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Improved RNA virus understanding is critical to studying animal and plant health,
and ervironmental processes. However, the continuous and rapid RMNA virus
evolution makes their identification and characterization challenging. While
recent sequence-based advances have led to extensive RNA vinus discovery,
there is growing variation in how RMNA viruses are identified, analyzed,
characterized, and reported. To this end, an RdRp Summit was organized and a
hybrid meeting took place in Valencia, Spain in May 2023 to convene leading
experts with emphasis on early career researchers (ECRs) across diverse scientific
communities. Here we synthesize key insights and recommendations and offer
these as a first effort to establish a consensus framework for advancing RNA virus
discovery. First, we need interoperability through standardized methodologies,
data-sharing protocols, metadata provision and interdisciplinary collaborations
and offer specific examples as starting points. Second, as an emergent field, we
recognize the need to incorporate cutting-edge technologies and knowledge
early and often to improve omic-based viral detection and annotation as nowvel
capahilities reveal new biology. Third, we underscore the significance of ECRs in
fostering international partnerships to promote inclusivity and equity in virus
discovery efforts. The proposed consensus framework serves as a roadmap for
the scientific community to collectively contribute to the tremendous challenge
of urveiling the RNA virosphere.

KEYWORDS

RMA virus discovery, viral metagenomics, RNA-dependent RMA polymerase, viral
genome annotation, metagenomic metadata standards, virus evolution and diversity
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1 Introduction

RMNA viruses (Orthornavirae) are genetic elements with RNA-
based genomes that replicate using their encoded RNA-dependent
BNA polymerase (RdRp) and by hijacking their host’s cellular
machinery. Progeny viruses are then transmitted to new hosts
either vertically, or horizontally most often in protein-based viral
particles that can sometimes be surrounded by a lipid envelope.
Viruses are widely diverse, infect all life forms (1), and include
many human pathogens of medical and epidemiological
importance {2), as well as various species with strong deleterious
impact in agriculture (3). Additionally, by infecting unicellular
eukaryotic and prokaryotic life forms, RNA viruses play a role in
shaping microbial ecosystems, from the oceans to the human gut
(4-8).

Historically, RNA virus discovery and characterization relied
on direct cultivation or isolation of the infective agents via
experiments that are often laborious and inherently restricted to
viruses infecting hosts amenable to laboratory cultivation or
propagation. The procedures typically involve the concentration
of infectious particles from symplomatic or diseased host cells or
tissues, followed by various identification techniques like
microscopy (imaging), neutralization (antibody), hemadsorption,
hemagglutination and plaque assays, and animal, plant, tissue or
cell culture inoculation. In most cases, isolated concentrated
particles would then undergo (viral) RNA extraction and
purification, followed by reverse transeription inte ¢DNA and
subsequent sequencing enabling further genomic investigations
{phylogeny, genotyping, etc).

1.1 Recent developments in omic-based
RNA virus discovery: more, bigger, faster is
the new pace

The advent of the genomic era has gradually expanded RNA
virus discovery beyond experimental cultivation and isolation
methodologies. The substantial decrease in costs associated with
high-throughput nucleic acid sequencing, coupled with advances in
computational capacities for big data storage and processing greatly
facilitates the development of RNA virus discovery projects through
large-scale sequencing (omic-based ). Importantly, this genomic-data-
driven exploration of the RNA virosphere using computational tools
offers a unique opportunity to bypass many biases and limitations of
traditional approaches, and goes hand in hand with the growing
recognition of global viral diversity in ecological systems as a whaole,
induding public health and one health [*pandemic preparedness”,
surveillance - (4)].

With an expanded diversity of environments sampled as well as
a growing re-assessment of publicly available sequencing data and
the continuous development of tools and resources, this field has
experienced massive growth in recent years, with no signs of
deceleration in sight (Figure 13 (8, 10-28),
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1.2 Interdisciplinarity nature of the field
limits data uniformity and standardization

RMNA virus discovery is at the interface of various disciplines (ie
virology, molecular, and structural biology, evolution, genomics,
ecology, and computational sciences) and spans various fields
within virology itself, each with its specific virus groups of
interest, priorities, approaches, concepts, resources, etc. leading to
apparent discrepancies throughout the scientific process. This
heterogeneity manifests in both the experimental design, in the
interpretation of the data and in the eventual conclusions and data
sharing (novelty estimation, host inference, risk assessment, choice
of data deposition location),

This growing lack of standardization directly and severely
hampers interoperability - ie the ability to review, compare,
reproduce, share, and build on each other’s efforts. For instance,
what one study may consider as a new RNA virus group based on
coat or movement protein sequence similarity, another study may
consider part of an existing group using the RdRp comparison.

In recognition of these issues as detrimental to the advancement
of the field, we recently held the first "RdRp summit™ (hitps:/
rdrpio/) - a discussion-centric event with the goals of fostering
reproducibility, collaboration and interoperability in omics-derived
BNA virus discovery. The event was attended by over 70
participants (60% in-person and 40% remotely), from 50 research
institutions across the world, Most attendees were ECRs, with half
of the participants listed as PhD students. To promaote inclusion and
exchanges between all participants, the meeting featured both open
discussion sessions and traditional lectures, given by key
bivinformaticians and experimentalists, Herein, we summarize
the major insights and consensus that emerged from the workshop.

2 Current challenges in RNA
virus discovery

2.1 Multiplicity of experimental and
computational practices in RNA virus
discovery workflows

The initial source and type of environment, the preservation,
and preparation of RNA input have profound implications on the
whole analysis and final RNA virus discovery. The input for RNA-
virus metagenomic studies is often the total extractable RNA from
an environmental, vector or host-associated sample (12, 17, 30),
Alternatively, studies can focus on a size-selected fraction where
host cells are excluded and virus-like-particles {VLPs) are enriched
using filtration and/or centrifugation, otherwise known as viromics
or virion-associated nudeic acids (VANA)-based sequending (22,
31). Double-stranded BNA (dsBRNA) purification can also be
applied to total RNA samples to specifically target dsRNA virus
genomes and replicative intermediate of single-stranded RNA
(ssRMA) viruses instead of single-stranded transcripts and
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FIGURE 1

The recent expansion of the omic-based RMNA virus discovery field. [A) Examples of RdRp-based viral metagenomic studies and tools (PMID are
indicated in grayl: (B} Mulliplicity of publicly available sequences in the Sequence Read Archive based on human (pink bars) and other host
lgrey bars) composition [bar chart, left axis) and total cemulative number of bases [olue line, right axis), Data taken from SRA metadata available via

BigQuery (nih-sra-datastore sra. metadata).

ribosomal RMAs (32). Beyond dsRNA enrichment, targeted
approaches such as the Fragmented and primer-Ligated dsENA
Sequencing (FLDS) method also feature the ability to sequence bath
ends of the genome (33, 31), from which pairs of segmented or
multipartite viral genomes can be searched (33). Deep sequencing
of small RNAs (sRNAs) can also be advantageous to plant and
mycovirus discovery, by using various sRMNA size profiles depending
on the organism for RNA genome assembly (35-40). On the other
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hand, untargeted total RNA extraction followed by RNA-seq better
reflects the global sample complexity, including host and wviral
diversity, and can assist with host association, further answering
ecological questions (11). However, the choice of the kit used for
BMNA extraction can substantially influence the downstream analysis
{42). Prior to sequencing, classical treatments include genomic
DNA digestion and either targeted ribosomal RNA (rRNA)
depletion, or poly{A) enrichment steps prior to reverse
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transcription of RNA into ¢cDNA. Along with the choice of
sequencing platforms/technologies, those methods will directly
impact the subsequent RNA virus findability and identification.

Current computational identification of ENA viruses from
“-omic” data (mainly transcriptomic and metatranscriptomic
sequencing, iLe bulk RNA-seq of either a single organism or a
community of organisms, respectively) is typically conducted via
direct comparative approaches following quality control and
filtering of raw reads and de rovo assembly. The discovery of
viruses through omics data primarily depends on identifying
sequence similarities with existing BNA virus genomes, protein
sequences, or protein sequence profiles, This is often accomplished
using methods such as Hidden Markov Models (HMMs) or
Position-Specific Scoring Matrices (PSSMs). Similarity is defined
as a set of minimal statistical thresholds; typically established
arbitrarily in each study and thus further stresses the need for
standardized protocols.

Predominantly, the RdRp, which is the only protein shared by
all known BNA viruses, is used as the marker gene for RNA virus
identification ( 14). Virus RARps share a right-hand-shape structure,
typical of DNA/RNA polymerases, with a palm-based active site
comprising several catalytic and structural motifs, which may
require additional host factors to constitute a mature, complete
replicase domain (13). Assignment of a query sequence as a
potential viral RdBp usually requires the identification of at least
the three “core™ motifs, commonly referred to as A, B, and C, with
the presence of any additional motifs increasing the reliability of the
assignment and the presumed completeness of the analyzed
sequence (44). The presence of these motifs (or roughly the
region they occupy) is most often identified via sequence search
engines (BLAST, DIAMOND, MMseqs, etc) (45-47) or profile-
based approaches {HMM via HH-Suite or HMMER, or PSSM/
PWM using PSI-BLAST or MEME) (42-50), often used in
conjunction with public databases and repositories of BNA virus-
derived RdRp e.g. subsetting NCBI nr, or custom databases like
TSA-database derived RdRps (29), NeoRdRp (23), Palmscan (51),
or RdRp-scan (18).

Furthermore, the enhancement of BENA extraction methods,
sequencing technologies, and the rapid advancement in the
development of new Al-based techniques, among other factors, is
playing a crucial role in advancing RNA virus discovery, These
advances facilitate the improved identification of potentially
divergent and low-concentration viruses within overlooked
environmental or host taxa, Nevertheless, these developments also
reinforce the methodology gaps and heterogeneity between studies
and severely limit interoperability.

2.2 Consequences of procedural
inconsistency for comparative analyses
across studies

Chuoices in both the experimental procedures and subsequent in
silico analyses play a crucial role in how different studies handle,
share, report, and reach conclusions regarding the suspected viral
sequences in the corresponding data. Discussions held during this
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first RdRp summit pinpointed the global lack of procedure and
good practice standards at every level (sampling, extraction,
sequencing, read and contig processing, as well as data analysis,
storage, submission, mining, survey, etc) (Figure 2). Ultimately,
those differences in the computational and experimental aspects can
constitute strong obstacles for the ability to adequately compare the
results of different studies and it seemed important to first
identify them.

Regarding RNA virus detection itself, there is a crucial lack of
standard minimal alignment statistics (e-value, %ID, %ooverage,
ete). Also, the inconsistency of what is considered a genuine viral
genome/viral hit/viral sequence versus a potential “ false-positive” or
contaminant poses a major risk of misinterpretation of results. The
ability to identify and discriminate true replicative RNA virus
signals from active or integrated viruses replicating via reverse-
transcriptases (RT) (divergent other palm-like polymerases)
(kingdom Pararnavirae), endogenous viral elements (EVEs), and
non-viral hits or contaminants, is absolutely crucial in our field.
However, there is currently no widely agreed-upon consensus about
defining quality standards for viral sequences and how to ensure
their identification as such. Compounding this issue is the lack of
definition for real BNA-virus derived sequences that are either
chimeric or misassembled, and thus are not likely to represent a
functional infections entity. Plus, expanding our knowledge of the
BMA virosphere revealed an ever-increasing plurality of genome
architectures and RdRp properties, which make it even harder 1o
define one single rule for all of them. The recently-described divided
RdRps confirmed and validated in silico (52-51), which are encoded
by two distinct ORFs from separate genomic segments, constitute
the best example of such unexpected plurality. Such challenges
require continuous adaptation of standard practices and motivate to
establish community-driven, up-to-date guidelines for BENA
virus discovery.

Standardizing RNA virus detection would strongly require a
community-built consensus about performance evaluation
pipelines (sensitivity, recall, F1, precision, algorithm resilience,
ete.), similady to the ongoing efforts in microbial and DNA virus
metagenomics (55-58), Directly linked to this, unequivocal
agreements on the plurality of operational taxonomic unit (OTU)
definitions, clustering thresholds, and minimal procedure for
genome completeness estimation of novel and divergent viruses
will help set gold standards for the scientific community (Figure 2).

The aforementioned considerations would also dramatically
decrease common inconsistencies regarding the multiplicity of
repositories that host the data as well as metadata associated with
viral metagenomics projects deposited in standard databases.
Indeed, one could note the major confusion between host and
sample source, arbitrary taxonomy assignment and gene, protein,
and genome annotations, the lack of information relating to sample
preparation, sequencing, and computational analysis, the
inadequacy of current tools for uploading viruses with divided
RdRps or segmented genomes, or sequences with alternative
START codons, and the inability for external users to revisefre-
assess/edit/annotate the deposited metadata. All of which leads to
an absurd rate of unclssified/unannotated sequences when dealing
with remote homology searches.
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Main challenges dentifed in the omic-based RMNA discovery Beld and proposed solutions

Considering the rising scale of viral metagenomic studies and
the pace of virus taxonomy expansion, such misannotations or mis-
assignments in reference databases can have dramatic consequences
when propagated to new studies and data submission, and
drastically limit the scope and efficiency of data mining projects,
yet are increasingly essential in our field.

3 Solutions and future perspectives

While incredibly valuable, the interdisciplinarity in the RNA
virus discovery field also requires concerted efforts from researchers
to build connections between those communities, share, and adapt
our respective practices, tools, vocabulary, terminologies, and
standards to fit in with everyone’s domain language.

To tackle the first challenge consisting of establishing minimum
standards for RMA virus genome (or viral RdRp) annotations, cut-
off for parameters (alignment scores, e-values, query and reference
lengths, etc.) need to be agreed upon when comparing candidate
sequences to known valid RdRp sequence database vs. decoy - (RT)-
like - databases and sets of unclassified/unannotated sequences.
Annotation could then be automatically assigned based on these
comparison scores (true complete RARp vs RT-like hits ws
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unclassified/unknown). Discussions and lectures at the summit
also highlighted the importance of integrating additional
procedures into classical workflows such as placement within
phylogenies, genomic context scan (untranslated regions, RNA
structure, nudeotide and kmer compesition among others), and
structural homology assessment using cutting-edge Al-based
prediction tools (57, 60), essential for distant homology detection
or validation. While some quality criteria and cut-offs can easly be
built in, some others may be very challenging. Defining boundaries
for the RARp gene {minimal length to describe a RdRp, structural
attributes, minimal presence of the catalylic motifs, presence/
absence of additional domains, such as Nidovirus RdRp
associated nucleotidyl transferase domain - NiRAN) remains a
complex task and requires expertise and extended knowledge of
the viral strain (61-63).

In addition, the standardization effort should also promote the
integration into the standard discovery pipelines of the most recent
and state-of-the-art concepts in RNA virology such as the search for
potential additional segments (51}, the screen for divided RdRp
(52=54}, etc.

Another challenge consists of homogenization of manual and
automatic cdusterization procedures and taxonomic assignment of
viral-like sequences. Formal virus dassification by the International
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Committee on Taxonomy of Viruses (ICTV) plays a vital role in
providing a reference language for scientists to communicate,
collaborate, and share knowledge about viruses. By coupling the
robust, updated, and standardized ICTV elassification framework
with the power of omic-based RNA virus discovery, we can
collectively improve our description and global understanding of
BMNA virus diversity {55).

Coneretely, all these proposals will be pursued by the RdRp
summit commumity with different initiatives that are intended to be
maintained and updated over time by the community members. In
particular, the community will focus on:

[} Building a central infrastructure for the RNA virus discovery
community, which would work as a central repository for
data and knowledge.

IT) Creating a curated database with automated quality scores
for data deposition based on the information provided. The
database should be community-driven and open to
feedback from end users to aid further curation,

11T} Consolidating state-of-the-art experimental and computational
respurces and knowledge to ensure the best up-to-date practices
among the community (pipelines, scripts, protocols, glossary,
guides, international journal clab), Among others, this could
consist of recommended workflows for the challenging
identification of novel/remote RdRp, the Do's and Don'ts of
annotating new, uncultivated RNA virus genomes, and
metadata recommendations for BN A viruses.

IV) In the same manner as the European Virus Bioinformatics
Center (hitps.//evbeuni-jena.de/), particolar effort will be
put into enhancing the communication and uniting our
expanding community into one single spot through a
potential membership system, forums, round tables,
workshops, online chat channels, etc.

To conclude, the major consensus that emerged from the rich
discussions led during this first RARp summit lies in the current lack
of interoperability and reproducibility in our field but also the
possible concrete solutions to tackle these obstacles (summarized
in Figure 2},

The omic-based RNA virus discovery community, as an open
sdence-to-sodety-oriented community, should be aware of its roles
and responsibilities to make its scope as transparent and accessible as
possible. Through the collective development of a user-friendly open
platform, we aim to build a solid foundation for communicating,
sharing, and performing comparable analyses using optimal and
state-of-the-art tools across a wide array of biological contexts by
reaching the broadest audience possible. With similar issues faced in
microbial metagenomics and omic-based DNA virus discovery, we
also intend to inspire from the emerging solutions and infrastructures
being developed in these related fields and learn from their
experiences in tackling these challenges (eg. 66-05),

We believe these efforts will lay the groundwork to promote
ECRs insertion into the community, best practices and repeatability,
and ultimately ensure the best future for our exploration of the
BMNA virosphere.
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