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Abstract. We investigate the stability of the Epstein-Zin problem with

respect to small distortions in the dynamics of the traded securities. We

work in incomplete market model settings, where our parametrization

of perturbations allows for joint distortions in returns and volatility of

the risky assets and the interest rate. Considering empirically the most

relevant specifications of risk aversion and elasticity of intertemporal

substitution, we provide a condition that guarantees the convexity of

the domain of the underlying problem and results in the existence and

uniqueness of a solution to it. Then, we prove the convergence of the

optimal consumption streams, the associated wealth processes, the in-

direct utility processes, and the value functions in the limit when the

model perturbations vanish.

1. Introduction

Recursive utilities of Epstein-Zin type allow for the incorporation of future

consumption choice into preferences. In the discrete-time environment, this

topic goes back to [KP78] and [EZ89], whereas in continuous-time stochastic

settings, it was originally investigated in [DE92]. These utilities allowed

for the resolution of several asset pricing puzzles; see the introduction to

[Xin17a] for an overview of this topic. The Epstein-Zin problem remains

an active research area. Thus, recently, explicit solutions are characterized

in [Xin17a], [KSS17], and [MX18]; for the results in infinite time horizon

settings, we refer to [HHJ23], [HHJ21], and [AH23]; a finite yet random

horizon is considered in [AH21].
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The continuous-time counterpart of a recursive utility is also known as

a stochastic differential utility. Two constants govern its parametrization.

One is the usual risk aversion, and the other is an elasticity of intertemporal

substitution (EIS) that specifies the willingness to interchange consumption

over time. As pointed out in [Xin17a, Remark 2.1, p. 231], the empirically

most relevant case corresponds to the relative risk aversion γ > 1 and the

elasticity of intertemporal substitution (EIS) ψ > 1.

The notion of the well-posedness of a mathematical problem goes back

to Hadamard [Had02], and it comprises the following three properties for a

solution to a given problem to hold: existence, uniqueness, and continuous

dependence on the initial data, where the last property is loosely known as

stability. While the existence and uniqueness results (and various charac-

terizations of the solution) for the Epstein-Zin problem are established in

the papers mentioned above, the questions of stability in the context of this

problem, to the best of our knowledge, have not been answered before.

An additional motivation for studying stability comes from the fact that

in many cases, for example, in the factor model considered in [KSS17], the

explicit solution ceases to exist under general perturbations of the model

parameters, where such perturbations can be associated with a procedure of

calibration. In this case, it is important to understand whether the outputs

of the problem, such as the optimal consumption, the optimal wealth pro-

cess, the indirect utility process, and the value function, differ only slightly

from the solution to the unperturbed problem admitting an explicit solu-

tion.

In the case of the more traditional additive utility, which corresponds to

a particular case of the Epstein-Zin problem (γ = 1
ψ , in the present nota-

tions), the questions of stability are studied more, and historically, and they

have also followed establishing the existence and uniqueness results. The re-

sults on the stability of the outputs to the optimal investment problem with

respect to various perturbations and in varying formulations are contained

in [JN04], [CR07], [KŽ11], [Xin17b], [VS18], and [Mos21], among others.

These works do not establish any stability to BSDEs result, in contrast to

the present paper, as the analysis of the stability of the optimal investment

problem in many formulations relies on different techniques, despite the
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BSDE-base approach pioneered in [HIM05]. Thus, compared to the papers

on the stability of the traditional utility maximization in various formula-

tions mentioned in this paragraph, we rely on the analysis of BSDE and

establish related approximation and stability results in the present work.

In view of the previously listed works, one can argue that the literature

on the Epstein-Zin problem does not contain its stability analysis. The aim

of the present paper is to give insight into this problem, and thus, here,

we investigate the stability of the Epstein-Zin problem with respect to per-

turbations of the dynamics of the traded securities. Our parametrization of

perturbations allows us to include joint or separate distortions of the interest

rate as well as of the return and volatility of the risky assets. We consider

the above-described case when both the relative risk aversion and EIS ex-

ceed one. Our analysis is performed under a weak no-arbitrage condition, no

unbounded profit with bounded risk (NUPBR) introduced in [KK07], which

still allows for the meaningful structure of the underlying problem.

Our results include a sufficient condition for the convexity of the domain

of the primal problem and for the existence and uniqueness of the optimizer

to this problem. This condition can be stated as non-emptiness of the dual

domain, that is, the existence of a state price density satisfying an integra-

bility condition, which guarantees a unique solution of class D to the dual

BSDE, see Lemma 2.1. We also show the convergence of the value functions,

the optimal consumption streams, the associated wealth processes, and the

indirect utility processes as perturbations vanish.

One of the difficulties in the analysis involves establishing stability-type

estimates for the solutions to BSDEs with an unbounded terminal condi-

tion and non-Lipschitz generator, with respect to particular perturbations

of both the terminal condition and the generator. Here, we establishe a ucp

convergence result for the family of solutions to such BSDEs, see Lemma

5.6. Further, it is crucial for the proof to show the strict r(and stronger than

strict) concavity of the rvalue function, in a sense Lemma 5.5. All these es-

timates are needed to establish the convergence of the optimal consumption

streams, whereas the convergence of the value functions relies on conjugacy

results from [MX18] and on a particular construction of the nearly optimal

consumption streams also combined with localization.
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The remainder of this paper is organized as follows: in Section 2, we

specify the model; Section 3 contains the main results. In Section 4, we

discuss the integrability condition on the perturbations, and the proofs are

given in Section 5.

2. Model

2.1. Market. Let
(

Ω, (Ft)t∈[0,T ] ,F ,P
)

be a complete stochastic basis, where

T ∈ (0,∞) is the time horizon, F0 is the completion of the trivial σ-field,

(Ft)t∈[0,T ] is the augmented filtration generated by a (k + n)-dimensional

Brownian motion B =
(
W,W⊥

)
, where W represents the first k components

andW⊥ the remaining n components. For an Rn×n-valued FW -adapted pro-

cess ρ taking values in Rn×k and for an Rn×n-valued adapted process1 ρ⊥

satisfying ρρ>+ ρ⊥(ρ⊥)> = In×n, the n-dimensional identity matrix, we set

W ρ :=

∫ ·
0
ρsdWs +

∫ ·
0
ρ⊥s dW

⊥
s .

We consider a family of markets parametrized by ε ∈ (−ε0, ε0) for some

ε0 > 0. Thus, for a fixed ε, the traded assets are (Sε,0, . . . , Sε,n), where Sε,0

is the price process of the riskless asset and (Sε,1, . . . , Sε,n) are the prices of

the risky assets. Their evolution is given by

dSε,0t = Sε,0t rεtdt, dSε,it = Sε,it

(rεt + µε,it

)
dt+

n∑
j=1

σε,i,jt dW ρ,j
t

 ,

i ∈ {1, . . . , n},

(2.1)

where the processes rε ≥ 0, µε,i, and σε,i are FW -adapted processes such

that the integrals in (2.1) are well-defined and such that σεt is invertible,

t ∈ [0, T ], P-a.s..

In particular, our parametrization of perturbations allows us to include

the following cases:

• Perturbations of the drift µ only. This corresponds to setting rε ≡ r0,

and σε,i,j ≡ σ0,i,j , for every i, j ∈ {1, . . . , n}.
• Perturbations of the volatility σ only.

1Through process ρ, one, in particular, can include stochastic volatility-type models as

in [KSS17, Section 4]. We note that the model in [KSS17] allows for an explicit solution to

the Epstein-Zin problem via Hamilton-Jacobi-Bellman equations, and under perturbations

of the model parameters, the structure allowing for explicit solutions can be lost.
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• Similarly, we can consider perturbations of the interest rate only. In

many works in mathematical finance, the riskless asset is assumed to

be constant-valued. While this gives the correct structure to many

problems of mathematical finance, having non-zero interest rates can

also be significant and leads to extra technicalities.

• Perturbations of the numéraire, where the parametrization of such

perturbations can follow the ones in [Mos20].

• Combinations of perturbations above.

2.2. The Epstein-Zin problem. For every ε ∈ (−ε0, ε0), let

πε =
(
πε,0, . . . , πε,n

)
be an Sε-integrable Rn+1-valued process representing

the proportions of the total wealth invested in the respective assets, thus,

satisfying r
n∑
i=0

πε,it = 1, t ∈ [0, T ]. Let cε be a nonnegative progressively

measurable process representing the consumption rate in the ε-th market.

Let κ be a deterministic consumption clock given by κt = t + 1{T}(t), t ∈
[0, T ]. We specify the dynamics of the wealth processXε,πε,cε associated with

consumption-investment pair (πε, cε) and starting from an initial wealth x

as follows

(2.2) dXε,πε,cε

t = Xε,πε,cε

t

n∑
i=0

πε,it
dSε,it

Sε,it
− cεtdκt, Xε

0 = x.

We call a consumption process cε admissible from x > 0 for the ε-th market,

if there exists an Sε-integrable process πε, such that
n∑
i=0

πε,it = 1, t ∈ [0, T ],

and the associated wealth process in (2.2) is nonnegative, P-a.s.. We denote

the family of admissible consumptions from x > 0 in the ε-th market by

A(x, ε), ε ∈ (−ε0, ε0).

An agent, starting with an initial capital x > 0, invests and consumes in

the market in a way to maximize his or her expected utility with Epstein-Zin

preferences. With δ > 0 representing the discount rate, 0 < γ 6= 1 being

the relative risk aversion, and 0 < ψ 6= 1 specifying the elasticity of inter-

temporal substitution (EIS), one can define the Epstein-Zin aggregator f

via

(2.3) f(c, u) = δ
c

1− 1
ψ

1− 1
ψ

((1− γ)u)1− 1
θ − δθu, c > 0 and (1− γ)u > 0,
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where θ := (1− γ)/
(

1− 1
ψ

)
. Given the bequest utility UT (c) = c1−γ/ (1− γ),

c > 0, the Epstein-Zin utility for a nonnegative consumption stream c is a

process (U ct )t∈[0,T ], which satisfies the BSDE

(2.4) U ct = Et
[
UT (cT ) +

∫ T

t
f(cs, U

c
s )ds

]
, t ∈ [0, T ],

where Et is E [ · |Ft]. Sufficient conditions for the existence of U c for a given

c are contained in [MX18, Proposition 2.1].

The agent aims to maximize his or her Epstein-Zin utility at time zero

over all admissible strategies, that is

(2.5) sup
c∈A(x,ε)

U c0 , (x, ε) ∈ (0,∞)× (−ε0, ε0) .

This formulation, however, does not guarantee that for a given c ∈ A(x, ε),

U c in (2.4) is well-defined. As pointed out in [MX18, Remark 2.2], one

needs some mild integrability properties on the elements of A(x, ε), (x, ε) ∈
(0,∞)× (−ε0, ε0). Below, we provide some insights on this issue. For this,

we need to introduce the state price densities.

2.3. State price density processes. The family of state price density

processes is defined as

D(y, ε) := {D > 0 : D0 = y,DXε,π,c +

∫ ·
0
Dscsdκs

is a supermartingale for every c ∈ A(1, ε)} ,

(y, ε) ∈ (0,∞)× (−ε0, ε0) ,

(2.6)

where (π, c) is the investment-consumption pair, such that Xε,π,c in (2.2)

is nonnegative. Thus, one can see that the family of minimal state price

densities

(2.7) Dε,0 := E
(
−
∫ ·

0
rεsds−

∫ ·
0

(
(σεs)

−1 µεs

)
dW ρ

s

)
, ε ∈ (−ε0, ε0) ,

is well-defined, where E denotes the stochastic exponential. In particular,

since, for every ε, the set of state price densities is non-empty, and this also

applies to the set of supermartingale deflators, this precludes the arbitrage

opportunities in the sense of unbounded profit with bounded risk (UPBR)
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introduced in [KK07], we also refer to [KK21, Chapter 2] for its multiple

equivalent characterizations. In other words,

(2.8) NUPBR holds for every ε ∈ (−ε0, ε0).

For the BSDE characterizations, as in [Xin17a], it is important to restrict

the admissible consumptions to the ones that are also integrable in a sense

made precise below. Thus, one can define

(2.9) Ã(x, ε) :=

{
c ∈ A(x, ε) : E

[∫ T

0
c

1− 1
ψ

s ds

]
<∞

}
.

Formally, in [Xin17a], also E
[
c1−γ
T

]
< ∞ is imposed. However, for every

constant δ > 0, a consumption plan satisfying cT ≥ δ satisfies E
[
c1−γ
T

]
<∞.

In particular, the plans such that E
[
c1−γ
T

]
=∞ correspond to small values

of cT , and thus are suboptimal. By setting the associate U c ≡ −∞ for every

c such that E
[
c1−γ
T

]
=∞, one can rule them out. If all consumption plans

allow for E
[
c1−γ
T

]
= ∞, then intuitively, the problem is degenerate. This,

however, does not happen if the interest rate r0 ≥ 0, in which case constant-

valued consumptions are admissible and integrable in the sense above.

Having ruled out the possibility of E
[
c1−γ
T

]
= ∞ for all consumption

plans, as in the paragraph above, one can provide a sufficient condition

for E
[∫ T

0 c
1− 1

ψ
s ds

]
< ∞ to hold for every c ∈ A(x, ε). It is related to a

characterization via the reverse Hölder inequality in the spirit of [Nut10,

Proposition 4.5] and [Kaz94].

The following lemma provides a sufficient condition for A(x, ε) = Ã(x, ε).

Lemma 2.1. Let ε ∈ (−ε0, ε0) be fixed and suppose that there exists D ∈
D(1, ε), such that

(2.10) E
[∫ T

0
D1−ψ
s ds

]
<∞.

Then, we have

(2.11) A(x, ε) = Ã(x, ε), x > 0.
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Proof. Let us fix ε ∈ (−ε0, ε0). Then, for every D ∈ D(1, ε), along the lines

of [Mos15, Proposition 4.2], one can show that

(2.12) E
[∫ T

0
Dscsds

]
≤ 1, for every c ∈ A(1, ε).

Next, let us consider D ∈ D(1, ε), satisfying (2.10). Then, for an arbitrary

c ∈ A(1, ε), using Hölder’s inequality, we get

E

[∫ T

0
c

1− 1
ψ

s ds

]
= E

[∫ T

0
c

1− 1
ψ

s D
1− 1

ψ
s D

1
ψ−1

s ds

]

≤ CE
[∫ T

0
Dscsds

]1− 1
ψ

E
[∫ T

0
D1−ψ
s ds

] 1
ψ

<∞,

for some constant C ∈ (0,∞), where the last inequality follows from (2.10)

and (2.12). Therefore, E
[∫ T

0 e−δsc
1− 1

ψ
s ds

]
< ∞, and we conclude that c ∈

Ã(1, ε).

�

As pointed out in [MX18, Remark 2.2], instead of verifying the integra-

bility conditions in (2.9), it is enough to check for the optimal consumption

stream, c∗, that the associated U c
∗

exists and is of class (D). A similar

argument can be provided for the dual problem below.

With the integrability conditions in (2.9), one can restate (2.5) as

(2.13) u(x, ε) = sup
c∈Ã(x,ε)

U c0 , (x, ε) ∈ (0,∞)× (−ε0, ε0) .

We call u - the value function and U ĉ(x,ε) - the value process if ĉ(x, ε) is an

optimizer in (2.13) for a given pair (x, ε) ∈ (0,∞)× (−ε0, ε0), provided that

such an optimizer exists. Next, following [MX18], let us define

(2.14) g(d, v) := δψ
d1−ψ

ψ − 1
((1− γ)v)1− γψ

θ − δθv, d > 0, (1− γ)v > 0,

and a function VT , the convex conjugate of UT , which is given by

(2.15) VT (d) :=
γ

1− γ
d
γ−1
γ , d > 0.

Next, for a given pair (y, ε) ∈ (0,∞) × (−ε0, ε0) and D ∈ D(y, ε), one

defines the Epstein-Zin stochastic differential dual for D to be a process V D
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satisfying the BSDE

(2.16) V D
t = Et

[
VT (DT ) +

∫ T

t
g

(
Ds,

1

γ
V D
s

)
ds

]
, t ∈ [0, T ].

Sufficient conditions for the existence of V D are presented in [MX18, Propo-

sition 2.5]. We state the family of the dual minimization problems as

(2.17) inf
D∈D(y,ε)

V D
0 , (y, ε) ∈ (0,∞)× (−ε0, ε0) .

Similarly to (2.13), to ensure that for a given state price density D, V D is

well-defined, one needs some integrability conditions, and following [MX18,

Proposition 2.5], one can set

(2.18) D̃(y, ε) :=

{
D ∈ D(y, ε) : E

[∫ T

0
D1−ψ
s ds

]}
<∞.

Technically in [MX18, Proposition 2.5], it is also required that E
[
D

γ−1
γ

T

]
<

∞, which however holds in our settings for every state price density, by

an application of Holder’s inequality, as γ−1
γ ∈ (0, 1), and since D (under

nonnegative interests rates) is a supermartingale. This allows us to restate

(2.17) as

(2.19) v(y, ε) := inf
D∈D̃(y,ε)

V D
0 , (y, ε) ∈ (0,∞)× (−ε0, ε0) .

We conclude this section by pointing out that, by (2.10), if D̃(1, ε) 6= ∅,
then A(1, ε) = Ã(1, ε), and thus, the convexity of Ã(1, ε) holds. Thus, for

every ε ∈ (−ε0, ε0), the non-emptiness of the dual feasible set implies the

convexity of the primal domain.

3. Main results

3.1. Model assumptions. We will need two assumptions. To ensure that

the dual problem (2.19) is non-degenerate in a neighborhood of ε = 0, we

impose the following assumption.

Assumption 3.1. For every ε ∈ (−ε0, ε0), D̃(1, ε) 6= ∅.

The second assumption allows for the additional structure for the base

model corresponding to ε = 0.
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Assumption 3.2. Let x > 0 be fixed and suppose that, for ε = 0, a

conjugacy relation in the following sense holds:

(3.1) u(x, 0) = min
ỹ>0

(v(ỹ, 0) + xỹ) = v(y, 0) + xy,

for some y > 0. Further, assume that, for ε = 0, there exist optimizers

ĉ(x, 0) to (2.13) and D̂(y, 0) to (2.19), such that U ĉ(x,0) and V D̂(y,0) are of

class D.

Sufficient conditions for Assumption 3.2. Sufficient conditions for (3.1)

are contained in [MX18, Section 3]. Explicit solutions are contained [Xin17a,

Theorem 2.14], see also [KSS17], where optimal strategies are obtained in

Markovian settings. To be more precise, [KSS17] contains the explicit solu-

tion for the primal problem (2.13), and the optimal state price density could

be identified via the utility gradient approach, following e.g., [DS94].

Proposition 3.3. [MX18, Theorem 3.6] Suppose that γψ ≥ 1, ψ > 1,

or γψ ≤ 1, ψ < 1 and the processes r0, (µ0)>
((
σ0
)>)−1 (

σ0
)−1

µ0 are

bounded. Then (3.1) holds.

For models with unbounded market price of risk, we refer to [MX18,

Section 3.4] for the exact conditions that guarantee Assumption 3.2. In

a Markov setting, we refer to [KSS17, Theorem 5.1], where, in the one-

dimensional stock prices process and a factor model for the dynamics of both

riskless and risky assets, boundedness of µ0 and r0 as well as boundedness

away from 0 and ∞ of σ0, guarantee that [MX18, Theorem 3.6] applies.

To analyze the behavior of the primal and dual problems under pertur-

bations, we introduce a family of Rn-dimensional processes λε, defined by

(3.2)

λεt :=
(

(σ0
t )
>
)−1 (

(σεt )
−1 µεt −

(
σ0
t

)−1
µ0
t

)
, t ∈ [0, T ], ε ∈ (−ε0, ε0).

We also set R := (R1, . . . , Rn), where

(3.3) dRit = µ0,idt+

n∑
j=1

σ0,i,j
t dW ρ,j

t , Ri0 = 0, i ∈ {1, . . . , n},

Along the lines of [Mos20], let us introduce the family of processes N ε,

ε ∈ (−ε0, ε0), given via

(3.4)

dN ε
t = N ε

t

(
(r0
t − rεt )dt− λεtdRt

)
, t ∈ [0, T ], N ε

0 = 1, ε ∈ (−ε0, ε0).
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We recall that κ is given by κt = t+ 1{T}(t), t ∈ [0, T ]. Let L0(dκ×P) be

the linear space of (equivalence classes of) real-valued measurable processes

on the stochastic basis (Ω,F , (Ft)t∈[0,T ],P) equipped with the topology of

convergence in measure (dκ× P).

3.2. Stability theorems. The first theorem establishes convergence of the

value functions.

Theorem 3.4. Let x > 0 be fixed, γ > 1 and ψ > 1 in (2.3). Let

us further suppose that Assumptions 3.1 and 3.2 hold and for every ε ∈
(−ε0, ε0), σε is invertible, λε appearing in (3.2) is R-integrable and lim

ε→0
N ε =

1, in measure (dκ× P).

Then for every ε ∈ (−ε0, ε0), we have

(i) the value functions are finite-valued, that is

(3.5) u(z, ε) ∈ R and v(z, ε) ∈ R, (z, ε) ∈ (0,∞)× (−ε0, ε0) ;

(ii) the value functions converge

lim
(x′,ε)→(x,0)

u(x′, ε) = u(x, 0), x > 0,(3.6)

lim
(y′,ε)→(y,0)

v(y′, ε) = v(y, 0), y > 0;(3.7)

(iii) for every (x, ε) ∈ (0,∞)× (−ε0, ε0), there exists a unique optimizer to

(2.13).

Remark 3.5. For the problem in (2.13), a condition of the finiteness of the

value functions condition is typically imposed. In the present settings, as

we deal with non-positive value functions u(x, ε) finiteness from above (by

zero) holds. For the finiteness from below,

(3.8) u(x, ε) > −∞, (x, ε) ∈ (0,∞)× (−ε0, ε0),

rwe remark that this also holds as r0 ≥ 0, and thus c ≡ x
T+1 is an admissible

consumption for the initial wealth x, for which one can use comparison

results for BSDEs to show that the value function is finite-valued. Similar

arguments can be employed to show the finiteness of v(y, ε), as it is also

bounded by zero from above, and by (u(1, ε)− y) from below.
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The next theorem addresses the convergence of the optimizers. The as-

sumptions of Theorem 3.4, ensure that for every (x, ε) ∈ (0,∞)× (−ε0, ε0),

there exists a unique ĉ(x, ε), such that u(x, ε) = U
ĉ(x,ε)
0 , and that u(x, ε) is

finite-valued for every such (x, ε). To prove convergence of the optimizers,

we need to ensure finiteness for the value processes in the sense below.

Theorem 3.6. Let x > 0 be fixed. Let the conditions of Theorem 3.4 hold

and suppose that there exists ε′ > 0, such that

ess sup(x,ε)∈Bε′ (0,0) ĉ(x, ε) ∈ L0(dκ×P), ess inf(x,ε)∈Bε′ (0,0) U
ĉ(x,ε) ∈ L0(dκ×P),

where Bε′(0, 0) is a Euclidean ball of radius ε′ in R2.

We then have that

lim
(x′,ε)→(x,0)

ĉ(x′, ε) = ĉ(x, 0),(3.9)

where the convergence is in measure (dκ× P).

Let us recall that under the conditions of Theorem 3.4, the existence and

uniqueness of the optimizer to (2.13) follows from Theorem 3.4, item (iii).

Let us also recall that, for a given nonnegative consumption stream c, U c

was defined in (2.4).The following theorem establishes the convergence of

the indirect utility processes.

Theorem 3.7. Let x > 0 be fixed. Then, under the conditions of Theorem

3.6, we have

lim
(x′,ε)→(x,0)

U ĉ(x
′,ε) = U ĉ(x,0), ucp.

Next, for a fixed x > 0 and ε = 0, let y > 0 be as in Assumption 3.2 and

suppose that the dual minimizer has the form

(3.10)

D̂t(y, 0) = C exp

(∫ t

0
∂uf

(
ĉt(x, 0), U

ĉ(x,0)
t

)
ds

)
∂cf

(
ĉt(x, 0), U

ĉ(x,0)
t

)
, t ∈ [0, T ],

for some constant C > 0 and

(3.11) X ĉ(x,0)D̂(y, 0) +

∫ ·
0
D̂s(y, 0)ĉs(x, 0)dκs is a martingale,

where X ĉ(x,0) is the wealth process starting from x financing ĉ(x, 0) (given

by (2.2) at ε = 0). We note that sufficient conditions for (3.10) and (3.11)

are similar to the ones for Assumption 3.2 to hold; see the discussion after
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Assumption 3.2. In particular, both (3.10) and (3.11) hold if the market

price of risk (µ0)>
((
σ0
)>)−1 (

σ0
)−1

µ0 process is bounded as well as γ > 1

and ψ > 1. Then, the conditions of [MX18, Theorem 3.6, p. 1002], apply

and [MX18, Corollary 3.7, p. 1002] implies (3.10) and (3.11). Furthermore,

representation (3.10) for the optimal state-price density goes back to [DS94]

and is known as the utility gradient approach.

Theorem 3.8. Let x > 0 be fixed. Let the assumptions of Theorem 3.6,

(3.10), and (3.11) hold. Then, lim
(x′,ε)→(x,0)

X ĉ(x′,ε) = X ĉ(x,0), in measure

(dκ×P), where X ĉ(x′,ε) is any wealth process financing ĉ(x′, ε) starting from

the initial capital x′ in the market where the traded assets are given by (2.1).

Furthermore, if lim
ε→0

N ε = 1, ucp, then lim
(x′,ε)→(x,0)

X ĉ(x′,ε) = X ĉ(x,0), ucp.

4. On the integrability condition on perturbations

Let us revisit Assumption 3.1. For a fixed ε ∈ (−ε0, ε0), in order for

D̃(1, ε) 6= ∅, where D̃(1, ε) are defined in (2.18), there must exist a super-

martingale state price density Dε ∈ D(1, ε), such that

(4.1) E
[∫ T

0
(Dε

s)
1−ψds

]
<∞.

The natural candidate for (4.1) to hold is to check whether the minimal

state price density given by (2.7) satisfies the integrability condition (4.1).

Another sufficient condition for Assumption 3.1 to hold is given by

E
[∫ T

0

(
D̂s(y, 0)N ε

s

)1−ψ
ds

]
<∞, ε ∈ (−ε0, ε0),

where D̂s(y, 0) is the dual minimizer at (y, 0), which exists by Assumption

3.2 and N ε are given by (3.4). Condition (4.1) is the only integrability con-

dition needed on the perturbations to ensure that the dual domain incorpo-

rating the additional integrability for perturbed models is non-empty, that

is: D̃(1, ε) 6= ∅, for ε 6= 0. Perhaps the most surprising feature in our analysis

(at least for the authors) was that other than (4.1), no further integrability

needs to be imposed. This can be explained as follows, where the key is in

the utility maximization considerations. It is well-known that for the ex-

pected utility maximization from terminal wealth, the key role is played by

the finiteness of the value functions, see [KS99], where the finiteness of the
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primal value function (from above) is assumed, and [KS03], where the finite-

ness of the dual value function (from above) is required. To be more precise,

both conditions require the value functions to be less than ∞ (in [KS99,

Theorem 2.2], under the asymptotic elasticity). In [Mos15], the finiteness of

both primal and dual value functions (from below and above) is introduced

and proven to be necessary and sufficient for the standard assertions of the

utility maximization theory in the case of additive and stochastic utility.

In the present setting, in view of the choice of the parameters γ > 1

and ψ > 1, we obtain that the associated value function is negative-valued.

This follows from the analysis of the associated BSDEs as in rLemma 5.2.

In particular, the base model exhibits a finiteness conditions for both the

primal and dual value functions. For the perturbed models, as γ and ψ do

not change, we still obtain that the primal value function is negative-valued,

and the dual one too. Here, the primal gives a lower bound for the dual

via the conjugacy relations. Thus the blow-up to ∞ is not possible under

perturbations of the models. In turn, the blow-up to −∞ is also not possible,

as (2.13) is a maximization problem, and thus finiteness of the base model

guarantees that we do not have a blow-up as long as the processes N ε’s

appearing in (3.4) are well-defined, and without any further integrability

conditions needed on this family. This situation can be compared to the

counterexample in [Mos20], where blow-up does happen for a particular

form of perturbations, as the utility function there can take positive values.

The connection between the last two paragraphs can be further illustrated

by the case of γ = 1
ψ (going outside the scope of the analysis in this paper).

Then the problem (2.13) reduces to the one with an additive utility, given

by

U c0 = E

[∫ T

0
δe−δs

c1−γ
s

1− γ
ds+ e−δT

c1−γ
T

1− γ

]
.

In this case, and with γ > 1, the value function is negative-valued, and so is

the dual one, thus precluding the blow-up to ∞. The blow-up to −∞ is not

possible by the feasibility of the constant-valued consumptions, which also

gives a lower bound for the dual problem.

5. Proofs

5.1. Preliminary Results. We begin with the following structural lemma.
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Lemma 5.1. Let the conditions of Theorem 3.4 hold, let x > 0 be fixed, and

y > 0 be given through (3.1). Then, for every ε ∈ (−ε0, ε0), we have

cε : = ĉ(x, 0)
1

N ε
∈ A(x, ε), x > 0,

Dε : = D̂(y, 0)N ε ∈ D(y, ε), y > 0,
(5.1)

where ĉ(x, 0) and D̂(y, 0) are the optimizers, for ε = 0, to (2.13) and (2.19),

respectively.

Proof. First, we observe that for every ε ∈ (−ε0, ε0), the process N ε is pro-

gressively measurable by [KS98, Proposition 1.13, p. 5]. Now, the assertion

of the lemma follows from Itô’s lemma. �

Let us introduce some notations used in this section’s remaining part.

• Let S2 be the space of one-dimensional continuous adapted processes

(Yt)t∈[0,T ] such that E

[
sup
t∈[0,T ]

|Yt|2
]
<∞.

• Let S∞ =

{
Y ∈ S2 : || sup

t∈[0,T ]
|Yt|||∞ <∞

}
.

• Let M2 denote the space of predictable multidimensional processes

(Zt)t∈[0,T ], such that E
[∫ T

0 |Zt|
2dt
]
<∞.

With f given in (2.3), let us consider the BSDE

(5.2) U ct =
c1−γ
T

1− γ
+

∫ T

t
f(cs, U

c
s )ds−

∫ T

t
ZcsdBs, t ∈ [0, T ].

Next, with the transformation

(5.3) (Y,Z) := e−δθt(1− γ)(U c, Zc), t ∈ [0, T ],

we obtain a BSDE for (Y, Z) of the form

(5.4) Yt = e−δθT c1−γ
T +

∫ T

t
F (s, cs, Ys)ds−

∫ T

t
ZsdBs, t ∈ [0, T ],

where, for θ < 0, F (t, x, y) := δθe−δtx
1− 1

ψ y1− 1
θ ≤ 0 is monotonically de-

creasing in y.

Lemma 5.2. Under the conditions of Theorem 3.4, for every (z, ε) ∈ (0,∞)×
(−ε0, ε0), u(z, ε) and v(z, ε) are finite-valued.
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Proof. Let us fix (z, ε) ∈ (0,∞) × (−ε0, ε0). From Lemma 5.1, we deduce

that z
x ĉ(x, 0) 1

Nε ∈ A(z, ε). Therefore, for a fixed m ≥ 1,

(5.5) c :=
z

x+ 1
m

1

m
∨
(
ĉ(x, 0)

1

N ε

)
∧m ∈ A(z, ε).

In particular, we have

E[(cT )1−γ ] <∞.

Next, with F k(t, ct, y) := δθe−δtc
1− 1

ψ

t (|y| ∧ k)1− 1
θ (note that the process c is

bounded from above by m here), let us consider

Y k
t = e−δθT c1−γ

T +

∫ T

t
F k(s, cs, Y

k
s )ds−

∫ T

t
Zks dBs, t ∈ [0, T ], k ∈ N.

This is a BSDE with a Lipschitz generator and a bounded terminal condition.

Therefore, by [CE12, Theorem 5.1], this BSDE admits a unique solution

(Y k, Zk) ∈ S2 ×M2. Furthermore, as c in (5.5) is bounded away from 0

and ∞, we have 1
C̄
≤ Y k

T ≤ C̄, for some constant C̄ > 0. As, additionally,

F k is non-positive-valued, using the comparison result for BSDEs [Par99,

Theorem 2.4, p. 517], one can show that Y k takes values in [0, C̄]. Therefore,

with c in (5.5) and the associated Y given via (5.4), for every k ≥ C̄,

F k(t, ct, Y
k) = F (t, ct, Y

k), t ∈ [0, T ], P-a.s.. As a result, (Y, Z) := (Y k, Zk)

is a solution to (5.4) (for c given in (5.5)).

Changing variables back to (U c, Zc), that is from (5.3), and with

(U ct , Z
c
t ) :=

eδθt

1− γ
(Yt, Zt), t ∈ [0, T ],

one can show that this pair satisfies (5.2) and further, following the proof of

[Xin17a, Proposition 2.2], that U c satisfies (2.4), U c is non-positive-valued

and is bounded away from −∞. As in (2.13), we take the supremum over all

admissible consumptions, u(z, ε) ≥ U c0 (for c as above). Next, also similarly

to the proof of [Xin17a, Proposition 2.2] and relying on the localization

technique from [BH06], one can see that for every admissible consumption,

U c0 ≤ 0. We conclude that u(z, ε) ≤ 0 and is finite-valued for every ε ∈
(−ε0, ε0). Now, by [MX18, Theorem 2.7], v(z, ε) ≥ u(x, ε) − xz, (x, z) ∈
(0,∞)2, and thus v(z, ε) is bounded away from −∞. Furthermore, similarly

to showing that u(z, ε) ≤ 0, one can show that v(z, ε) ≤ 0. We conclude

that v(z, ε) is finite-valued. �
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Lemma 5.3. Let x > 0 be fixed. Then, under the conditions of Theorem

3.4, we have

(5.6) lim inf
(x′,ε)→(x,0)

u(x′, ε) ≥ u(x, 0).

Proof. Let us fix ε′ > 0 and let ĉ(x, 0) be the optimizer to (2.13) at (x, 0),

which belongs to Ã(x, 0), as this results from Assumption 3.2. Let (xk, εk),

k ∈ N, be a sequence which converges to (x, 0) and such that

(5.7) lim
k→∞

u(xk, εk) = lim inf
(x′,ε)→(x,0)

u(x′, ε).

For c = ĉ(x, 0), let us consider the BSDE (5.4) (which is related to (5.2)

via (5.3)). As, by Assumption 3.2, U c is of class D, one can show (see

the discussion in [MX18, Remark 2.2]) that c ∈ Ã(x, 0). Furthermore, as

established in the proof of [Xin17a, Proposition 2.2], r(for γ, ψ > 1) (5.4)

admits a unique solution (Y, Z), such that Y is continuous, strictly positive,

and of class D, with
∫ T

0 |Zt|
2dt < ∞, P-a.s.. Moreover, U c := eδθtYt

1
1−γ ,

t ∈ [0, T ], satisfies (5.2) and (2.4). Next, using the approximation procedure

as in step 2 of the proof of [Xin17a, Proposition 2.2], one can show that

there exists n0 ∈ N, such that

(5.8) |Y n
0 − Y0| <

ε′

3
, n ≥ n0,

where Y n solves

Y n
t = (e−δθT c1−γ

T ) ∧ n+

∫ T

t
F (s, cs, Y

n
s )ds−

∫ T

t
Zns dBs, t ∈ [0, T ].

The latter BSDE admits a solution (Y n, Zn) ∈ S∞ ×M2, where using

the comparison argument, one can show that 0 ≤ Y n ≤ n, and Y n =↓
lim
m→∞

Y n,m, n ∈ N, where Y n,m solves

(5.9)

Y n,m
t = (e−δθT c1−γ

T )∧n+

∫ T

t
Fm(s, cs, Y

n,m
s )ds−

∫ T

t
Zn,ms dBs, t ∈ [0, T ],

with Fm(t, ct, y) := δθe−δt(c
1− 1

ψ

t ∧m)(|y| ∧m)1− 1
θ . Likewise, one can show

that 0 ≤ Y n,m ≤ n. Therefore, for m ≥ n, we obtain

Fm(t, ct, Y
n,m
t ) = δθe−δt(c

1− 1
ψ

t ∧m)(Y n,m
t ∧m)1− 1

θ

= δθe−δt(c
1− 1

ψ

t ∧m)(Y n,m
t )1− 1

θ .

(5.10)
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For every n ∈ N, one can show that lim
m→∞

sup
t∈[0,T ]

|Y n
t − Y

n,m
t | = 0 in proba-

bility P, and thus, we deduce that there exists m′(n) ∈ N, such that

(5.11) |Y n
0 − Y

n,m
0 | < ε′

3
, n ∈ N, m ≥ m′(n).

It follows from Lemma 5.1 that the process ck = ĉ(x, 0) 1
Nεk ∈ A(x, εk).

Next, for every M1 > 0,M2 > 0 the process c̄k defined as c̄kt := xk
x+ 1

M1

1
M1
∨

ckt ∧M2, t ∈ [0, T ], satisfies c̄k ∈ Ã(xk, εk). Now let us consider the sequence

of BSDEs

(5.12)

Ȳ k
t = e−δθT (c̄kT )1−γ +

∫ T

t
F (s, c̄ks , Ȳ

k
s )ds−

∫ T

t
Z̄ks dBs, t ∈ [0, T ], k ∈ N.

[CE12, Theorem 5.1] ensures that there exists a unique solution to BSDE

(5.12),
(
Ȳ k, Z̄k

)
∈ S2×M2. Further, by replacing F with F k as in the pre-

vious step, and using the comparison for BSDEs (with Lipschitz generator)

results, see, e.g., [Par99, Theorem 2.4], we deduce that the first component

of the solution is in S∞.

Let us consider (5.9) and (5.12). These are BSDEs with bounded terminal

conditions and Lipschitz generators. Therefore, the stability of BSDEs, as

in [CE15, Theorem 19.1.6, p. 472], implies that, for some n satisfying (5.8)

and for m = n(m) satisfying (5.11), one can first pick M1 and M2 and then

k0, such that

(5.13) |Ȳ k
0 − Y

n,m
0 | < ε′

3
, k ≥ k0.

Comparing (5.8), (5.11), and (5.13), we deduce that

|Ȳ k
0 − Y0| < ε′, k ≥ k0.

Therefore, as c̄k ∈ Ã(xk, εk), via (5.3), we obtain

lim inf
k→∞

u(xk, εk) ≥ lim inf
k→∞

Ȳ k
0

1− γ
≥ Y0

1− γ
− ε′

|1− γ|
= u(x, 0)− ε′

|1− γ|
.

Consequently, as ε′ is arbitrary, via (5.7), we deduce that (5.6) holds.

�

The next lemma establishes a result similar to Lemma 5.3 for the dual

value function. The proof is similar to the proof of Lemma 5.3, so we only

outline the main steps.
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Lemma 5.4. Under the conditions of Theorem 3.4, we have

(5.14) lim sup
(y′,ε)→(y,0)

v(y′, ε) ≤ v(y, 0).

Proof. Let us consider a sequence (yk, εk), k ∈ N, convergent to (y, 0) and

such that

lim
k→∞

v(yk, εk) = lim sup
(y′,ε)→(y,0)

v(y, 0).

By Assumption 3.1, for every k ∈ N, there D̃k ∈ D̃(1, εk), that is, D̃k, such

that

(5.15) E
[∫ T

0
(D̃k

s )1−ψds

]
<∞, k ∈ N.

Let us set

Dk = (1− (−1 ∨ εk ∧ 1))
yk
y
D̂(y, 0)N εk + (−1 ∨ εk ∧ 1)ykD̃

k, k ∈ N.

Then, as N εk → 1, in measure (dκ×P), by the assumption of Theorem 3.4,

we deduce that Dk → D̂(y, 0), in measure (dκ × P). Moreover, it follows

from (5.15), and since 1−ψ < 0, that Dk ∈ D̃(yk, εk), k ∈ N. Next, applying

the approximation procedure entirely similarly to Lemma 5.3, we obtain the

assertion of the lemma. �

We now show the concavity of U c0 in c in the following sense, which is

closely related to the notion of strong concavity.

Lemma 5.5. Let us suppose that c′ and c′′ are in
⋃

(x,ε)∈(0,∞)×(−ε0,ε0)

Ã(x, ε)

and are such that

(5.16) (dκ× P)

[
|c′ − c′′| ≥ δ, c′ + c′′ ≤ 1

δ

]
≥ δ, for some δ > 0.

Further, let us suppose that for a given constant λ ∈ (0, 1), we have

c := λc′ + (1− λ)c′′ ∈
⋃

(x,ε)∈(0,∞)×(−ε0,ε0)

Ã(x, ε).

Then, there exists a constant η̄ > 0, such that

(5.17) λU c
′

0 + (1− λ)U c
′′

0 + η̄ ≤ U c0 .
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Proof. Let us show that

(5.18) λY c′
0 + (1− λ)Y c′′

0 − η0 ≤ Y c
0 ,

where Y ’s satisfy (5.4) with respective c’s and η0 is some positive constant.

As the generator of Y is not jointly concave in (c, Y, Z), with p := 1 − 1
ψ ,

following [Xin17a], one can set

(Y,Z) :=
1

p

(
Y

1
θ ,

1

θ
Y

1
θ
−1Z

)
.

Then Y satisfies

(5.19)

Yt = e−δT
cpT
p

+

∫ T

t

(
δe−δs

cps
p

+
1

2
(θ − 1)

Z2
s

Ys

)
ds−

∫ T

t
ZsdBs, t ∈ [0, T ],

where the generator is jointly concave in (c,Y,Z) when θ < 1.

For Y′ and Y′′, let ∆Y := λY′ + (1 − λ)Y′′, ∆c := λc′ + (1 − λ)c′′, and

∆Z := λZ′ + (1− λ)Z′′. We observe that

∆Y := (p∆Y)θ and ∆Z := (1− γ) (p∆Y)θ−1 ∆Z,

satisfy

∆Yt = (p∆YT )θ +

∫ T

t

(
δθe−δs(∆cs)

p − (1− γ)At

)
∆Y

1− 1
θ

s ds

−
∫ T

t
∆ZsdBs, t ∈ [0, T ],

where

At =
δe−δt

p

(
(∆ct)

p − λ(c′t)
p − (1− λ)(c′′t )

p
)

+ 1
2(θ − 1)

(
∆Z2

t

∆Yt
− λZ

′2
t

Y′t
− (1− λ)

Z′′2t
Y′′t

)
≥ 0,

(5.20)

as both terms on the right-hand side are nonnegative by the joint concav-

ity of the generator to (5.19). Additionally, the function x → xp, x > 0

is strictly concave. Therefore, on {c′t + c′′t ≤ 1
ε , |c

′
t − c′′t | ≥ ε}, we have

((∆ct)
p − λ(c′t)

p − (1− λ)(c′′t )
p) ≥ δ1, for some constant δ1 > 0, which de-

pends only on ε and λ in the statement of the lemma (also on p = 1 − 1
ψ ,

but ψ is fixed throughout the paper). Similarly, we obtain

peδT∆YT ≤ (∆cT )p − δ11{c′T+c′′T≤
1
ε
,|c′T−c

′′
T |≥ε}

.
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Therefore, for some constant δ2 > 0, we have

(5.21) ∆YT ≥ e−δθT (∆cT )1−γ + δ21{c′T+c′′T≤
1
ε
,|c′T−c

′′
T |≥ε}

.

It follows from (5.20) and (5.21), that (∆Y,∆Z) is a supersolution to

Y ∆c
t = e−δθT (∆cT )1−γ +

∫ T

t
F (s,∆cs, Y

∆c
s )ds−

∫ T

t
Z∆c
s dBs, t ∈ [0, T ].

Setting ξt := −(1 − γ)At∆Y
1− 1

θ
t , t ∈ [0, T ), ξT := ∆YT − Y ∆c

T , we observe

that ξt ≥ 0, t ∈ [0, T ], and, moreover, for some constant δ̃1 > 0, we have

ξt ≥ δ̃1∆Y
1− 1

θ
t 1{c′t+c′′t ≤

1
ε
,|c′t−c′′t |≥ε}

, t ∈ [0, T ),

ξT ≥ δ21{c′T+c′′T≤
1
ε
,|c′T−c

′′
T |≥ε}

.
(5.22)

We stress here that δ̃1 and δ2 depend only on λ and ε in the statement of

the lemma.

Further, let us define ηt := ∆Yt − Y ∆c
t , and ζt := ∆Zt − Z∆c

t , t ∈ [0, T ],

we deduce that

ηt = ξT +

∫ T

t

{(
δθe−δs(∆cs)

p − (1− γ)At

)
∆Y

1− 1
θ

s − F (s,∆cs, Y
∆c
s )

}
ds

−
∫ T

t
ζsdBs.

(5.23)

Let us rewrite the latter generator as(
δθe−δs(∆cs)

p − (1− γ)At

)
∆Y

1− 1
θ

s − F (s,∆cs, Y
∆c
s )

=− (1− γ)At∆Y
1− 1

θ
s + F (s,∆cs,∆Ys)− F (s,∆cs, Y

∆c
s ).

Setting αt :=
F (t,∆cs,∆Yt)−F (t,∆ct,Y ∆c

t )
ηs

1{ηt 6=0}, t ∈ [0, T ], we can rewrite

(5.23) as

ηt = ξT +

∫ T

t
(αsηs + ξs)ds−

∫ T

t
ζsdBs,

With Γt := exp
(∫ t

0 αsds
)

, we get

ηt =
1

Γt
Et
[
ΓT ξT +

∫ T

t
ξsΓsds

]
.

In particular, at t = 0, we get

(5.24) η0 = E
[
ΓT ξT +

∫ T

0
ξsΓsds

]
= E [(Γξ) · κT ] .
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As both ∆Y and Y ∆c are finite-valued, Γ > 0. Next, as from (5.39) and

(5.24), we deduce the strict positivity of Ū0 (by the strict comparison and

(5.16)) that

(5.25) ∆Y0 − Y ∆c
0 = η0 > 0.

Moreover, as in [Xin17a, equation (A.6), p. 247], we get

(5.26) ∆Yt ≤ λY c′
t + (1− λ)Y c′′

t , t ∈ [0, T ], P-a.s..

Combining (5.25) and (5.26), we deduce that

λY c′
0 + (1− λ)Y c′′

0 ≥ ∆Y0 ≥ Y ∆c
0 + η0,

and thus (5.18) holds, which, via (5.3) and [Xin17a, Proposition 2.2], implies

(5.17), where η̄ = η0

γ−1 . �

We will need the following technical lemma.

Lemma 5.6. Let x > 0 be fixed. Under the conditions of Theorem 3.6, let

εk, k ∈ N, be a sequence or real numbers converging to zero. Let us set

(5.27)

ck,δ
′,M

t :=
x

x+ δ′
δ′∨ĉt(x, 0)

1

N εk
t

∧M, t ∈ [0, T ], k ∈ N, δ′ > 0, M > 0.

Then, for every k ∈ N, there exist δ′(k), M(k), such that for

(5.28) c̃k := ck,δ
′(k),M(k), k ∈ N,

the associated solutions to (5.4) satisfy

lim
k→∞

Y c̃k = Y ĉ(x,0), rucp.

Proof. First, we observe that c̃k ∈ A(x, εk), k ∈ N. Fixing an ε′ > 0,

rutilizing the argument from the proof of [Xin17a, Proposition 2.2], one can

first show that there exists n′ ∈ N, such that

(5.29) P

[
sup
t∈[0,T ]

|Y n
t − Y

ĉ(x,0)
t | ≥ ε′

3

]
<
ε′

3
, n ≥ n′,

where Y n is the first component of the solution to

Y n
t = (e−δθT (ĉT (x, 0))1−γ)∧n+

∫ T

t
F (s, ĉs(x, 0), Y n

s )ds−
∫ T

t
Zns dBs, t ∈ [0, T ].

Further rfollowing the proof of [Xin17a, Proposition 2.2], one can show that

(Y n, Zn) ∈ S∞×M2 to the BSDE above exists and is unique. Furthermore,
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via the comparison result, see, e.g., [Par99, Theorem 2.4], we deduce that

0 ≤ Y n ≤ n, and Y n =↓ lim
m→∞

Y n,m, m ∈ N, where Y n,m solves

Y n,m
t = (e−δθT (ĉT (x, 0))1−γ) ∧ n+

∫ T

t
Fm(s, ĉs(x, 0), Y n,m

s )ds

−
∫ T

t
Zn,ms dBs, t ∈ [0, T ],

(5.30)

where Fm(t, ct, y) := δθe−δt(c
1− 1

ψ

t ∧m)(|y| ∧m)1− 1
θ . Here, by comparison,

we have 0 ≤ Y n,m ≤ n. As a result, for m ≥ n, we get

Fm(t, ct, Y
n,m
t ) = δθe−δt(c

1− 1
ψ

t ∧m)(Y n,m
t ∧m)1− 1

θ

= δθe−δt(c
1− 1

ψ

t ∧m)(Y n,m
t )1− 1

θ .

(5.31)

Further, as we can show that, for every n ∈ N, we have lim
m→∞

sup
t∈[0,T ]

|Y n
t −

Y n,m
t | = 0 in probability P. Therefore, we conclude that there exists m′(n),

such that

(5.32) P

[
sup
t∈[0,T ]

|Y n
t − Y

n,m
t | ≥ ε′

3

]
≤ ε′

3
, m ≥ m′(n).

Next, for ck,δ
′,M given by (5.27), k ∈ N, δ′ > 0, and M > 0, let us consider

the following family of BSDEs

Ȳ ck,δ
′,M

t =e−δθT (ck,δ
′,M

T )1−γ +

∫ T

t
F
(
s, ck,δ

′,M
s , Ȳ ck,δ

′,M
s

)
ds

−
∫ T

t
Z̄k,δ

′,M
s dBs, t ∈ [0, T ], k ∈ N, δ′ > 0, M > 0.

(5.33)

By [CE12, Theorem 5.1], for every choice of k, δ′,M , there exists a unique

solution to (5.33),
(
Ȳ ck,δ

′,M
, Z̄k,δ

′,M
)
∈ S2 × M2. Further, by replacing

F with F k as in (5.31), and using the comparison for BSDEs results as in

[Par99, Theorem 2.4], we deduce that the first component of the solution is

in S∞.

Let us consider (5.30) and (5.33). These are BSDEs with bounded termi-

nal conditions and Lipschitz generators. Therefore, for a given n satisfying

(5.29) and m satisfying (5.30), [CE15, Theorem 19.1.6, p. 472]) allows to
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pick δ′ and M and then k0, such that

(5.34) P

[
sup
t∈[0,T ]

|Ȳ ck,δ
′,M

t − Y n,m
t | ≥ ε′

3

]
<
ε′

3
, k ≥ k0.

Comparing (5.29), (5.32), and (5.34), we deduce that

P

[
sup
t∈[0,T ]

|Ȳ ck,δ
′,M

t − Y ĉ(x,0)
t | ≥ ε′

]
< ε′, k ≥ k0.

As ε′ is arbitrary, we deduce that there exists c̃k, k ∈ N, as in (5.28), for

which the assertion of this lemma holds. �

5.2. Proofs of the main theorems.

Proof of Theorem 3.4. First, we observe that (3.5) follows from Lemma 5.2.

Next, from Lemma 5.3, we get

(5.35) lim inf
(x′,ε)→(x,0)

u(x′, ε) ≥ u(x, 0).

Applying Lemma 5.4, we obtain

(5.36) v(y, 0) + xy ≥ lim sup
(y′,ε)→(y,0)

(v(y′, ε) + xy′).

Now, using [MX18, Theorem 2.7], we have

(5.37) lim sup
(y′,ε)→(y,0)

(v(y′, ε) + x′y′) ≥ lim sup
ε→0

u(x′, ε), x′ > 0.

From the assumption of the theorem (equation (3.1)), we deduce

(5.38) u(x, 0) = v(y, 0) + xy.

Combining (5.35), (5.36), (5.37), and (5.38), we conclude

u(x, 0) ≤ lim inf
(x′,ε)→(x,0)

u(x′, ε) ≤ lim sup
(x′,ε)→(x,0)

u(x′, ε)

≤ lim sup
(x′,ε)→(x,0)

(
v(y, ε) + x′y

)
≤ v(y, 0) + xy = u(x, 0).

Therefore, all inequalities above are equalities, and we get (3.6). Next, from

(5.38), (5.36), (5.37), and (5.35), we obtain

u(x, 0) = v(y, 0) + xy ≥ lim sup
(y′,ε)→(y,0)

(
v(y′, ε) + xy′

)
≥ lim inf

(y′,ε)→(y,0)

(
v(y′, ε) + xy′

)
≥ lim inf

(y′,ε)→(y,0)
u(x, ε) ≥ u(x, 0).

Therefore, all inequalities above are actually equalities. This implies (3.7).
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Finally, the existence and uniqueness of the optimizers follows from Lemma

5.5 and convexity and closedness in L0(dκ × P) of the set Ã(x, ε), (x, ε) ∈
(0,∞) × (−ε0, ε0), note that the convexity of Ã(x, ε), (x, ε) ∈ (0,∞) ×
(−ε0, ε0), follows from Assumption 3.1 and Lemma 2.1.

�

Proof of Theorem 3.6. Step 1. Assume by contradiction that the assertion

of this theorem, that is (3.9), fails. Then, there exists δ > 0, such that

lim sup
n→∞

(dκ× P) [|ĉ(xn, εn)− ĉ(x, 0)| > δ] > δ.

As 1
Nεn , n ∈ N, converges to 1, in measure (dκ × P), consequently 1

Nεn ,

n ∈ N, is bounded in L0(dκ × P). Next, following (2.8) and the argument

in [Mos15, Proposition 4.2], one can see that the set A(1, 0) is bounded in

L0(dκ × P). Therefore, since ĉ(xn, εn) 1
Nεn ∈ A(xn, 0), by possibly passing

to smaller δ, we deduce that

lim sup
n→∞

(dκ×P)

[∣∣∣∣ĉ(xn, εn)− ĉ(x, 0)
1

N εn

∣∣∣∣ ≥ δ, ĉ(xn, εn) + ĉ(x, 0)
1

N εn
≤ 1

δ

]
≥ δ.

With c̃k, k ∈ N, as in (5.28) (in Lemma 5.6), by passing to even smaller δ,

we get

(5.39) lim sup
n→∞

(dκ× P)

[
|ĉ(xn, εn)− c̃n| ≥ δ, ĉ(xn, εn) + c̃n ≤ 1

δ

]
≥ δ.

Let us set

(5.40) c̄n :=
1

2
|ĉ(xn, εn) + c̃n| ∈ A

(
xn + x

2
, εn
)
, n ∈ N.

Furthermore, one can show that c̄n ∈ Ã
(
xn+x

2 , εn
)
, as for every t ∈ [0, T ],

we have

(c̄nt )
1− 1

ψ =

(
1

2
|ĉt(xn, εn) + c̃nt |

)1− 1
ψ

≤ max (ĉt(x
n, εn), c̃nt )

1− 1
ψ ≤ (ĉt(x

n, εn))
1− 1

ψ + (c̃nt )
1− 1

ψ ,

and at maturity, we have

(c̄nT )1−γ =

(
1

2
|ĉT (xn, εn) + c̃nT |

)1−γ
≤
(

1

2

x

x+ εn
1

εn

)1−γ
,

and thus, c̄n’s satisfy both integrability conditions in the definition of Ã’s

in (2.9).
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Step 2. Let us use Lemma 5.5 along a subsequence from Step 1 that we

do not relabel and such that

lim
n→∞

(dκ× P)

[
|ĉ(xn, εn)− c̃n| ≥ δ, ĉ(xn, εn) + c̃n ≤ 1

δ

]
≥ δ.

In the argument below, the notations from the proof of Lemma 5.5 are used.

For

(5.41) ηn := E [(Γnξn) · κT ] , n ∈ N,

one can show that2

Γnt ≥ exp

(
aθ

∫ t

0
(c̄ns )

1− 1
ψ (∆Y n

s )−
1
θ ds

)
,

for some constant a > 0 (and where θ < 0 and r∆Y n is as in the proof of

Lemma 5.5 corresponding to c′ = ĉ(xn, εn), c′′ = c̃n, and λ = 1
2 .)

Next, from Lemma 5.6, along a subsequence, which we do not relabel, we

have

lim
k→∞

sup
t∈[0,T ]

∣∣∣Y c̃k

t − Y
ĉ(x,0)
t

∣∣∣ = 0, P-a.s..

Further, Y ĉ(xn,εn) is bounded from above by a real-valued process, by the

assumption of this theorem.Therefore, as ∆Y n
t ≤ 1

2Y
ĉ(xn,εn)
t + 1

2Y
c̃n
t , t ∈

[0, T ], P-a.s., by the proof of Lemma 5.5, we deduce that

Γnt ≥ exp

(
aθ

∫ t

0
(c̄ns )

1− 1
ψ (∆Y n

s )−
1
θ ds

)
≥ exp

(
aθ

∫ t

0
(ĉs(x

n, εn) + c̃ns )
1− 1

ψ (Y ĉ(xn,εn)
s + Y c̃n

s )−
1
θ ds

)
.

(5.42)

From the assumptions of this theorem and Lemma 5.6, we obtain that

lim inf
n→∞

Γnt =: Γ̃∞t > 0, t ∈ [0, T ], P-a.s..(5.43)

Let us consider the sequence ξn, n ∈ N. Following the proof of Lemma 5.5

(see (5.39)), we observe that

(5.44) ξnt ≥ δ̃1(∆Y n
t )1− 1

θ 1{|ĉt(xn,εn)−c̃nt |≥δ, ĉt(xn,εn)+c̃nt ≤
1
δ
}, t ∈ [0, T ),

and

(5.45) ξnT ≥ δ21{|ĉT (xn,εn)−c̃nT |≥δ, ĉT (xn,εn)+c̃nT≤
1
δ
},

2rThe lower bounds on αn’s are obtained through estimates on the slopes of F .
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where constant δ̃1 > 0 and δ2 > 0 depend on δ appearing in (5.39) only. As

∆Y n
t ≥ 1

2θ
Y c̃n
t , t ∈ [0, T ], P-a.s., by the argument in Lemma 5.6, we have

(5.46) lim inf
n→∞

(∆Y n
t ) ≥ lim inf

n→∞

1

2θ
Y c̃n

t =
1

2θ
Y
ĉ(x,0)
t > 0, t ∈ [0, T ], P-a.s..

By the Dunford-Pettis compactness criterion (see, e.g., [KS98, p. 26]),

there exists a weakly (in L1(dκ × P)) convergent subsequence of ξn ∧ 1,

n ∈ N, whose limit is denoted by ξ∞. In view of (5.44), (5.45), and (5.46),

we have (dκ× P)[ξ∞ > 0] > 0.

Let us pass to this subsequence that we do not relabel again. The

non-negativity of Γnξn (by the construction above) allows invoking Fatou’s

lemma, which implies that

lim inf
n→∞

E [(Γn(ξn ∧ 1)) · κT ]

= lim inf
n→∞

(
E
[
(Γ̃∞(ξn ∧ 1)) · κT

]
+ E

[(
(Γn − Γ̃∞)(ξn ∧ 1)

)
· κT

])
≥E

[
(Γ̃∞ξ∞) · κT

]
> 0,

as (dκ× P)[ξ∞ > 0] > 0 and Γ̃∞ > 0, (dκ× P)− a.e., as well as

lim
n→∞

E
[
(Γ̃∞(ξn ∧ 1)) · κT

]
= E

[
(Γ̃∞ξ∞) · κT

]
,

by the weak convergence in L1(dκ×P) (here we recall that Γ’s take values in

[0, 1] as θ < 0), by Fatou’s lemma (here, Γ∞(ξn ∧ 1) is bounded from below

by −1) and (5.43), we have

lim inf
n→∞

E
[(

(Γn − Γ̃∞)(ξn ∧ 1)
)
· κT

]
≥ 0.

We conclude that

(5.47) lim inf
n→∞

ηn > 0.

Step 3. For c̄n, n ∈ N, defined in Step 1 (see (5.40)), let us consider the

subsequence from Step 2. By Lemma 5.5, we have

(5.48) lim inf
n→∞

U c̄
n

0 ≥ lim inf
n→∞

(
1

2
u(xn, εn) +

1

2
U c

n

0 + η̄n
)
,

where η̄n = ηn

γ−1 and ηn are given in (5.41). It follows from Lemma 5.6 that

(5.49) lim
n→∞

U c
n

0 = u(x, 0).
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On the other hand, as c̄n ∈ Ã
(
xn+x

2 , εn
)
, we get

(5.50) U c̄
n

0 ≤ u
(
xn + x

2
, εn
)
.

By Theorem 3.4, we have

(5.51) lim inf
n→∞

u(xn, εn) = u(x, 0).

Therefore, in (5.48), via (5.49), (5.50), and (5.51), we conclude that

u(x, 0) ≥ lim inf
n→∞

U c̄
n

0 ≥ lim inf
n→∞

(
1

2
u(xn, εn) +

1

2
U c̃

n

0 + η̄n
)
≥ u(x, 0)+lim inf

n→∞
η̄n,

which is impossible, as lim inf
n→∞

η̄n = lim inf
n→∞

ηn

γ−1 > 0 by (5.47).

�

Proof of Theorem 3.7. Let us recall that, for a given nonnegative consump-

tion stream c, U c was defined in (2.4) and Y c in (5.4). The proof of Theorem

3.7 is entirely similar to the proof of Lemma 5.6. It relies on the truncation

and the stability of BSDEs result as in [CE15, Theorem 19.1.6, p. 472], so

that we can show that

lim
(x′,ε)→(x,0)

Y ĉ(x′,ε) = Y ĉ(x,0), ucp and lim
(x′,ε)→(x,0)

U ĉ(x
′,ε) = U ĉ(x,0), ucp.

We omit further details for brevity. �

Proof of Theorem 3.8. Let us consider a sequence (xn, εn), n ∈ N, conver-

gent to (x, 0). Without loss of generality, we will suppose that xn > 0 and

εn ∈ (−ε0, ε0), n ∈ N. Let us denote

Xn = X ĉ(xn,εn), Nn = N εn , cn = ĉ(xn, εn), n ∈ N, D = D̂(y, 0),

and set

Dn := DNn, Ln :=
1

xn

(
XnDn +

∫ ·
0
Dn
s c
n
s dκs

)
.(5.52)

Then, by Lemma 5.1, Dn ∈ D(y, εn) and thus Ln, n ∈ N, is a sequence of

nonnegative supermartingales. Since (dκ×P)- lim
n→∞

cn = ĉ(x, 0) by Theorem

3.6 and (dκ × P)- lim
n→∞

Dn = D by (5.52) and the assumption that (dκ ×
P)- lim

ε→0
N ε = 1, we pass to a subsequence, which we do not relabel and
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suppose that lim
n→∞

Dncn = Dĉ(x, 0), (dκ× P)-a.e.. Therefore, using Fatou’s

lemma, we get

(5.53) lim inf
n→∞

∫ T

0
Dn
s c
n
s dκs ≥

∫ T

0
Dsĉs(x, 0)dκs, P-a.s..

Let us further set

(5.54) L :=
1

x

(
X ĉ(x,0)D +

∫ ·
0
Dsĉs(x, 0)dκs

)
.

The optimality of ĉ(x, 0) implies that X
ĉ(x,0)
T = 0, P-a.s., as it is optimal to

consume everything that is left at maturity. Likewise, the optimality of cn

implies that Xn
T = 0, P-a.s., for every n ∈ N. Therefore, (5.52), (5.53), and

(5.54) result in

(5.55) lim inf
n→∞

LnT ≥ LT , P-a.s..

From the respective definitions of Ln, n ∈ N, and L, we conclude that

(5.56) Ln0 = D0 = L0, n ∈ N.

Let us recapitulate that Ln, n ∈ N, are nonnegative càdlàg supermartingales

and L is a nonnegative càdlàg martingale satisfying (5.55) and (5.56). Let

us consider a probability measure R, whose density is dR
dP = 1+LT

1+L0
. Then

R ∼ P, and, under R, 1+Ln

1+L =
(

1+Lnt
1+Lt

)
t∈[0,T ]

, n ∈ N, are nonnegative super-

martingales. Consequently, from (5.55) and (5.56), we conclude that 1+Ln

1+L ,

n ∈ N, satisfies

1 + Ln0
1 + L0

= 1 and lim
n→∞

1 + LnT
1 + LT

= 1, P-a.s..

Therefore, applying [Kar13, Lemma 2.11] (under R), we deduce that

lim
n→∞

1 + Ln

1 + L
= 1, ucp,

and thus

(5.57) lim
n→∞

Ln = L, ucp.

Consequently, and in particular, passing to another subsequence, which

we do not relabel, we get

(5.58) lim
n→∞

∫ T

0
Dn
s c
n
s dκs =

∫ T

0
Dsĉs(x, 0)dκs, P-a.s..
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Next, similarly to (5.53), for every t ∈ [0, T ], we deduce that

(5.59) lim inf
n→∞

∫ T

t
Dn
s c
n
s dκs ≥

∫ T

t
Dsĉs(x, 0)dκs, P-a.s.,

and

(5.60) lim inf
n→∞

∫ t

0
Dn
s c
n
s dκs ≥

∫ t

0
Dsĉs(x, 0)dκs, P-a.s..

Therefore, from (5.58) and (5.59), we get

lim sup
n→∞

∫ t

0
Dn
s c
n
s dκs = lim sup

n→∞

(∫ T

0
Dn
s c
n
s dκs −

∫ T

t
Dn
s c
n
s dκs

)
≤
∫ t

0
Dsĉs(x, 0)dκs, P-a.s..

(5.61)

In turn, (5.60) and (5.61) imply that

(5.62) lim
n→∞

∫ t

0
Dn
s c
n
s dκs =

∫ t

0
Dsĉs(x, 0)dκs, P-a.s.,

where the last equality holds for every t ∈ [0, T ]. As the processes
∫ ·

0 D
n
s c
n
s dκs,

n ∈ N, and
∫ ·

0 Dsĉs(x, 0)dκs, are cádlág monotone, from (5.62), we get

(5.63) lim
n→∞

sup
t∈[0,T ]

∣∣∣∣∫ t

0
Dn
s c
n
s dκs −

∫ t

0
Dsĉs(x, 0)dκs

∣∣∣∣ = 0, P-a.s..

Finally, as Dn’s and D are strictly positive and (dκ × P)- lim
n→∞

Dn = D,

from (5.57) and (5.63), using [Dur05, Thoerem 1.6.2, p. 46], we deduce

that Xn =
Ln−

∫ ·
0 D

n
s c
n
s dκs

Dn , n ∈ N, converges to X ĉ(x,0) =
L−

∫ ·
0 Dsĉs(x,0)dκs

D in

measure (dκ × P). If lim
ε→0

N ε = 1, ucp, then, similarly, from (5.52), (5.57),

and (5.63), using [Dur05, Thoerem 1.6.2, p. 46], we conclude that

lim
n→∞

Xn = X ĉ(x,0), ucp.

�
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[KK07] I. Karatzas and K. Kardaras. The numéraire portfolio in semimartingale financial

models. Finance Stoch., 11(4):447–493, 2007.

[KK21] I. Karatzas and K. Kardaras. Portfolio Theory and Arbitrage: A Course in

Mathematical Finance. AMS, 2021.

[KP78] D. Kreps and E. Porteus. Temporal resolution of uncertainty and dynamic choice

theory. Econometrica, 46(1):185–200, 1978.

[KS98] I. Karatzas and S. Shreve. Brownian Motion and Stochastic Calculus. Springer,

2nd edition, 1998.

[KS99] D. Kramkov and W. Schachermayer. The asymptotic elasticity of utility func-

tions and optimal investment in incomplete markets. Ann. Appl. Probab.,

9(3):904–950, 1999.

[KS03] D. Kramkov and W. Schachermayer. Necessary and sufficient conditions in

the problem of optimal investment in incomplete markets. Ann. Appl. Probab.,

13(4):1504–1516, 2003.

[KSS17] H. Kraft, T. Seiferling, and F. T. Seifried. Optimal consumption and investment

with Epstein-Zin recursive utility. Finance Stoch., 17:187–226, 2017.
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