer’s disease.
Detection of cortical activity differences via fNIRS
provides an inclusive approach and expands monitoring

eligibility for persons with implanted devices (e.g., stents,
pacemakers, etc.). This is consistent with other work done
in fNIRS supporting its use in investigating cognitive
function with respect to both advanced age and disease
(Sato et al. 2013; Bonetti et al. 2019; Beishon et al. 2021;
Koo et al. 2022; St George et al. 2022; Hou et al. 2002).

Significantly different use of HbO in the cortex in DM
may indicate reduced bioavailability of oxygen in DM;
consistent with evidence of behavioral impairment in DM
(Gorniak et al. 2020). However, the change in HbO use in
the DM group during dual-tasks was not accompanied by
improved memory, as accuracy and response time were
generally worse in the DM group across all conditions.
DM is associated with increased hemoglobin-oxygen
affinity, which is responsible for lower oxygen delivery
rates to tissue (Pu et al. 2012). DM is also associated with
impaired hyperemic response, endothelial dysfunction, and
microvascular dysfunction (Meyer et al. 2008; Petrofsky
2011; Barwick et al. 2016; Pollonini et al. 2020). However,
the increased use of HbO in the DM group within the
current data set indicate that increased hemoglobin-oxygen
affinity does not contribute to the observed memory
deficits; rather the impairment in vascular function drives
memory deficits in DM.

Impaired memory function and cortical activity
changesin DM

The DM group exhibited significant bilateral PFC
activation via HbO in dual-tasks as compared to controls,
despite memory error rates not improving with increased
PFC activity. These activity differences co-occurred with
activation of non-PFC cortical areas involved in movement,
priming for movement, phonological processing, and
emotional responses (M1, SMA, and B40 respectively). This
DM-specific shift in HbO use is a novel finding that cannot
be detected by fMRI. An increase of HbO along with higher
HbO values in other measured ROIs suggests distributed
cortical HbO activity in DM in an attempt to compensate for
memory deficits. This change in HbO was not accompanied
by Group differences in HbR use, suggesting that altered
HbO use across the cortex is the driver of memory deficits
in DM. Changes in HbO in the DM group are supported
by evidence of increased HbO use in the primary visual
cortex in PwDM during visual stimulation (Aitchison
et al. 2018), and may suggest an increased sympathetic
drive in the autonomic nervous system in postmenopausal
women (Barnes et al. 2014). These differences may also
suggest potential advanced aging of the brain via cortical
dedifferentiation in PwDM beyond what is to be expected
with healthy aging (Koen et al. 2020; Seider et al. 2021;
Rabipour et al. 2021).
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Changes in PFC activity in HbO use are consistent with
reports of hypothalamic—pituitary—adrenal axis (HPA)
dysfunction, insulin signaling aberrations, and pathological
changes in hippocampal functions all associated with
DM (Sullivan and Gratton 2002; Eichenbaum 2017; Soto
et al. 2019). The PFC-hippocampus interaction is known
to be important for episodic memory (Eichenbaum 2017).
Metabolic disruption of PFC-hippocampus via endocrine
dysfunction in DM impacts memory and behavior (Sullivan
and Gratton 2002; Ho et al. 2013). Aberrations in PFC
activity spurred by changes in the HPA axis in DM are
consistent with impaired stress coping ability and symptoms
of cognitive decline (Sullivan and Gratton 2002; Ho et al.
2013)—in line with our observations of impaired working
memory in DM (Gorniak et al. 2019a, b).

Influence of health state variables and menopause

Reports of the link between metabolic syndrome and cognitive
impairment abound in the evidence base (Yaffe et al. 2004).
This is supported by our findings of some health state markers
(e.g., lipidemia) being associated with impaired memory
function in DM (Gorniak et al. 2019a, b), such that PwDM
on statins for lipidemia exhibit lower total cholesterol scores
but impaired memory function as compared to controls with
higher total cholesterol scores who may not take statins for
lipidemia management. No significant influences of health
state variables on cortical activity were found in the current
study. Our prior work on sensorimotor function indicated
that health state variables clarified functional cortical activity
deficits in DM. The lack of similar result in the current data
indicate that hemodynamic response of some cortical regions
may not be moderated by commonly measured health state
variables (e.g., cholesterol). Cortical regions closely linked
to the limbic system, such as PFC and B40, may be more
significantly impacted by disruptions to the neuroendocrine
system instead. Such disruption may impact cortical activity
by blunting both neurovascular and hemodynamic responses
(Drew 2019).

Consistent with (Grady et al. 2002), working memory
data was impacted by menopausal age and use of specific
hormone replacement therapies (HRT). Increased
menopausal age (resulting in a shorter time between
menopause and participation in the current study) and
Prempro use were associated with higher working memory
accuracy. Menopausal age was significantly different
between the DM (43 + 11 years) and control (50+7 years)
groups (t,,=2.85, p <0.05); however, DM-related deficits
in accuracy persisted once menopausal age was considered
in our statistical models. In contrast, no significant
influences of menopause or HRT were found on cortical
activity. The lack of a specific impact of menopausal age
on cortical hemodynamic response during memory tasks
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is an intriguing outcome, as menopause is associated
with impaired hemodynamic responses of the cortex and
skeletal muscle during sensorimotor tasks (Pollonini et al.
2020; Gorniak et al. 2020). There is some evidence that
HRT improves hemodynamic responses in postmenopausal
females (Peterson et al. 2000; Fadel et al. 2004); however, it
is unclear if HRT is also protective against deficits induced
by a combination of DM and menopause. It is also unclear
if and how HRT during a certain time window (e.g., early)
during menopause may protect both cardiovascular and
cognitive function (Grady et al. 2002; Cagnacci and Venier
2019; Manson et al. 2020). A complex interplay among
menopause, menopausal symptoms, sex-hormones, and
cognitive decline has been suggested (Maki 2015; Cagnacci
and Venier 2019; Manson et al. 2020; Maki and Thurston
2020); however, further work is needed to assess what
features of menopause may truly underlie memory decline
in women, particularly women with DM.

Conclusion

Deficits in working memory accuracy were found in the
DM group as compared to controls. Differences in HbO
responses occurred such that the DM group exhibited
altered PFC activity magnitudes and evidence of increased
of functional cortical activity across remaining ROIs.
HbO responses in the DM group were not associated with
worsened health state measures (e.g., lipidemia). These data
indicate a shift in cortical activity regarding memory use in
DM concurrent with poor memory. This DM-specific shift
of HbO use is a novel finding that cannot be detected by
fMRI and is consistent with HPA dysfunction. This work
underscores the value of using wearable non-MRI-based
neuroimaging technology to monitor functional deficits to
detect mild cognitive impairment using a more inclusive
approach.
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