Novel pathogen introduction triggers rapid evolution in animal

social movement strategies

Pratik Rajan Gupte>**, Gregory F. Albery>?,
Jakob Gismann', Amy R. Sweeny?, Franz J. Weissing®

1. Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Nether-
lands.

2. Wissenschaftskolleg zu Berlin, Berlin, Germany.

2b. Georgetown University, Washington, DC, USA.

3. Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK.

% Corresponding author; e-mail: p.r.gupte@rug.nl or pratikguptel6@gmail.com

a Present address: Centre for Mathematical Modelling of Infectious Diseases, London School of Hy-
giene and Tropical Medicine, London, UK.

ORCID

PRG — 0000-0001-5294-7819

« GFA — 0000-0001-6260-2662

« JG — 0000-0002-2570-590X

ARS — 0000-0003-4230-171X

« FJW — 0000-0003-3281-663X

Keywords: Sociality, Social networks, Individual-based modelling, Epizootics, Individual differences



10

11

12

13

14

Abstract

Animal sociality emerges from individual decisions on how to balance the costs and benefits of being
sociable. Novel pathogens introduced into wildlife populations should increase the costs of sociality,
selecting against gregariousness. Using an individual-based model that captures essential features of
pathogen transmission among social hosts, we show how novel pathogen introduction provokes the
rapid evolutionary emergence and co-existence of distinct social movement strategies. These strate-
gies differ in how they trade the benefits of social information against the risk of infection. Overall,
pathogen-risk adapted populations move more and have fewer associations with other individuals than
their pathogen-risk naive ancestors, reducing disease spread. Host evolution to be less social can be suf-
ficient to cause a pathogen to be eliminated from a population, which is followed by a rapid recovery in
social tendency. Our conceptual model is broadly applicable to a wide range of potential host-pathogen
introductions, and offers initial predictions for the eco-evolutionary consequences of wildlife pathogen
spillover scenarios, and offers a template for the development of theory in the ecology and evolution of
animals’ movement decisions.
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Introduction

Animal sociality emerges from individual decisions that balance the benefits of associations against the
costs of proximity or interactions with neighbours (Tanner and Jackson 2012; Gil et al. 2018; Webber and
Vander Wal 2018; Webber et al. 2023). Such associations can yield useful social information — whether
inadvertently or deliberately transmitted — about resource availability (Danchin et al. 2004; Dall et al.
2005; Gil et al. 2018), but they also provide opportunities for the transmission of parasites and infectious
pathogens among associating individuals (Weinstein et al. 2018; Romano et al. 2020; Albery et al. 2021a;
Cantor et al. 2021; Romano et al. 2021). Wildlife pathogen outbreaks affect most animal taxa, including
mammals (Blehert et al. 2009; Fereidouni et al. 2019; Chandler et al. 2021; Kuchipudi et al. 2022),
birds (Wille and Barr 2022), amphibians (Scheele et al. 2019), and social insects (Goulson et al. 2015).
Weighing the potential risk of infection from social interactions against the benefits of social movements
— where to move in relation to other individuals’ positions — is thus a common behavioural context
shared by many animal species. Movement decisions incorporating social information — the presence
and status of neighbours — can facilitate or reduce spatial associations, and help animals balance the
costs and benefits of sociality (Gil et al. 2018; Webber and Vander Wal 2018; Albery et al. 2021a; Webber
et al. 2023). Animals’ social movements link landscape spatial structure, individual distributions, and
the emergent structure of animal societies (Kurvers et al. 2014; Gil et al. 2018; Webber et al. 2023).
Together, they influence the dynamics of disease outbreaks in animal populations (Keeling et al. 2001;
White et al. 2018¢; Romano et al. 2020; 2021), and such outbreaks may in turn have cascading effects

on landscape structure and community ecology (Monk et al. 2022).

Over relatively brief ecological timescales of a few months or years, animal pathogen outbreaks can
reduce social interactions among individuals due to a combination of factors. For instance, mortality
from the disease may induce decreases in population density (e.g. Fereidouni et al. 2019; Monk et al.
2022), leading to fewer associations. Furthermore, adaptive behavioural responses by which animals
identify infected individuals (and indeed, whether they are themselves infected) can trigger quaran-
tining or self-isolation behaviours that reduce encounters between infected and healthy individuals
overall (Stroeymeyt et al. 2018; Weinstein et al. 2018; Pusceddu et al. 2021; Stockmaier et al. 2021).
When pathogens are first introduced into a population, such as during novel cross-species spillover
(Chandler et al. 2021; Kuchipudi et al. 2022), fine-tuned avoidance responses are less likely, as indi-
viduals may have no prior experience of cues that indicate infection (Weinstein et al. 2018; Stockmaier
et al. 2021; although general cues of infection may still play a role, see Townsend et al. 2020). A novel
pathogen spreading through host-host contacts and imposing costs upon infected individuals could thus
confer an evolutionary advantage upon less social individuals if these are also less frequently infected.
Therefore it is a common expectation that pathogen introduction broadly selects against host social be-
haviour, and hence against social connectivity itself (Altizer et al. 2003; Cantor et al. 2021; Poulin and
Filion 2021; Romano et al. 2021; Ashby and Farine 2022).



51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

Important aspects of animal ecology, including the transmission of foraging tactics (Klump et al.
2021) and migration routes (Guttal and Couzin 2010; Jesmer et al. 2018), depend on social interac-
tions. This makes it important to understand the long-term, evolutionary consequences of pathogen
introductions for animal sociality. Climate change is only expected to make novel pathogen introduc-
tions more common (Sanderson and Alexander 2020; Carlson et al. 2022a), making such studies more
urgent. Despite this salience, novel pathogen introductions are primarily studied for their immediate
demographic (Fey et al. 2015), and potential medical (Levi et al. 2012; Chandler et al. 2021; Kuchipudi
et al. 2022; Wille and Barr 2022) and economic implications (Keeling et al. 2001; Goulson et al. 2015;
Jolles et al. 2021). Indeed, most introductions of novel pathogens into wildlife only come to light when
they result in mass mortality events (Fey et al. 2015; Wille and Barr 2022). Host evolutionary dynamics
(and especially changes in sociality) are mostly ignored, and this is presumably because the evolution of
pathogen host traits, and moreover complex behavioural traits such as sociality, is expected to be slow
and not immediately relevant for management.

Theory suggests that animal sociality evolves to balance the value of social associations against the
risk of pathogen transmission (Bonds et al. 2005; Prado et al. 2009; Ashby and Farine 2022). How-
ever, analytical models often reduce animal sociality to single parameters, while it actually emerges
from individual decisions conditioned on multiple internal and external cues. Social decision-making
and movement often also vary among individuals (Tanner and Jackson 2012; Wolf and Weissing 2012;
Spiegel et al. 2017; Gartland et al. 2021), but analytical models are unable to include individual dif-
ferences in sociability. Epidemiological models based on contact networks can incorporate individual
variation in social behaviour by linking these differences to positions in a social network (White et al.
2017; Albery et al. 2021a,b). Yet network models often cannot capture fine-scale feedbacks between
individuals’ social and spatial positions (Albery et al. 2021a,b), nor spatial variation in infection risk
(Albery et al. 2022). Networks constructed from relatively low-resolution spatial relocation data (such
asinfrequent direct observations; see e.g. Albery et al. 2021b), may be sensitive to the network formation
process when seeking to understand the rapid spread of diseases, especially if transmission has a non-
linear relationship with association strength (Farine 2017; White et al. 2017). While high-resolution
animal tracking could help construct more detailed networks on which to run disease outbreak models
(Nathan et al. 2022; Wilber et al. 2022), such networks could also be biased by individual variation in
social traits (Gartland et al. 2021), such as when sociality is correlated with capture probability (see e.g.
Carter et al. 2012). Consequently, adding an explicit spatial setting to movement-disease models can be
valuable in gaining a more general understanding of the interplay between social decisions, movement,
and pathogen transmission (White et al. 2017; 2018a; Scherer et al. 2020; He et al. 2021).

Mechanistic, individual-based simulation models (IBMs) suggest themselves as a natural solution.
IBMs can incorporate substantial ecological detail, including explicit spatial settings (DeAngelis and
Diaz 2019), and detailed disease transmission dynamics (White et al. 2018a,b; Scherer et al. 2020; Lunn
et al. 2021). Most importantly, IBMs can include individual decision-making, allowing ecological and
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epidemiological outcomes to emerge from individuals’ movement choices. Individual-based models
hitherto have focused on immediate epidemiological outcomes, such as infection persistence, and do
not have an evolutionary component examining long-term consequences for either pathogens or their
hosts (White et al. 2018b; Scherer et al. 2020; Lunn et al. 2021). Incorporating an evolutionary compo-
nent to movement-disease IBMs could allow predictions on important feedbacks between the proximate
ecological outcomes of infectious disease and the ultimate consequences for the evolution of host be-
haviour (Cantor et al. 2021). This could include the emergence of individual differences in the tradeoffs
between the costs and benefits of sociability (Gartland et al. 2021), with cascading effects for landscape
ecology and the structure of animal societeies (Tanner and Jackson 2012; Spiegel et al. 2017; Monk et al.
2022; Webber et al. 2023). The range of animal taxa at risk from a wide array of pathogens and para-
sites (Sanderson and Alexander 2020; Carlson et al. 2022a) makes it important to conceive, as a starting
point, of models that can capture the key features of diverse host-pathogen dynamics and offer broad
conceptual insights (White et al. 2018a,b).

We built a model that seeks to capture the essential elements of animal movement decisions in the
context of foraging on patchily distributed resources, under the risk of pathogen (or parasite) transmis-
sion. Our model adopts a step-selection framework in an explicit spatial setting (Fortin et al. 2005), al-
lowing individuals to choose their movement directions — a key component of animal movement ecol-
ogy (Nathan et al. 2008) — based on their perception of local environmental cues. These are the pres-
ence of resources (personal information), and the presence of other individuals (social information).
Our model also adds an evolutionary component, by allowing individuals’ ecological performance (en-
ergy) over their lifetime to influence the mixture of movement strategies in their offspring’s generation.
We examined the ecological and evolutionary consequences of the introduction of a pathogen into a
novel host population (such as during cross-species spillover: Bastos et al. 2000; Blehert et al. 2009; Fer-
eidouni et al. 2019; Scheele et al. 2019; Sanderson and Alexander 2020; Carlson et al. 2022a; Kuchipudi
et al. 2022; Monk et al. 2022; Wille and Barr 2022). We modelled two scenarios of the introduction of an
infectious pathogen to populations with that had already evolved foraging movement strategies in its
absence. Our model scenarios could be conceived as abstract representations of, among others, cross-
species introductions of foot-and-mouth disease from buffalo to impala (Bastos et al. 2000; Vosloo et al.
2009), or of sarcoptic mange from llamas to vicuias (Monk et al. 2022), the current and historic spread of
avian influenza among bird species (and more recently, spillovers into certain mammal species; Global
Consortium for H5N8 and Related Influenza Viruses 2016; Wille and Barr 2022), of the spread of bor-
relliosis in novel populations of its wildlife hosts (Levi et al. 2012), or of SARS-CoV-2 from humans to
deer (Chandler et al. 2021; Kuchipudi et al. 2022).

In scenario 1, we repeatedly introduced an infectious pathogen to a small proportion of individu-
als in each generation, allowing it to spread with a low probability among proximate individuals there-
after. This scenario parallels conditions that we expect are common but poorly known: that animal
populations suffer pathogen introductions regularly from external sources such as individuals from an
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infected sub-population of a metapopulation, or sympatric heterospecifics such as those sharing breed-
ing or wintering grounds — both of these appear to be plausible events in the spread of diseases such as
highly pathogenic avian influenza (Global Consortium for H5N8 and Related Influenza Viruses 2016;
Wille and Barr 2022). We classified individuals across the evolutionary timescale of our simulation,
based on their inherited preferences (or selection coefficients) for environmental cues, into movement
strategies (similar to; Bastille-Rousseau and Wittemyer 2019: see Methods). We compared how social
information was used in movement strategies evolved before and after pathogen introductions began,
and the ecological outcomes for individual movement and associations with other foragers. In a further
scenario 2, we modelled only a single introduction event, but allowed the pathogen to be transmitted
from parents to their offspring at the end of each generation (‘vertical transmission’ in a general sense),
in addition to spreading among proximate individuals within each generation. Empirical examples of
such parent-to-offspring transmission are less well known, but are implicated in the maintenance of
foot-and-mouth disease in African buffalo (Jolles et al. 2021), and of mange among wolves (Almberg
et al. 2015). We examined how these simulated outbreaks persisted across generations, the resulting
evolutionary change in social movement strategies, and the consequences for individual behavioural
outcomes. Using network epidemiological models (Bailey 1975; White et al. 2017; Stroeymeyt et al.
2018; Wilber et al. 2022), we examined whether the spread of infections was reduced in pathogen-risk
adapted populations compared to their pathogen-risk naive ancestors. We also investigated the effect of
landscape productivity and the cost of infection, which are both expected to influence the selection im-
posed by pathogen transmission (Hutchings et al. 2000; Almberg et al. 2015; Ezenwa et al. 2016). Over-
all, we provide a theoretical framework applicable to a broad range of novel host-pathogen introduction
scenarios, and demonstrate the importance of including evolutionary dynamics in movement-disease
models.

Results

In our model, individuals move and forage on a landscape with patchily distributed food items, and se-
lect where next to move in their vicinity, based on inherited preferences for environmental cues — food
items, and other individuals (Fig. 1). Food items, once consumed, regenerate at a rate R, and pathogen
infection imposes a per-timestep cost E. We classified individuals’ social movement strategies in our
model using a simplified ‘behavioural hypervolume’ approach (Bastille-Rousseau and Wittemyer 2019),
based on the sign of their preferences for successful foragers handling a food item (‘handlers’, preference
sy ), and for unsuccessful foragers still searching for food (‘non-handlers’, preference sy).

In our model’s default implementation of scenario 1, R = 2, food regenerates twice per generation,
and 6E = 0.25, i.e., consuming 1 food item offsets 4 timesteps of infection. Over the 500 generations

before the introduction of the pathogen, populations reached an eco-evolutionary equilibrium where
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Figure 1: Model implementation of discrete movement steps on a landscape with continuous
space, with movement steps selected based on inherited preferences for environmental cues.
(A) Individuals search for clusters of food items (green circles), which may be immediately available
(filled green circles; F), or may be available only in the future (open green circles). Individuals can
sense only available items, and not unavailable ones. Individuals can sense other foraging individuals,
and whether they have successfully found and are handling a food item (handlers; blue circles; H), or
whether they are unsuccessful foragers still searching for food (non-handlers; filled grey circles; N).
To decide where to move, individuals sample their environment for these cues at 5 locations around
themselves (large open grey circles), and have a sensory range of dg (default = 1.0 units). Individuals
assign each potential direction a suitability, S = sgF + syH + syN + €, where the coefficients sg, sy, Sy
are inherited preferences for environmental cues, and ¢ is a small error term that helps break ties be-
tween locations. The sensory distance (dg) and the movement distance (d,,) are the same, 1.0 units.
(B) An infectious pathogen is transmitted between infected (orange circles) and susceptible (filled
grey circles) individuals, with a probability p = 0.05, when they are within a distance dg of each other.
In our implementation, dg is the same as dg, dj; = 1.0 units. (C) An example of the resource landscape
used in our simulations, consisting of 60 randomly distributed clusters of food items, with 1,800 dis-
crete food items divided among the clusters (30 items per cluster). The landscape is a square of 60 units
per side, with wrapped boundaries (i.e., a torus). The food item density is 0.5 food items per unit area.
Items are distributed around the centre of each cluster, within a standard deviation of 1.0 unit. Items,
once consumed by foragers, are unavailable for a fixed number of timesteps (the regeneration time R,
expressed in terms of the foragers’ generation time), after which they regenerate in the same location.
While regenerating (i.e., unavailable), items cannot be perceived by foragers. The sensory ranges of
individuals (dg) are shown for each potential step (red circles, including the current location: blue
circle). Food item clustering means that available items, as well as foragers handling a food item (han-
dlers) are good indicators of the location of a resource cluster.
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the commonest social movement strategy was to prefer moving towards handlers while avoiding non-
handlers (‘handler-tracking’; sy > 0,8y < 0) (Fig. 2A). This is consistent with observations from a
different simulation model which shares many mechanisms with this one (Gupte et al. 2023). A small
proportion of individuals prefer to move towards both handlers and non-handlers, and are thus indis-

criminately social (‘agent-tracking’; sg, sy > 0).

Rapid Evolutionary Shift in Social Movement Strategies Following Pathogen

Introduction

Introducing an infectious pathogen to 4% (n = 20) of individuals in each generation (after G = 3,000),
leads to a rapid evolutionary shift — that is complete within only 100 generations of pathogen introduc-
tion — in how social information is incorporated into individual movement strategies. A third strategy
increases in frequency: avoiding both handlers and non-handlers (‘agent-avoiding’; sy, sy < 0; Fig. 2A).
The frequency of agent-avoiding and handler-tracking strategies is comparable within 500 generations,
and fluctuates thereafter, with increases in one strategy corresponding to decreases in the other. This
appears to be a dynamic equilibrium that is maintained until the end of the simulation (2000 gener-
ations after pathogen introduction; Fig. 2A). The frequency of the agent-tracking strategy is further
reduced, but the strategy never truly goes extinct, possibly due to mutations that shift sy coefficients
to positive during reproduction. The section Effect of Modelling Choices on Simulation Outcomes shows
how the occurrence of rapid evolutionary shifts is broadly robust to modelling assumptions; in brief,
such shifts also occur when (1) the pathogen reduces foraging efficiency rather than imposing a direct
cost on individual energy, (2) when individuals cannot benefit from evolved adaptation to local con-
ditions due to large-scale natal dispersal (Badyaev and Uller 2009), and when (3) individuals can only
reproduce if they have a positive energy balance. Furthermore, (4) evolutionary transitions away from
sociality are also observed at higher but not lower handling times (a proxy for the availability of social
information), and (5) both when the spatial structure of the landscape is substantially more uniform,
and more clustered.

In addition to qualitative changes in social movement strategies, pathogen introduction also leads to
social information becoming more important to movement decisions. Prior to pathogen introduction
(G < 3,000), individuals’ handler- and non-handler preferences have only a small influence on their
movement strategies (|sg| + |sy|; taken together, the contribution of social information; Fig. 2B). Indi-
vidual movement is instead guided primarily by the preference for food items (sg; see Model Output and
Analysis). After pathogen introduction, there is an increase in the average importance of individuals’
preferences (or aversions) for the presence of other foragers, i.e., the importance of social cues (Fig. 2B).
Additionally, there is significant variation among individuals in the importance of social cues to their
movement strategies, with distinct evolved polymorphisms that vary substantially between simulation
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replicates (Fig. 2B). This means that the population’s mean importance of social cues does not ade-
quately capature that some individuals assign much more importance to social cues than others, and
that these distinct morphs persist in the population for many hundreds of generations after pathogen
introduction.

Population-level Behavioural Change due to Evolutionary Shift in Social

Movement Strategies

The evolutionary shift in social movement strategies causes a drastic change in population-level be-
haviour and outcomes (Fig. 2C, D, E). There is a sharp increase in the mean distance moved by indi-
viduals; while pre-introduction individuals moved 52% of their lifetimes on average, post-introduction,
individuals move for about 62% of their lifetimes (Fig. 2C). The handler-tracking and agent-avoiding
strategies lead individuals to move away from groups of individuals, with the effect of group composi-
tion on fine-scale movement decisions (handlers or non-handlers) determined by the individuals’ strat-
egy. Individuals are most likely to be found near resource clusters, and this leads to movement away
from productive areas of the landscape where individuals, having acquired a food item and become
immobilised, may have inadvertent associations with other foragers. Surprisingly, this does no lead to
a reduction in mean per-capita intake (Fig. 2D: green), but there is a sharp drop in mean per-capita en-
ergy (intake - total infection cost) due to the cost of infection (Fig. 2D: purple). While strongly negative
on average in the first few generations after introduction, net energy returns to a small positive value
within 100 generations of pathogen introduction. The emergence of avoidant strategies leads to a five-
fold drop in encounters between individuals after pathogen introduction (Fig. 2E), which suggests that
most encounters were indeed likely taking place on or near resource clusters. These results show how
even a non-fatal pathogen, by influencing the evolution of movement strategies, can have substantial

indirect effects on population-level spatial and social behaviour.

Movement-intake-sociality Trade-offs and the Co-existence of Social Movement

Strategies

At eco-evolutionary equilibrium in our default implementation of scenario 1 (3,000 < G < 3,500), the
three main social movement strategies co-exist, allowing a comparison of ecological and behavioural
outcomes that illustrates the trade-offs between sociality, movement, and infection, which are otherwise
masked by a population-level analysis. For example, the population-level increase in movement after
pathogen introduction is shown to be due to the increase in frequency of the agent-avoiding strategy,
as these individuals move more than handler-tracking or agent-tracking foragers (Fig. 3A). Simultane-

ously, agent-avoiding individuals have a lower intake than either handler-tracking or agent-tracking in-



Generations Generations
2,500 3,000 3,500 5,000 2,500 3,000 3,500 5,000
i 1 1 ) o 1 7 f
=h | 3 I
- 1 1
1 1
° !
I oH 1
1 - = 5 1
o w il 1
0 | c g | A
© 1 o ® 1 w
.g 1 5 € 27 [ +
= R 1 a2 ‘O- 1
25 ! 2. ! ++H+HH++ byt
" ! 83’7 144t
o 1 [$] [ ]
| © O )
| D e hpsee®y,
=N ™
- 1
1 1
2 ' = I -
S — . . c = i . .
-500 0 100 500 2,000 -500 0 500 2,000
Gens. after pathogen intro. Gens. after pathogen intro.

% Indiv. —

® Agent avoiding ® Agent tracking ¢ Handler tracking 19% ~30%
0 0

C D E
Generations Generations Generations
3,000 5,000 3,000 5,000 3,000 5,000
t ! 75 } f
el 1 o
[0} ' w w2 -M
E 604 :/,N”'.ﬁ 5 50 e |
5 | 2 2o I
Q 1 o Q™ 1|
€ 561 | = 00 o 'L
® W‘* Z 25 28 | Yo pooie.
85,7 o Weries™®
-500 0 500 2,000 -500 0 500 2,000 -500 0 500 2,000
Gens. after pathogen intro. Gens. after pathogen intro.  Gens. after pathogen intro.

Figure 2: Pathogen introduction leads to rapid evolutionary changes in social information
use, with cascading effects on population-level behaviour. (A) Before pathogen introduction in
the default scenario (R = 2, §E = 0.25), populations rapidly evolve to mostly track handlers and avoid
non-handlers (‘handler-tracking’; G < 3,000) — however, the preference for food items (s) is the major
determinant of their fine-scale movement decisions. Pathogen introduction leads to a rapid increase
in ‘agent avoidance’ which stably co-exists with the handler-tracking strategy in an eco-evolutionary
equilibrium. (B) After pathogen introduction (G > 3,000), the importance of social cues (the presence
of other individuals; the sum of the absolute, normalised preferences sH, sN) doubles on average (grey
points; from 10% to > 20%). Additionally, there is significant variation in the importance of social cues to
individuals (shaded regions), which is not captured by the mean or standard error. The rapid change in
social movement strategies following pathogen introduction has cascading effects on population-level
behaviour. Individuals, which have evolved aversions to some kinds of foragers (depending on their
strategy), (C) move 15% more on average, (D) have substantially reduced per-capita energy (purple)
due to the cost of infection, as mean per-capita intake remains unchanged (green), and (E) also have
five-fold fewer associations with other foragers. All panels show data averaged over 10 replicates, with
mean and standard error; shaded regions in panel B are from a single replicate for clarity. Panels’ X
axes begin at G = 2,500, and panel A X-axis is transformed to show the generations after introduction
more clearly.
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dividuals which have similar intakes (Fig. 3B). Surprisingly, the more social strategies appear to increase
their intake slightly following pathogen introduction — this could be because exploitation competition
may be reduced as agent-avoiding foragers also avoid resource clusters and have less intake than the
pre-introduction average. Despite this, all three strategies have comparable if not identical net energy
and hence equivalent fitness — this is to be expected given their co-existence (Fig. 3C).

The energy equivalence of the three strategies despite different per-capita intake can be explained
by differing infection rates. These are in turn likely influenced by the non-linear relationship be-
tween movement and the mean number of per-capita associations of each strategy. The shape of the
movement-association curve is broadly a quadratic one (Fig 3D). Across strategies, individuals that
move more have more associations until a threshold, with associations declining from their peak as in-
dividual movement increases further; the peak of the curve is different for each strategy. For example,
agent-tracking individuals that move 50 units have around 600 associations with other foragers, while
handler trackers have approximately 300 associations, and agent-avoiding individuals have about 150
associations. At the extremes of movement behaviour — individuals that move throughout their life-
time (movement > 75) and which do not move at all (movement < 15) — all three strategies have similar
numbers of per-capita associations; individuals that move constantly (movement = 100) have almost
no associations at all. These differences likely explain why agent-avoiding and handler-tracking indi-
viduals have differing mean infection rates, at ~ 25% and ~ 33% respectively (Fig. 3E). Individuals of
the agent-tracking strategy on the other hand have a wide range of infection rates (Fig. 3E), potentially
because they are rare — these likely represent mutants that do not give rise to persistent lineages.

Changes to Spatial-social Structure, and Emergent Superspreading

Following pathogen introduction, the mixture of individual-level movement strategies elicits a change
in the emergent spatial and social structure at the population level. Pre-introduction populations are
spatially clustered near food item patches (Fig. 4A), due to movement strategies that favour grouping
with successful foragers. Pathogen-risk adapted populations are more dispersed over the landscape,
with many individuals found far from food item clusters (Fig. 4B). This reflects the increased prevalence
of the agent-avoiding strategy which leads to a sort of dynamic social distancing. The change in the
mixture of population social movement strategies is reflected in the left-skewed degree distributions of

pathogen-risk adapted populations compared to pathogen-risk naive ones (Fig. 4C).

We examined the distribution of individual reproductive numbers (v) from two separate intervals
in the simulation: just after pathogen introductions begin (3,000 < G < 3,100), and 500 generations
after introductions begin (3,500 < G < 3,600). Individual reproductive number distributions from both
intervals are strongly left-skewed but have long right-hand tails (up to 12 just after introductions begin;
Fig. 4D). While most infected individuals do not infect any of their neighbours, a small number of these

11
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Figure 3: Social movement strategies co-exist by trading movement for associations through
dynamic social distancing, leading to differences in intake and infection rates. Population-
level outcomes mask substantial variation in strategy-specific behaviour and outcomes. The three main
movement strategies differ in the mean distance moved, with the agent-avoiding strategy moving sub-
stantially more (A), and having less intake (B) than the other strategies. Nonetheless, all three strategies
have similar net energy and hence equivalent fitness (C). In post-introduction populations (3,000 < G <
3,500), (D) the distance moved by individuals of the three main strategies has a non-linear relationship
with the number of associations. Individuals that move either very little (< 15) or constantly (> 75)
have few associations. However, individuals that move intermediate distances have more associations.
This curve is influenced by the social movement strategy, with agent-tracking individuals having more
associations than the handler-tracking strategy for the same distance moved, while handler-tracking in-
dividuals have similarly more associations than agent-avoiding individuals. (E) Avoiding all other for-
agers leads to lower infection rates than tracking successful foragers (and avoiding unsuccessful ones;
handler-tracking). Surprisingly, rare pre-introduction strategies such as following any nearby individ-
uals (agent-tracking) may also have low infection rates, potentially due to their rarity. Panel D shows
the mean and standard error for movement distance bins of 5 units (note standard error is very small in
some cases); panel B shows infection rates; all data represent generation- and replicate-specific means
(R =2, §E =0.25).
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are responsible for a disproportionately large number of further infections, even after the population
has adapted to moving under the risk of transmission (Fig. 4D); this is consistent with the phenomeno-
logical definition of superspreading (Lloyd-Smith et al. 2005). Our model thus shows how, even in a
population with identical individuals that differ only in their movement decision making rules, there

can be substantial variation in individuals’ contribution to the spread of an infectious pathogen.

Pathogen-risk Adapted Movement Strategies and the Spread of Infection

A large majority of individuals in the generations just after pathogen introduction are infected (x 75%;
Fig. 5A). However, tracking the evolutionary change in movement strategies, the number of infected
individuals falls to below 50% within 100 generations (Fig. 5A), remaining low for the rest of the simula-
tion. To examine potential pathogen spread in pre-introduction populations, we ran a simple epidemio-
logical model on the social networks emerging from individuals’ movements before and after pathogen
introduction (pre-introduction: G = 500; post-introduction: G = 700). We modelled two infections,
(i) first, an infection requiring one encounter, and (ii) second, an infection requiring ten encounters
between individuals for a potential transmission event (transmission rate 8 = 5.0, recovery rate y =
1.0).

Both the single encounter and multiple encounter diseases would infect > 75% of individuals overall
when spreading through the networks of pre-introduction populations (Fig. 5B). Pathogen-risk adapted
populations’ social networks are however more resilient to the multiple encounter infection, compared
to their pre-introduction, pathogen-risk naive ancestors, as these social networks are sparser and indi-
viduals are more weakly connected (Fig. 5B). While nearly all individuals in post-introduction popula-
tions would be finally infected by the single encounter infection — the same as their pre-introduction,
pathogen-risk naive ancestors — the spread of the multiple encounter infection would be substantially

reduced in comparison (ever infected: ~ 50%).

Effect of Landscape Productivity and Infection Cost

For our scenario 1, we further explored the effect of two ecological parameters, landscape productivity
(R €1, 2, 5) and infection cost per timestep (§E € 0.1, 0.25, 0.5) on simulation outcomes. Before
pathogen introduction, the same social movement strategies evolve on landscapes of all productivity
levels (Fig. 6).

Infection cost. The introduction of the infectious pathogen leads to a rapid evolutionary shift in social
movement strategies, but only in those scenarios in which the cost of infection is substantial (6E &€
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Figure 4: Changes to spatial-social structure in populations adapted to the presence of an in-
fectious pathogen. Pathogen-risk naive populations (A; G = 3,000) are clustered into modules by the
end of their lives, while pathogen-risk adapted populations (B; G = 3,500) are more widely dispersed
over the lanscape. Pre-introduction individuals encounter somewhat more unique neighbours (C, blue)
than pathogen-risk adapted individuals (C; red). (D) The distribution of the ‘individual reproductive
number’ v is left-skewed, with most infections not resulting in any secondary cases, but has a long
right-hand tail, suggesting that a small number of infected individuals are responsible for a large num-
ber of infections, suggesting that ‘superspreading’ emerges from the spatial-social dynamics encoded
in the model. Panels A and B show social networks from a single replicate of the default implementa-
tion of scenario 1 (R = 2, §E = 0.25), while all other panels show the average of 10 replicates. Nodes
represent individuals positioned at their final location in A and B. Connections represent pairwise en-
counters (connections with weights < 33rd percentile are removed for ease of visualisation), and node
size represents individuals’ social associations (larger = more associations). Darker node colours indi-
cate longer infection (light blue = no infection).
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Figure 5: Adapting to moving under the risk of pathogen transmission makes populations
more resilient to the spread of some kinds of infections. (A) In the first generations following
pathogen introduction, about 75% the population is infected. However, within 100 generations, track-
ing the evolutionary shift towards movement strategies that avoid all other individuals, only about 50%
of individuals are infected overall. (B) The progression of two hypothetical infections, requiring a sin-
gle encounter, or 10 encounters for a potential transmission, on the emergent social networks of pre-
and post-introduction populations. The transmission of the multiple-encounter infection is reduced in
populations with disease-adapted movement strategies (pre-introduction: G = 3,000, blue circles; post-
introduction: G = 3,5000, red triangles). Subfigures in panel B show means of 25 SIR model replicates
(transmission rate 8 = 5.0, recovery rate y = 1.0), run on emergent social network; both panels repre-
sent 10 simulation replicates of the default implementation of scenario 1 (R = 2, §E = 0.25).
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0.25, 0.5). When the cost of infection is low (§E = 0.1), the handler-tracking strategy persists as the
most common social movement strategy. This is because the low infection costs can be compensated by
individual intake. In scenarios where infection costs are higher, populations shift away from handler-
tracking towards agent avoidance as the former strategy is associated with higher infection risk, and
as infection costs are not as easily offset by intake. The frequency of agent avoidance increases with
infection cost; while approximately 40% of all individuals in our default cost case (6E = 0.25) are agent-
avoiding, nearly all individuals avoid all other foragers when the per-timestep infection cost is doubled
(6E =0.5).

Landscape productivity. The productivity of the resource landscape should be expected to control the
usefulness of social information, with social information less useful on more productive landscapes
(due to the increased availability of direct cues). We expected that this would lead to greater handler-
tracking persisting on lower productivity landscapes, but did not find this to be case; indeed, there did
not appear to be an effect of productivity on the evolution of social movement strategies (Fig. 6).

Pathogen Persistence after a Single Introduction with Vertical Transmission

In our scenario 2, we introduced the pathogen only once to 4% (N = 20) individuals in generation 500,
and this more closely simulates the sort of introduction that would be expected in a novel, cross-species
spillover. Focusing on our default parameter combination (R = 2, §E = 0.25, p, = 0.2), we observed that
prior to pathogen introduction, the population followed the same ecological and evolutionary princi-
ples we laid out for scenario 1, and all replicates were similar (Fig. 7A). The pathogen is successfully
transmitted from parents to offspring in the initial generations following the introduction event, and
among individuals of the same generational cohort. This produces ecological patterns very similar to
scenario 1, with large numbers of infections (Fig. 7A).

Evolutionary change can lead to pathogen extinction

However, we observed that replicates begin to differ at this stage in whether the evolutionary change
in sociality seen therein is sufficient to drive the pathogen extinct (by reducing its transmission oppor-
tunities until no individuals are infected). In some replicates the emergence of agent avoidance is slow,
and the frequency of this strategy seldom crosses 50% (Fig. 7A panel: Pathogen persistence). Impor-
tantly, this means that the pathogen persists for over 500 generations after the initial introduction, with
chaotic dynamics in the number of infections in each generation, which only roughly track changes in
the frequency of the agent-avoiding strategy.

In contrast, in some replicates agent avoidance rapidly reaches a prevalence of over half of all indi-
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Figure 6: Infection cost, but not the usefulness of social information, shapes the rapid evolu-
tionary change in movement strategies triggered by pathogen introduction. Pre-introduction
(G = 3,000; dashed line) populations mostly contain individuals that track successful foragers (handler-
tracking), with a small number of individuals that track all foragers (agent-tracking). After pathogen
introduction, indiscriminate agent avoidance becomes a common strategy, but only when landscape
productivity cannot compensate for infection costs (6E € 0.25, 0.5). In cases where the infection cost is
low, handler-tracking persists as the commonest strategy after pathogen introduction. All panels show
frequencies over 10 replicate simulations in 100-generation bins; frequencies are stacked. Grey areas
show the relatively uncommon ‘non-handler’ tracking strategy that sometimes arises due to mutations.
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viduals. This evolutionary transition away from sociality leads to an initial, corresponding decline in
the number of infections in each generation, as expected (Fig. 7A). The number of infections is reduced
to zero within 250 generations, and the pathogen is driven extinct extinction (Fig. 7A panel: Pathogen
eliminated). The complete elimination of the pathogen is then associated with an even more rapid
recovery of the more social movement strategies prevalent before pathogen introduction — handler-
tracking and agent-tracking — and a near extinction of the agent-avoiding strategy.

Infection cost and vertical transmission probability influence pathogen persistence

We examined the effect of the per-timestep infection cost (§E) and the probability of vertical transmis-
sion (p,) on whether the pathogen persisted for at least 500 generations through vertical transmission
alone, i.e., without repeated external introduction events such as in scenario 1. When infection costs
are low, there is no evolutionary transition in social movement strategies, and this leads to pathogen
persistence in all replicates (6E = 0.1; Fig. 7B). When infection costs are high (6E = 0.5), the pathogen is
always eliminated within 500 generations (frequently, within 200 genertions), with the pathogen per-
sisting longer as p, increases. This is accompanied by sharp evolutionary transitions towards agent
avoidance, which are reversed once the pathogen goes extinct. At intermediate infection costs (6F =
0.25), a mixture of outcomes is obtained (Fig. 7B). When the probability of vertical transmission is low
(pp, = 0.1), there is no evolutionary shift in social movement strategies, but the pathogen is eliminated
within 250 generations, and the number of generations required for pathogen elimination vary widely.
As p, increases (0.2: default, 0.3), the pathogen persists in more scenario replicates. These results
suggest how novel pathogen introductions could lead to pathogens becoming endemic among animal

populations.

Effect of Modelling Choices on Simulation Outcomes

Modelling choices can have a substantial effect on the outcomes of simulations with multiple, complex
interactions among components (Scherer et al. 2020; Netz et al. 2021; Gupte et al. 2023). We show
the effect of varying implementation on some key aspects of our model, with a focus on our scenario
1 (with repeated pathogen introduction): (1) how the infectious pathogen imposes fitness costs, (2)
where individuals are initialised, or ’born’, on the landscape relative to their parents’ positions (which
may be thought of as natal dispersal), (3) whether individuals are allowed to reproduce when they have
a negative energy balance, (4) the duration for which social information is available, in the form of
changes to the handling time, (5) changes to the spatial structure of the landscape, and (6) the sporadic

introduction of the pathogen.
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Figure 7: Feedback between evolutionary transitions in social movement strategies and
pathogen persistence after a single introduction event with vertical transmission. In scenario
2 with only a single introduction event (initial infections = 20) but also ‘vertical’ transmission from
parents to offspring at the reproduction stage, simulation replicates show divergent outcomes. (A) In
some replicates, the population is slow to transition away from sociality, and the agent-avoiding strategy
becomes common only after 200 generations. In such cases, the pathogen persists among social individ-
uals for over 500 generations (panel Pathogen persistence). In contrast, when the population undergoes
arapid evolutionary shift and agent avoidance becomes common within 100 generations, the number of
infections falls rapidly. This sets up a feedback between social strategies and the number of infections,
with infections tracking the frequency of the more social strategies with a time lag of a few generations
(panel Pathogen eliminated). In some cases, infections drop to zero, which drives the pathogen extinct
— following which there is an extremely rapid recovery in the frequency of the more social handler-
tracking strategy, and the near-complete extinction of agent-avoiding foragers. (B) Infection cost and
the probability of vertical transmission together influence whether populations undergo evolutionary
transitions that lead to pathogen elimination. In general, pathogen elimination is more common when
pathogen costs are higher (as infected individuals have fewer offspring), and when the probability of
vertical transmission is low. When infection costs are low (6 E = 0.1), there is no evolutionary transition,
and the pathogen persists in the population even when transmission between generations is low (p, =
0.1). At intermediate infection costs (6E = 0.25), pathogen persistance increases with the probability of
vertical transmission. All panels show the outcomes of 10 replicates with the default landscape spatial
structure, and with a landscape productivity R = 2. Pathogen persistence or elimination is measured at
G = 3,500, i.e., 500 generations after the first introduction.
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Infection Cost as a Reduction in Foraging Efficiency

We considered an alternative implementation in which the infectious pathogen is considered to reduce
an animal’s ability to process intake, or to require a portion of daily intake to resist, such that an in-
dividual with lifetime intake N, has a net energetic gain E = N X (1 — §E)" after being infected by
a pathogen for ¢ timesteps. In this implementation, there is a rapid evolutionary shift in movement
strategies after pathogen introduction, similar to that in our default implementation, but only when
the costs of infection are relatively high (6E = 7.5%), and the usefulness of social information is limited
by the abundance of food items (R = 5). Under these conditions, the agent-avoiding strategy becomes
the commonest strategy. Under conditions of median landscape productivity and intermediate to high
pathogen costs (6F € 5.0% and 7.5%, R = 2), the agent-avoiding strategy also emerges, but forms only a
low proportion of the population. Under all other conditions, the handler-tracking strategy continues
as the commonest strategy (Fig.8).

Large-scale Natal Dispersal of Individuals

Our model implements small-scale or ‘local’ natal dispersal and individuals are initialised close to their
parent’s last position — a defensible choice as many organisms do not disperse very far from their an-
cestors. An alternative implementation is to initialise individuals in each new generation at random
locations on the landscape (see e.g. Gupte et al. 2023); this can be called large-scale or ‘global’ natal
dispersal. This may be a reasonable choice when modelling animals during a specific stage of their
life cycle, such as after arriving on a wintering or breeding site after migration. When animals do not
disperse very far, they may adapt their movement strategies to the local conditions which they inherit
from their parents (‘ecological inheritance’ Badyaev and Uller 2009). By forcing animals in each new
generation to encounter ecological circumstances potentially different from those of their parents, im-
plementing global dispersal can help investigate whether animals’ evolved movement strategies are
truly ‘optimal’ at the global scale (Gupte et al. 2023). We implementated global dispersal by running 10
replicates of each parameter combination (3 combinations of §E = 0.25 and R € 1, 2, 5; 30 simulations
in all), with dispersal set to 10. This means that individuals’ initial positions are drawn from a normal
distribution with standard deviation = 10, centred on the location of their parent.

We found that our model is broadly robust to implementing large-scale natal dispersal, with the
evolutionary outcomes very similar to those seen in our default implementation with small-scale natal
dispersal (Fig. 9A). Most individuals are handler-tracking before the introduction of the novel pathogen,
which likely them to gain the benefits of social information on the location of a resource patch (of which
handlers are an indirect cue), while avoiding potential competitors, as well as potentially moving away
from areas without many food items. After pathogen introduction, there is a rapid evolutionary shift in

social movement strategies, with an increase in agent avoidance, similar to the shift seen in our default

20



I Agent avoiding I Agent tracking Handler tracking

Increasing productivity (social information less useful) =
Pathogen introduction Pathogen introduction Pathogen introduction

R = 1 times/gen R = 2 times/gen R = 5 times/gen
100%
[}
] 1
] 1
I I
= ! 1
iy ] 1
T : : 50%
] 1
% ! 1
] 1
] 1
I I
I 1
] 1
1 1 0
k7 i
o I
&) 1 f
g i 1 x
(=] ] 1 —
B3 : : 2
@ Lﬁ i i 50% <
£ ke ' 1 g_
I 1
2| ° ; i )
k7 ! 1 (]
W I 1
O I 1
o I 1
[ . 1 0
- I e m 9({?3%
!
] 1
I 1
] 1
2 ! 1
s ] 1
+ ] 1
c: g - 50%
I 1
% ] 1
] 1
] 1
(] 1
1 1
I 1
t 1 0%
1 3,000 5,000 3,000 5,000 3,000 5,000

Generations

Figure 8: Rapid evolutionary change under some conditions in an alternative implementation
of disease costs. In our alternative, percentage costs implementation of the infectious pathogen, there
is a rapid shift in the mix of movement strategies after pathogen introduction, but only when the costs of
infection are relatively high (7.5%), and the usefulness of social information is limited by the abundance
of food items (R = 5). In these cases, the agent-avoiding strategy is the commonest social movement
strategy, forming a smaller proportion of the population mixture of social movement strategies when
the infection cost is lower, or when the usefulness of social information is greater (lower §E and lower
R respectively).
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implementation of local dispersal. The effect of landscape productivity on the mix of proportions of the
pre- and post-pathogen introduction strategies does not appear to be significant.

Energy Threshold on Reproduction

Individuals may skip reproduction when their body condition is below some threshold, as would be
expcted when infected by a transmissible pathogen. Restricting reproduction to only those individuals
which had a positive energy balance ()] intake > §E )] time infected), we found that for our default pa-
rameter combination the handler-tracking strategy persists as the commonest strategy after pathogen
introduction, with agent avoidance making up a small proportion of the population (Fig. 9B). This is
likely because agent-avoiding foragers also avoid food clusters, and thus have low or no intake, which
precludes then from reproducing and proliferating. At a lower infection cost (6E = 0.1), there is broadly
no effect of pathogen introduction on the evolved social movement strategy, and handler-tracking per-
sists at a high frequency. When infection costs are higher (§E = 0.5), handler-tracking still persists after
pathogen introduction, but with frequent and strong irruptions of agent-avoiding individuals over the
generations following introduction.

Persistence of Social Information in the Form of Handling Time Duration

In our model, the availability of inadvertent social information on the location of food item clusters is
controlled by the handling time parameter Ty (default = 5 timesteps). Running our default implemen-
tation of scenario 1 (6 E = 0.25, R = 2) with four alternative values of handling time — 0, 1, 2, and 10 —,
we found that at low handling times (T € 1, 2), the handler-tracking strategy persists as the dominant
strategy after pathogen introduction, with a small proportion of agent-avoiding individuals (Fig. 9C).
Doubling handling time (T'y = 10) leads agent avoidance to rapidly become the dominant strategy, likely
because the cumulative risk of pathogen transmission from nearby infected individuals increases with
increased handling time. These results suggest how the evolution of social information usage can be
strongly influenced by its indirect costs (here, transmission risk) — although we do recognise that this
linkage between social information use and infection risk is particularly strong in our model due to the
immobilisation of handling individuals. A more thorough investigation of this link would ideally use a
model in which social information can be gained even in the absence of individuals themselves. When
there is no handling time (T = 0), a mixture of handler-tracking and agent-avoiding strategies persists
in the population from the beginning of the simulation, with no change following pathogen introduc-
tion (Fig. 9C). In this case, there are never any handlers, and thus oscillations in social movement strat-
egy most likely represent neutral variation around the handler preference sy ; most individuals would
more accurately be described as ‘non-handler avoiding’.
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Figure 9: Evolutionary outcomes show the effect of modelling choices in alternative imple-
mentations of scenario 1. (A) Large-scale (or ‘global’) natal dispersal leads to evolutionary outcomes
similar to the default implemenation of small-scale or ‘local’ natal dispersal (R € 1, 2, 5; §E = 0.25).
(B) A threshold on reproduction such that only individuals with a net positive energy balance (lifetime
intake > total infection cost) are allowed to reproduce leads to the persistence of the handler-tracking
strategy. This is likely because the intake-infection risk trade-off of complete agent avoidance leads
to an indirect avoidance of food items, and hence intake; in turn this likely prevents agent-avoiding
individuals from reproducing. (C) The availability and indirect costs of using social cues jointly deter-
mine how the persistence of inadvertent social 1n%orrnat10n affects the evolution of social movement
strategies. When the indirect costs of social information are low (Ty € 1, 2), handler-tracking persists
beyond pathogen introduction. When these costs increase, individuals eschew social associations and
are agent-avoiding (T = 10). When there is no social information on food items available (T = 0), all
individuals are functionally agent-avoiding (as there are no handlers).
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Spatial Structure of the Resource Landscape

Since ours is a spatial model, and the explicit consideration of space and movement is key to its out-
comes, we very briefly examined the effect of landscape spatial structure on the evolutionary outcomes
of our scenario 1 (Fig. 10). We considered two alternative food item distributions: (1) food items dis-
tributed uniformly across the landscape, and (2) food items more patchily distributed than the default,
with only 10 food item clusters (default = 60). We compared the outcomes on these landscapes with
those from our default scenario, with all parameters expect spatial structure kept the same (R = 2, §E
= 0.25, N food items = 1,800; Fig. 10B).

Landscape spatial structure influences the mixture of social movement strategies evolved before
pathogen introductions (Fig. 10A). On the uniform landscape, handler-tracking was the commonest
strategy before pathogen introduction, with nearly all individuals of this strategy. In contrast, on the
more patchy landscape, the indiscriminately social agent-tracking strategy was the most common be-
fore pathogen introductions. Both of these are in contrast with our default scenario, in which most
individuals were handler-tracking, but with a substantial proportion of agent-tracking individuals.

This overall pattern is likely due to the increasing benefit of social information and the increasing
costs of movement between profitable areas of the landscape. Aslandscapes become more clustered, di-
rect food item cues become more difficult to find, as food items are found in smaller and denser patches.
This increases the value of sociality, as individuals are likely to found near food item clusters. Further-
more, the indirect costs of movement also increase on patchy resource landscapes, as individuals have
to pay an increased cost in time (which could have been spent foraging) in moving between food item
clusters. In an implementation not formally shown here, the same effect can be achieved by adding a
small cost to each movement step — this leads to the evolution of indiscriminate sociality in the form
of agent-tracking on the default landscape as well. Overall, both the increasing local density of food
items and the costs of movement lead to an increase in agent-tracking, as individuals prefer to trade

movement costs for the costs of increased local competition for food items.

Following pathogen introduction, populations on both landscapes undergo a rapid evolutionary
transition to a mixture of handler-tracking and agent-avoiding strategies, which is similar to the change
observed in our default scenario (Fig. 10A). However, the landscapes differ in the proportions of the two
strategies, with agent avoidance more common on the uniform landscape than on the patchy landscape.
Interestingly, both of these extremes of landscape structure have more agent-avoiding individuals than
our default landscape of 60 food item clusters. On the uniform landscape, this is likely because food
items are readily found with the need for indirect social cues, and so most individuals avoid each other.
Itis less clear why this is the case on the more patchy landscape — it is possible that the denser food item
patches lead to more associations and more rapid pathogen spread, with handler-tracking individuals

infected for longer periods than agent-avoiding ones, leading to a stronger intake-infection trade-off.
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Figure 10: Landscape spatial structure influences the evolution of social movement strategies
before, but not after, pathogen introduction. (A) In two implementations with different spatial
structures (R =2, §E = 0.25), pre-pathogen dynamics are actually more different than post-introduction
ones. On landscapes with a uniform food distribution (left panel: Uniform distribution), all individu-
als before pathogen introduction were handler-tracking. On more clustered landscapes (right panel:
10 food patches; default = 60, center panel), the rare agent-tracking strategy is most common before
pathogen introduction. This is likely because the time cost of moving between distant patches on clus-
tered landscapes is higher than that of exploitation competition. After pathogen introduction, agent
avoidance rapdily becomes a common strategy. It is more dominant on uniform landscapes (approx.
80%) likely because the usefulness of social information is lower there. (B) Panels show representative
landscapes corresponding to the outcomes in (A).
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Overall, this scenario demonstrates how spatial structure can play an important role in the evolution of
social movement strategies, but also how the risk of infection can lead to landscapes with very different

spatial structures eventually populated by similar social movement strategies.

Sporadic Introduction of Infectious Pathogens

Finally, we implemented a variant of our main model, in which the infectious pathogen is introduced
only sporadically after the first introduction event (at G = 3,000). Specifically, we modelled probabilistic
introduction of the pathogen in each generation following the initial introduction. We call the per-
generation probability of a novel pathogen introduction event the ‘spillover rate’, and we ran this model
variant for three values of the spillover rate: 0.05, 0.1, and 0.25. Instead of examining the joint effect
of landscape productivity and cost of infection as well, we only examined the effect of infection cost,
implementing three different variants with an infection cost §E of 0.1, 0.25, and 0.5. We kept all other
model parameters similar to the default scenario of our main model, and importantly, considered only
a landscape productivity R of 2.

Following pathogen introduction, we found that there was little to no change in the population-
level mixture of movement strategies in this model variant (Fig. 11). This is regardless of the probability
of a novel pathogen introduction, and the cost of infection by a pathogen. Across the simulation, the
commonest social movement strategy remains handler-tracking, i.e., preferring locations with multiple
individuals regardless of their foraging status. Since there is little to no change in social movement

strategies, we did not expect nor find changes in ecological outcomes.

Discussion

Our general model captures important features of infectious pathogen or parasite transmission among
host animals in a foraging context that is relevant to many species. Adding an explicit spatial setting
has allowed us to more finely probe the effects of individual behavioural variation, pathogen charac-
teristics, and landscape properties on the emergence of animal sociality and the spread of disease. The
mechanistic combination of ecological, evolutionary, and epidemiological dynamics in a spatial setting
is unprecedented for host movement-disease models (White et al. 2018c; Manlove et al. 2022). The
key feature of our approach is to let the ecological outcomes (intake, time infected) of individual social
movement decisions in one generation, affect the mixture of social movement strategies of the next gen-
eration. Our approach shows how host evolutionary dynamics can be incorporated into mechanistic
movement-disease models (Manlove et al. 2022), and how this approach extends current understand-
ing of the evolutionary causes and consequences of animal spatial and social behaviours (Kurvers et al.
2014; Webber and Vander Wal 2018; Romano et al. 2020; Albery et al. 2021a; Romano et al. 2021; Web-
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Figure 11: No evolutionary change in social movement strategies when novel pathogen in-
troduction events are relatively uncommon. (A) In our alternative implementation of scenario 1,
the pathogen is only introduced sporadically after the initial introduction (G = 3,000; red line in panel
B). (B) When introductions are relatively rare and sporadic, there is no shift in the mixture of move-
ment strategies after pathogen introduction. The handler-tracking strategy remains common across pa-
rameter combinations. Panels represent combinat2dns of the per-timestep cost of infection §E and the
spillover rate (rows), which is the probability of pathogen introduction in each generation (columns).
All panels show the combined outcomes of 10 replicate simulations.



484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

ber et al. 2023). To aid in the uptake of our modelling approach, we provide both a written description
of the model (see Methods) as well as the full, documented source code (see Data and code availability).

Presently, most movement-disease models are non-evolutionary (White et al. 2017; 2018b; Scherer
et al. 2020; Lunn et al. 2021; Manlove et al. 2022), presumably because evolution is expected to be too
slow to impact epidemiological-ecological outcomes. We demonstrate the pitfalls of this assumption:
evolutionary transitions in sociality occur within only a few generations, comparable to the time re-
quired for the development of key social aspects of animal ecology, such as migration routes (Jesmer
etal. 2018; Cantor et al. 2021). We also demonstrate the tension inherent to sociality under the risk of an
infectious pathogen, in an explicitly spatial context. We show how populations, initially evolved to find
patchily distributed food using social information, rapidly evolve to become more sensitive to potential
infection risk and eschew social encounters, when an infectious pathogen is introduced. Our results
suggest how qualitatively and quantitatively different social movement strategies — making different
trade-offs between social information and infection risk — can co-exist in a single population (Wolf
et al. 2008; Wolf and Weissing 2012; Webber and Vander Wal 2018; Gartland et al. 2021; Webber et al.
2023). Furthermore, our model shows how these trade-offs are outcomes of movement decisions, an
aspect which would be difficult to study in a non-spatial model.

Following pathogen introduction, the evolutionary shift in social movement strategies is much more
rapid than the timescales usually associated with the evolution of complex traits such as sociality (about
100 generations). Avoiding potentially infectious individuals is a key component of navigating the ‘land-
scape of disgust’ (Weinstein et al. 2018). Our results show that sensitivity to cues of high pathogen
transmission risk can rapidly evolve following the introduction of a novel pathogen. The emergence
of qualitative individual variation in social movement strategies, and especially the trade-off between
movement, associations, and infection risk also demonstrates the evolution of ‘sociability as a per-
sonality trait’ (Gartland et al. 2021). We also find substantial individual variation in the quantitative
importance of social cues overall, which is a key component of the evolution of large-scale collective
behaviours, such as migration (Guttal and Couzin 2010). Our work suggests how, by leading to the
necessary diversity in social movement strategies, a novel pathogen may actually lay the groundwork
for the evolution of more complex collective behaviour. Nonetheless, the rapid decreases in social inter-
actions should primarily prompt concern that the evolutionary consequences of pathogen introduction
could slow the transmission of, and erode, animal culture (Cantor et al. 2021) — including foraging
(Klump et al. 2021) and migration behaviours (Guttal and Couzin 2010; Jesmer et al. 2018).

Pathogens themselves typically have shorter generation times than their hosts, and may also evolve
rapidly in response to changes in host sociality (Bonds et al. 2005; Prado et al. 2009; Ashby and Farine
2022). Our aim was to investigate how host behaviour evolved according to a predetermined (but varied)
suite of pathogen characteristics across different simulation runs. Furthermore, we wanted to examine
the effects of introduction events which are expected to become more common (Carlson et al. 2022a),
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but which need not necessarily lead to the pathogen becoming endemic in a population. Holding the
pathogen traits steady and unable to evolve in the course of a simulation is thus a necessary choice
in order to gain these first tangible insights from our model. Allowing simultaneous antagonistic co-
evolution between trophic levels, such as hosts and pathogens or predators and prey, could exponen-
tially complicate the findings of a given eco-evolutionary model, such as by producing generationally-
staggered outcomes or cyclical Red Queen patterns (Prado et al. 2009; Netz et al. 2021), and can require
much longer runs to attain stationary results or to idenitfy optimal strategies. However, pathogen evo-
lution in response to host behaviour is something that we would be excited to investigate in the future
using this modelling framework. Indeed, a mixture of host social strategies could allow for the mainte-
nance of a corresponding diversity in pathogen strategies as well (Prado et al. 2009; Ashby and Farine
2022) — as is also seen in predator-prey co-evolution (Netz et al. 2021). One conceptual impediment is
modelling pathogen traits in a mechanistic way. For example, it is widely held that there is a trade-off
between infection cost and transmissibility with a quadratic relationship between them (Bonds et al.
2005; Prado et al. 2009; Ashby and Farine 2022), but this is a pattern reported from empirical studies
and not a process per se. A tractable starting point might be to adapt our scenario 2 with vertical trans-
mission to examine the evolution of pathogen traits that influence both transmissibility and virulence
with an unchanging host (such as an adaptation of Lion and Boots 2010).

In our model, landscape productivity (R), is a proxy for the usefulness of sociality overall, as social
information is less useful when direct resource cues are abundant (high R; see also Gupte et al. 2023).
Social information benefits in disease models often have no mechanistic relationship with the subject of
the information (e.g. food or predators) (Ashby and Farine 2022). In contrast, social information bene-
fits in our model are emergent outcomes of animal movement and foraging behaviour — which is only
possible due to the explicit spatial nature of our model. It is surprising then that landscape productivity
does not strongly influence the evolution of social movement strategies, but this may yet be an impor-
tant factor in enabling high-movement, low-infection strategies when movement is inherently costly.
In our model movement has an indirect time cost — moving away from food items leaves less time in
which to make up fitness differences with other individuals through foraging. This is essentially why
we find that landscape spatial structure strongly influences the mixture of social strategies evolved be-
fore pathogen introduction. However, we found that across a spectrum of spatial structures, pathogen
introduction resulted in a convergence in social movement strategies — this evolutionary component
may an important consideration in studies of how spatial structure can influence the spread of infec-
tion (White et al. 2017; 2018a; Scherer et al. 2020; He et al. 2021). Furthermore, movement can be an
energetically demanding process that could influence whether dynamic social distancing to avoid in-
fection risk, as evolved in our model, would be a viable movement strategy. Future extensions of our
model could add a small cost to movement in order to explore the interplay of landscape productivity
and spatial structure in determining direct indirect movement costs, and the consequences for social
movement strategies.
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Infection costs do affect which social movement strategies evolve in our model, and may help ex-
plain intra- and inter-specific diversity in social systems across gradients of infection costs (Altizer et al.
2003; Sah et al. 2018). Studies tracking social movements and the potential for pathogen spread could
form initial tests of our basic predictions (Wilber et al. 2022). Our model suggests that animal pop-
ulations may be able to adapt relatively quickly to the spillover and eventual persistence of infectious
pathogens, even when they cannot specifically detect and avoid infected individuals (Altizer et al. 2003;
Stroeymeyt et al. 2018; Pusceddu et al. 2021; Stockmaier et al. 2021). While the most noticeable effect of
pathogen outbreaks is mass mortality (Fey et al. 2015), even quite serious pathogens — Sarcoptic mange
(Almberg et al. 2015), foot-and-mouth disease (Bastos et al. 2000; Vosloo et al. 2009; Jolles et al. 2021),
SARS-CoV-2 (Chandler et al. 2021; Kuchipudi et al. 2022), and avian influenza (Global Consortium
for H5NS8 and Related Influenza Viruses 2016; Wille and Barr 2022) among others — appear to spread
at sub-lethal levels for many years between lethal outbreaks. Our model shows how population-level
behavioural changescould occur even without mortality effects, due to evolutionary shifts in sociality
alone. The pathogen-risk adapted population in our model are unable to escape infection entirely, and
have significantly worse net energy per-capita (just over zero), which could leave them vulnerable to
extreme ecological conditions. Our work suggests that decreased sociality resulting from adaptation
to a novel pathogen could slow the transmission of future novel pathogens. While decreased sociality
could also reduce the prevalence of previously endemic pathogens adapted to a more social host, it may
also degrade ‘social immunity’ through reduced sharing of beneficial commensal microbes, or of low,
immunising doses of pathogens (Almberg et al. 2015; Ezenwa et al. 2016).

The results of our scenario 1 are contingent upon sustained introduction of the pathogen (or its
novel strains) to host populations. More sporadic introductions (once every few generations) appar-
ently do not cause evolutionary shifts in social movement. Our scenario 2, which includes transmis-
sion from parents to offspring, suggests a mechanism by which such sporadic events, or even a single
cross-species spillover event, could have far-reaching evolutionary consequences. Such vertical trans-
mission is believed responsible for the circulation of foot-and-mouth disease in African buffalo (Jolles
et al. 2021), and of mange among wolves (Almberg et al. 2015). Pathogen persistence across a broad
swathe of parameter combinations for scenario 2 suggests that even single introduction events can lead
to a population rapidly becoming a novel source of transmission (loosely speaking, a reservoir) for other,
overlapping species. Such dynamics would likely be increased should vertical transmission be coupled
with multiple, sporadic pathogen or parasite introductions, which appear to be common in nature (Bas-
tos et al. 2000; Vosloo et al. 2009; Levi et al. 2012; Global Consortium for H5NS8 and Related Influenza
Viruses 2016; Scherer et al. 2020; Jolles et al. 2021; Wille and Barr 2022). By demonstrating the multiple
ways in which pathogens can affect an animal population, our model suggests how disease is a power-
ful selective force in favour of detecting and avoiding infection risk cues (Weinstein et al. 2018), among
which are social cues.

We note that the pathogen characteristics (infection cost) as well as the probability of vertical trans-
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mission affect the evolutionary dynamics in scenario 2. In the context of our model, the latter could
be interpreted as a factor influencing the association between parents and offspring, such as the length
of parental care. This suggests that a directly transmitted novel pathogen should become established
readily in species with greater social associations between generations, such as parental care of young
(Chakarov et al. 2015); this may however be counteracted by suites of infection-risk reducing behaviours
on the part of adults (Stroeymeyt et al. 2018; Ratz et al. 2021). Positively, we also find that when the
pathogen is eliminated from the population, there is a near instantaneous shift towards (or recovery in)
animal sociality. This suggests that if pathogens are extirpated from parts of their former ranges (due to
a range of mechanisms, with climatic change as an influence) (Carlson et al. 2022b), some animal pop-
ulations may show a hitherto unexpected increase in sociality, and potentially, novel social behaviours
and structures or other aspects of animal culture. Our findings thus suggest an additional considera-
tion when thinking about implementing campaigns that seek to reduce wildlife disease burdens, such
as through wildlife immunisation (Ezenwa and Jolles 2015; Barnett and Civitello 2020).

In order to be widely applicable to diverse novel host-pathogen introduction scenarios, our model
necessarily makes quite general assumptions. For example, our individuals use both personal and in-
advertent social information whenever it is available, even though animals’ use of information sources
does depend on their behavioural context — this could be examined more thoroughly in future imple-
mentations. A wide diversity of pathogens and their dynamics remains to be accurately represented in
individual-based models (White et al. 2017; 2018b; Scherer et al. 2020; Lunn et al. 2021). Our framework
could be expanded and specifically tailored to real-world situations in which animal populations are ex-
posed to novel pathogens (or strains) that transmit between individuals (Bastos et al. 2000; Scherer et al.
2020; Chandler et al. 2021; Jolles et al. 2021; Kuchipudi et al. 2022; Wille and Barr 2022). Such detailed
implementations could include aspects of the pathogen life-cycle (White et al. 2017; 2018c), account for
sociality as a counter to infection costs (Almberget al. 2015; Ezenwa et al. 2016), or model host-pathogen
sociality-virulence co-evolution (Bonds et al. 2005; Prado et al. 2009; Ashby and Farine 2022). Our work
could serve as a good base for future models that focus on the importance of other factors — especially
more nuanced implementations of reproduction and demography — on the evolution of spatial-social
strategies under infection risk. For instance, allowing sexual reproduction and considering the effects
of infection status on mate choice, or limiting pairing to nearby individuals could help explore how
individual movement decisions can scale up to speciation and community assembly (Getz et al. 2015;
2016). Future empirical extensions of our work would ideally combine wildlife monitoring and move-
ment tracking across gradients of pathogen prevalence, to detect novel cross-species spillovers (Chan-
dler et al. 2021; Kuchipudi et al. 2022) and study the spatial and epidemiological consequences of animal
movement strategies (Bastille-Rousseau and Wittemyer 2019; Monk et al. 2022; Wilber et al. 2022). Our
model shows why it is important to consider evolutionary responses in movement-disease studies, and
provides a general framework to further the integration of evolutionary approaches in wildlife spatial
epidemiology.
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Methods

We implemented an individual-based simulation model to represent foraging animals (‘foragers’) mak-
ing movement decisions in an explicit spatial context. Individuals seek out discrete, immobile, deplete-
able food items from which they gain energy that can be devoted to reproduction (similar to capital
breeding; see see Fig. 1) (Spiegel et al. 2017; Gupte et al. 2023). Food items are distributed over a two-
dimensional, continuous-space resource landscape with wrapped boundaries (a torus). Our model,
similar to earlier IBMs with both ecological and evolutionary dynamics (Getz et al. 2015; Netz et al. 2021;
Gupte et al. 2023), has two distinct timescales: (1) an ecological timescale comprising of T timesteps
that make up one generation (T = 100 by default), and (2) an evolutionary timescale consisting of 5,000
generations (G). At the ecological timescale, individuals perceive cues from their local environment:
the presence and numbers of food items and other individuals. Individuals make movement decisions
according to their inherited movement strategies (see below), and when chancing upon food items,
consume them. At the same timescale, individuals that carry an infectious, fitness-reducing pathogen,
may, when in close proximity with uninfected individuals, pass on the pathogen with a small probability
(see Pathogen Introduction, Transmission and Infection Cost). At the evolutionary timescale, individuals
reproduce and transmit their inherited cue preferences, and hence their movement strategies (see Start-
ing Location and Inheritance of Movement Rules) to their offspring. The number of offspring is linked to
individuals’ success in finding and consuming food items, and to the duration that they were infected
by the pathogen at the ecological timescale; this is in line with the replicator equation (Hofbauer and
Sigmund 1988). The model was implemented in R and C++ using ‘Rcpp’ (Eddelbuettel 2013; R Core
Team 2020) and the Boost.Geometry library for spatial computations (www.boost.org); see the Data and

Code Availability statement for the code archive and development repository.

Distribution of Food Items

Our landscape of 60 X 60 units contains 1,800 discrete food items, which are clustered into 60 resource
patches, for a resource density of 0.5 items per unit area® (see Fig. 1). Each available food item can
be perceived and harvested by nearby foraging individuals (see below). Once harvested, another food
item is regenerated at the same location after a fixed regeneration time R, which is set at 50 timesteps
by default; alternative values of 20 and 100 timesteps represent high and low productivity landscapes
respectively. Food item regeneration is decoupled from population generations, and the actual number
of available food items is almost always in flux. In our figures and hereafter, we chose to represent
R as the number of times a food item would regenerate within the timesteps in a single generation T
(default = 100), resulting in R values of 1, 2, and 5 for regeneration times of 100, 50 (the default), and 20
timesteps. Items that are not harvested remain on the landscape until they are picked up by a forager.
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Each food item must be processed, or ‘handled’, by a forager for Ty timesteps (the handling time, default
= 5 timesteps) before it can be consumed (Ruxton et al. 1992; Gupte et al. 2023). The handling time
dynamic is well known from natural systems in which there is a lag between finding and consuming a
food item (Ruxton et al. 1992).

Individual Foraging and Movement

Foraging. Individuals forage in a randomised order, harvesting an available food item selected at ran-
dom within their movement and sensory range (ds = d,, a circle with a radius of 1 unit; see Fig. 1C).
Once harvested, the item is no longer available to other individuals, leading to exploitation competi-
tion among nearby foragers. Furthermore, the location of the item also yields no more cues to other
foragers that an item will reappear there, reducing direct cues by which foragers can navigate to prof-
itable resource patches. Individuals that harvest a food item must handle it for T timesteps (default =
5 timesteps), while all individuals not handling a food item are considered to still be searching for food
(Ruxton et al. 1992; Gupte et al. 2023). While handling, individuals are immobilised at the location
where they encountered the item, and thus they may be good indirect indicators of the location of a
resource patch (inadvertent social information) (Danchin et al. 2004; Romano et al. 2020; Gupte et al.
2023). Once individuals finish handling a food item, they return to the non-handling, searching state,

and are again able to make movement decisions.

Movement. Our model individuals’ movement follows a step-selection framework, wherein the direc-
tion of each step is chosen based on the individuals’ assessment of local environmental cues (Fortin et
al. 2005). This assessment is made using inherited movement preferences (as in Netz et al. 2021; Gupte
et al. 2023), which are essentially similar to step-selection coefficients (Fieberg et al. 2021). First, indi-
viduals scan their current location, and five equally spaced points around their position, at a distance
of 1 unit for three cues (dg, see Fig. 1). These are the number of food items (F), the number of foragers
handling a food item (‘handlers’: H) and the number of idle foragers not handling a food item (‘non-
handlers’: N). While an individual’s count of food items is its personal information, the behavioural
status of its neighbours is inadvertent social information; more handlers suggest a large resource patch,
while many non-handlers might mean that there is no nearby resource patch. Individuals assign a suit-
ability score to their current position and to each of the five locations, using their inherited preferences
for each of the cues: S = spF + syH + syN + € (see also Netz et al. 2021; Gupte et al. 2023). The
preferences sg, sp, and sy for each of the three cues are heritable from parents to offspring, while € is a
very small error term drawn for each location, to break ties among locations.

Individual-level combinations of step-selection coefficients estimated from animal tracking data
can be used to cluster animals in a behavioural trait space (Bastille-Rousseau and Wittemyer 2019),
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and we used a similar method to classify our model individuals’ ‘movement strategies’, based on their
cue preferences. Since individuals may differ in their inherited preferences for each of the three cues,
two individuals at the same location may make quite different movement decisions based on the same
local cues. We recognise that real individuals can change their reliance on personal or social infor-
mation through their lives depending on the behavioural context, but here we chose to focus on the
evolutionary timescale, such that the importance of social information was fixed over the lifetime of
an individual. All individuals move simultaneously to the location to which they have assigned the
highest suitability; this may be their current location, in which case individuals are stationary for that
timestep. We modelled individuals as moving in small, discrete steps of fixed size (dy; = 1 unit); this
helped us reduce the complexity of the model and to focus on decision-making. Handlers, however, are
considered immobile and do not make any movement decisions

Pathogen Introduction, Transmission and Infection Cost

Our population evolves for 3 /5™

of the simulated generations (until G = 3,000; of 5,000) in the absence
of a pathogen, after which a pathogen is first introduced to a randomly selected 4% of individuals (N =
20; ‘primary infections’). In scenario 1, the pathogen is then introduced to 20 randomly selected indi-
viduals in each generation until the end of the simulation (G = 5,000). Novel pathogen introductions
can periodically re-occur in natural environments from infected individuals of other spatially overlap-
ping species (e.g. Bastos et al. 2000; Keeling et al. 2001; Vosloo et al. 2009; Chandler et al. 2021; Carlson et
al. 2022a; Kuchipudi et al. 2022; Monk et al. 2022; Wille and Barr 2022). This is necessary to kick-start
the pathogen-movement eco-evolutionary feedback dynamics in each generation, as our default sce-
nario has no vertical transmission of the pathogen from parents to offspring. Here, we must emphasise
that current knowledge about the frequency of cross-species transmission events in wildlife is extremely
poor, yet recent high estimates of SARS-CoV transmission between bats and humans alone (Sanchez
et al. 2022), make it a plausible assumption that such events are even more common in wildlife. That
populations may indeed repeatedly acquire novel pathogens (or strains) from other spatially overlap-
ping species or populations is indeed borne out in a number of studies (e.g. Bastos et al. 2000; Keeling
et al. 2001; Vosloo et al. 2009; Chandler et al. 2021; Kuchipudi et al. 2022; Monk et al. 2022), and is
especially reinforced by the ongoing outbreak of avian influenza in multiple waterbird species across
Eurasia and North America (Wille and Barr 2022).

We sought to capture some essential features of pathogen or parasite transmission among animals
(White et al. 2017): the pathogen transmits probabilistically from infected host individuals to their sus-
ceptible neighbours with a per-timestep probability p = 0.05. This transmission is only possible when
the two individuals are within a the transmission distance, dﬁ. For simplicity, we set dﬁ to be the move-
ment range (1 unit). Once transmitted, the pathogen is assumed to cause a chronic infection which
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reduces host energy stores by a fixed amount called E in every following timestep; SE is set to 0.25 by
default (alternative values: 0.1, 0.5). In our default scenario, this means that individuals once infected
do not increase their net energetic balance, as they lose more energy per timestep to the disease than
they can gain from foraging (but note scenarios with lower §E where this is not the case). We also con-
sidered an alternative implementation of disease costs: instead of imposing an absolute energetic cost
that is independent of intake, infection reduces energy gained through intake by a certain percentage,
decreasing the value of each food item. This may be thought of as infection reducing foraging efficiency,
or as requiring some proportion of intake to be devoted to immune resistance rather than (eventually)

being given over to reproduction.

Recognising that novel pathogen spillovers in each generation represent a somewhat extreme sce-
nario, we also considered implementations in which pathogen introductions only occur sporadically
in the generations after the initial event, rather than in every generation. Furthermore, in scenario 2
we modelled only a single introduction event, but allowed infected parents to pass the pathogen on to
any offspring with a one-time probability p, = 0.2 (which we refer to as vertical transmission; alterna-
tive values: 0.1, 0.3). We deliberately set p, > p to reflect that offspring in early life may be in close
contact with their parents, providing ample opportunity for pathogens to transmit. We would note that
vertical transmission can occur only once as generations change; this is in contrast with (horizontal)
transmission between foragers, which has a per-timestep probability.

Starting Location and Inheritance of Movement Decision-making Rules

We considered a population of haploid individuals with discrete generations that do not overlap with
each other in practical terms and which have asexual inheritance, to reduce model complexity. At the
end of each parental generation, we determined the net lifetime energy of each individual as the differ-
ence of the total energy gained through food intake and the energy lost through infection. The parental
population produces an offspring population (of the same size) as follows: each offspring is assigned
a parent at random by a weighted lottery, with the weights proportional to each parent’s lifetime net
energy (an algorithm following the replicator equation) (Hofbauer and Sigmund 1988; Hamblin 2013).
This way, the expected number of offspring produced by a parent is proportional to the parent’s lifetime
success (Hofbauer and Sigmund 1988). We also considered an alternative implementation (for scenario

1 only) in which only individuals with a positive net energetic balance could reproduce.

The movement decision-making cue preferences sz, s, and sy are subject to independent random
mutations with a probability of 0.01. The mutational step size (either positive or negative) is drawn from
a Cauchy distribution with a scale of 0.01 centred on zero. Thus, while the majority of mutations are
small, there can be a small number of very large mutations. As in real ecological systems, individuals in
the new generation are intialised around the location of their parent (within a standard deviation of 2.0),
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765 and thus successful parents give rise to local clusters of offspring (with an alternative implementation
766 Where dispersal had a standard deviation of 10.0 units).

767 Model Output and Analysis

s From Cue Preferences to Social Movement Strategies

760 To understand the evolution of movement decision-making, and especially how individuals weighed
770 social information, we recorded the population’s evolved cue preferences in every second generation,
771 and interpreted them following the ‘behavioural hypervolume’ approach (Bastille-Rousseau and Witte-
772 myer 2019). When individuals move by step-selection as in our models, the value of each cue preference
773 S, for x € F, H, N relative to the other cue preferences is more important than the absolute value of any
772 cue preference by itself. Thus individuals that have relatively similar values of all three cue preferences
775 may be thought of as weighing, or preferring each cue relatively equally (or indeed avoiding, if any
776 S, < 0). The relative values of each individual’s cue preferences taken together, may be thought of as

777 the individual movement strategy.

778 To interpret the evolved movement strategies, we first normalised individuals’ cue preferences (s, for x €
779 F,H,N)within the range (-1, +1), by dividing each preference by the sum of the absolute values of each
780 preference: s, /(|sg| + |Sy| + |Sg|). For example, normalised values of sy =~ +1.0 would indicate a very
7e1  strong preference for food items, with locations with many food items getting a higher suitability score
72 than locations with fewer food items. Similarly, normalised values of sy = -1.0 would indicate a very
783 strong aversion for non-handlers or foragers who have not yet found food. To understand the evolution
7sa  of individual preferences for social information — the presence and status of competing foragers — we
7es  began by classifying individuals into four social movement strategies: (1) ‘agent-avoiding’, if s, sy < 0,
786 (2) ‘agent-tracking’, if both sy, sy > 0, (3) ‘handler-tracking’, if sy > 0,5y < 0, and (4) ‘non-handler-
7e7 tracking’, if sy < 0, sy > 0. We calculated the relative importance of social cues overall — H,N — to
7ss  each individual’s movement strategy as SI;y,,, = (Isg| + [sy[)/(Isu| + Isy| + [sp]), with higher values

780 indicating a greater importance of social cues.

70 Constructing Proximity-based Social Networks

791 We sought to understand how changes in the frequencies of individual-level movement strategies would
792 affect the broader social and spatial structure of out population. To do this, we created a proximity-
793 based adjacency matrix by counting the number of times each individual was within the sensory and
70a pathogen transmission distance dg (= dg, dj; = 1 unit) of another individual (Whitehead 2008; Wilber

705 et al. 2022). We transformed this matrix into an undirected social network weighted by the number of
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796 pairwise spatial associations: in a pairwise encounter, both individuals were considered to have asso-
797 ciated with each other (White et al. 2017). The strength of the connection between any pair was the
708 number of times the pair were within dg of each other over their lifetime. We logged associations and
700 constructed social networks after every 10% of the total generations (i.e., every 500 generation), and at
soo the end of the simulation. Constructing these networks also allowed us to examine whether changes in
sor  social contact patterns could have any effect on the spread of infection in pathogen-naive populations,
so2 as against their pathogen-adapted descendants. We also recorded the source of infection for each indi-
sos vidual in each generation in which we collected data. The infection source is the infected individual
soa Which passed the pathogen on to the focal individual. We used this data to determine the ‘individual
sos reproductive number’ v, in order to examine emergent individual variation in pathogen transmission,
sos and the potential presence of ‘superspreading’ (Lloyd-Smith et al. 2005).

sz Model Analysis

sos  We ran 10 replicates of each parameter combination that we present, and included the results from all
soo replicates when interpreting simulation outcomes (see Data and code availability). For both scenario 1
si0 and 2, we plotted the mix of social information-based movement strategies evolved across generations
s11  in each parameter combination. We focused our analysis on scenario 1 and its default parameter com-
s1i2 bination (8E = 0.25, R = 2), and visualised the mean per-capita distance moved and mean per-capita
s13 encounters with other foragers. We examined how the three main social movement strategies — agent
s1a avoidance, agent-tracking, and handler-tracking — changed in frequency over generations. We also
s1is examined differences among strategies in the movement distance, associations with other agents, and
s16 frequency of infection. We visualised the proximity based social networks of populations in scenario
sz 1 (0E = 0.25, R = 2), focusing on generations before and after the pathogen introduction events begin
s1is  (pre-introduction: G = 3,000; post-introduction: G = 3,500). We plotted the final size of the outbreak
s1o  (the total numbers of individuals infected) in each generation after pathogen introduction to exam-
s20 ine whether evolutionary changes in movement strategies actually reduced infection spread. We also
s21 ran simple network epidemiological models on the emergent individual networks in generations 3,000
s22 and 3,500 (Bailey 1975; White et al. 2017; Stroeymeyt et al. 2018; Wilber et al. 2022), for robust com-
s23  parisons of potential pathogen spread in pathogen-risk naive and pathogen-risk adapted populations,

s24 Trespectively.

525 Data and Code Availability

s26 The Pathomove simulation model code (v.1.2.0) is available on Zenodo with the DOI https://doi.org/10.5281/zenodo.778'
sz and on GitHub at github.com/pratikunterwegs/pathomove. Code to run the simulations and anal-
s2s  yse the output is on Zenodo with the DOTI https://doi.org/10.5281/zenodo.7789079, and on GitHub at
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github.com/pratikunterwegs/patho-move-evol (v.1.1.0). The data presented in this manuscript are also
archived on Zenodo with the DOI https://doi.org/10.5281/zenodo.7789060.
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