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Abstract1

Animal sociality emerges from individual decisions on how to balance the costs and benefits of being2

sociable. Novel pathogens introduced into wildlife populations should increase the costs of sociality,3

selecting against gregariousness. Using an individual-based model that captures essential features of4

pathogen transmission among social hosts, we show how novel pathogen introduction provokes the5

rapid evolutionary emergence and co-existence of distinct social movement strategies. These strate-6

gies differ in how they trade the benefits of social information against the risk of infection. Overall,7

pathogen-risk adapted populationsmovemore and have fewer associations with other individuals than8

their pathogen-risk naive ancestors, reducing disease spread. Host evolution to be less social can be suf-9

ficient to cause a pathogen to be eliminated from a population, which is followed by a rapid recovery in10

social tendency. Our conceptual model is broadly applicable to a wide range of potential host-pathogen11

introductions, and offers initial predictions for the eco-evolutionary consequences of wildlife pathogen12

spillover scenarios, and offers a template for the development of theory in the ecology and evolution of13

animals’ movement decisions.14
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Introduction15

Animal sociality emerges from individual decisions that balance the benefits of associations against the16

costs of proximity or interactionswith neighbours (Tanner and Jackson 2012; Gil et al. 2018;Webber and17

VanderWal 2018; Webber et al. 2023). Such associations can yield useful social information—whether18

inadvertently or deliberately transmitted — about resource availability (Danchin et al. 2004; Dall et al.19

2005; Gil et al. 2018), but they also provide opportunities for the transmission of parasites and infectious20

pathogens among associating individuals (Weinstein et al. 2018; Romano et al. 2020; Albery et al. 2021a;21

Cantor et al. 2021; Romano et al. 2021). Wildlife pathogen outbreaks affect most animal taxa, including22

mammals (Blehert et al. 2009; Fereidouni et al. 2019; Chandler et al. 2021; Kuchipudi et al. 2022),23

birds (Wille and Barr 2022), amphibians (Scheele et al. 2019), and social insects (Goulson et al. 2015).24

Weighing the potential risk of infection from social interactions against the benefits of socialmovements25

— where to move in relation to other individuals’ positions — is thus a common behavioural context26

shared by many animal species. Movement decisions incorporating social information— the presence27

and status of neighbours — can facilitate or reduce spatial associations, and help animals balance the28

costs and benefits of sociality (Gil et al. 2018; Webber and VanderWal 2018; Albery et al. 2021a; Webber29

et al. 2023). Animals’ social movements link landscape spatial structure, individual distributions, and30

the emergent structure of animal societies (Kurvers et al. 2014; Gil et al. 2018; Webber et al. 2023).31

Together, they influence the dynamics of disease outbreaks in animal populations (Keeling et al. 2001;32

White et al. 2018c; Romano et al. 2020; 2021), and such outbreaks may in turn have cascading effects33

on landscape structure and community ecology (Monk et al. 2022).34

Over relatively brief ecological timescales of a fewmonths or years, animal pathogen outbreaks can35

reduce social interactions among individuals due to a combination of factors. For instance, mortality36

from the disease may induce decreases in population density (e.g. Fereidouni et al. 2019; Monk et al.37

2022), leading to fewer associations. Furthermore, adaptive behavioural responses by which animals38

identify infected individuals (and indeed, whether they are themselves infected) can trigger quaran-39

tining or self-isolation behaviours that reduce encounters between infected and healthy individuals40

overall (Stroeymeyt et al. 2018; Weinstein et al. 2018; Pusceddu et al. 2021; Stockmaier et al. 2021).41

When pathogens are first introduced into a population, such as during novel cross-species spillover42

(Chandler et al. 2021; Kuchipudi et al. 2022), fine-tuned avoidance responses are less likely, as indi-43

viduals may have no prior experience of cues that indicate infection (Weinstein et al. 2018; Stockmaier44

et al. 2021; although general cues of infection may still play a role, see Townsend et al. 2020). A novel45

pathogen spreading throughhost-host contacts and imposing costs upon infected individuals could thus46

confer an evolutionary advantage upon less social individuals if these are also less frequently infected.47

Therefore it is a common expectation that pathogen introduction broadly selects against host social be-48

haviour, and hence against social connectivity itself (Altizer et al. 2003; Cantor et al. 2021; Poulin and49

Filion 2021; Romano et al. 2021; Ashby and Farine 2022).50
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Important aspects of animal ecology, including the transmission of foraging tactics (Klump et al.51

2021) and migration routes (Guttal and Couzin 2010; Jesmer et al. 2018), depend on social interac-52

tions. This makes it important to understand the long-term, evolutionary consequences of pathogen53

introductions for animal sociality. Climate change is only expected to make novel pathogen introduc-54

tions more common (Sanderson and Alexander 2020; Carlson et al. 2022a), making such studies more55

urgent. Despite this salience, novel pathogen introductions are primarily studied for their immediate56

demographic (Fey et al. 2015), and potential medical (Levi et al. 2012; Chandler et al. 2021; Kuchipudi57

et al. 2022; Wille and Barr 2022) and economic implications (Keeling et al. 2001; Goulson et al. 2015;58

Jolles et al. 2021). Indeed, most introductions of novel pathogens into wildlife only come to light when59

they result in mass mortality events (Fey et al. 2015; Wille and Barr 2022). Host evolutionary dynamics60

(and especially changes in sociality) aremostly ignored, and this is presumably because the evolution of61

pathogen host traits, and moreover complex behavioural traits such as sociality, is expected to be slow62

and not immediately relevant for management.63

Theory suggests that animal sociality evolves to balance the value of social associations against the64

risk of pathogen transmission (Bonds et al. 2005; Prado et al. 2009; Ashby and Farine 2022). How-65

ever, analytical models often reduce animal sociality to single parameters, while it actually emerges66

from individual decisions conditioned on multiple internal and external cues. Social decision-making67

and movement often also vary among individuals (Tanner and Jackson 2012; Wolf and Weissing 2012;68

Spiegel et al. 2017; Gartland et al. 2021), but analytical models are unable to include individual dif-69

ferences in sociability. Epidemiological models based on contact networks can incorporate individual70

variation in social behaviour by linking these differences to positions in a social network (White et al.71

2017; Albery et al. 2021a,b). Yet network models often cannot capture fine-scale feedbacks between72

individuals’ social and spatial positions (Albery et al. 2021a,b), nor spatial variation in infection risk73

(Albery et al. 2022). Networks constructed from relatively low-resolution spatial relocation data (such74

as infrequent direct observations; see e.g. Albery et al. 2021b), may be sensitive to the network formation75

process when seeking to understand the rapid spread of diseases, especially if transmission has a non-76

linear relationship with association strength (Farine 2017; White et al. 2017). While high-resolution77

animal tracking could help construct more detailed networks on which to run disease outbreak models78

(Nathan et al. 2022; Wilber et al. 2022), such networks could also be biased by individual variation in79

social traits (Gartland et al. 2021), such as when sociality is correlated with capture probability (see e.g.80

Carter et al. 2012). Consequently, adding an explicit spatial setting to movement-disease models can be81

valuable in gaining amore general understanding of the interplay between social decisions, movement,82

and pathogen transmission (White et al. 2017; 2018a; Scherer et al. 2020; He et al. 2021).83

Mechanistic, individual-based simulation models (IBMs) suggest themselves as a natural solution.84

IBMs can incorporate substantial ecological detail, including explicit spatial settings (DeAngelis and85

Diaz 2019), and detailed disease transmission dynamics (White et al. 2018a,b; Scherer et al. 2020; Lunn86

et al. 2021). Most importantly, IBMs can include individual decision-making, allowing ecological and87
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epidemiological outcomes to emerge from individuals’ movement choices. Individual-based models88

hitherto have focused on immediate epidemiological outcomes, such as infection persistence, and do89

not have an evolutionary component examining long-term consequences for either pathogens or their90

hosts (White et al. 2018b; Scherer et al. 2020; Lunn et al. 2021). Incorporating an evolutionary compo-91

nent tomovement-disease IBMs could allowpredictions on important feedbacks between the proximate92

ecological outcomes of infectious disease and the ultimate consequences for the evolution of host be-93

haviour (Cantor et al. 2021). This could include the emergence of individual differences in the tradeoffs94

between the costs and benefits of sociability (Gartland et al. 2021), with cascading effects for landscape95

ecology and the structure of animal societeies (Tanner and Jackson 2012; Spiegel et al. 2017; Monk et al.96

2022; Webber et al. 2023). The range of animal taxa at risk from a wide array of pathogens and para-97

sites (Sanderson and Alexander 2020; Carlson et al. 2022a) makes it important to conceive, as a starting98

point, of models that can capture the key features of diverse host-pathogen dynamics and offer broad99

conceptual insights (White et al. 2018a,b).100

We built a model that seeks to capture the essential elements of animal movement decisions in the101

context of foraging on patchily distributed resources, under the risk of pathogen (or parasite) transmis-102

sion. Our model adopts a step-selection framework in an explicit spatial setting (Fortin et al. 2005), al-103

lowing individuals to choose their movement directions— a key component of animal movement ecol-104

ogy (Nathan et al. 2008) — based on their perception of local environmental cues. These are the pres-105

ence of resources (personal information), and the presence of other individuals (social information).106

Our model also adds an evolutionary component, by allowing individuals’ ecological performance (en-107

ergy) over their lifetime to influence the mixture of movement strategies in their offspring’s generation.108

We examined the ecological and evolutionary consequences of the introduction of a pathogen into a109

novel host population (such as during cross-species spillover: Bastos et al. 2000; Blehert et al. 2009; Fer-110

eidouni et al. 2019; Scheele et al. 2019; Sanderson and Alexander 2020; Carlson et al. 2022a; Kuchipudi111

et al. 2022; Monk et al. 2022; Wille and Barr 2022). Wemodelled two scenarios of the introduction of an112

infectious pathogen to populations with that had already evolved foraging movement strategies in its113

absence. Our model scenarios could be conceived as abstract representations of, among others, cross-114

species introductions of foot-and-mouth disease from buffalo to impala (Bastos et al. 2000; Vosloo et al.115

2009), or of sarcopticmange from llamas to vicuñas (Monk et al. 2022), the current andhistoric spread of116

avian influenza among bird species (and more recently, spillovers into certain mammal species; Global117

Consortium for H5N8 and Related Influenza Viruses 2016; Wille and Barr 2022), of the spread of bor-118

relliosis in novel populations of its wildlife hosts (Levi et al. 2012), or of SARS-CoV-2 from humans to119

deer (Chandler et al. 2021; Kuchipudi et al. 2022).120

In scenario 1, we repeatedly introduced an infectious pathogen to a small proportion of individu-121

als in each generation, allowing it to spread with a low probability among proximate individuals there-122

after. This scenario parallels conditions that we expect are common but poorly known: that animal123

populations suffer pathogen introductions regularly from external sources such as individuals from an124

5



infected sub-population of a metapopulation, or sympatric heterospecifics such as those sharing breed-125

ing or wintering grounds— both of these appear to be plausible events in the spread of diseases such as126

highly pathogenic avian influenza (Global Consortium for H5N8 and Related Influenza Viruses 2016;127

Wille and Barr 2022). We classified individuals across the evolutionary timescale of our simulation,128

based on their inherited preferences (or selection coefficients) for environmental cues, into movement129

strategies (similar to; Bastille-Rousseau and Wittemyer 2019: see Methods). We compared how social130

information was used in movement strategies evolved before and after pathogen introductions began,131

and the ecological outcomes for individual movement and associations with other foragers. In a further132

scenario 2, we modelled only a single introduction event, but allowed the pathogen to be transmitted133

from parents to their offspring at the end of each generation (‘vertical transmission’ in a general sense),134

in addition to spreading among proximate individuals within each generation. Empirical examples of135

such parent-to-offspring transmission are less well known, but are implicated in the maintenance of136

foot-and-mouth disease in African buffalo (Jolles et al. 2021), and of mange among wolves (Almberg137

et al. 2015). We examined how these simulated outbreaks persisted across generations, the resulting138

evolutionary change in social movement strategies, and the consequences for individual behavioural139

outcomes. Using network epidemiological models (Bailey 1975; White et al. 2017; Stroeymeyt et al.140

2018; Wilber et al. 2022), we examined whether the spread of infections was reduced in pathogen-risk141

adapted populations compared to their pathogen-risk naive ancestors. We also investigated the effect of142

landscape productivity and the cost of infection, which are both expected to influence the selection im-143

posed by pathogen transmission (Hutchings et al. 2000; Almberg et al. 2015; Ezenwa et al. 2016). Over-144

all, we provide a theoretical framework applicable to a broad range of novel host-pathogen introduction145

scenarios, and demonstrate the importance of including evolutionary dynamics in movement-disease146

models.147

Results148

In our model, individuals move and forage on a landscape with patchily distributed food items, and se-149

lect where next to move in their vicinity, based on inherited preferences for environmental cues— food150

items, and other individuals (Fig. 1). Food items, once consumed, regenerate at a rate 𝑅, and pathogen151

infection imposes a per-timestep cost 𝛿𝐸. We classified individuals’ social movement strategies in our152

model using a simplified ‘behavioural hypervolume’ approach (Bastille-Rousseau andWittemyer 2019),153

based on the sign of their preferences for successful foragers handling a food item (‘handlers’, preference154

𝑠𝐻), and for unsuccessful foragers still searching for food (‘non-handlers’, preference 𝑠𝑁).155

In our model’s default implementation of scenario 1, 𝑅 = 2, food regenerates twice per generation,156

and 𝛿𝐸 = 0.25, i.e., consuming 1 food item offsets 4 timesteps of infection. Over the 500 generations157

before the introduction of the pathogen, populations reached an eco-evolutionary equilibrium where158
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the commonest social movement strategy was to prefer moving towards handlers while avoiding non-159

handlers (‘handler-tracking’; 𝑠𝐻 > 0, 𝑠𝑁 < 0) (Fig. 2A). This is consistent with observations from a160

different simulation model which shares many mechanisms with this one (Gupte et al. 2023). A small161

proportion of individuals prefer to move towards both handlers and non-handlers, and are thus indis-162

criminately social (‘agent-tracking’; 𝑠𝐻 , 𝑠𝑁 > 0).163

Rapid Evolutionary Shift in Social Movement Strategies Following Pathogen164

Introduction165

Introducing an infectious pathogen to 4% (n = 20) of individuals in each generation (after G = 3,000),166

leads to a rapid evolutionary shift— that is complete within only 100 generations of pathogen introduc-167

tion— in how social information is incorporated into individual movement strategies. A third strategy168

increases in frequency: avoiding both handlers and non-handlers (‘agent-avoiding’; 𝑠𝐻 , 𝑠𝑁 < 0; Fig. 2A).169

The frequency of agent-avoiding and handler-tracking strategies is comparable within 500 generations,170

and fluctuates thereafter, with increases in one strategy corresponding to decreases in the other. This171

appears to be a dynamic equilibrium that is maintained until the end of the simulation (2000 gener-172

ations after pathogen introduction; Fig. 2A). The frequency of the agent-tracking strategy is further173

reduced, but the strategy never truly goes extinct, possibly due to mutations that shift 𝑠𝑁 coefficients174

to positive during reproduction. The section Effect of Modelling Choices on Simulation Outcomes shows175

how the occurrence of rapid evolutionary shifts is broadly robust to modelling assumptions; in brief,176

such shifts also occur when (1) the pathogen reduces foraging efficiency rather than imposing a direct177

cost on individual energy, (2) when individuals cannot benefit from evolved adaptation to local con-178

ditions due to large-scale natal dispersal (Badyaev and Uller 2009), and when (3) individuals can only179

reproduce if they have a positive energy balance. Furthermore, (4) evolutionary transitions away from180

sociality are also observed at higher but not lower handling times (a proxy for the availability of social181

information), and (5) both when the spatial structure of the landscape is substantially more uniform,182

and more clustered.183

In addition to qualitative changes in socialmovement strategies, pathogen introduction also leads to184

social information becoming more important to movement decisions. Prior to pathogen introduction185

(𝐺 < 3,000), individuals’ handler- and non-handler preferences have only a small influence on their186

movement strategies (|𝑠𝐻|+ |𝑠𝑁|; taken together, the contribution of social information; Fig. 2B). Indi-187

vidualmovement is instead guided primarily by the preference for food items (𝑠𝐹 ; seeModel Output and188

Analysis). After pathogen introduction, there is an increase in the average importance of individuals’189

preferences (or aversions) for the presence of other foragers, i.e., the importance of social cues (Fig. 2B).190

Additionally, there is significant variation among individuals in the importance of social cues to their191

movement strategies, with distinct evolved polymorphisms that vary substantially between simulation192
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replicates (Fig. 2B). This means that the population’s mean importance of social cues does not ade-193

quately capature that some individuals assign much more importance to social cues than others, and194

that these distinct morphs persist in the population for many hundreds of generations after pathogen195

introduction.196

Population-level Behavioural Change due to Evolutionary Shift in Social197

Movement Strategies198

The evolutionary shift in social movement strategies causes a drastic change in population-level be-199

haviour and outcomes (Fig. 2C, D, E). There is a sharp increase in the mean distance moved by indi-200

viduals; while pre-introduction individuals moved 52% of their lifetimes on average, post-introduction,201

individuals move for about 62% of their lifetimes (Fig. 2C). The handler-tracking and agent-avoiding202

strategies lead individuals to move away from groups of individuals, with the effect of group composi-203

tion on fine-scale movement decisions (handlers or non-handlers) determined by the individuals’ strat-204

egy. Individuals are most likely to be found near resource clusters, and this leads to movement away205

from productive areas of the landscape where individuals, having acquired a food item and become206

immobilised, may have inadvertent associations with other foragers. Surprisingly, this does no lead to207

a reduction in mean per-capita intake (Fig. 2D: green), but there is a sharp drop in mean per-capita en-208

ergy (intake - total infection cost) due to the cost of infection (Fig. 2D: purple). While strongly negative209

on average in the first few generations after introduction, net energy returns to a small positive value210

within 100 generations of pathogen introduction. The emergence of avoidant strategies leads to a five-211

fold drop in encounters between individuals after pathogen introduction (Fig. 2E), which suggests that212

most encounters were indeed likely taking place on or near resource clusters. These results show how213

even a non-fatal pathogen, by influencing the evolution of movement strategies, can have substantial214

indirect effects on population-level spatial and social behaviour.215

Movement-intake-sociality Trade-offs and the Co-existence of Social Movement216

Strategies217

At eco-evolutionary equilibrium in our default implementation of scenario 1 (3,000 ≤ G ≤ 3,500), the218

three main social movement strategies co-exist, allowing a comparison of ecological and behavioural219

outcomes that illustrates the trade-offs between sociality,movement, and infection, which are otherwise220

masked by a population-level analysis. For example, the population-level increase in movement after221

pathogen introduction is shown to be due to the increase in frequency of the agent-avoiding strategy,222

as these individuals move more than handler-tracking or agent-tracking foragers (Fig. 3A). Simultane-223

ously, agent-avoiding individuals have a lower intake than either handler-tracking or agent-tracking in-224
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dividualswhich have similar intakes (Fig. 3B). Surprisingly, themore social strategies appear to increase225

their intake slightly following pathogen introduction— this could be because exploitation competition226

may be reduced as agent-avoiding foragers also avoid resource clusters and have less intake than the227

pre-introduction average. Despite this, all three strategies have comparable if not identical net energy228

and hence equivalent fitness — this is to be expected given their co-existence (Fig. 3C).229

The energy equivalence of the three strategies despite different per-capita intake can be explained230

by differing infection rates. These are in turn likely influenced by the non-linear relationship be-231

tween movement and the mean number of per-capita associations of each strategy. The shape of the232

movement-association curve is broadly a quadratic one (Fig 3D). Across strategies, individuals that233

move more have more associations until a threshold, with associations declining from their peak as in-234

dividual movement increases further; the peak of the curve is different for each strategy. For example,235

agent-tracking individuals that move 50 units have around 600 associations with other foragers, while236

handler trackers have approximately 300 associations, and agent-avoiding individuals have about 150237

associations. At the extremes of movement behaviour — individuals that move throughout their life-238

time (movement> 75) andwhich do notmove at all (movement< 15)—all three strategies have similar239

numbers of per-capita associations; individuals that move constantly (movement = 100) have almost240

no associations at all. These differences likely explain why agent-avoiding and handler-tracking indi-241

viduals have differing mean infection rates, at ∼ 25% and ∼ 33% respectively (Fig. 3E). Individuals of242

the agent-tracking strategy on the other hand have a wide range of infection rates (Fig. 3E), potentially243

because they are rare — these likely represent mutants that do not give rise to persistent lineages.244

Changes to Spatial-social Structure, and Emergent Superspreading245

Following pathogen introduction, the mixture of individual-level movement strategies elicits a change246

in the emergent spatial and social structure at the population level. Pre-introduction populations are247

spatially clustered near food item patches (Fig. 4A), due to movement strategies that favour grouping248

with successful foragers. Pathogen-risk adapted populations are more dispersed over the landscape,249

withmany individuals found far from food item clusters (Fig. 4B). This reflects the increased prevalence250

of the agent-avoiding strategy which leads to a sort of dynamic social distancing. The change in the251

mixture of population social movement strategies is reflected in the left-skewed degree distributions of252

pathogen-risk adapted populations compared to pathogen-risk naive ones (Fig. 4C).253

We examined the distribution of individual reproductive numbers (𝜈) from two separate intervals254

in the simulation: just after pathogen introductions begin (3,000 ≤ G ≤ 3,100), and 500 generations255

after introductions begin (3,500 ≤ G ≤ 3,600). Individual reproductive number distributions from both256

intervals are strongly left-skewed but have long right-hand tails (up to 12 just after introductions begin;257

Fig. 4D). While most infected individuals do not infect any of their neighbours, a small number of these258
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are responsible for a disproportionately large number of further infections, even after the population259

has adapted to moving under the risk of transmission (Fig. 4D); this is consistent with the phenomeno-260

logical definition of superspreading (Lloyd-Smith et al. 2005). Our model thus shows how, even in a261

population with identical individuals that differ only in their movement decision making rules, there262

can be substantial variation in individuals’ contribution to the spread of an infectious pathogen.263

Pathogen-risk Adapted Movement Strategies and the Spread of Infection264

A large majority of individuals in the generations just after pathogen introduction are infected (≈ 75%;265

Fig. 5A). However, tracking the evolutionary change in movement strategies, the number of infected266

individuals falls to below 50%within 100 generations (Fig. 5A), remaining low for the rest of the simula-267

tion. To examine potential pathogen spread in pre-introduction populations, we ran a simple epidemio-268

logical model on the social networks emerging from individuals’ movements before and after pathogen269

introduction (pre-introduction: G = 500; post-introduction: G = 700). We modelled two infections,270

(i) first, an infection requiring one encounter, and (ii) second, an infection requiring ten encounters271

between individuals for a potential transmission event (transmission rate 𝛽 = 5.0, recovery rate 𝛾 =272

1.0).273

Both the single encounter andmultiple encounter diseaseswould infect> 75% of individuals overall274

when spreading through the networks of pre-introduction populations (Fig. 5B). Pathogen-risk adapted275

populations’ social networks are however more resilient to the multiple encounter infection, compared276

to their pre-introduction, pathogen-risk naive ancestors, as these social networks are sparser and indi-277

viduals are more weakly connected (Fig. 5B). While nearly all individuals in post-introduction popula-278

tions would be finally infected by the single encounter infection — the same as their pre-introduction,279

pathogen-risk naive ancestors — the spread of the multiple encounter infection would be substantially280

reduced in comparison (ever infected: ≈ 50%).281

Effect of Landscape Productivity and Infection Cost282

For our scenario 1, we further explored the effect of two ecological parameters, landscape productivity283

(𝑅 ∈ 1, 2, 5) and infection cost per timestep (𝛿𝐸 ∈ 0.1, 0.25, 0.5) on simulation outcomes. Before284

pathogen introduction, the same social movement strategies evolve on landscapes of all productivity285

levels (Fig. 6).286

Infection cost. The introduction of the infectious pathogen leads to a rapid evolutionary shift in social287

movement strategies, but only in those scenarios in which the cost of infection is substantial (𝛿𝐸 ∈288
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Figure 4: Changes to spatial-social structure in populations adapted to the presence of an in-
fectious pathogen. Pathogen-risk naive populations (A; G = 3,000) are clustered into modules by the
end of their lives, while pathogen-risk adapted populations (B; G = 3,500) are more widely dispersed
over the lanscape. Pre-introduction individuals encounter somewhatmore unique neighbours (C, blue)
than pathogen-risk adapted individuals (C; red). (D) The distribution of the ‘individual reproductive
number’ 𝜈 is left-skewed, with most infections not resulting in any secondary cases, but has a long
right-hand tail, suggesting that a small number of infected individuals are responsible for a large num-
ber of infections, suggesting that ‘superspreading’ emerges from the spatial-social dynamics encoded
in the model. Panels A and B show social networks from a single replicate of the default implementa-
tion of scenario 1 (R = 2, 𝛿𝐸 = 0.25), while all other panels show the average of 10 replicates. Nodes
represent individuals positioned at their final location in A and B. Connections represent pairwise en-
counters (connections with weights < 33rd percentile are removed for ease of visualisation), and node
size represents individuals’ social associations (larger = more associations). Darker node colours indi-
cate longer infection (light blue = no infection).
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Figure 5: Adapting to moving under the risk of pathogen transmission makes populations
more resilient to the spread of some kinds of infections. (A) In the first generations following
pathogen introduction, about 75% the population is infected. However, within 100 generations, track-
ing the evolutionary shift towards movement strategies that avoid all other individuals, only about 50%
of individuals are infected overall. (B) The progression of two hypothetical infections, requiring a sin-
gle encounter, or 10 encounters for a potential transmission, on the emergent social networks of pre-
and post-introduction populations. The transmission of the multiple-encounter infection is reduced in
populations with disease-adapted movement strategies (pre-introduction: G = 3,000, blue circles; post-
introduction: G = 3,5000, red triangles). Subfigures in panel B show means of 25 SIR model replicates
(transmission rate 𝛽 = 5.0, recovery rate 𝛾 = 1.0), run on emergent social network; both panels repre-
sent 10 simulation replicates of the default implementation of scenario 1 (𝑅 = 2, 𝛿𝐸 = 0.25).
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0.25, 0.5). When the cost of infection is low (𝛿𝐸 = 0.1), the handler-tracking strategy persists as the289

most common social movement strategy. This is because the low infection costs can be compensated by290

individual intake. In scenarios where infection costs are higher, populations shift away from handler-291

tracking towards agent avoidance as the former strategy is associated with higher infection risk, and292

as infection costs are not as easily offset by intake. The frequency of agent avoidance increases with293

infection cost; while approximately 40% of all individuals in our default cost case (𝛿𝐸 = 0.25) are agent-294

avoiding, nearly all individuals avoid all other foragers when the per-timestep infection cost is doubled295

(𝛿𝐸 = 0.5).296

Landscape productivity. The productivity of the resource landscape should be expected to control the297

usefulness of social information, with social information less useful on more productive landscapes298

(due to the increased availability of direct cues). We expected that this would lead to greater handler-299

tracking persisting on lower productivity landscapes, but did not find this to be case; indeed, there did300

not appear to be an effect of productivity on the evolution of social movement strategies (Fig. 6).301

Pathogen Persistence after a Single Introduction with Vertical Transmission302

In our scenario 2, we introduced the pathogen only once to 4% (N = 20) individuals in generation 500,303

and this more closely simulates the sort of introduction that would be expected in a novel, cross-species304

spillover. Focusing on our default parameter combination (𝑅= 2, 𝛿𝐸 = 0.25, 𝑝𝑣 = 0.2), we observed that305

prior to pathogen introduction, the population followed the same ecological and evolutionary princi-306

ples we laid out for scenario 1, and all replicates were similar (Fig. 7A). The pathogen is successfully307

transmitted from parents to offspring in the initial generations following the introduction event, and308

among individuals of the same generational cohort. This produces ecological patterns very similar to309

scenario 1, with large numbers of infections (Fig. 7A).310

Evolutionary change can lead to pathogen extinction311

However, we observed that replicates begin to differ at this stage in whether the evolutionary change312

in sociality seen therein is sufficient to drive the pathogen extinct (by reducing its transmission oppor-313

tunities until no individuals are infected). In some replicates the emergence of agent avoidance is slow,314

and the frequency of this strategy seldom crosses 50% (Fig. 7A panel: Pathogen persistence). Impor-315

tantly, this means that the pathogen persists for over 500 generations after the initial introduction, with316

chaotic dynamics in the number of infections in each generation, which only roughly track changes in317

the frequency of the agent-avoiding strategy.318

In contrast, in some replicates agent avoidance rapidly reaches a prevalence of over half of all indi-319
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Figure 6: Infection cost, but not the usefulness of social information, shapes the rapid evolu-
tionary change in movement strategies triggered by pathogen introduction. Pre-introduction
(G= 3,000; dashed line) populationsmostly contain individuals that track successful foragers (handler-
tracking), with a small number of individuals that track all foragers (agent-tracking). After pathogen
introduction, indiscriminate agent avoidance becomes a common strategy, but only when landscape
productivity cannot compensate for infection costs (𝛿𝐸 ∈ 0.25, 0.5). In cases where the infection cost is
low, handler-tracking persists as the commonest strategy after pathogen introduction. All panels show
frequencies over 10 replicate simulations in 100-generation bins; frequencies are stacked. Grey areas
show the relatively uncommon ‘non-handler’ tracking strategy that sometimes arises due to mutations.
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viduals. This evolutionary transition away from sociality leads to an initial, corresponding decline in320

the number of infections in each generation, as expected (Fig. 7A). The number of infections is reduced321

to zero within 250 generations, and the pathogen is driven extinct extinction (Fig. 7A panel: Pathogen322

eliminated). The complete elimination of the pathogen is then associated with an even more rapid323

recovery of the more social movement strategies prevalent before pathogen introduction — handler-324

tracking and agent-tracking — and a near extinction of the agent-avoiding strategy.325

Infection cost and vertical transmission probability influence pathogen persistence326

We examined the effect of the per-timestep infection cost (𝛿𝐸) and the probability of vertical transmis-327

sion (𝑝𝑣) on whether the pathogen persisted for at least 500 generations through vertical transmission328

alone, i.e., without repeated external introduction events such as in scenario 1. When infection costs329

are low, there is no evolutionary transition in social movement strategies, and this leads to pathogen330

persistence in all replicates (𝛿𝐸 =0.1; Fig. 7B).When infection costs are high (𝛿𝐸 =0.5), the pathogen is331

always eliminated within 500 generations (frequently, within 200 genertions), with the pathogen per-332

sisting longer as 𝑝𝑣 increases. This is accompanied by sharp evolutionary transitions towards agent333

avoidance, which are reversed once the pathogen goes extinct. At intermediate infection costs (𝛿𝐸 =334

0.25), a mixture of outcomes is obtained (Fig. 7B). When the probability of vertical transmission is low335

(𝑝𝑣 = 0.1), there is no evolutionary shift in social movement strategies, but the pathogen is eliminated336

within 250 generations, and the number of generations required for pathogen elimination vary widely.337

As 𝑝𝑣 increases (0.2: default, 0.3), the pathogen persists in more scenario replicates. These results338

suggest how novel pathogen introductions could lead to pathogens becoming endemic among animal339

populations.340

Effect of Modelling Choices on Simulation Outcomes341

Modelling choices can have a substantial effect on the outcomes of simulations with multiple, complex342

interactions among components (Scherer et al. 2020; Netz et al. 2021; Gupte et al. 2023). We show343

the effect of varying implementation on some key aspects of our model, with a focus on our scenario344

1 (with repeated pathogen introduction): (1) how the infectious pathogen imposes fitness costs, (2)345

where individuals are initialised, or ’born’, on the landscape relative to their parents’ positions (which346

may be thought of as natal dispersal), (3) whether individuals are allowed to reproduce when they have347

a negative energy balance, (4) the duration for which social information is available, in the form of348

changes to the handling time, (5) changes to the spatial structure of the landscape, and (6) the sporadic349

introduction of the pathogen.350
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Figure 7: Feedback between evolutionary transitions in social movement strategies and
pathogen persistence after a single introduction event with vertical transmission. In scenario
2 with only a single introduction event (initial infections = 20) but also ‘vertical’ transmission from
parents to offspring at the reproduction stage, simulation replicates show divergent outcomes. (A) In
some replicates, the population is slow to transition away from sociality, and the agent-avoiding strategy
becomes common only after 200 generations. In such cases, the pathogen persists among social individ-
uals for over 500 generations (panel Pathogen persistence). In contrast, when the population undergoes
a rapid evolutionary shift and agent avoidance becomes commonwithin 100 generations, the number of
infections falls rapidly. This sets up a feedback between social strategies and the number of infections,
with infections tracking the frequency of the more social strategies with a time lag of a few generations
(panel Pathogen eliminated). In some cases, infections drop to zero, which drives the pathogen extinct
— following which there is an extremely rapid recovery in the frequency of the more social handler-
tracking strategy, and the near-complete extinction of agent-avoiding foragers. (B) Infection cost and
the probability of vertical transmission together influence whether populations undergo evolutionary
transitions that lead to pathogen elimination. In general, pathogen elimination is more common when
pathogen costs are higher (as infected individuals have fewer offspring), and when the probability of
vertical transmission is low. When infection costs are low (𝛿𝐸 =0.1), there is no evolutionary transition,
and the pathogen persists in the population even when transmission between generations is low (𝑝𝑣 =
0.1). At intermediate infection costs (𝛿𝐸 = 0.25), pathogen persistance increases with the probability of
vertical transmission. All panels show the outcomes of 10 replicates with the default landscape spatial
structure, and with a landscape productivity 𝑅 = 2. Pathogen persistence or elimination is measured at
G = 3,500, i.e., 500 generations after the first introduction.
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Infection Cost as a Reduction in Foraging Efficiency351

We considered an alternative implementation in which the infectious pathogen is considered to reduce352

an animal’s ability to process intake, or to require a portion of daily intake to resist, such that an in-353

dividual with lifetime intake 𝑁, has a net energetic gain 𝐸 = 𝑁 × (1 − 𝛿𝐸)𝑡 after being infected by354

a pathogen for 𝑡 timesteps. In this implementation, there is a rapid evolutionary shift in movement355

strategies after pathogen introduction, similar to that in our default implementation, but only when356

the costs of infection are relatively high (𝛿𝐸 = 7.5%), and the usefulness of social information is limited357

by the abundance of food items (𝑅 = 5). Under these conditions, the agent-avoiding strategy becomes358

the commonest strategy. Under conditions of median landscape productivity and intermediate to high359

pathogen costs (𝛿𝐸 ∈ 5.0% and 7.5%, 𝑅 = 2), the agent-avoiding strategy also emerges, but forms only a360

low proportion of the population. Under all other conditions, the handler-tracking strategy continues361

as the commonest strategy (Fig.8).362

Large-scale Natal Dispersal of Individuals363

Ourmodel implements small-scale or ‘local’ natal dispersal and individuals are initialised close to their364

parent’s last position — a defensible choice as many organisms do not disperse very far from their an-365

cestors. An alternative implementation is to initialise individuals in each new generation at random366

locations on the landscape (see e.g. Gupte et al. 2023); this can be called large-scale or ‘global’ natal367

dispersal. This may be a reasonable choice when modelling animals during a specific stage of their368

life cycle, such as after arriving on a wintering or breeding site after migration. When animals do not369

disperse very far, they may adapt their movement strategies to the local conditions which they inherit370

from their parents (‘ecological inheritance’ Badyaev and Uller 2009). By forcing animals in each new371

generation to encounter ecological circumstances potentially different from those of their parents, im-372

plementing global dispersal can help investigate whether animals’ evolved movement strategies are373

truly ‘optimal’ at the global scale (Gupte et al. 2023). We implementated global dispersal by running 10374

replicates of each parameter combination (3 combinations of 𝛿𝐸 = 0.25 and 𝑅 ∈ 1, 2, 5; 30 simulations375

in all), with dispersal set to 10. This means that individuals’ initial positions are drawn from a normal376

distribution with standard deviation = 10, centred on the location of their parent.377

We found that our model is broadly robust to implementing large-scale natal dispersal, with the378

evolutionary outcomes very similar to those seen in our default implementation with small-scale natal379

dispersal (Fig. 9A).Most individuals are handler-tracking before the introduction of the novel pathogen,380

which likely them to gain the benefits of social information on the location of a resource patch (of which381

handlers are an indirect cue), while avoiding potential competitors, as well as potentially moving away382

from areas without many food items. After pathogen introduction, there is a rapid evolutionary shift in383

social movement strategies, with an increase in agent avoidance, similar to the shift seen in our default384
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Figure 8: Rapid evolutionary changeunder someconditions inanalternative implementation
of disease costs. In our alternative, percentage costs implementation of the infectious pathogen, there
is a rapid shift in themix ofmovement strategies after pathogen introduction, but onlywhen the costs of
infection are relatively high (7.5%), and the usefulness of social information is limited by the abundance
of food items (R = 5). In these cases, the agent-avoiding strategy is the commonest social movement
strategy, forming a smaller proportion of the population mixture of social movement strategies when
the infection cost is lower, or when the usefulness of social information is greater (lower 𝛿𝐸 and lower
𝑅 respectively).
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implementation of local dispersal. The effect of landscape productivity on the mix of proportions of the385

pre- and post-pathogen introduction strategies does not appear to be significant.386

Energy Threshold on Reproduction387

Individuals may skip reproduction when their body condition is below some threshold, as would be388

expcted when infected by a transmissible pathogen. Restricting reproduction to only those individuals389

which had a positive energy balance (
∑
intake > 𝛿𝐸

∑
time infected), we found that for our default pa-390

rameter combination the handler-tracking strategy persists as the commonest strategy after pathogen391

introduction, with agent avoidance making up a small proportion of the population (Fig. 9B). This is392

likely because agent-avoiding foragers also avoid food clusters, and thus have low or no intake, which393

precludes then from reproducing and proliferating. At a lower infection cost (𝛿𝐸 = 0.1), there is broadly394

no effect of pathogen introduction on the evolved social movement strategy, and handler-tracking per-395

sists at a high frequency. When infection costs are higher (𝛿𝐸 = 0.5), handler-tracking still persists after396

pathogen introduction, but with frequent and strong irruptions of agent-avoiding individuals over the397

generations following introduction.398

Persistence of Social Information in the Form of Handling Time Duration399

In our model, the availability of inadvertent social information on the location of food item clusters is400

controlled by the handling time parameter 𝑇𝐻 (default = 5 timesteps). Running our default implemen-401

tation of scenario 1 (𝛿𝐸 = 0.25, 𝑅 = 2) with four alternative values of handling time— 0, 1, 2, and 10—,402

we found that at low handling times (𝑇𝐻 ∈ 1, 2), the handler-tracking strategy persists as the dominant403

strategy after pathogen introduction, with a small proportion of agent-avoiding individuals (Fig. 9C).404

Doubling handling time (𝑇𝐻 =10) leads agent avoidance to rapidly become the dominant strategy, likely405

because the cumulative risk of pathogen transmission from nearby infected individuals increases with406

increased handling time. These results suggest how the evolution of social information usage can be407

strongly influenced by its indirect costs (here, transmission risk) — although we do recognise that this408

linkage between social information use and infection risk is particularly strong in our model due to the409

immobilisation of handling individuals. A more thorough investigation of this link would ideally use a410

model in which social information can be gained even in the absence of individuals themselves. When411

there is no handling time (𝑇𝐻 = 0), a mixture of handler-tracking and agent-avoiding strategies persists412

in the population from the beginning of the simulation, with no change following pathogen introduc-413

tion (Fig. 9C). In this case, there are never any handlers, and thus oscillations in social movement strat-414

egy most likely represent neutral variation around the handler preference 𝑠𝐻 ; most individuals would415

more accurately be described as ‘non-handler avoiding’.416
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Figure 9: Evolutionary outcomes show the effect of modelling choices in alternative imple-
mentations of scenario 1. (A) Large-scale (or ‘global’) natal dispersal leads to evolutionary outcomes
similar to the default implemenation of small-scale or ‘local’ natal dispersal (𝑅 ∈ 1, 2, 5; 𝛿𝐸 = 0.25).
(B)A threshold on reproduction such that only individuals with a net positive energy balance (lifetime
intake > total infection cost) are allowed to reproduce leads to the persistence of the handler-tracking
strategy. This is likely because the intake-infection risk trade-off of complete agent avoidance leads
to an indirect avoidance of food items, and hence intake; in turn this likely prevents agent-avoiding
individuals from reproducing. (C) The availability and indirect costs of using social cues jointly deter-
mine how the persistence of inadvertent social information affects the evolution of social movement
strategies. When the indirect costs of social information are low (𝑇𝐻 ∈ 1, 2), handler-tracking persists
beyond pathogen introduction. When these costs increase, individuals eschew social associations and
are agent-avoiding (𝑇𝐻 = 10). When there is no social information on food items available (𝑇𝐻 = 0), all
individuals are functionally agent-avoiding (as there are no handlers).
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Spatial Structure of the Resource Landscape417

Since ours is a spatial model, and the explicit consideration of space and movement is key to its out-418

comes, we very briefly examined the effect of landscape spatial structure on the evolutionary outcomes419

of our scenario 1 (Fig. 10). We considered two alternative food item distributions: (1) food items dis-420

tributed uniformly across the landscape, and (2) food items more patchily distributed than the default,421

with only 10 food item clusters (default = 60). We compared the outcomes on these landscapes with422

those from our default scenario, with all parameters expect spatial structure kept the same (𝑅 = 2, 𝛿𝐸423

= 0.25, 𝑁 food items = 1,800; Fig. 10B).424

Landscape spatial structure influences the mixture of social movement strategies evolved before425

pathogen introductions (Fig. 10A). On the uniform landscape, handler-tracking was the commonest426

strategy before pathogen introduction, with nearly all individuals of this strategy. In contrast, on the427

more patchy landscape, the indiscriminately social agent-tracking strategy was the most common be-428

fore pathogen introductions. Both of these are in contrast with our default scenario, in which most429

individuals were handler-tracking, but with a substantial proportion of agent-tracking individuals.430

This overall pattern is likely due to the increasing benefit of social information and the increasing431

costs ofmovement between profitable areas of the landscape. As landscapes becomemore clustered, di-432

rect food item cues becomemore difficult to find, as food items are found in smaller and denser patches.433

This increases the value of sociality, as individuals are likely to found near food item clusters. Further-434

more, the indirect costs of movement also increase on patchy resource landscapes, as individuals have435

to pay an increased cost in time (which could have been spent foraging) in moving between food item436

clusters. In an implementation not formally shown here, the same effect can be achieved by adding a437

small cost to each movement step — this leads to the evolution of indiscriminate sociality in the form438

of agent-tracking on the default landscape as well. Overall, both the increasing local density of food439

items and the costs of movement lead to an increase in agent-tracking, as individuals prefer to trade440

movement costs for the costs of increased local competition for food items.441

Following pathogen introduction, populations on both landscapes undergo a rapid evolutionary442

transition to amixture of handler-tracking and agent-avoiding strategies, which is similar to the change443

observed in our default scenario (Fig. 10A). However, the landscapes differ in the proportions of the two444

strategies, with agent avoidancemore common on the uniform landscape than on the patchy landscape.445

Interestingly, both of these extremes of landscape structure have more agent-avoiding individuals than446

our default landscape of 60 food item clusters. On the uniform landscape, this is likely because food447

items are readily found with the need for indirect social cues, and so most individuals avoid each other.448

It is less clearwhy this is the case on themore patchy landscape— it is possible that the denser food item449

patches lead to more associations and more rapid pathogen spread, with handler-tracking individuals450

infected for longer periods than agent-avoiding ones, leading to a stronger intake-infection trade-off.451
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Figure 10: Landscape spatial structure influences the evolution of socialmovement strategies
before, but not after, pathogen introduction. (A) In two implementations with different spatial
structures (𝑅=2, 𝛿𝐸 =0.25), pre-pathogen dynamics are actuallymore different than post-introduction
ones. On landscapes with a uniform food distribution (left panel: Uniform distribution), all individu-
als before pathogen introduction were handler-tracking. On more clustered landscapes (right panel:
10 food patches; default = 60, center panel), the rare agent-tracking strategy is most common before
pathogen introduction. This is likely because the time cost of moving between distant patches on clus-
tered landscapes is higher than that of exploitation competition. After pathogen introduction, agent
avoidance rapdily becomes a common strategy. It is more dominant on uniform landscapes (approx.
80%) likely because the usefulness of social information is lower there. (B) Panels show representative
landscapes corresponding to the outcomes in (A).
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Overall, this scenario demonstrates how spatial structure can play an important role in the evolution of452

social movement strategies, but also how the risk of infection can lead to landscapes with very different453

spatial structures eventually populated by similar social movement strategies.454

Sporadic Introduction of Infectious Pathogens455

Finally, we implemented a variant of our main model, in which the infectious pathogen is introduced456

only sporadically after the first introduction event (at G= 3,000). Specifically, wemodelled probabilistic457

introduction of the pathogen in each generation following the initial introduction. We call the per-458

generation probability of a novel pathogen introduction event the ‘spillover rate’, and we ran this model459

variant for three values of the spillover rate: 0.05, 0.1, and 0.25. Instead of examining the joint effect460

of landscape productivity and cost of infection as well, we only examined the effect of infection cost,461

implementing three different variants with an infection cost 𝛿𝐸 of 0.1, 0.25, and 0.5. We kept all other462

model parameters similar to the default scenario of our main model, and importantly, considered only463

a landscape productivity 𝑅 of 2.464

Following pathogen introduction, we found that there was little to no change in the population-465

level mixture of movement strategies in this model variant (Fig. 11). This is regardless of the probability466

of a novel pathogen introduction, and the cost of infection by a pathogen. Across the simulation, the467

commonest social movement strategy remains handler-tracking, i.e., preferring locations withmultiple468

individuals regardless of their foraging status. Since there is little to no change in social movement469

strategies, we did not expect nor find changes in ecological outcomes.470

Discussion471

Our general model captures important features of infectious pathogen or parasite transmission among472

host animals in a foraging context that is relevant to many species. Adding an explicit spatial setting473

has allowed us to more finely probe the effects of individual behavioural variation, pathogen charac-474

teristics, and landscape properties on the emergence of animal sociality and the spread of disease. The475

mechanistic combination of ecological, evolutionary, and epidemiological dynamics in a spatial setting476

is unprecedented for host movement-disease models (White et al. 2018c; Manlove et al. 2022). The477

key feature of our approach is to let the ecological outcomes (intake, time infected) of individual social478

movement decisions in one generation, affect themixture of social movement strategies of the next gen-479

eration. Our approach shows how host evolutionary dynamics can be incorporated into mechanistic480

movement-disease models (Manlove et al. 2022), and how this approach extends current understand-481

ing of the evolutionary causes and consequences of animal spatial and social behaviours (Kurvers et al.482

2014; Webber and Vander Wal 2018; Romano et al. 2020; Albery et al. 2021a; Romano et al. 2021; Web-483
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Figure 11: No evolutionary change in social movement strategies when novel pathogen in-
troduction events are relatively uncommon. (A) In our alternative implementation of scenario 1,
the pathogen is only introduced sporadically after the initial introduction (G = 3,000; red line in panel
B). (B)When introductions are relatively rare and sporadic, there is no shift in the mixture of move-
ment strategies after pathogen introduction. The handler-tracking strategy remains common across pa-
rameter combinations. Panels represent combinations of the per-timestep cost of infection 𝛿𝐸 and the
spillover rate (rows), which is the probability of pathogen introduction in each generation (columns).
All panels show the combined outcomes of 10 replicate simulations.
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ber et al. 2023). To aid in the uptake of our modelling approach, we provide both a written description484

of the model (seeMethods) as well as the full, documented source code (seeData and code availability).485

Presently, most movement-disease models are non-evolutionary (White et al. 2017; 2018b; Scherer486

et al. 2020; Lunn et al. 2021; Manlove et al. 2022), presumably because evolution is expected to be too487

slow to impact epidemiological-ecological outcomes. We demonstrate the pitfalls of this assumption:488

evolutionary transitions in sociality occur within only a few generations, comparable to the time re-489

quired for the development of key social aspects of animal ecology, such as migration routes (Jesmer490

et al. 2018; Cantor et al. 2021). We also demonstrate the tension inherent to sociality under the risk of an491

infectious pathogen, in an explicitly spatial context. We show how populations, initially evolved to find492

patchily distributed food using social information, rapidly evolve to become more sensitive to potential493

infection risk and eschew social encounters, when an infectious pathogen is introduced. Our results494

suggest how qualitatively and quantitatively different social movement strategies — making different495

trade-offs between social information and infection risk — can co-exist in a single population (Wolf496

et al. 2008; Wolf and Weissing 2012; Webber and Vander Wal 2018; Gartland et al. 2021; Webber et al.497

2023). Furthermore, our model shows how these trade-offs are outcomes of movement decisions, an498

aspect which would be difficult to study in a non-spatial model.499

Following pathogen introduction, the evolutionary shift in socialmovement strategies ismuchmore500

rapid than the timescales usually associatedwith the evolution of complex traits such as sociality (about501

100 generations). Avoiding potentially infectious individuals is a key component of navigating the ‘land-502

scape of disgust’ (Weinstein et al. 2018). Our results show that sensitivity to cues of high pathogen503

transmission risk can rapidly evolve following the introduction of a novel pathogen. The emergence504

of qualitative individual variation in social movement strategies, and especially the trade-off between505

movement, associations, and infection risk also demonstrates the evolution of ‘sociability as a per-506

sonality trait’ (Gartland et al. 2021). We also find substantial individual variation in the quantitative507

importance of social cues overall, which is a key component of the evolution of large-scale collective508

behaviours, such as migration (Guttal and Couzin 2010). Our work suggests how, by leading to the509

necessary diversity in social movement strategies, a novel pathogen may actually lay the groundwork510

for the evolution of more complex collective behaviour. Nonetheless, the rapid decreases in social inter-511

actions should primarily prompt concern that the evolutionary consequences of pathogen introduction512

could slow the transmission of, and erode, animal culture (Cantor et al. 2021) — including foraging513

(Klump et al. 2021) and migration behaviours (Guttal and Couzin 2010; Jesmer et al. 2018).514

Pathogens themselves typically have shorter generation times than their hosts, and may also evolve515

rapidly in response to changes in host sociality (Bonds et al. 2005; Prado et al. 2009; Ashby and Farine516

2022). Our aimwas to investigate howhost behaviour evolved according to a predetermined (but varied)517

suite of pathogen characteristics across different simulation runs. Furthermore, we wanted to examine518

the effects of introduction events which are expected to become more common (Carlson et al. 2022a),519
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but which need not necessarily lead to the pathogen becoming endemic in a population. Holding the520

pathogen traits steady and unable to evolve in the course of a simulation is thus a necessary choice521

in order to gain these first tangible insights from our model. Allowing simultaneous antagonistic co-522

evolution between trophic levels, such as hosts and pathogens or predators and prey, could exponen-523

tially complicate the findings of a given eco-evolutionary model, such as by producing generationally-524

staggered outcomes or cyclical Red Queen patterns (Prado et al. 2009; Netz et al. 2021), and can require525

much longer runs to attain stationary results or to idenitfy optimal strategies. However, pathogen evo-526

lution in response to host behaviour is something that we would be excited to investigate in the future527

using this modelling framework. Indeed, a mixture of host social strategies could allow for the mainte-528

nance of a corresponding diversity in pathogen strategies as well (Prado et al. 2009; Ashby and Farine529

2022) — as is also seen in predator-prey co-evolution (Netz et al. 2021). One conceptual impediment is530

modelling pathogen traits in a mechanistic way. For example, it is widely held that there is a trade-off531

between infection cost and transmissibility with a quadratic relationship between them (Bonds et al.532

2005; Prado et al. 2009; Ashby and Farine 2022), but this is a pattern reported from empirical studies533

and not a process per se. A tractable starting point might be to adapt our scenario 2 with vertical trans-534

mission to examine the evolution of pathogen traits that influence both transmissibility and virulence535

with an unchanging host (such as an adaptation of Lion and Boots 2010).536

In our model, landscape productivity (𝑅), is a proxy for the usefulness of sociality overall, as social537

information is less useful when direct resource cues are abundant (high 𝑅; see also Gupte et al. 2023).538

Social information benefits in diseasemodels often have nomechanistic relationshipwith the subject of539

the information (e.g. food or predators) (Ashby and Farine 2022). In contrast, social information bene-540

fits in our model are emergent outcomes of animal movement and foraging behaviour—which is only541

possible due to the explicit spatial nature of our model. It is surprising then that landscape productivity542

does not strongly influence the evolution of social movement strategies, but this may yet be an impor-543

tant factor in enabling high-movement, low-infection strategies when movement is inherently costly.544

In our model movement has an indirect time cost — moving away from food items leaves less time in545

which to make up fitness differences with other individuals through foraging. This is essentially why546

we find that landscape spatial structure strongly influences the mixture of social strategies evolved be-547

fore pathogen introduction. However, we found that across a spectrum of spatial structures, pathogen548

introduction resulted in a convergence in social movement strategies — this evolutionary component549

may an important consideration in studies of how spatial structure can influence the spread of infec-550

tion (White et al. 2017; 2018a; Scherer et al. 2020; He et al. 2021). Furthermore, movement can be an551

energetically demanding process that could influence whether dynamic social distancing to avoid in-552

fection risk, as evolved in our model, would be a viable movement strategy. Future extensions of our553

model could add a small cost to movement in order to explore the interplay of landscape productivity554

and spatial structure in determining direct indirect movement costs, and the consequences for social555

movement strategies.556
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Infection costs do affect which social movement strategies evolve in our model, and may help ex-557

plain intra- and inter-specific diversity in social systems across gradients of infection costs (Altizer et al.558

2003; Sah et al. 2018). Studies tracking social movements and the potential for pathogen spread could559

form initial tests of our basic predictions (Wilber et al. 2022). Our model suggests that animal pop-560

ulations may be able to adapt relatively quickly to the spillover and eventual persistence of infectious561

pathogens, even when they cannot specifically detect and avoid infected individuals (Altizer et al. 2003;562

Stroeymeyt et al. 2018; Pusceddu et al. 2021; Stockmaier et al. 2021). While themost noticeable effect of563

pathogen outbreaks ismassmortality (Fey et al. 2015), even quite serious pathogens—Sarcopticmange564

(Almberg et al. 2015), foot-and-mouth disease (Bastos et al. 2000; Vosloo et al. 2009; Jolles et al. 2021),565

SARS-CoV-2 (Chandler et al. 2021; Kuchipudi et al. 2022), and avian influenza (Global Consortium566

for H5N8 and Related Influenza Viruses 2016; Wille and Barr 2022) among others — appear to spread567

at sub-lethal levels for many years between lethal outbreaks. Our model shows how population-level568

behavioural changescould occur even without mortality effects, due to evolutionary shifts in sociality569

alone. The pathogen-risk adapted population in our model are unable to escape infection entirely, and570

have significantly worse net energy per-capita (just over zero), which could leave them vulnerable to571

extreme ecological conditions. Our work suggests that decreased sociality resulting from adaptation572

to a novel pathogen could slow the transmission of future novel pathogens. While decreased sociality573

could also reduce the prevalence of previously endemic pathogens adapted to a more social host, it may574

also degrade ‘social immunity’ through reduced sharing of beneficial commensal microbes, or of low,575

immunising doses of pathogens (Almberg et al. 2015; Ezenwa et al. 2016).576

The results of our scenario 1 are contingent upon sustained introduction of the pathogen (or its577

novel strains) to host populations. More sporadic introductions (once every few generations) appar-578

ently do not cause evolutionary shifts in social movement. Our scenario 2, which includes transmis-579

sion from parents to offspring, suggests a mechanism by which such sporadic events, or even a single580

cross-species spillover event, could have far-reaching evolutionary consequences. Such vertical trans-581

mission is believed responsible for the circulation of foot-and-mouth disease in African buffalo (Jolles582

et al. 2021), and of mange among wolves (Almberg et al. 2015). Pathogen persistence across a broad583

swathe of parameter combinations for scenario 2 suggests that even single introduction events can lead584

to a population rapidly becoming a novel source of transmission (loosely speaking, a reservoir) for other,585

overlapping species. Such dynamics would likely be increased should vertical transmission be coupled586

withmultiple, sporadic pathogen or parasite introductions, which appear to be common in nature (Bas-587

tos et al. 2000; Vosloo et al. 2009; Levi et al. 2012; Global Consortium for H5N8 and Related Influenza588

Viruses 2016; Scherer et al. 2020; Jolles et al. 2021; Wille and Barr 2022). By demonstrating themultiple589

ways in which pathogens can affect an animal population, our model suggests how disease is a power-590

ful selective force in favour of detecting and avoiding infection risk cues (Weinstein et al. 2018), among591

which are social cues.592

We note that the pathogen characteristics (infection cost) as well as the probability of vertical trans-593
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mission affect the evolutionary dynamics in scenario 2. In the context of our model, the latter could594

be interpreted as a factor influencing the association between parents and offspring, such as the length595

of parental care. This suggests that a directly transmitted novel pathogen should become established596

readily in species with greater social associations between generations, such as parental care of young597

(Chakarov et al. 2015); thismayhowever be counteracted by suites of infection-risk reducing behaviours598

on the part of adults (Stroeymeyt et al. 2018; Ratz et al. 2021). Positively, we also find that when the599

pathogen is eliminated from the population, there is a near instantaneous shift towards (or recovery in)600

animal sociality. This suggests that if pathogens are extirpated from parts of their former ranges (due to601

a range of mechanisms, with climatic change as an influence) (Carlson et al. 2022b), some animal pop-602

ulations may show a hitherto unexpected increase in sociality, and potentially, novel social behaviours603

and structures or other aspects of animal culture. Our findings thus suggest an additional considera-604

tion when thinking about implementing campaigns that seek to reduce wildlife disease burdens, such605

as through wildlife immunisation (Ezenwa and Jolles 2015; Barnett and Civitello 2020).606

In order to be widely applicable to diverse novel host-pathogen introduction scenarios, our model607

necessarily makes quite general assumptions. For example, our individuals use both personal and in-608

advertent social information whenever it is available, even though animals’ use of information sources609

does depend on their behavioural context — this could be examined more thoroughly in future imple-610

mentations. A wide diversity of pathogens and their dynamics remains to be accurately represented in611

individual-basedmodels (White et al. 2017; 2018b; Scherer et al. 2020; Lunn et al. 2021). Our framework612

could be expanded and specifically tailored to real-world situations in which animal populations are ex-613

posed to novel pathogens (or strains) that transmit between individuals (Bastos et al. 2000; Scherer et al.614

2020; Chandler et al. 2021; Jolles et al. 2021; Kuchipudi et al. 2022; Wille and Barr 2022). Such detailed615

implementations could include aspects of the pathogen life-cycle (White et al. 2017; 2018c), account for616

sociality as a counter to infection costs (Almberg et al. 2015; Ezenwa et al. 2016), ormodel host-pathogen617

sociality-virulence co-evolution (Bonds et al. 2005; Prado et al. 2009; Ashby and Farine 2022). Our work618

could serve as a good base for future models that focus on the importance of other factors — especially619

more nuanced implementations of reproduction and demography — on the evolution of spatial-social620

strategies under infection risk. For instance, allowing sexual reproduction and considering the effects621

of infection status on mate choice, or limiting pairing to nearby individuals could help explore how622

individual movement decisions can scale up to speciation and community assembly (Getz et al. 2015;623

2016). Future empirical extensions of our work would ideally combine wildlife monitoring and move-624

ment tracking across gradients of pathogen prevalence, to detect novel cross-species spillovers (Chan-625

dler et al. 2021; Kuchipudi et al. 2022) and study the spatial and epidemiological consequences of animal626

movement strategies (Bastille-Rousseau andWittemyer 2019; Monk et al. 2022; Wilber et al. 2022). Our627

model shows why it is important to consider evolutionary responses in movement-disease studies, and628

provides a general framework to further the integration of evolutionary approaches in wildlife spatial629

epidemiology.630
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Methods631

We implemented an individual-based simulation model to represent foraging animals (‘foragers’) mak-632

ing movement decisions in an explicit spatial context. Individuals seek out discrete, immobile, deplete-633

able food items from which they gain energy that can be devoted to reproduction (similar to capital634

breeding; see see Fig. 1) (Spiegel et al. 2017; Gupte et al. 2023). Food items are distributed over a two-635

dimensional, continuous-space resource landscape with wrapped boundaries (a torus). Our model,636

similar to earlier IBMswith both ecological and evolutionary dynamics (Getz et al. 2015; Netz et al. 2021;637

Gupte et al. 2023), has two distinct timescales: (1) an ecological timescale comprising of T timesteps638

that make up one generation (𝑇 = 100 by default), and (2) an evolutionary timescale consisting of 5,000639

generations (G). At the ecological timescale, individuals perceive cues from their local environment:640

the presence and numbers of food items and other individuals. Individuals make movement decisions641

according to their inherited movement strategies (see below), and when chancing upon food items,642

consume them. At the same timescale, individuals that carry an infectious, fitness-reducing pathogen,643

may, when in close proximitywith uninfected individuals, pass on the pathogenwith a small probability644

(see Pathogen Introduction, Transmission and InfectionCost). At the evolutionary timescale, individuals645

reproduce and transmit their inherited cue preferences, and hence theirmovement strategies (see Start-646

ing Location and Inheritance of Movement Rules) to their offspring. The number of offspring is linked to647

individuals’ success in finding and consuming food items, and to the duration that they were infected648

by the pathogen at the ecological timescale; this is in line with the replicator equation (Hofbauer and649

Sigmund 1988). The model was implemented in R and C++ using ‘Rcpp’ (Eddelbuettel 2013; R Core650

Team 2020) and the Boost.Geometry library for spatial computations (www.boost.org); see the Data and651

Code Availability statement for the code archive and development repository.652

Distribution of Food Items653

Our landscape of 60 × 60 units contains 1,800 discrete food items, which are clustered into 60 resource654

patches, for a resource density of 0.5 items per unit area2 (see Fig. 1). Each available food item can655

be perceived and harvested by nearby foraging individuals (see below). Once harvested, another food656

item is regenerated at the same location after a fixed regeneration time 𝑅, which is set at 50 timesteps657

by default; alternative values of 20 and 100 timesteps represent high and low productivity landscapes658

respectively. Food item regeneration is decoupled from population generations, and the actual number659

of available food items is almost always in flux. In our figures and hereafter, we chose to represent660

𝑅 as the number of times a food item would regenerate within the timesteps in a single generation 𝑇661

(default = 100), resulting in 𝑅 values of 1, 2, and 5 for regeneration times of 100, 50 (the default), and 20662

timesteps. Items that are not harvested remain on the landscape until they are picked up by a forager.663
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Each food itemmust be processed, or ‘handled’, by a forager for𝑇𝐻 timesteps (the handling time, default664

= 5 timesteps) before it can be consumed (Ruxton et al. 1992; Gupte et al. 2023). The handling time665

dynamic is well known from natural systems in which there is a lag between finding and consuming a666

food item (Ruxton et al. 1992).667

Individual Foraging and Movement668

Foraging. Individuals forage in a randomised order, harvesting an available food item selected at ran-669

dom within their movement and sensory range (𝑑𝑆 = 𝑑𝑀 , a circle with a radius of 1 unit; see Fig. 1C).670

Once harvested, the item is no longer available to other individuals, leading to exploitation competi-671

tion among nearby foragers. Furthermore, the location of the item also yields no more cues to other672

foragers that an item will reappear there, reducing direct cues by which foragers can navigate to prof-673

itable resource patches. Individuals that harvest a food itemmust handle it for 𝑇𝐻 timesteps (default =674

5 timesteps), while all individuals not handling a food item are considered to still be searching for food675

(Ruxton et al. 1992; Gupte et al. 2023). While handling, individuals are immobilised at the location676

where they encountered the item, and thus they may be good indirect indicators of the location of a677

resource patch (inadvertent social information) (Danchin et al. 2004; Romano et al. 2020; Gupte et al.678

2023). Once individuals finish handling a food item, they return to the non-handling, searching state,679

and are again able to make movement decisions.680

Movement. Our model individuals’ movement follows a step-selection framework, wherein the direc-681

tion of each step is chosen based on the individuals’ assessment of local environmental cues (Fortin et682

al. 2005). This assessment is made using inherited movement preferences (as in Netz et al. 2021; Gupte683

et al. 2023), which are essentially similar to step-selection coefficients (Fieberg et al. 2021). First, indi-684

viduals scan their current location, and five equally spaced points around their position, at a distance685

of 1 unit for three cues (𝑑𝑆, see Fig. 1). These are the number of food items (𝐹), the number of foragers686

handling a food item (‘handlers’: 𝐻) and the number of idle foragers not handling a food item (‘non-687

handlers’: 𝑁). While an individual’s count of food items is its personal information, the behavioural688

status of its neighbours is inadvertent social information; more handlers suggest a large resource patch,689

while many non-handlers might mean that there is no nearby resource patch. Individuals assign a suit-690

ability score to their current position and to each of the five locations, using their inherited preferences691

for each of the cues: 𝑆 = 𝑠𝐹𝐹 + 𝑠𝐻𝐻 + 𝑠𝑁𝑁 + 𝜖 (see also Netz et al. 2021; Gupte et al. 2023). The692

preferences 𝑠𝐹 , 𝑠𝐹 , and 𝑠𝑁 for each of the three cues are heritable from parents to offspring, while 𝜖 is a693

very small error term drawn for each location, to break ties among locations.694

Individual-level combinations of step-selection coefficients estimated from animal tracking data695

can be used to cluster animals in a behavioural trait space (Bastille-Rousseau and Wittemyer 2019),696
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and we used a similar method to classify our model individuals’ ‘movement strategies’, based on their697

cue preferences. Since individuals may differ in their inherited preferences for each of the three cues,698

two individuals at the same location may make quite different movement decisions based on the same699

local cues. We recognise that real individuals can change their reliance on personal or social infor-700

mation through their lives depending on the behavioural context, but here we chose to focus on the701

evolutionary timescale, such that the importance of social information was fixed over the lifetime of702

an individual. All individuals move simultaneously to the location to which they have assigned the703

highest suitability; this may be their current location, in which case individuals are stationary for that704

timestep. We modelled individuals as moving in small, discrete steps of fixed size (𝑑𝑀 = 1 unit); this705

helped us reduce the complexity of the model and to focus on decision-making. Handlers, however, are706

considered immobile and do not make any movement decisions707

Pathogen Introduction, Transmission and Infection Cost708

Our population evolves for 3∕5th of the simulated generations (until G = 3,000; of 5,000) in the absence709

of a pathogen, after which a pathogen is first introduced to a randomly selected 4% of individuals (N =710

20; ‘primary infections’). In scenario 1, the pathogen is then introduced to 20 randomly selected indi-711

viduals in each generation until the end of the simulation (G = 5,000). Novel pathogen introductions712

can periodically re-occur in natural environments from infected individuals of other spatially overlap-713

ping species (e.g. Bastos et al. 2000; Keeling et al. 2001; Vosloo et al. 2009; Chandler et al. 2021; Carlson et714

al. 2022a; Kuchipudi et al. 2022; Monk et al. 2022; Wille and Barr 2022). This is necessary to kick-start715

the pathogen-movement eco-evolutionary feedback dynamics in each generation, as our default sce-716

nario has no vertical transmission of the pathogen from parents to offspring. Here, we must emphasise717

that current knowledge about the frequency of cross-species transmission events inwildlife is extremely718

poor, yet recent high estimates of SARS-CoV transmission between bats and humans alone (Sánchez719

et al. 2022), make it a plausible assumption that such events are even more common in wildlife. That720

populations may indeed repeatedly acquire novel pathogens (or strains) from other spatially overlap-721

ping species or populations is indeed borne out in a number of studies (e.g. Bastos et al. 2000; Keeling722

et al. 2001; Vosloo et al. 2009; Chandler et al. 2021; Kuchipudi et al. 2022; Monk et al. 2022), and is723

especially reinforced by the ongoing outbreak of avian influenza in multiple waterbird species across724

Eurasia and North America (Wille and Barr 2022).725

We sought to capture some essential features of pathogen or parasite transmission among animals726

(White et al. 2017): the pathogen transmits probabilistically from infected host individuals to their sus-727

ceptible neighbours with a per-timestep probability 𝑝 = 0.05. This transmission is only possible when728

the two individuals are within a the transmission distance, 𝑑𝛽 . For simplicity, we set 𝑑𝛽 to be the move-729

ment range (1 unit). Once transmitted, the pathogen is assumed to cause a chronic infection which730
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reduces host energy stores by a fixed amount called 𝛿𝐸 in every following timestep; 𝛿𝐸 is set to 0.25 by731

default (alternative values: 0.1, 0.5). In our default scenario, this means that individuals once infected732

do not increase their net energetic balance, as they lose more energy per timestep to the disease than733

they can gain from foraging (but note scenarios with lower 𝛿𝐸 where this is not the case). We also con-734

sidered an alternative implementation of disease costs: instead of imposing an absolute energetic cost735

that is independent of intake, infection reduces energy gained through intake by a certain percentage,736

decreasing the value of each food item. Thismay be thought of as infection reducing foraging efficiency,737

or as requiring some proportion of intake to be devoted to immune resistance rather than (eventually)738

being given over to reproduction.739

Recognising that novel pathogen spillovers in each generation represent a somewhat extreme sce-740

nario, we also considered implementations in which pathogen introductions only occur sporadically741

in the generations after the initial event, rather than in every generation. Furthermore, in scenario 2742

we modelled only a single introduction event, but allowed infected parents to pass the pathogen on to743

any offspring with a one-time probability 𝑝𝑣 = 0.2 (which we refer to as vertical transmission; alterna-744

tive values: 0.1, 0.3). We deliberately set 𝑝𝑣 > 𝑝 to reflect that offspring in early life may be in close745

contact with their parents, providing ample opportunity for pathogens to transmit. We would note that746

vertical transmission can occur only once as generations change; this is in contrast with (horizontal)747

transmission between foragers, which has a per-timestep probability.748

Starting Location and Inheritance of Movement Decision-making Rules749

We considered a population of haploid individuals with discrete generations that do not overlap with750

each other in practical terms and which have asexual inheritance, to reduce model complexity. At the751

end of each parental generation, we determined the net lifetime energy of each individual as the differ-752

ence of the total energy gained through food intake and the energy lost through infection. The parental753

population produces an offspring population (of the same size) as follows: each offspring is assigned754

a parent at random by a weighted lottery, with the weights proportional to each parent’s lifetime net755

energy (an algorithm following the replicator equation) (Hofbauer and Sigmund 1988; Hamblin 2013).756

This way, the expected number of offspring produced by a parent is proportional to the parent’s lifetime757

success (Hofbauer and Sigmund 1988). We also considered an alternative implementation (for scenario758

1 only) in which only individuals with a positive net energetic balance could reproduce.759

The movement decision-making cue preferences 𝑠𝐹 , 𝑠𝐻 , and 𝑠𝑁 are subject to independent random760

mutationswith a probability of 0.01. Themutational step size (either positive or negative) is drawn from761

a Cauchy distribution with a scale of 0.01 centred on zero. Thus, while the majority of mutations are762

small, there can be a small number of very largemutations. As in real ecological systems, individuals in763

the new generation are intialised around the location of their parent (within a standard deviation of 2.0),764
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and thus successful parents give rise to local clusters of offspring (with an alternative implementation765

where dispersal had a standard deviation of 10.0 units).766

Model Output and Analysis767

From Cue Preferences to Social Movement Strategies768

To understand the evolution of movement decision-making, and especially how individuals weighed769

social information, we recorded the population’s evolved cue preferences in every second generation,770

and interpreted them following the ‘behavioural hypervolume’ approach (Bastille-Rousseau andWitte-771

myer 2019). When individualsmove by step-selection as in ourmodels, the value of each cue preference772

𝑠𝑥 for 𝑥 ∈ 𝐹,𝐻,𝑁 relative to the other cue preferences is more important than the absolute value of any773

cue preference by itself. Thus individuals that have relatively similar values of all three cue preferences774

may be thought of as weighing, or preferring each cue relatively equally (or indeed avoiding, if any775

𝑠𝑥 < 0). The relative values of each individual’s cue preferences taken together, may be thought of as776

the individualmovement strategy.777

To interpret the evolvedmovement strategies, wefirst normalised individuals’ cue preferences (𝑠𝑥for𝑥 ∈778

𝐹,𝐻,𝑁) within the range (-1, +1), by dividing each preference by the sum of the absolute values of each779

preference: 𝑠𝑥∕(|𝑠𝐻|+ |𝑠𝑁|+ |𝑠𝐹|). For example, normalised values of 𝑠𝐹 ≈ +1.0 would indicate a very780

strong preference for food items, with locations with many food items getting a higher suitability score781

than locations with fewer food items. Similarly, normalised values of 𝑠𝑁 ≈ -1.0 would indicate a very782

strong aversion for non-handlers or foragers who have not yet found food. To understand the evolution783

of individual preferences for social information— the presence and status of competing foragers —we784

began by classifying individuals into four social movement strategies: (1) ‘agent-avoiding’, if 𝑠𝐻 , 𝑠𝑁 < 0,785

(2) ‘agent-tracking’, if both 𝑠𝐻 , 𝑠𝑁 > 0, (3) ‘handler-tracking’, if 𝑠𝐻 > 0, 𝑠𝑁 < 0, and (4) ‘non-handler-786

tracking’, if 𝑠𝐻 < 0, 𝑠𝑁 > 0. We calculated the relative importance of social cues overall — 𝐻,𝑁 — to787

each individual’s movement strategy as 𝑆𝐼𝑖𝑚𝑝 = (|𝑠𝐻| + |𝑠𝑁|)∕(|𝑠𝐻| + |𝑠𝑁| + |𝑠𝐹|), with higher values788

indicating a greater importance of social cues.789

Constructing Proximity-based Social Networks790

We sought to understand how changes in the frequencies of individual-levelmovement strategieswould791

affect the broader social and spatial structure of out population. To do this, we created a proximity-792

based adjacency matrix by counting the number of times each individual was within the sensory and793

pathogen transmission distance 𝑑𝛽 (= 𝑑𝑆, 𝑑𝑀 = 1 unit) of another individual (Whitehead 2008; Wilber794

et al. 2022). We transformed this matrix into an undirected social network weighted by the number of795
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pairwise spatial associations: in a pairwise encounter, both individuals were considered to have asso-796

ciated with each other (White et al. 2017). The strength of the connection between any pair was the797

number of times the pair were within 𝑑𝛽 of each other over their lifetime. We logged associations and798

constructed social networks after every 10% of the total generations (i.e., every 500th generation), and at799

the end of the simulation. Constructing these networks also allowed us to examine whether changes in800

social contact patterns could have any effect on the spread of infection in pathogen-naive populations,801

as against their pathogen-adapted descendants. We also recorded the source of infection for each indi-802

vidual in each generation in which we collected data. The infection source is the infected individual803

which passed the pathogen on to the focal individual. We used this data to determine the ‘individual804

reproductive number’ 𝜈, in order to examine emergent individual variation in pathogen transmission,805

and the potential presence of ‘superspreading’ (Lloyd-Smith et al. 2005).806

Model Analysis807

We ran 10 replicates of each parameter combination that we present, and included the results from all808

replicates when interpreting simulation outcomes (see Data and code availability). For both scenario 1809

and 2, we plotted the mix of social information-based movement strategies evolved across generations810

in each parameter combination. We focused our analysis on scenario 1 and its default parameter com-811

bination (𝛿𝐸 = 0.25, 𝑅 = 2), and visualised the mean per-capita distance moved and mean per-capita812

encounters with other foragers. We examined how the three main social movement strategies — agent813

avoidance, agent-tracking, and handler-tracking — changed in frequency over generations. We also814

examined differences among strategies in the movement distance, associations with other agents, and815

frequency of infection. We visualised the proximity based social networks of populations in scenario816

1 (𝛿𝐸 = 0.25, 𝑅 = 2), focusing on generations before and after the pathogen introduction events begin817

(pre-introduction: G = 3,000; post-introduction: G = 3,500). We plotted the final size of the outbreak818

(the total numbers of individuals infected) in each generation after pathogen introduction to exam-819

ine whether evolutionary changes in movement strategies actually reduced infection spread. We also820

ran simple network epidemiological models on the emergent individual networks in generations 3,000821

and 3,500 (Bailey 1975; White et al. 2017; Stroeymeyt et al. 2018; Wilber et al. 2022), for robust com-822

parisons of potential pathogen spread in pathogen-risk naive and pathogen-risk adapted populations,823

respectively.824

Data and Code Availability825

ThePathomove simulationmodel code (v.1.2.0) is available onZenodowith theDOIhttps://doi.org/10.5281/zenodo.7789072,826

and on GitHub at github.com/pratikunterwegs/pathomove. Code to run the simulations and anal-827

yse the output is on Zenodo with the DOI https://doi.org/10.5281/zenodo.7789079, and on GitHub at828
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