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Pseudo-spin order of Wigner crystals in multi-valley electron gases
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We study multi-valley electron gases in the low density (rs > 1) limit. Here the ground-state
is always a Wigner crystal (WC), with additional pseudo-spin order where the pseudo-spins are
related to valley occupancies. Depending on the symmetries of the host semiconductor and the
values of the parameters such as the anisotropy of the effective mass tensors, we find a striped
or chiral pseudo-spin antiferromagnet, or a time-reversal symmetry breaking orbital loop-current
ordered pseudo-spin ferromagnet. Our theory applies to the recently-discovered WC states in AlAs
and in mono and bilayer transition metal dichalcogenides. We identify a set of interesting electronic
liquid crystalline phases that could arise by continuous quantum melting of such WCs.

I. INTRODUCTION

The study of the two dimensional electron gas (2DEG),
both experimentally and theoretically, has been extraor-
dinarily fruitful [1]. From the theoretical perspective, it
is one of the most basic problems in correlated electron
physics, while because it can be realized and probed in
semiconductor devices, it is of direct experimental sig-
nificance. In its simplest realization, the electrons are
associated with a unique minimum (“valley”) in the host
semiconductor’s band dispersion, and can be treated (in
the context of the effective mass approximation) as for-
mally analogous to electrons in free space.

However, in many experimentally relevant cases, the
host semiconductor has more than one relevant valley [2].
This results in a more structured version of the 2DEG
in which the electrons carry a pseudo-spin index corre-
sponding to the distinct valleys. This opens the possibil-
ity of a host of new collective states.

In the present paper, we analyze various natural multi-
valley versions of the 2DEG in the low density (large
rs) limit. Here, the Coulomb interactions dominate the
kinetic energy, and so for precisely the same reasons as in
the simple 2DEG, the system forms an insulating, Wigner
crystalline (WC) state [3]. However, when the electrons
in question have a pseudo-spin degree of freedom, the
nature of the pseudo-spin order in the WC remains to be
resolved. Here, we address this issue for various natural
valley structures (i.e. for different sorts of pseudo-spin
symmetries). We show that the pseudo-spin order can
be determined in an asymptotically controlled expansion
in 4/1/rs. (By contrast, the issue of spin order in the WC
cannot be addressed in any order in 1/1/7, as it involves
tunneling processes of order exp [—oz rs].) Analogous
phenomena have been discussed in the context of 2DEGs
with Rashba spin-orbit coupling, that can be viewed as
having a continuous, rather than discrete, pseudo-spin
degree of freedom [4; 5.

As addenda, we consider several extensions of these re-
sults: 1) We comment on the application of these ideas
to moiré systems, in which commensurability effects be-
tween the WC and the moiré lattices can be tuned. 2) We
briefly consider the simplest 3d version of the pseudo-spin

ordering problem. 3) We consider some interesting possi-
ble multi-step quantum or thermal melting processes of a
pseudo-spin ordered 2D WC that lead to electronic liquid
crystalline states with various patterns of vestigial order.
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FIG. 1. Schematic representation of valleys on the Brillouin
zone of 2d crystals. The distinct colors indicate distinct val-
leys (pseudo-spin polarizations) and the shapes are represen-
tative of the Fermi surface at some fixed, small electron den-
sity. Cases (a) and (b) correspond to valleys with anisotropic
masses tensors (Sec. III). Case (c) correspond to a pair of val-
leys related by inversion symmetry and cubic corrections to
the dispersion relations (Sec. IV). Case (d) is a more com-
plicated example that could be realized on a system with Cy
rotation but no reflection plane. The same color scheme will
be used in subsequent figures.

The paper is organized as follows. In Sec. II we in-
troduce some notation and review the approximations
used in this work. Sec. IIT considers the effect of mass
anisotropy on the Wigner crystal and how the pseudo-
spin degeneracy is broken when there are multiple val-
leys related by rotations. Sec. IV treats possible ways
to lift the degeneracy between pairs of valleys related by



inversion symmetry. In Sec. V, we consider extensions
of our considerations to external moiré potentials and to
Wigner crystals in three dimensions. Then in Sec. VI
we entertain various scenarios for melting of our Wigner
crystal. The bulk of the paper is relatively technical, so
in Sec. VII we summarize the principle findings.

II. BACKGROUND
A. DMulti-valley semiconductors

Consider a semiconductor whose conduction band
has minima at n, distinct, symmetry-related momenta
{Q1,...,Q.,} in the Brillouin zone. When we slightly
dope the system we can use the effective mass approx-
imation. Here we treat the conduction electrons with
crystal momenta near Q, (k = Q) as one flavor of a
2-dimensional electron gas with dispersion relation
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where in terms of ¢y, the electron dispersion relation, the
effective inverse mass tensor is defined as
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k=Q.

We will refer to the electrons with lattice momentum
near Q. to have wvalley flavour Q, or simply a. Here
and henceforth we work in units where i = 1.

The point-group (PG) symmetry of the semiconductor
imposes the following constraints: If g € PG acts as
r — Rgr in real space, then g must permute the valleys,
Re Q. = @), (modulo reciprocal lattice vectors), and the
mass tensors are related by

W) = Rg - W® . RI. (3)

Manifestly, the inverse mass tensors W need not have
the full PG symmetry of the lattice, but only the sub-
group that leaves Q, invariant.

In this paper we consider electrons interacting via long-
range Coulomb interactions that do not depend on the
valley flavor [6] so

e? 1

V(R-R) = pe Ty (4)

The true symmetries of the system are those of the lattice
Hamiltonian which has a space group (discrete transla-
tions combined with the PG) and internal symmetries
such as time reversal symmetry and spin rotation. Once
we make the effective mass approximation, there is an
emergent continuous translation symmetry (R?) and par-
ticle number conservation for each valley (U(1);). Note
that the diagonal subgroup of [, U(1); should be iden-

tified with physical particle number conservation, and is
thus an exact symmetry.

In the familiar case of a single valley at a high symme-
try point in the Brillouin zone, the emergent symmetry
includes the full O(2) rotational symmetry of Euclidean
space, but in most cases this does not happen. Indeed,
the individual W()’s do not have the full PG symme-
try; typically, PG operations operate both on the spatial
indices a and b, as well as involving permutation of the
flavor indices, 7. (In some cases the emergent symmetry
is even larger, e.g. there is a U(2) symmetry when there
are two different valleys related by inversion symmetry,
but we will not consider this cases here.) For simplicity,
we will neglect the possibility of non-symmorphic symme-
tries, so the effective mass Hamiltonian has the symmetry

group

Gpm = (R* x HU(l)(i)) X PG % Gint

i=1

where PG acts as O(2) on R? and by permutation on
the product of U(1)’s. Here Giy are the internal symme-
tries with total particle conservation omitted, which can
include spin-rotation and time-reversal symmetries.

B. Low-density limit

The discussion so far holds for electron densities low
enough compared to atomic scales, thus justifying the
effective mass approximation. There is another density
scale that determines the balance between the kinetic
energy and the Coulomb interactions, conventionally de-

fined as 1/maZ; where aog = t’;;‘ii is the effective Bohr
radius of the system in which m.sy is the square root of
the determinant of the effective mass tensor. We define
the dimensionless quantity ry = (Wnelagﬁr)_l/? as usual.
We focus on the rs > 1 regime, i.e. ng < [maZg] ™'

As in the isotropic 2DEG, the kinetic energy per elec-
tron scales as 1/r2 while the Coulomb energy per electron
scales as 1/rg but the prefactors depend on the various
mass anisotropies. For large values of ry the Coulomb en-
ergy dominates forcing the electrons to form a triangular
lattice [7]. For later convenience we define v as the area

per electron, which for the triangular lattice is v = §a2,
in which, by appropriate choice of units, we will set the
WC lattice constant a = 1.

At this point, there is an extensive degeneracy asso-
ciated with the pseudo-spin orientation at every lattice
site, the resolution of which is the primary goal of the
present work. In the absence of spin-orbit coupling, there
is also an extensive degeneracy associated with spin ori-
entations, which we will ignore for the bulk of this paper.
[8] Finally, there are the usual global degeneracies associ-
ated with the broken translation and rotation symmetries
in the WC. The former of these is exact within effective
mass approximation, but (as we will discuss in the con-



text of moiré systems) is really only a discrete symmetry
when commensurability effects with the underlying lat-
tice are included. However, even within the effective mass
approximation, the rotational symmetry of the classical
(r¢ = o0) problem will be resolved to the discrete PG
symmetry, when pseudo-spin ordering is considered; it is
thus important to define the orientation of the WC in
terms of an angle defined relative to the symmetry axes
of the host crystal (fwc).

The following are the principle features of the band
dispersion that could control the pattern of symmetry
breaking in the large r, limit according to the order in
1/rs at which they arise:

1. Valleys with different mass tensors (order - 1/r2 / )
2. Trigonal warping corrections to the dispersion re-

lations (order - 1/r2);

3. Berry curvature effects - although they are unim-
portant for the examples we have considered (order

-1/r3 or 1/7‘2/2).

We will proceed as follows: First, we consider the
effect of feature 1 by studying the phonon zero point
energy as a function of the mass anisotropy, A =
[mr —mrp]/[mr +mr], for 0 < A <1 (my and mp are
the eigenvalues of the mass tensor. When the valley lies
on a reflection-symmetric axis of the BZ, we can identify
my, and mp as the longitudinal and transversal masses,
respectively.). For small A, we obtain an effective sta-
tistical mechanics model from which the optimal pattern
of pseudo-spin ordering can be derived. For more gen-
eral A\, we evaluate the energy of this and other possible
small period patterns of pseudo-spin order to argue that
the same pattern of pseudo-spin order is optimal over the
entire range of .

Next, we add the corrections to the dispersion relations
(features 2 and 3) as small perturbations (in 1/7s) to the
previous states. We again obtain an effective statistical
model for the pseudo-spins that determines more subtle
features of the ground-state order.

C. Effective mass and harmonic approximations

The effective Hamiltonian has the form
H=Y T, () +Y V(-7 - Ri+R), (5
J

i>j

where j labels an electron in valley «; with momentum
pj at position 7 + Ej (R} is the classical WC ground
state position).

To quadratic order in these displacements, we consider
dimensionless position/momentum variables as P, =
—Lia _ and Q. = VE.m*q;, where x;, is the electron

VE m*
displacement in the a direction away from the classical

equilibrium position ffi and p;, is the conjugate momen-
tum. We use

2mrmr e2h? _3
= T B = —— /2 6
m mp+mp’ 4mreadm* s (6)

for mass and energy scales, respectively. The effective
dimensionless Hamiltonian is

Heg |- 1
B = Z S PP, + z]: 5QiK5Q; (1)

heff =

where W; is W(“i)/m* and Kj; is the dipole-dipole cou-
pling matrix given by

1 Rz a Ri’ . .
(Kij)ab = 53 <5ab—3( j)Rg ])b> 1]
1] 1]
) ) (8)
(Kii)ab =Y0ap; V= ) Z Ri:‘o'
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Where v = 5.5171 for the triangular lattice. It is impor-
tant to recognize that the effective mass tensor in Eq. 7
depends implicitly on the pseudo-spin ordering. Because
the effective Hamiltonian is quadratic, it can still be di-
agonalized in terms of normal modes (phonons) with en-
ergies fuw,. Thus, the pseudo-spin-configuration depen-
dent zero point energy of the phonon per electron can be
expressed as

jo 1
= = — 9
b =N BT 2N, Zﬂ Y 9)

where Fqg is the phonon zero-point motion correction to
the ground-state energy per electron. (Similar expres-
sions can be obtained for the configuration dependent
free energy, at low enough temperatures that the har-
monic approximation is reliable.) The preferred pseudo-
spin order is the pattern which minimizes Feg. (This is,
in essence, a form of “order by disorder.”)

Note that when the pseudo-spin pattern is periodic
in space, we can label the normal modes by a crystal
momentum and a band index. The crystal momenta live
in a new Brillouin zone (BZ’) that is obtained by folding
the original BZ of WC. The band index take 2B values,
where B is the number of lattice sites in the unit cell of
the pattern.

III. ANISOTROPIC MASS TENSORS

In this section, we calculate the effect on Wigner crys-
tallization when the mass tensors are anisotropic and the
valleys are related by rotations. Recall that we measure
the anisotropy using the parameter

mrp —mr

A= DL mr (10)
mr +mr



where my, > myp are the two eigenvalues of the effective
mass tensor[9]. The outline of this section is as follows.
First, we consider the small A limit and derive an effective
statistical model. Next, we use a variational approach to
study other values of A\. Finally, we apply the results to
cases relevant to experiments where there are n, = 1,2
or 3 valleys.

A. Small mass anisotropy: perturbative approach

We calculate the leading in A <« 1 behavior of the
system by mapping the problem to a classical clock model
on the triangular lattice with long-range angle-dependent
interactions. See App. C2 for details.

The phonon zero-point energy in Eq. 9 can be ex-
panded in powers of A\ as epn = ZZO:O en A" with coef-
ficients that depend on the pattern of orbital ordering.
This, in turn, is most efficiently represented by identi-
fying a phase variable, ; on each site, that indicates
the orientation of the preferred axis of the effective mass
tensor, and which can take on one of n, discrete values,
equally spaced in units of 27 /n,, starting from fwc which
is the angle between one of axis of the WC and the host
semiconductor. The leading correction that depends on
the valley pattern is A%eq, where

1
€2 = _Nicl Z (I);;kj(k)q)zka (11)

@y, is the Fourier transform of [cos(26;),sin(26;)]" and
j(k) is a symmetric matrix (given in App. C2, Eq. C9)
obtained from the phonon spectrum of the WC with
isotropic effective mass.

We have evaluated .J(k) numerically and found that
its largest eigenvalue over all k arises at the M, M', M"
points. The eigenvector at M = %[1, 0] is [1,0]T.
Therefore, were we to ignore the discreteness of the phase
variables, we would conclude that the optimal pattern
would be €% = ¢Ri'M (or the analogous state at M’
or M"). This is thus a lower bound on the energy of
the discrete model. Taking the constraint on values of 0,
into account, we can achieve this optimal pattern with
Owc = 0 so long as the number of valleys, n,, is even.
The order for n, = 2 is shown in Fig. 5. For n, odd, no
state saturates the lower bound, but one can construct
states that are close to the ideal state. The case of n, =1
(which is equivalent to the fully polarized state for arbi-
trary m,) is treated in Sec. III D 1. For n,, = 3 we can con-
struct a close to optimal state with e? = M
We have checked that this configuration has lower energy
than any state with no more than three electrons per unit
cell, although we have not proven that it has the absolute
minimum energy.

B. Arbitrary mass anisotropy: Variational
Approach

We study the T = 0 phases at arbitrary mass
anisotropy A using variational trial states. Specifically,
we assume periodic pseudo-spin patterns with various
sizes of unit cell.

The energy per electron of each trial state can be writ-

ten as
v dk? {
€ph = = —— Tr \/Qz} (12)
P 2 /keBz' (2m)? g

where BZ’ is the folded Brillouin zone with with size 1/B,
where B is the number of sites on the new unit cell.
The dynamical matrix is Q2 = VWK(q)VW. Here W
and K(q) are 2B x 2B matrices that represent the in-
verse mass anisotropy and the elastic matrix within the
pseudo-spin pattern unit cell. See App. B for details.
For instance, the period-two stripe state from the small
A limit has B = 2, and BZ’ corresponds to the yellow
rectangle in Fig. 2.

For the three cases considered in Sec. IIID (n, =
1,2, 3), we found that the following is a good fit for the
energy of the preferred states (depicted in Figs. 4,5,7,
respectively):

n 2
el(phv)(n)ﬁt “\Vix (Ao + A+ Aon® + Asn®) (13)
where 7 = /7L € [0,1). The coefficients A; are n,

dependent. Their values are displayed in Tab. I.

C. Physical quantities from variational states

We calculate the following measurable properties using
the trial states:

e Broken symmetries;
e The phonon’s dispersion relations[10];
e The optical conductivity.

In particular, an expression for the conductivity can
be obtained from the Kubo formula,

47 O(w —wp)

== ] (0] Jaln) (n|Jp]0).  (14)

Tap(w)

where A is the area of the sample and the sum is over ex-
cited states, |n), with energies w,, > 0. We use J= > J;
for the current operator, where J_; = ety = eW; - p; is the
contribution to the current of the electron at site 7. Af-
ter some algebra (see App. E), the optical conductivity
can be written as the sum of the contribution of each
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FIG. 2. Wigner crystal’s Brillouin zone (boundary in blue)
and folded Brillouin zone (boundary in yellow) for our candi-
date anisotropic Wigner crystals with period two stripe. (The
black line corresponds to the path used in Fig. 6.)
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FIG. 3. Dependence of the normalized zero point phonon en-
ergy (Eq. 12) for the different candidate states with different
number of valleys (n,). The dots are obtained via numeri-
cal evaluation of the integral and the dashed line corresponds
to the fit in Eq. 13. A sketch of the states are shown in
Figs. 4(ny, = 1), 5(ny = 2) and 7(n, = 3). (Note that we
have introduced a shift to make the three curves distinguish-
able.)

optical phonon with crystal momentum zero (in the re-
duced BZ). Note that the above calculation is equiva-
lent to the computation of the optical conductivity using
the Kubo formula according to o(w) = lim; ,50(q,w)).
This explains why we do not get a contribution from
the acoustic modes, i.e., there is no §(w) contribution.
(In the presence of disorder, this acoustic contribution
would appear as a low frequency feature associated with

a “pinning mode.”)

Ty AO A1 A2 A3 Flg #
11/1.116|0.941]0.120|-0.0395 4
2 (/1.102]0.979]0.083|-0.0267 5
3 1/1.108]0.962(0.105 |-0.0360 7
TABLE 1. Fit parameters (Eq. 13) for the variational en-
ergy e;ﬁ"’)(n)ﬁt = \/g (Ao + Ain+ Aon” + Asn®) (n =

% € [0,1)) of the states depicted in the respective figure.

D. Applications to 2d semiconductors

1. One valley (ny, = 1)
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FIG. 4. Schematic real space charge density in a WC with
a single anisotropic valley (n, = 1). (Inset shows the ori-
entation of the underlying crystal’s BZ with respect to the
WC.)

We start by considering the case of a single valley with
an anisotropic effective mass, which is also relevant to the
case of a system with multiple valleys in a fully valley
polarized state. In this case, we only need to consider
a unit cell with a single site. We find that the optimal
orientation of the WC relative to the principal axes of
the effective mass tensor is such that the long direction
of the Fermi contour is perpendicular to one of the WC’s
axes. A depiction of the charge density distribution that
results from the electron zero-point motion is shown in
Fig. 4. A fit and plot for the energy of this variational
state can be found in Tab. I and Fig. 3, respectively.

The phonon dispersion near k = 0 is anisotropic:

Wae, 1, (k) = \/k‘ko (cos?(6k) + n? sinz(ﬁk))

(k) vk (15)
Wae,T = .
\/C082 (0x) + 12 sin? (0,




where v? & 0.245(1 — A\?) and k = [k cos(0g), k sin(6)].
Along symmetry directions, the lower branch is the trans-
verse acoustic mode and the upper is the longitudinal
acoustic mode, so we more generally label them L and
T. The dispersion along various symmetry directions is
displayed in Fig. 6a. There is no optic phonon mode, and
consequently no optical response.

2. Two valleys related by Ca(n, = 2)

FIG. 5. Schematic real space charge density in a WC with
two valleys related by Cy symmetry (n, = 2). (Inset shows
the orientation of the underlying crystal’s BZ with respect to
the WC.)

In this section we consider a semiconductor with PG =
D, and two pockets at X = [r,0] and Y = [0,7], as
shown in Fig. 1-a. The two valleys are related by Cy
symmetry. We consider n* = mg/my € [0,1). This
section could be relevant to AlAs [11].

We have computed epy, for all symmetry inequivalent
valley ordered patterns with unit cells of up to six sites.
The valley pattern with the lowest ey, has the period-two
valley-stripe order depicted in Fig. 5. A close competitor

is the fully polarized state considered above. In partic-
@ _

. € e .
ular, the ratio —QT% depends on the mass anisotropy
e e
ph ph

and varies from 0 to approximately 6.4 x 10~2. Our re-
sults coincide with the results of epn from Ref. [5] in the
limit » — 0, and with our results in Sec. IIT A in the
n — 1 limit.

There is an equal number of X and Y valley electrons
per unit cell so there is no net valley polarization. How-
ever, the PG is broken to Dy because the two flavours
are at inequivalent positions in the unit cell.

As there are two electrons per unit cell, there are 4
phonon branches - two optical and two acoustic. Even
though the valley pattern has only Dy symmetry, the

FIG. 6. Phonon band structure for the three relevant states
for various values of n* = % See Fig. 2 for the meaning

of the momenta labels. The polarized state (n, = 1) has one
electron per unit cell, and so two acoustic branches, while the
stripe states (n, = 2,3) have two electrons per unit cell, and
hence two additional optic modes.

long wave-length acoustic modes are isotropic

wac,L(k) -
wac,T(k) =vk

(1= 22) kk, 16)

where vZ 2~ 0.245(1 — A\?) and ko, = f/—g
In Fig. 6b we show the phonon dispersion relations
along high-symmetry directions for several values of n? =



mr/my,. Note that the phonon frequencies at k =T are
independent of 7.

The optical conductivity for the state depicted in Fig. 5
is the sum of contributions from the two optic modes,
o(w) =M (w) + o (w):

o0 () = 00A? [Baabrod(w — w1)]

Ug,) (w) = 00N [0y Obyd (W — w2)] (17)
w1 ~ 1.19255
wo ~ 3.38394,

o9 = and w is measured in units of F,, and
the imaginary opamt can be computed straightforwardly
from Kramers-Kronig. Note that the existence of optic
modes is directly related to the doubling of the WC unit
cell; they would not arise, for example, in a fully valley
polarized state.

27re2ncl 1
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8. Three valleys related by Cs
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FIG. 7. Schematic charge density in a period-2 stripe valley
ordered WC with three valleys (n, = 3) related by C3 sym-
metry. (Inset shows the orientation of the underlying crystal’s
BZ with respect to the WC.)

Next, we consider a system with PG = Dg with three
valleys related by threefold rotations. For instance, the
Fermi pockets could be at the M points (the middle
points of the edge of the hexagonal BZ), as shown in
Fig. 1-b.

We considered unit cells with up to 3 electrons per unit
cell. We find that the configuration with the lowest en-
ergy is a period-2 valley stripe pseudo-spin antiferromag-
net. The fully polarized state is again a close competitor.

The valley order has momentum M (as for n, = 2)
but only electrons in two valleys out of the three valleys
participate. The axes of the Wigner crystal no longer

align with those of the underlying lattice. Instead, the
horizontal axes of the WC lie preferentially at about 15°
relative to one principal axes of the underlying crystal.
Equivalently, the direction of the principal axes of the
effective mass tensor of the unpopulated valley is oriented
at 45° with respect to the horizontal axes of the WC. A
cartoon of this state is shown in Fig. 7. The orientation
is the equivalent to the proposed low energy state for the
effective XY model n, = 3 of Sec. IITA.

The long wave-length longitudinal (L) and transverse
(T) acoustic modes are anisotropic,

A
Wae, (k) = vV kkor /1 + 5 sin(2¢)

k (18)
Waer (k) = ____VmRF
1+ 2 sin(2y)

where vy, r < V1 — A2 and k = k[cos(p), sin(p)] .

In Fig. 6c we show the phonon dispersion relation
along high-symmetry directions for several values of n? =
my/my. Note here that the optical phonon frequencies
at k =T are i dependent.

This pseudo-spin order has inversion symmetry but
lacks reflection symmetry. This shows up in the optical
response as an 77 dependence of the transmission axes.
The optical frequency is the sum of contributions of the
two optical modes o(w) = oM (w) 4+ @ (w),

0 (@) = 0uD; [0 5w —wy)]  (19)

2
here o = 2TEfel 1,

7, w8 = [cos(6;),sin(0;)] is a polarization vector, and

Dj is the weight of the delta function. The 7 dependence
of wj, 00) Dj is plotted in Fig. 8.

wj is the frequency of optical mode

IV. INVERSION SYMMETRY BREAKING

In this section we consider possible effects that could
break the degeneracy between pairs of valleys related by
inversion symmetry. For this section, one should have
in mind valleys at the £K points of a crystal with Cg
symmetry, as shown in Fig. 1-c. Our considerations may
be relevant for monolayer and bilayer transition metal
dichalcogenides [12; 13].

A. Trigonal warping

We start by considering trigonal warping, i.e. we go
beyond the effective mass approximation and add a cubic
in p term to the kinetic energy in Eq. 1:

Z b papb + Z 30 abcpapbpc (20)

a,b,c
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FIG. 8. Dependence of parameters of the optical conduc-
tivity of stripe phase for n, = 3. (a) phonon frequency nor-

malized with respect to the n = 1 model (E, = g/ﬁ).

(b) Deviation of the transmission axes from the isotropic limit
(n — 17). (c) weight of optical conductivity for the optical
bands. The green line is a guide for comparison to the weight
of optical conductivity of the n, = 2 state.

If valleys a,a’ are related by inversion, we must have
W@ = W) and ¢ = —¢&) Needless to say, in
order to insure that the Hamiltonian is bounded below,
we need to include higher order terms as well - at least
to order p*. However, since we will treat the effects of
trigonal warping in perturbation theory, we do not need
to include these higher order terms explicitly.

For simplicity, we consider a pair of C3-symmetric val-

leys related by inversion. The dispersion relation with
Pz = pcos(fp) and p, = psin(fp) simplifies to

2
Ta(p) = 5— +1p°cos(30p —3¢a),  (21)
m
where ¢, is an angle that fixes the orientation of the
Fermi contour with respect to Wigner crystal coordi-
nates. If @ and o' label a pair of valleys related by
inversion, then 3¢, = 3¢, + m. We rescale the posi-
tion and momentum variables as in Sec. II C and use the
harmonic approximation. The effective Hamiltonian in
rescaled variables is

1 1
heft = Z §P¢2 + Z 5 QiKiiQ;
3 (29 (22)
+ez Y [eB0 (Pry —1P;y)® + huc]

where €3 = t\/F.(m*)3 goes like €3 rs_3/4 as ry —
00. Due to the C'5 symmetry, the next leading angle-
dependent correction to the effective mass approximation
is at order P% which has a prefactor that scales as 1/r2.

The details of the calculations can be found in
App. C3. Here we give an overview of the results. As
we did in Sec. IIT A, we expand the phonon energy with
trigonal warping epAh =37, esed where each e in
principle can depend on the pattern of valley ordering.

We find that eOA is independent of the ordering pattern.

60A + 6361A is an effective potential for Poyr = w1 >, Pr.

Upon including a quartic term in Pgys for staubﬂity7 the
potential is optimized by Pops = 0. (Were we to consider
a system whose €3 = 0 ground state lacks C3 rotation
symmetry, there could be a term e3Pojs in the effective
potential so there would be a non-zero Pops < e3. We
can interpret this as a displacement of the band minima
in the BZ of the underlying crystal.)

The next order correction to the energy is e%eQA with
1 -
A
€y = _]\[71 Z q)g;kJS(k)q)B;k7 (23)
e
k

where D3 g, is the Fourier  transform  of
[cos(3¢;),sin(3¢;)] T and Js(k) is a symmetric ma-
trix (given in App. C3, Eq. C15) obtained from the
phonon spectrum of the WC with isotropic effective
mass. The largest eigenvalue of J3(k) is at k = 0 with
eigenvector [0,1]7. Therefore, the state with lowest
energy is a valley-ferromagnet (kK = 0) and 3¢; is
constant and equal to +7, as shown schematically in
Fig. 9.

B. Berry curvature

The Berry curvature can be thought of as a magnetic
field in momentum space. Therefore, in a semi-classical
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FIG. 9. Schematic real-space charge density of the valley-
polarized state for a 2DEG with two valleys related by inver-
sion symmetry at the +K points and with trigonal warping.
(Inset shows the orientation of the underlying crystal’s BZ
with respect to the WC)

picture (like ours) we need to modify the commutation
relations between the physical position and momentum
variables ( see e.g. Refs. [14; 15]) to

{ri™e, rp™} = calB;
S h
{pE b} = 0; (24)

{ri™>, pp™*} = bup-

where g, is the Levi-Civita symbol. Here B is the Berry
curvature, assumed to be constant for simplicity. We
identify the canonical variables

a
canon __ pphys
Pq — Fa .

that are used to quantize the theory.

At large rg, the Coulomb energy dominates so the elec-
trons form a triangular lattice. Next, we use the har-
monic approximation as in Sec. IIC to get the same
Hamiltonian as Eq. 7 with Q; and P; replaced by QP™* =

. . phys
VE.m*¢™™* and PP = \/%. We then ought to
write the Hamiltonian in terms of the (rescaled) canoni-

cal variables

1
pcanon ’I“phys + ZBe phys’
a - TPt (25)

_ hys ] phys
QR = QU 4 Beyy Py

pcanon _ Pphys (26)

where B = E,m*B is a dimensionless measure of the

Berry curvature that scales as rs 3/ when ry — oco. From
now on we will write Q;(F;) for Q§amon (Pgaron).
A pair of valleys related by inversion symmetry has

the same mass tensor but opposite Berry curvature. To
describe the latter, we introduce an Ising variable p = +1
that we identify with the two possible valleys polarization
within the pair so that we can write the Berry curvature
of the pair of valleys as B = ,u|l§‘.

The dimensionless effective Hamiltonian is

H,
heff = Eﬂ

= ho + |B|h1 + |B‘2h2;
1 1
ho = Z §Pi2 + Z iQiKiij;
7 i,J

-y pi(eP)iKyQ; + QK (eP); . (27)
i

hy

2 b

hy = Ui,uj(ep)iKij(f‘:P)i;
3 1lel),
here the sums of 7 and j are over the sites of the triangular
lattice. Note that the pseudo-spin pattern enters Eq. 27
via the sign of the Berry curvature (u;). eP denotes the
product of the Levi-Civita tensor and the vector P.

Recall that we are interested in the large rg limit.
Therefore, we can treat hy and hy via degenerate pertur-
bation theory over the ground state manifold of hg. The
extensive degeneracy stems from the pu; variables that do
not enter hg.

The leading effect of the Berry curvature to the energy
is of order r; 3 and corresponds to the expectation value
of E0|B}h1 on the ground state of hg. It turns out that
(h1) = 0 so that the leading effect of the Berry curvature
on the energy comes with a prefactor of EO|B |2 X rg o/2
which is parametrically smaller than the effect of trigonal
warping that is generically present. Therefore, we will
not calculate these higher order corrections of the Berry
curvature to the energy.

V. EXTENSIONS

We now consider two extensions of our methods to
slightly more complicated systems:

A. External moiré potential

While in typical semiconductors, commensurability ef-
fects with the underlying lattice are negligible, if the pe-
riod is extended - as is the case in moiré materials - such
effects can be significant. Consider adding an external
periodic potential that is commensurate with the Wigner
crystal. Still keeping terms that to quadratic order in
displacements about the classical ground-state, this cor-
responds to adding %Kmoiréa%% at every site of the WC.
The elastic matrix gets shifted by a diagonal matrix

Kmoiré(q) = K(q) + "imoiréﬂ;



We will treat Kmoire = % as an additional parameter.
o

In the case of isotropic mass tensors, the (normalized)
phonon energies are

— 2

wmoiré,A(q) W (q) + Kmoiré, A= 1a 2.

In particular, as expected, this gaps the acoustic modes.

We have redone the above calculations of the preferred
orbital ordering in the presence of a commensurability
potential for a subset of the various cases considered
above. For instance, over the range of parameters we
have explored, for the case of a tetragonal symmetry con-
sidered Sec. IIT A in the limit of small mass anistropy
(A < 1), we find that the pseudo-spin configuration with
least energy is still the period-two stripe.

We have also repeated the calculations of Sec. IV A in
the presence of trigonal warping and no mass anisotropy,
and again we find that commensurability effects do not
change the character of the preferred orbital order. To
reach this conclusion, we evaluated the kernel of Eq. 23
with the modified dispersion for fmoire € {1/2,1,2}
and, additionally, performed a large Kpire €xpansion in
App. C3. In both regimes the configuration with least
energy corresponds to e31? = i,

Needless to say, the biggest effects of a moiré potential
(which we do not explore here) is felt if the system is
slightly incommensurate. Here, rather than favoring a
WC with an incommensurate period, the preferred state
is a commensurate WC with a small concentration of
interstitials or vacancies. In a recent study [16], it was
shown that a small concentration of interstitials can have
an outsized effect on the magnetic (spin) order of a WC.

B. 3 dimensional Wigner crystals

We can adapt our considerations to the 3-dimensional
electron gases with multiple valleys. In the following,
we go through the analysis and make emphasis on the
distinctions with the 2-dimensional problem.

At large rg, Coulomb interactions dominate and the
system minimizes the energy by forming a WC with
body-centered cubic structure [17] with lattice vectors
(1, 1,3],[3,—%.4],[4, 3, —3]. The leading correction in
1/rs to the energy is again the zero-point phonon energy,
which depends on the pseudo-spin pattern. If W is the
inverse mass tensor, we take m* = as the mass

3
Tr[W]
scale (which is equal for every valley related by the PG
action) and the mass anisotropy as

A= \/é Tr[(m*w - 11)2}

- \/w%er%er% — W1Wo — WaW3 — W1W3
w1 + w2 + w3

(28)

where w; are the eigenvalues of W.
For small A\, we can derive an effective model for the
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valley pseudo-spin as in Sec. IIT A. The pseudo-spins are
generalized clock variables with states in a group S. The
elements of S correspond to symmetry operations in the
PG of the host crystal that permute the valleys. For
instance, consider a system with cubic symmetry and
valleys at [r,0,0],[0,7,0],[0,0,7]. Then, S = Z3 cor-
responds to 3-fold rotation along the [1,1,1] axis.

The effective energy per electron is better understood
in terms of quadrupolar moments ;. These are re-
lated to the inverse mass tensor of electron at site ¢ by
W; = (14+XQ;)/m*. At every site, we associate to g; € S
the quadrupolar moment obtained by applying g to a ref-
erence Qwc. (Qwce plays the role of Owe from Sec. I11.)

The leading correction in A to the energy is A%es, where

€2 = — (29)

1 o~ -
N zkj QRF(k) Q-

The sum is over the 3-dimensional BZ. Qy, is the Fourier
transform of Q; (seen as a 5 component vector) and R(k)
is a symmetric matrix (the expression can be found in
Sec. C6) obtained from the phonon spectrum of the 3d
WC with A = 0.

We have evaluated R(k) in a 12 x 12 x 12 momen-
tum grid and found that the largest eigenvalue over all k
arises at N = [m, 7, 0] (and symmetry-related momenta)
and has es ~ —0.01283. The corresponding eigenvec-
tor (Qr = 0k, nQ*) is interpreted in terms of the mass
tensors as follows. There is pseudo-spin ordering with
a two-site unit cell (the new lattice vectors are [1,1,1],
[%, —%, —%], [%, —%7 %]) Equivalently, the pseudo-spins
are constant on the x + y = k planes but oscillate in the
[1,1,0] direction. The principal axes of the inverse mass
tensors W (and therefore of Q) are along the x—y, z+y, z
directions of the WC. @Q; has eigenvalues

0P =0:qY, = +v3;4M = V3 )
i =04, = 3,4 = +V3
where qc(ly) is the eigenvalue of Q; (as a matrix) along the

d direction of the electron on sublattice Y.

As in the 2d case, the allowed @Q; configurations are
determined by the host semiconductor. If we restrict to
configurations with two sites per unit cell, we can write

Qi = cos(7)0k.0Qr + sin(y)dk.@Qq. Here ~ is an angle,
Qr and QQ are (properly normalized) symmetric trace-
less matrices, and @Q is a crystal momentum such that 2Q
is a reciprocal lattice vector. In a BCC crystal, there are
8 such momenta: I';, N (plus other 5 symmetry related
momenta) and H = [27,0,0].

For instance, let us go back to the example of a host
crystal with cubic symmetry and valleys at [r,0,0] and
related momenta. We optimize over states with unit cells
with two sites and find that the lowest energy configura-
tion has e; =~ —0.01267 and corresponds to a pseudo-spin
ferromagnet with the longitudinal axes of mass tensor



aligned with one of the nearest-neighbour directions (e.g.
[1,1,0]). Note that the energy of this configuration is
larger than the energy of the configuration we discussed
above but that configuration is not allowed by the host
crystal band structure.

VI. POSSIBILITIES FOR THERMAL AND

QUANTUM MELTING

Even for the case of a single, isotropic valley, the nature
of the transitions from the WC to the symmetric fluid
phase is unsettled. The presence of long-range Coulomb
interactions preclude a single first-order transition [1§],
making it likely that the melting is always a multi-step
transition. For the thermal melting, a two step Halperin-
Nelson scenario with an intermediate hexatic phase is cer-
tainly possible [19]. The nature of the quantum melting
(as a function of decreasing ry) is still less well under-
stood.

In the WC in a host with Cy symmetry, the pseudo-
spin order breaks the Cy down to Cy (Sec. IIID2). It
is thus plausible that the orientational order survives for
a range of T and/or rs beyond the point at which the
translational order of the WC is melted. This naturally
leads to the expectation that there is a two-stage melt-
ing process, via a Kosterlitz-Thouless transition from a
pseudo-spin ordered WC to an electronic Ising-nematic
fluid, followed by an Ising transition to the isotropic fluid
phase. Other possiblities are that there could be an or-
bital ordering transition within the WC phase from the
period two striped phase we found at large ry and T'= 0
to a uniform pseudo-spin ordered WC phase at smaller
rs or larger T'. Tt is also possible to imagine the existence
of a smectic phase intermediate between the WC and the
nematic phases.

In the WC in a host with Cg symmetry, similar con-
siderations apply. Here, the rotation symmetry in the
pseudo-spin ordered WC is broken from Cj to Cs, so
the corresponding nematic phase would be an electronic
three-state-Potts nematic fluid. Moreover, because the
orbital order also breaks chiral symmetry, there is the
possibility of vestigial chiral order once the WC is melted
- either coexisting with nematic order or as a pure chiral
fluid phase.

In the case of AlAs, there is experimental evidence
that as a function of increasing rg, there is a transition
to a fully pseudo-spin polarized Ising-nematic fluid at a
smaller value of 7, than the critical value for WC (or more
directly insulating state) formation|[11]. It is probably
not possible for there to be a continuous transition from
such a state to the pseudo-spin stripe ordered WC state
we found for large r,. However, as already mentioned,
it is not impossible to imagine that there is a transition
within the WC phase from a stripe ordered WC phase
(as in Fig. 5) at large 7, to a fully pseudo-spin polarized
WC (as in Fig. 4) for somewhat smaller r;. Another
possibility is that there may be a small extrinsic energy
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splitting between valleys (e.g. from a small strain) which
would tip the delicate energy balance in favor of the fully
polarized phase.

VII. SUMMARY

The “pure” 2DEG is one of the paradigmatic problems
in condensed matter physics. Moreover, the accuracy of
the effective mass approximation in many lightly doped
semiconductors permits this problem to be experimen-
tally realized with high fidelity in carefully constructed
semiconductor devices. Experimentally observable sig-
natures of a WC phase at large rs have been studied
in devices of ever increasing quality [20-25]. However,
even in the context of the effective mass approximation,
there are typically some additional features of the 2DEG
in real devices that are both important for interpreting
experiments, and also conceptually interesting as exten-
sions of the basic theory. Specifically, depending on the
symmetry and details of the band-structure of the semi-
conductor in question, the effective mass tensor can be
anisotropic, there can be additional pseudo-spin degrees
of freedom associated with distinct valleys of the underly-
ing band-structure, and there can be forms of symmetry
breaking that rely on corrections to the effective mass
approximation (for example, trigonal warping).

Here we have analyzed several robust effects of this
additional solid-state richness on the nature of the WC
phase at large r,. Notice that despite pertaining to the
crystalline phase, these are all quantum effects (forms
of “order by disorder”) in that they all enter through
the form of the effective electron kinetic energy opera-
tor. Some of our salient results are: 1) When there is a
valley pseudo-spin degree of freedom (n, > 1), pseudo-
spin ordering always occurs at a temperature scale that
is smaller than the classical ordering scale only by a fac-
tor of r5 /% or r72. 2) In a tetragonal semiconductor,
with two valleys as shown in Fig. 1-a, the valley or-
dered state is the period 2 striped pseudo-spin antiferro-
magnet state shown in Fig. 5 that also breaks rotational
symmetry down to Cs - i.e. it has a nematic compo-
nent. This case is potentially relevant to the insulating
state of AlAs 2DEGS [26]. 3) For a hexagonal semicon-
ductor with three valleys that transform trivially under
time-reversal, as shown in Fig. 1-b, the ordered state,
shown in Fig. 7, is again a period 2 stripe pseudo-spin
antiferromagnet state, but one with both nematic and
chiral components. 4) For a hexagonal semiconductor
with two valleys that transform into one another under
time-reversal, as shown in Fig. 1-c, the ground-state is
the orbital (valley) ferromagnet shown in Fig. 9, which is
both chiral and breaks time-reversal symmetry. We thus
expect this state to have orbital loop-current ordering.
The same valley-polarized state is obtained in the case of
a moiré potential with a commensurate density of elec-
trons. Such a state may be realized in transition metal
dichalcogenide heterobilayers, where generalized Wigner



crystal states were recently discovered at commensurate
fillings [27-29].

Long though this paper may be, our analysis is not
exhaustive. There are a variety of other possible valley
geometries, for example the one shown in Fig. 1-d, that
could give rise to still other forms of orbitally ordered
crystalline states - but these can be straightforwardly an-
alyzed by the methods introduced here. Since the valleys
transform into one another, in all cases there is strong
pseudo-spin orbit coupling, i.e. there typically do not
exist even approximate symmetries that operate on the
pseudo-spins while leaving the spatial coordinates invari-
ant. (Indeed, it is worth noting that even if the effec-
tive mass tensor is isotropic, corrections to the effective
mass approximation always break rotational symmetry,
so the WC is always orientationally pinned with respect
to the symmetry axes of the underlying semiconductor.)
If there is strong spin-orbit coupling in the underlying
semiconductor, this can lead to strong coupling between
the electron spin and pseudo-spin in the effective theory.
This, in turn, could lead to interesting consequences for
spin ordering in the WC that we have not yet explored.

Finally, we note that there are presumably many possi-
ble ways that the orbital order we have established in the
WC phase could impress itself on the proximate quantum
or thermal phases reached by melting or partially melting
the WC. We have speculated a bit about this in Sec. VI,
but this largely remains unexplored territory.
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Appendix A: Elastic matrix

The elastic matrix can be written as a sum of two parts

(set e? = m*as’? in the expressions of Ref. [7])

K(k) = B<(k) + B> (k) (A1)
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where each term is defined as

B, (k) = l Y (FulG+k) - fab(G))] (A2)

GeAY

B, (k) = [22s1n2(k-R/2)€ab(R)] (A3)
ReA
Furla) = <aq>a<aq>b*/fErfc< ”j,z> (A)
Ean(R) = a2a£;m\§ Erfc (W) (A5)
with v = %2 = (nga?)~! and v/ = (21)%/v. We de-

note the WC lattice without the origin by Ax and the
reciprocal lattice without the origin by AY. The sums
converge fast because they are exponentially suppressed
in the distance from the center of the respective lattice.

Below we calculate the dispersion relation around high-
symmetry points. These have interesting features that
show up in the density of states.

1. Dispersion relations

a. k=T +q: the elastic matrix is
K(@)ab = 26060 + Klpeateba +0(E8) (A0)
where ¢ = aq, £ = koa and
1)
HEde _ HlI“ 5ac5bd ‘; adabc K,F €ac€bd ;’ €ad€bc ) (A7)
To leading order in ¢, the eigenvalues are
KT (q) = &+ 1€ +0(&°) (A8)
K™ (q) =€ +0(&)
so to leading order
det(K(q)) = r"&o€”. (A9)

This means that even in the presence of anisotropic mass
tensors, there will be always at least one gapless mode
at ¢ = 0. From our numerics, we find f{ﬁ ~ —1.2253 and

kY & 40.24506.
b. k = M> + q: we have an inverted (quadratic)
band and a saddle point. The Little group is Dy instead

of the full Dg. To quadratic order in ¢, the elastic matrix
reads
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(K(MQ + q))ab

M M
= kap" + Kgpeabeld

s _ (1422180
0 11.451
1.58534 0 0 —0.251287 (A10)
Mo 0 —1.13164 —1.13164 0
K =
0 —1.13164 —1.13164 0
—1.35849 0 0 —0.629068
[
where the indices of k2 are ordered as {xz, ry, yz,yy}. the BZ to a smaller one. Our FT is taken to be
The eigenvalues to quadratic order in ¢ are 1 -

Qkia = Mo SRR,

K~ (Mo +q) = k{* + m13E + m15 € o (B1)
1k R;
K+(M2+Q):k§/[2+/ﬁ42§ +I‘€M2€§ Pk;a:\/mzi: Ba;
note that K~ is a saddle point while K is a band top. . .
and the commutation relations read
c. k=+K+q |, the little group is C3 5
10ab i(k—k')-R;

[Qk;(ﬁplj:’;b} = Nel Ze ( )

' (B2)

K(K +q) = kgr® 4 £ (HO Krd)

T + Ky Ty

78 =(7° cos(26) + 7' sin(26))
kr = 6.683
W = —0.1794 (ALL)
rE = —0.2691
% =3 up to numerical precision
1

where 6 is defined by g = (g cos(6), gsin(#)). The disper-
sion relations are

KK +q) = ki +& (kg FA1) (A12)

Appendix B: Details about the Variational Approach

Our trial states are of the form |¥) = |¥,({a;})) ®
Won({a:})) where [, ({a:})) = @, la); is a product
state and |, ({c;})) is the ground state of the phonon
Hamtiltonian with Wab;i — (ai|Wab;i|ai> =: Wop,i- We
consider periodic states |¥,({e;})) with possibly more
than one (WC) lattice site per unit cell. We specify the
larger unit cells by new lattice vectors b; and by which
must be integer combinations of the WC lattice vectors
a; = a(1,0) and as = %(1,/3). In addition to the valley
polarization patter, we also need to fix the overall orien-
tation of the WC lattice, or equivalently, an orientation
of the mass tensors with respect to the axes of the WC.
We denote this angle by fwc.

We define the Fourier transform (FT) in terms of the
WC lattice and interpret the larger unit cell as folding

14

=10gp E Ok+G k!
G

where the last sum is over reciprocal lattice vectors. Note
that (Qk)T = (Q_k) and (Pk,)T = (P_g) and k is under-
stood as a momentum on the first Brillouin zone of the
WC (BZ).

Next we plug in the definitions of the FT into the
Hamiltonian in Eq. 7. The terms that depend of the
position operators reduce to

H; dk?
= B
Nel /kEBZ v FasQuce: (B3)
where v/ = % is the area of BZ and K (k) is the elastic

matrix which corresponds to the Fourier transform of the
dipole-dipole interactions. See App. A for the explicit
expressions.

The p part of H is off-diagonal in momentum space.
The larger unit cell spanned by b; and by has an area
that is an integer multiple of the original unit cell: Q=
B x 2. When we take the FT of Wy, we will generally
find weight at B different momenta in the BZ that are
closed under addition modulo reciprocal lattice vectors.

We denote this set by £L = {L,...,Lg}. Then
H; dk? ab
NP = / PIJcr+L aPk;b;
el wenz Vo1
dk? P,L_aPk. 5 (B4)
= g o
keBZ’ B

where a = (a,l) is a composite index with a = z,y and
I =1,...,B. The new variables are Qp.(q,1) := Qk+L;a;

Pk;(a,l) = Pk+Ll;a; W(a,l)(b,l’) = W(Ll — Ll’)ab and



Kapy@,1) (k) = K(k + L)y . Using the fact that W
is positive-definite, we write W = V? with V positive-
definite. Then we change variables to P = VP and
Q = %Q. The frequency matrix is Qi = VK(k)V and

the energy becomes
/ [, /Qi} R
kcBZ’

1. Overview of calculation

dk?
- Tr
1%

Epn 1

Ny 2

€ph =

Our calculations of the variational states were done as
follows

1. We chose a super-cell (b and bs) with a pattern of
valley polarization.

2. We numerically evaluate the zero-point energy in
Eq. 12, epn, for several values of 7 and an evenly
spaced grid of fwc. The numerical evaluation used
an evenly spaced momentum grid of 24 x 24 mo-
mentum points that respect the PG of the trian-
gular lattice to approximate the integral over the
BZ.

3. For a given 7, we determine the optimal 63(n)
that minimizes ep,. We always find that for a given
valley-polarization pattern, the value 63,-(n) does
not depend on 7.

. For each 1, we compare ey, for the valley patterns
(at their optimal Owc) and find the ones with the
lowest epn,. We always find that the order of epy
as a function of valley patterns is independent of
n > 0.

5. To confirm the lowest energy trial state, we recal-

culate epy for the two configurations with lowest
epn for a finer 7 grid.

Appendix C: Perturbative calculations around the
isotropic electron gas

1. Correlation functions for isotropic case

We record some correlation functions for the isotropic
case. We start with

hzz%i2+zQiK2iij
3 ij

_ PTPk"’QTK(k)Qk
_Z k 2k

k

(C1)

We then introduce the harmonic modes as follows. For
K(k)vg,a = w,%Avk;A where A is the "band index". Then
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we introduce oscillator variables as follows

Qr=>

1
T )
VA | O 4 + O . s
Qe n k,A( k;A k;A

A (C2)
. Wk
Pk::zl\/?vk;A<alt:;A_ak;A)'
A
Then ((O) = Tr[Oe™F"] / Tr[e=P])
1 .
<Pi§a(T)Pj;b> = Nil Z € TRy <PJ;Q(T)PQ§I)>
< q
Wi-
(PLo(T)Pgp) =Y ’;’A Vk; 450 Vk; 436 G (Wie; 4, T) (C3)
A
h 2 —
Gyl ) = BB T o<
sinh(%")
2. Mapping to effective clock model

The aim of this section is to obtain the mapping used
in Sec. III A to map the valley problem at small mass
anisotropy (A < 1) to an effective classical XY model
with strong pinning potential. In this section, we are
measuring energy in units of F,.

We first write the effective Hamiltonian in Eq. 7 as
h = hg+¢ehy with e = A/2. hg is the Hamiltonian for the
isotropic problem and A is of the form

hy = Z PiD; P;;
D; = W; — 1 = cos(26;)7% + sin(26,)7*,

here 0; is the relative angle of the long axes of the Fermi
surface of valley «; with the horizontal axes. 7° is i-th
Pauli matrix.

Consider now the partition function of the valley
pseudo-spins and the position degrees of freedom

2= 21{6);
{6:}

where Z[{6;}] is the partition function of the position
degrees of freedom in the presence of a valley pattern
{0;}. As € is small, we can write

Z[{0;}] = Zo x exp(—BOF [{6;}])

where Zj is the partition function of the isotropic prob-
lem Zy = Tr [e’ﬁho] and 0F can be expanded in powers
of € so that 6F [{6;}] = > o7, €"F,[{6;}]. The leading
correction with {6;} dependence is

B T
=5 [ar [ pnemE). (e



The {v;} dependence is hidden in the definition of h;. We
expand h; in terms of the momentum variables, evaluate
the four point correlation functions and take the Fourier
transform to arrive at

Iy

T ~ ~
75 Z 5k7q+q/ Tr [DkHaD;LHa’} 95 (wa, wa/)
k,a,a

(C5)

here oo = (g, A) and A is the 'band’ label of the phonon

at momentum q. II, = v]wv, is a projector where

Vo = [cos(fa),sin(6,)] T is the eigenvector of K(q,) with
eigenvalue w?. Dy = ﬁ Y e RD, Ga(wa,wa) is
given by

Sinhc(iﬁ(wgw)) + sinhc(iﬁ(wgw))

sinhc(%) sinhc(%)

Gp(wi,wa) =

)

where sinhc(x) = sinh(z) /2. If we write Dy, = @;11)673 +
<I>g,)c7'1, then <I>l(1.1,)c and <I>l(f,)c are the Fourier transform

of cos(26;) and éin(201), réspectively. In terms of this
variables, the correction to the free energy is

1
Fy ~1 Zk: q);;kK(kv B) P (C6)

where @, = [(I)gl,)c, @gzl)c]—r The kernel can be expanded
as K = K170 + K3 + K37l with

T
Kl(kaﬂ) = N] Z §k,q+q’gﬁ(waawo¢’)§
€ k,o,a
T
Ky (k, ) = N Z Ok,q+q'G8(Wa,war) co8(2(0n + b))
¢ k,a,a
T .
K3(ka 6) = N ) Z 6k,q+q’gﬁ(wa, wa/) Sln(2(9a + 90/))-
N k,a,af

(C7)

The effective energy (at zero temperature) can be de-

rived by using the relation £ = ‘966—; r—o- We use the

“i¥2_ {4 write the leading

wi1twaz

identity %gﬁ (w1, w2) |T:0
contribution to the energy as

By (C8)

1
—1 2 PLK (k)P
k
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Ki(k) = Z&el k;}/ Ok,q+q’ ww‘fz;,

Kalk) = - Pap S cos(2(0a + )

Kalk) = 5 D Ongra (20 )
T = oK ()

(C9)

Eqg. 11 in the main text is obtained by diving Eq. C8 by
the number of electrons (Ng).

We numerically evaluate K (k) over a 12 x 12 grid in
momentum space. Fig. 10 shows each component as well
as the largest eigenvalue (K + | Ky + iK3|) at each k.

3. Correction to the Energy from inversion pairs

We want to calculate the effect of trigonal warping
on the degeneracy between two valleys related by inver-
sion. As mentioned in Sec. IV, the effective Hamiltonian
(Eq. 22) i8 her = ho+e3hg where hg is the phonon Hamil-

Ky + |Ky +iKs]; T=0
> = e

3.7341 3.7956 3.8571 3.9186 3.9801

(a)

3.7341 3.7686 3.8031 3.8376 3.8721

(b)

|Kz +iK3|; T=0 arg(K; +iKs); T
= )=

0.0000 0.0564 0.1128 0.1691 0.2255

(c)

-3.1416 -1.5708 0.0000 1.5708 3.1416

(d)

FIG. 10. Plots of the components of the kernel in Eq. C9
used to evaluate the effective energy of the system.



tonian in the absence of trigonal warping, €3 < 1 and
Z e+31¢>1

We want to consider a perturbative expansion of
the energy (per electron) with trigonal warping eﬁh =

2—1P;y)3+e 3% (P, +iP;, )% (C10)

S Ehel. 60 is the energy of the system in the absence
of trigonal warping. We calculate e2 using many-body
perturbation theory.

First, we rewrite Eq. C10 in momentum space

1
he=—5 S
1/2
Ncl k1,k2,k3

3
o, [1¢ Pl +he| (C11)

=1
here ¢ = [1,i] and @, is the Fourier transform of e*%:
Wlth q = kl +k2 + kg.

Let’s start with elA. This corresponds to evaluating
matrix elements of hsg/Ng between unperturbed ground
states. These states correspond to states with different
center of mass momenta ( Popy = N%l Y. Pi= \/%eng)
and the respective ground state of the oscillators at the
other crystal momenta. The only terms in Eq. C11 that

J

Weoy Wy Wag

contribute are the ones with an odd n_umber of k;, =0
and g = 0. If we write ‘I);() = |@3.0/e'®30 and Poy =
|Poarl[cos(0car),sin(fcar)] T, then

A 3

€1 = 2|‘I)3;0||PCM‘ COS(3901V[ — @3;0)

{ei(Gs;o—ch)_A* + C.C.:|

1 (C12)
o 2 (€ P R)

k1,k2

A=

Let’s assume that the ground state of hg preserves the
Cs symmetry of the WC so that A vanishes (to see this,
under C3 : (- Py, — e 7 (- Poug- Then after relabeling
the moment, we see that A4 — Aes Wthh implies that
A = 0. ). We need to add a 7|P|CM to the energy
(u > 0) to stabilize the system. The effective potential
is then eoA + egel + %\P|4CM is minimized at Pop = 0
as long as €3 is small because there is no linear term in
Pow.

Next, we evaluate 62A using perturbation theory and
ignore the terms involving Po s as these terms are higher

order in €3 than the ones already present in eoA + eg,elA +

4
%|P|CJVI:

2
+1 Za 90é

3!
AN
€2 = 23]\72 Z

el kay,az,a3

6’6,20 9o

As in Sec. C2, we can expand the absolute value and
write the final answer as

Z q)T (3) (I)S;k;

with @3 the Fourier transform of [cos(36;),sin(36;)]"
and the components of kernel is

s = (C14)

24N

K® = K00 4 k7% 4 k(P71
1 Wy, W, W
E (k) =530 o1 togtes
1 ( ) Ne21 - k’za qo wal + waz 4 Wa3 ’

Woy Wy Wag

1
KDk = -3¢ (23 0,
2 (k) Nflza: a0 o Wy + ey 2

[e3%

1 Way Wao W,
E (k) =-5330 et gin|2) 0,
3 ( ) Ne21 - kaz(, qda wal +wa2+wa3

(C15)

We numerically evaluate the kernel K® (k) in a 12x 12
momentum grid. The results are shown in Fig. 11. The
largest eigenvalue is at k = 0 with eigenvector [0,1]T

wOél + wOLQ + Woz;;

Of e Zale L B e (C13)

(

This corresponds to a valley-ferromagnetic state with
e3P = 4,



0.0019 0.0336 0.0654 0.0971 0.1289

(c)

Plots of the Kernels in Eq. C15 at T'= 0.

-3.1416 -1.5708 0.0000 1.5708 3.1416

(d)
FIG. 11.

In the absence of ('3 symmetry of the ground state
of hg, A in general would be non-zero. The potential
for Pcoas is now minimized by a Pj,, o €3]|®3.0| and
Ocm = Oz.0 — arg(A). The value of the potential at this
minima is negative and proportional to e§|¢3;0|2. This
favours having a large |®3.0/, i.e. a valley ferromagnetic
order as does 62A when there is C3 rotation symmetry.

J

2

Hj:1,2,3 V1t ex; .
Zj:l,Q,B V1t ex;

5
108

€
+ -

9(.%1 —|—l‘2—|—l‘3)—

Therefore, we hope that even in the absence of C5 sym-
metry, there could be a valley ferromagnet that breaks
inversion symmetry and time-reversal symmetry. A main
new feature in the absence of Cjs, is that average crystal
momentum (Pgpy) is shifted, i.e. the band minima is
displaced from its position at small rg.

4. Berry curvature

Consider the Hamiltonian in Eq. 27 of the main text.
We treat hy and hy as perturbations to hy. The leading
order correction to the energy arises at first order in By
and corresponds to By (h1), where (h{) is the expecta-
tion value of h; on the ground state of hg. This can be
computed as

(i(eP)iKi;Qj + 11 QK5 (eP)s)
(h1) = — Z 5
ij
1
1 Z (Hi€aa0arb0i5 (Kij)ab — 140bar 0ij (Kij )ba€aa’)

ij;aba’

i
=1 > (picab(Kii)ab — pj€an(Kii)oa) = 0.

(C16)

5. Moiré corrections

If we modify the dispersion relation to w —
VEmoire + w? and assume that ke is large compared
to the phonon bandwidth, we can perform a perturbative
expansion in Kpyeire for the kernel. In particular,

2 2 2
(xl — Tox1 — x3x1 + x5 + X3 — xgxg)

Then we want to replace € = 1/Kmoire and identify the
2’s with the w?’s and evaluate the averages. First, note
that when the energy does not appear the average of
cos(---) and sin(---) is zero because the two eigenvec-
tors at the same g-point have 8, — 61 = w/2. Secondly,
the only terms that depend on k is the one that cor-
responds to that is the average of something propor-
tional to w?w? w?,. In all the others, we can use the

a// .
05 g,k to get rid of the k dependence. So we can write

1
-3
N (34(a? + 23 + 23) — 21 (22} + z32F + 2321 + 2321 + 2223 + 23a3) + 247 2073) €

18

+0(eh)
(C17)

1296

(

E® (k) = KT+ 10K (k) + Olr o) with
3 1 wiw? w?,
OKY (K) = 52 D0k a0 ey

2,2 2
7wawgliwa” cos <2 Z 00’)

3 1
6K; ) (k) = N2 2 :5k,2a 9o
el

(03

3 1 wiwi,wiu .
5Ké)(k):WZcSk,zaansm 2290
el o a

(C18)



we again evaluate 0K ® (k) numerically and find similar
behaviour to Fig. 11. In particular, the eigenvector with
the largest eigenvalue is the same as for K® (k).

6. Extension to 3D

The above calculation easily generalizes to 3d. In par-
ticular, we consider electrons with inverse mass tensor
W. Then define m* = 3 (Te[W]) "' and Wym* = I+ A\Q;
with @); a traceless symmetric matrix.

We obtain the same expression for the free energy and
energy as in Sec. C2 with the following modifications.
A € {1,2,3}, the sum is over the 3 dimensional BZ.

)\2
~ 55 2 PR (k)2
k

where @4 is a five component vector with components
Tr [DkSa}, where {S% a = 1,2,3,4,5} is a orthonormal

basis for 3 by 3 symmetric traceless matrices. The kernel
is

(C19)

WaWa!
Wa + Wo!

Tr[I1, ST, (S°)1]

1
Ne Z Ok,q-+q’

k,a,af

(C20)
In here w, and II, are the eigenvalues and projectors of
the matrix K (k). We used the expressions of Refs. [30;
31] to evaluate the kernel. When we evaluate the sum,
we should not use the value of w, when a = (0, A) but
instead use an average around q = 0 because K(q) is
discontinuous at ¢ = 0 due to the long-range nature of
Coulomb interactions. We approximate K(g — 0)q =
Ko% so that only the longitudinal model contributes.
Then taking the average over all directions result in a
zero contribution. Therefore, we simply omit the terms
with g =0 or ¢’ = 0.

We approximate the kernel by an average over a 12 x
12 x 12 grid of the first BZ of the FCC crystal. We
find that the largest eigenvalue of Y (k) is at k = N =
(m,m,0) (and 5 other symmetry related momenta) with
eigenvalue, eigenvector pair

L0
A~ 04106,V == | 0
2\

At T, the diagonal matrices have eigenvalue 0.3773 while
the off-diagonal ones have 0.4054.
The kernel in the main text is J(k) = 55 Y (k).

Appendix D: Dispersion relations

In this section we give the details of calculation of small
wavelength dispersion relation of the phonons. We focus
on the frequency matrix around q = 0 for the case of
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period 2 stripes.
(D1)

) o

02 =V-K(q)-V

V2:W:1(WA+WB Wa—Wpg
2\ Wa—-Wp Wa+Wpg
_ ( K(a) 0

Ma) = ( 0 K(q+M))

At g = 0, there are two zero eigenvalues. To leading order
in q, K(q) = q0qdaGp and K(M + q) = K(M). We then
expect that the order ¢ perturbation will lift the degener-
acy. First order degenerate perturbation theory tell us to
compute the matrix elements of the perturbation in the
basis of the degenerate states. In this case, we can take
the basis as e; = V~1(1,0,0,0) and e; = V~1(0,1,0,0).
Define M as

(D3)

Mi; =Wy dj € {1,2}.

so that e;-e; = J\Z/” Let’s assume this matrix is positive
definite. Then we need to find the eigenvalues of
Q2

a Qf< )\/1M

but as det (QZ) = 0, there is a zero eigenvalue and the

~ g 1 qz9z qzy

dy4z qydy

other one is given by the trace:
(D4)

Also note that because det (Qz) o ¢> for ¢ small, we can

find the leading order behaviour of W?;,T to be ¢%. To see
this note that as a function of q, the frequency of the
optical phonons is

w?] opyi — wO ,0p, T ; + O( ) 72 € {1a2}vw§,op7i 7é 0.

Then we calculate the determinant of QZ in two different
ways

wg,ng,ng,op,1w.2;,op,2 = det (Qg) = det(KC(q)) det(W),

then expanding to leading order in ¢

5 det(K( ) det(K

" (M )) det(W)
q.T —

W0 op,lwo op,2

,L

From here we can see that if M is isotropic, the dispersion
relation of both acoustic phonons is isotropic for ¢ < 1.

For a symmetric matrix
. ( ) L1 ((A—BA—lB)—l

*
assuming A and B are invertible matrices.

A B
B A

*

(A— BA—'B)~!



If we identify A = Wr = %(WA—i—WB) and B =
Wi = 2 (W4 — Wg) we have

L =Wp -~ Wy W Wy

In particular, for the square lattice Wr = 7 and
Wy = £A73 s0 M~ = (1 — A2)7". We can calculate

the other frequencies by noting that W = 1 + Ar3pu!
3,1
and K(0) = U2 (A 4 Br?). Then

2n
n+1/n

20 ("M + i)
2 _ 3 2 M.
QO_1+772 2 (A+BT):>UJ01 kn2’

in other words the optical frequencies of the phonons are
independent of 7.

Appendix E: Optical conductivity

In this Appendix, we simplify the expression for the
optical conductivity that is used in Sec. IIID2 and
Sec. IIID 3. First, note that

JU@)/e =Y (Wiap - ple@™ (E1)
= Z Z W(—L)qpe' ETORiph (E2)
ish LEL
=V/Na > W(-L)aPrigpV/Eom*  (E3)
Lelsb

E,
=/ 22 \/N, E4
m 1 [qu](a,o) (E4)

J

Then the calculation reduces to calculate the matrix ele-
ments (m|Pg|0) between the ground state |0) and the
excited states |m). At every momenta k € BZ’' the
Hamiltonian in units of E, is

1 1
Hy/E, = 57?,11/\/73,,3 + 59,1&(1@)%.

Next we diagonalize the frequency matrix as Qf =
OLD?@OI@ with O orthogonal and D diagonal. Then,

we make the canonical change of variables 75k = OVPr
and Qi = Or(V) 1 Qs to rewrite

1 ... 1 ,
Hy/E, = 579,179,@ + 5QLD,i Ok.

Thus,

0|¢% gh% 5aﬁ

Dk Heet
261*)77 E, Dk aa 2

which further implies

3 ISR D [e7e%
(O1Pe)sIm) (O1Pe)s1m) = 3 0o i 8

Then we multiply by §(w — wn) /w and sum over n

aB(Sa'y-

5 W — Wy , —_— (5 W — Wnp Dk;aa
S 2= n) 1 Bsim) OBl = 30 25, e, P,
o Z 5(w - EoDk;aa) Dk,aa6 5
- p EoDk;aa wn,EoDiaa 2 aBlay
= 352 > 6(w/Es — Di.00)05a01a
1
= 2E§5(W/Eo —Dk)lgry, (E5)

where we defined §(w — X) =" 6(w
projections on the subspace with eigenvalue x.

The last step is to conjugate the above equality by (OV)~

O(w — wy,
T ( . )

n

20

(01(Pr)sln) (0(Pr)y|n) =

2)II, where X is a Hermitian matrix, = are the eigenvalues of X and I, are

! to go from P to P:

11, 1
E |:V0k5(w/Eo —Dk)Osz:|ﬁ’y
1 1 1
ﬁ |:V6(W/Eo — Qk)vj| 5 (E6)



Finally,

dr -
Tab(w, q) ZZ O\J( )In) (0] Jb(q)[n)
dme? Ny [ 1
= " W=d(w/E; — Qq) =W
A 2m E V (a,O),(b,O)
2me?ng 1
_ < o > 2 W86/ e = 2V 00,00

where we used that ne = N /A.

(E7)
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