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Abstract

Pathogen evolution is one of the least predictable components of disease emergence, particularly in nature. Here, building on principles
established by the geographic mosaic theory of coevolution, we develop a quantitative, spatially explicit framework for mapping the
evolutionary risk of viral emergence. Driven by interest in diseases like Severe Acute Respiratory Syndrome (SARS), Middle East Respira-
tory Syndrome (MERS), and Coronavirus disease 2019 (COVID-19), we examine the global biogeography of bat-origin betacoronaviruses,
and find that coevolutionary principles suggest geographies of risk that are distinct from the hotspots and coldspots of host richness.
Further, our framework helps explain patterns like a unique pool of merbecoviruses in the Neotropics, a recently discovered lineage of
divergent nobecoviruses in Madagascar, and—most importantly—hotspots of diversification in southeast Asia, sub-Saharan Africa, and
the Middle East that correspond to the site of previous zoonotic emergence events. Our framework may help identify hotspots of future
risk that have also been previously overlooked, like West Africa and the Indian subcontinent, and may more broadly help researchers

understand how host ecology shapes the evolution and diversity of pandemic threats.
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Disease emergence is complex, and is driven not only by animal-
human contact, but also by the underlying evolutionary dynamics
in viral reservoirs (Plowright et al. 2017). Although host richness
is often used as a superficial proxy for spillover risk (Anthony
et al. 2017; Ruiz-Aravena et al. 2022; Sanchez et al. 2022), these
approaches oversimplify the relevant interspecific heterogeneity
in immunology, behavior, and other traits, and therefore over-
look unique host pools that allow for the rapid evolution of highly
divergent viruses (Agosta, Janz, and Brooks 2010). In the case of
generalist pathogens like betacoronaviruses, there is a concep-
tual and empirical support to the idea that these community-
level mechanisms are even more important (Power and Mitchell
2004), particularly given that cross-species transmission may, as
a rule, structure viral evolution more than codivergence with
hosts (Geoghegan, Duchéne, and Holmes 2017). This creates a
disconnection between coevolutionary theory and most existing
ecological frameworks for mapping spillover risk.

The geographic mosaic theory of coevolution (GMTC) attempts
to explicitly connect microevolutionary dynamics to the macroe-
cology and biogeography of symbiotic interactions (Thompson

2005). The GMTC posits that coevolutionary processes among
pairs (Thompson 1994) or complexes (Janzen 1980) of species are
structured in space by the rippling effects of abiotic conditions
onto evolutionary mechanisms, giving rise to fragmented systems
with different ecologies over large spatial extents (Price 2002). The
GMTC predicts a spatial fragmentation of coevolutionary dynam-
ics under the joint action of three processes (Gomulkiewicz et al.
2007): coevolutionary hot- and coldspots, which appear when the
intensity of interaction (in terms of reciprocal fitness consequences)
varies spatially; selection mosaics, wherein the intensity of selec-
tion varies across space, driven by both the biotic complexity of the
community (locally diverse hosts and viruses are more biotically
complex) and the local favorability of the environment (Thrall
etal. 2007); and trait remixing, which occurs when coevolutionary
dynamics change when community-level functional traits change
through meta-community dynamics.

Here, we apply the GMTC to explore and explain the global
biogeography of betacoronaviruses, the group that includes SARS-
associated coronavirus (SARS-CoV), Middle East respiratory syn-
drome coronavirus (MERS-CoV), and SARS-CoV-2. In their bat
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reservoirs, coronaviruses evolve through a mix of host jumps,
recombination among disparate lineages, and, to a lesser degree,
codivergence with their hosts (Anthony et al. 2017)—a mix of
mechanisms that creates a complex and nonlinear relationship
between host diversity and viral emergence. Working from a
recently published database of bat hosts of betacoronaviruses,
we test whether spatial structure in bat-betacoronavirus coevo-
lution is identifiable at a global scale. Aiming to explain these
patterns, we develop a generalized framework for applying the
GMTC to host-virus interactions, with a specific emphasis on the
potential to create independent coevolutionary dynamics (and
therefore, spatial fragmentation in risk) through heterogeneity. We
develop a trivariate risk assessment system that connects each
GMTC mechanism to a quantifiable aspect of host-virus interac-
tions: (1) viral sharing rates in host communities, representing
the strength of potential interaction between viruses and any one
host (i.e. places where viruses undergo constant host switching
may be coevolutionary coldspots); (2) the phylogenetic diversity of
hosts, as a proxy for variation in the immunological mechanisms
that antagonize viruses (i.e. the selection mosaic); and (3) the
local uniqueness of the bat community, representing the poten-
tial for viruses to be exposed to novel host traits (e.g. variation in
receptor sequences). Together, we argue that these can be used
to identify and map the evolutionary drivers that—in conjunction
with transmission processes (e.g. viral prevalence in reservoirs
and animal-human contact rates)—determine disease emergence
risk.

Results and Discussion

Bat and betacoronavirus biogeography are
broadly consistent

Most previous work has assumed that the presence or richness
of key groups of bat hosts is predictive of coronavirus diver-
sity (Anthony et al. 2017; Ruiz-Aravena et al. 2022). Projecting
bat and betacoronavirus phylogeny over space (Fig. 1), we find
support for the idea that bat community assembly is directly
responsible for a global mosaic of viral evolution. The distinct
groupings (represented by different colors, symbolizing positions
in a subspace formed by the first two phylogenetic principal com-
ponents) are essentially equivalent between the two groups, and
can be coarsely delineated as (1) south and southeast Asia; (2)
east Asia (including northern China), west Asia, and the Mediter-
ranean coast; (3) Eurasia above a northing of 40; and (4) Africa
and Latin America. In some cases, this diverges from expec-
tations about coronavirus biogeography: for example, previous
work has rarely flagged India as a region of interest, but for
both bats and betacoronaviruses, the subcontinent falls into the
same regions as the southeast Asian peninsula (and indeed, the
region is home to known bat hosts of multiple betacoronavirus
subgenera, including nobecoviruses, sarbecoviruses, and merbe-
coviruses) (Ruiz-Aravena et al. 2022).

Overall, these results suggest that the boundaries of bat and
betacoronavirus biogeographic regions are broadly consistent at a
global scale; perfect matching between the biogeographic regions
would have indicated that the signal of virus distribution is fully
predicted by bat hosts ranges. Areas for which the biogeographic
regions for bats and betacoronaviruses differ are primarily (1)
southeast Asia and southern China, and (2) the Arabian Penin-
sula, which are both regions where zoonotic transmission has
been documented (potentially driving a unique level of viral sam-
pling effort that generates these patterns). These spatially limited
mismatches nonwithstanding, the large level of congruence may

be surprising, given that cross-species transmission may play
a stronger role in coronavirus diversification than cospeciation
(Anthony et al. (2017)—a property that would theoretically allow
for substantial broad divergence in their biogeography. However,
host jumps at the family level or higher are relatively rare and
significant events in coronavirus evolutionary history (Anthony
et al. 2017; Latinne et al. 2020); as a result, the mosaic of
betacoronavirus phylogeography is assembled from a set of over-
lapping smaller coevolutionary systems, superimposed in space
and filtered by the importance of different subgroups in local host
communities. For example, the most speciose and cosmopolitan
family of bats, the vesper bats (Vespertilionidae), are considered
the primary hosts of the subgenus Merbecovirus (MERS-like viruses)
(Latinne et al. 2020; Ruiz-Aravena et al. 2022); but in the Ameri-
cas, where merbecoviruses are the only lineage present, they have
only been found in other bat taxa (e.g. Molossidae, Phyllostomidae)
(Brandao et al. 2008; Anthony et al. 2013; Goes et al. 2013, 2016).
At the coarsest scale, these heterogeneities are lost, and beta-
coronavirus biogeography tracks the deep rifts in bat evolutionary
history—but within broad regions, the component coevolutionary
systems may have very different dynamics.

Hotspots of bat and betacoronavirus biodiversity
are distinct

Bats, the second most diverse groups of mammals, are found
worldwide; gradients in their species richness generally track
broader patterns of mammal diversity (Tanalgo, Oliveira, and
Hughes 2022) with a striking Neotropical hotspot (especially in the
Amazon basin) and a secondary hotspot centered in Indochina.
These hotspots of bat diversity are generally presumed to be
hotspots of viral adaptive radiation, and therefore areas of concern
for human health (Anthony et al. 2017; Olival et al. 2017). However,
the hotspots of known bat betacoronavirus hosts show a distinct
pattern, with primary hotspots (both in terms of area and higher
values) of host richness situated in southeast Asia, parts of south-
ern Europe, and to a lesser extent parts of Africa in the —25 to 0
range of latitudes (Fig. 2; top). Although hundreds of species likely
host undiscovered betacoronaviruses, machine-learning predic-
tions have suggested that these undiscovered reservoirs should
follow the same diversity gradient (Becker et al. 2022). In princi-
ple, these hotspots of locally diverse, virus-rich bat communities
should drive more adaptive diversification in their viruses.

However, we find that the global pattern of betacoronavirus
phylogenetic distinctiveness is quite distinct from both bat host
richness and phylogenetic distinctiveness (Fig. 2; bottom). In con-
trast to the sparsity of Neotropical betacoronavirus hosts, South
and Central America have the most evolutionary distinct hosts
and viruses, followed by secondary hotspots in southeast Asia and
the Rift Valley region have mostly distinct viruses. Some degree of
sampling bias may contribute to these patterns: for example, the
Neotropics are one of the places where the fewest bat betacoron-
avirus sequences have been generated (Boni et al. 2020; Temmam
etal. 2022' Worobey et al. 2022), resulting in a sparser phylogenetic
tree, and artificially inflating distinctiveness; conversely, dispro-
portionate research effort in eastern China (Cohen et al. 2022) may
have led to a more complete inventory of the local diversity of
coronaviruses, again inflating these metrics relative to underly-
ing patterns. Even accounting for these potential biases, though,
there is obvious heterogeneity in betacoronavirus evolutionary
distinctiveness that is distinct from overall bat diversity.

Overall, these patterns recapitulate the evolutionary history of
both the order Chiroptera and the genus Betacoronavirus. Horse-
shoe bats (Rhinolophidae) include the reservoirs of the SARS-like
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Figure 1. Bat and betacoronavirus biogeographic regions. Phylogeography of bats (top) and viruses (bottom) is categorized based on an analysis of bat
distributions, paired with bat or virus phylogeny. The different colors show tendencies to separate alongside the first two components of a PCoA. Note
that the PCoA for the bats and viruses are independent, and so cannot be compared directly—that being said, the fact that different regions cluster in

the same way across maps be directly compared.

viruses (subgenus Sarbecovirus), the group of pandemic threats
that have been of the greatest interest to researchers (Latinne
et al. 2020) (and so have been sampled most intensively) (Cohen
et al. 2022). The hotspots of host richness and viral diversity in
Southeast Asia—both of which are disproportionately high, con-
sidering the global landscape of bat species richness—are almost
entirely driven by viral adaptive radiation through host switch-
ing within this clade (Becker et al. 2022; Ruiz-Aravena et al.
2022). In contrast, the Neotropical hotspot of viral distinctive-
ness is driven by isolation by host vicariance. Out of the four
main groups of betacoronaviruses, only merbecoviruses have been
found in animals in the Americas—an introduction that is gen-
erally presumed to be ancient (Olival et al. 2020° Ruiz-Aravena

etal. 2022). While comparatively understudied, New World merbe-
coviruses have been found in the ghost-faced bats (Mormoopidae),
Neotropical leaf-nosed bats (Phyllostomidae), and free-tailed bats
(Molossidae) (Branddo et al. 2008; Anthony et al. 2013; Gées et al.
2013 2016). The former two groups and a clade of the latter are
endemic to the Neotropics, while the explosive adaptive radiations
of the phyllostomids are responsible for the hotspot of bat diver-
sity in the Amazon (Ammerman, Lee, and Tipps 2012). Together,
these clades of New World bats play host to a distinct regime of
betacoronavirus coevolution.

Our approach is potentially limited by sampling bias: key
hotspots identified by our model have, indeed, been sampled
intensely following major zoonotic emergence events. In these
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Figure 2. Bat and betacoronavirus diversity. Top panel: diversity of known bat hosts of betacoronaviruses in our dataset. This map shows that the
region with the largest number of possible hosts is South-Eastern Asia. Bottom panel: congruence between the evolutionary distinctiveness of the hosts
(grey to blue) and the viruses (grey to red). Darker areas have higher combined evolutionary distinctiveness for the entire bat-virus system.

areas, more betacoronavirus hosts will have been discovered,
leading to higher overall diversity and potentially higher sharing.
Similarly, hotspots of evolutionary uniqueness—as in the Arabian
Peninsula—could reflect much broader lineages that have only
been sampled in focal areas for public health. While the discovery
of new branches of bat-betacoronavirus coevolution is certainly
likely, and might change some of the observed patterns, our frame-
work is likely to be fairly robust: the 126 hosts in our study capture
nearly 10 per cent of global bat diversity, and the underlying evo-
lutionary patterns they represent are much less sensitive to new
information than any inferences about viral evolution.

Coevolutionary regimes structure evolutionary
potential for zoonotic emergence

The existence of well-defined cophylogenetic regions suggests that
the bat-betacoronavirus system is spatially fragmented enough to

create divergent coevolutionary trajectories; in turn, this coevolu-
tionary mosaic may alter the risk of zoonotic emergence. These
ideas are, respectively, supported by the existence of hotspots
of viral uniqueness and the diverse origins of human betacoro-
naviruses. Together, this framework points to a predictable rela-
tionship between host community structure and coevolution-
ary pressure: phylogeographic structure in bat hosts (and their
diverse immune strategies) (Banerjee et al. 2020) creates a land-
scape of selective pressure; the trajectory of viruses’ coevolution-
ary response is, in turn, constrained by their opportunities for
either specialization or diversification through host jumps and
recombination.

Based on the geographic mosaic theory of coevolution, we
developed a trivariate map of coevolutionary pressure (Fig. 3):
(1) host phylogenetic diversity: a high diversity of evolutionary his-
tories should expose viruses to more variation in host immune
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Figure 3. Trivariate additive mapping of the components of risk. Viral sharing runs from yellow (low) to blue (high); host phylogenetic diversity runs
from pink (low) to high (green); and host compositional uniqueness runs from cyan (low) to red (high). The GMTC suggests that the highest

evolutionary potential for emergence exists in unique and diverse host communities with low viral sharing, i.e. pixels around yellow. All components
within bat host ranges are scaled in brightness so that a pixel with no sharing, no phylogenetic diversity, and no compositional uniqueness would be
black, and a pixel with maximal values for each would be white. The individual layers that compose this figure are given in Supplementary Material.

traits; (2) host community uniqueness: exposure to greater host
trait heterogeneity can drive viral diversification, and coevolving
with more unique host communities should create more unique
branches of viral evolution; and (3) propensity for viral sharing:
frequent cross-species transmission may act as a buffer on selec-
tive pressure, while lower rates of exchange may enable more
simultaneous trajectories of viral specialization to coexist within
a given community. We combine global maps of all three to
generate a map of coevolutionary regimes, where close colors
represent similar risks, and paler pixels represent overall higher
risk (see ‘Methods’ section). We find that these regions do not
neatly overlap with those defined in Figs. 1 or 2, reinforcing the
notion that local-scale coevolutionary mosaics can form within
cophylogenetic regions.

The greatest evolutionary potential for zoonotic emergence
exists where pathogen pools have a high genetic diversity and
high propensity for cross-species transmission. In our framework,
emergence risk is therefore maximized under higher phylogenetic
diversity (viruses are exposed to different host clades), higher
host uniqueness (viruses are experiencing novel, heterogeneous
host traits combinations), and low to medium viral sharing (host-
virus pairs can coevolve independently, but divergent viruses may
still have opportunities for recombination). In Fig. 3, this corre-
sponds to yellow areas (dynamics dominated by low viral sharing,
with equal contributions of selection mosaics and trait remixing;
southeast Asia, and the Indian sub-continent), green-yellow areas
(dynamics with low viral sharing but dominated by the selection
mosaic effect of host diversity; sub-Saharan Africa), and red-
yellow areas (dynamics with low viral sharing but dominated by
trait remixing in host communities; the Middle East). Translat-
ing this axis of variation back into a univariate risk map (Fig. 4)
highlights that this evolutionary landscape has a striking cor-
respondence to regions where zoonotic betacoronaviruses have
previously emerged. Our findings align with predictions regarding
the spatial location of cross-species transmission. These locations
not only pose a potential risk of viral jumps that could endanger

human health but also provide valuable information for monitor-
ing wildlife health. This could guide us to determine where and
what measures to implement for effectively monitoring wildlife
and human betacoronavirus outbreaks before they escalate to
critical levels. Nevertheless, there are actually very few docu-
mented cases of emergence events, and similarities could be some
degree of coincidental.

Compared to approaches that map emergence risk based only
on the number of known bat hosts of betacoronaviruses, our
framework suggests regions where high viral sharing dominates
coevolutionary dynamics—such as Latin America, or Eurasia
above a northing of 30—would pose less of a relative risk of
zoonotic emergence. Nevertheless, areas of high host uniqueness
coupled with high viral sharing (red-to-pink in Fig. 3) could create
hotspots facilitated by viral codivergence. Our framework identi-
fies Madagascar, where most bat species are endemic following
evolutionary divergence from sister species in both African and
Asian continents (Shi et al. (2014) as one such hotspot; interest-
ingly, a recent study (Kettenburg et al. 2022) reported a novel
and highly divergent lineage of nobecoviruses from Madagascar-
endemic pteropid bat species (Pteropus rufus and Rousettus mada-
gascariensis), again supporting the predictive power of the coevo-
lutionary framework.

Human landscapes filter the geography of
emergence risk

The relationship between the underlying pathogen pool and emer-
gence risk is mediated by both human-wildlife interfaces (the
probability of spillover) and opportunities for onward horizontal
transmission (the probability that spillovers become epidemics)
(Plowright et al. 2017). It must be noted that the assesment of
risk based on the GMTC mechanisms does not account for human
presence; for this reason, it represents ‘potential’ level of risk,
which must be re-evaluated in the light of human presence. As
a proxy for both, we finally overlaid the risk component from the
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Figure 4. Evolutionary potential for zoonotic emergence of bat-origin betacoronaviruses. Risk is a composite measure of the color value and angular
distance to the yellow hue in Fig. 3 (see ‘Methods’ section). Darker pixels represent areas where the coevolutionary mechanisms are likely to introduce
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Figure 5. Overlap between evolutionary potential and ecological opportunity for zoonotic emergence. Overlap of the percent of each pixel occupied
by urbanized structures, representing the degree of settlement, on the spillover risk map (where the risk comes only from wildlife, and ignores
multi-hosts chains of transmissions including non-bats hosts). Darker pixels correspond to more risk, in that the GMTC-derived risk of Fig. 4 is high

and the pixel is densely occupied by human populations.

composite map (see above) with the proportion of built land, as a
proxy for a mix of habitat disturbance, potential for bat synan-
thropy or contact with bridge hosts like livestock (Cui, Li, and
Shi 2019; Rulli et al. 2021) and human population density and
connectivity (Hassell et al. 2017; Plowright et al. 2017; Muylaert
et al. 2022) (Fig. 5). Accounting for these factors, most of South
America and Europe are at comparatively lower risk, as—although
densely populated—settlements tend to be in areas with lower
potential risk. Conversely, regions like Malaysia and the northern
coast of Australia have a high evolutionary risk component, but
should represent a relatively lower effective risk due to low human
density. However, Southeast Asia, the Indian subcontinent, and
scattered hotspots in sub-Saharan Africa are at high risk due to the
overlap between human populations and natural opportunities
for cross-species transmission of betacoronaviruses.

Reassuringly, these predictions correspond to the geographic
origins of the three bat-origin coronaviruses that have recently
emerged in human populations. While available information puts
the spillover of SARS-CoV-2 in a live animal market in Wuhan,
China, the ultimate origin of the virus is almost certainly in
a divergent lineage of sarbecoviruses from Indochina that was
poorly characterized prior to the pandemic (Boni et al. 2020; Tem-
mam et al. 2022; Worobey et al. 2022). Similarly, the SARS-CoV
outbreak began in Guangdong province in 2002, reaching humans
through small carnivore bridge hosts, but was eventually traced
back to a set of likely progenitor viruses found in cave-dwelling
horseshoe bats in Yunnan province (Hu et al. 2017) nearby, anti-
body evidence has indicated human exposure to SARS-like viruses
(Wang et al. 2018). MERS-CoV was first detected in Jordan, but
is widespread in camels in East Africa and the Middle East, and
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may have reached its bridge host decades earlier than originally
supposed (Miiller et al. 2014); as a result, the geography of the orig-
inal bat-to-camel transmission is still widely regarded as uncer-
tain. All of these are broadly consistent with the risk factors we
identify. Notably, India and West Africa are additional hotspots
that have yet to experience the emergence of a bat coronavirus
into human populations, but may still be at risk—particularly
given known gaps in bat surveillance (Cohen et al. 2022) and a
dense population in both regions with global connectivity. In any
of these regions, surveillance on viral reservoirs can be paired
with targeted monitoring of high-risk human populations (i.e.
those with regular wildlife contact) (Xu et al. 2004) for maximum
impact.

Conclusion

Bats emerged around 64 million years ago, and are one of the
most diverse mammalian orders, with more than 1,400 esti-
mated species (Peixoto, Braga, and Mendes 2018; Simmons and
Cirranello 2020). They exhibit a broad variety of habitat use,
behavior, and feeding strategies, putting them at key positions
in the delivery and provisioning of several ecosystem services,
tied to important ecosystem-derived benefits to humans (Kasso
and Balakrishnan 2013). Over two-thirds of bats are known to
be either obligate or facultative insectivores, therefore actively
contributing for agricultural pest control, (Williams-Guillén, Per-
fecto, and Vandermeer 2008; Voigt and Kingston, 2016) and vec-
tors of pathogens that put a risk on human health (Gonsalves
et al. 2013a,b); some other species are essential links in many
seed-dispersal networks (Mello et al. 2011). However, many of
these species face a high risk of extinction, particularly given
persecution and killings that sometimes follows from messag-
ing about their role in disease emergence. Areas where bats,
viruses, and humans co-occur are not always hotspots of risk
for human heath; as such, developing more precise ways to
map zoonotic hazards can help bats and humans coexist safely,
and support the conservation of these important and unique
animals.

Here, we propose a simple framework with broad explanatory
power that helps contextualize discoveries like highly divergent
nobecoviruses in Madagascar and the once-neglected adaptive
radiation of sarbecoviruses in the Indochinese peninsula. In doing
so, it advances ecological theory beyond the current state of the
art for global maps of emergence risk. For example, previous stud-
ies that have used host richness as a proxy have predicted a high
diversity of unsampled bat viruses (Olival et al. 2017), bat coro-
naviruses (Anthony et al. 2017), and even specifically betacoron-
aviruses (Becker et al. 2022) in both the Amazon and Southeast
Asia. While we find that both regions are characterized by unique
and diverse communities of both hosts and viruses, our frame-
work is able to identify key differences between the two systems
We find that the merbecovirus complex in Latin America has been
a unique branch of evolution separate from the rest of the global
pool, but with limited potential for viral diversification—a finding
thatis supported by previous work indicating a higher rate of codi-
vergence in Latin America (Anthony et al. 2017; Caraballo 2022).
In contrast, in southeast Asia, host richness and viral distinctive-
ness are high but sharing is low; this suggests a different type
of evolutionary dynamics that could generate high local diversity
of viruses through host switching and viral recombination (see
e.g. Latinne et al. 2020) as well as the discovery of recombinant
viruses with genetic material from both the SARS-CoV and SARS-
CoV-2 branches of the Sarbecovirus lineage (Wu et al. 2021).-Both
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of these regions are priority areas for sampling, especially given
predictions that they contain many bat hosts of undiscovered
betacoronaviruses (Becker et al. 2022; Cohen et al. 2022). How-
ever, both the evolutionary and ecological aspects of emergence
risk are higher in southeast Asia—a fact that will only become
more relevant, as bats track shifting climates and exchange
viruses with other species, creating a hotspot of elevated cross-
species transmission unique to the region (Carlson et al. 2022;
Muylaert et al. 2022).

Our trivariate additive mapping of components of risk (Fig. 3)
aims to elicit the complexity of spatial cross-species transmis-
sion risk beyond the mere presence or absence of the pathogen
host in a specific location. By considering coevolutionary factors
such as viral sharing and host uniqueness, we suggest insights
that can aid in identifying potential locations for surveillance of
betacoronavirus circulation and assessing the risk of cross-species
transmission to other mammals. In communities characterized
by diverse but unique host populations, with limited viral shar-
ing between them, we could encounter viruses that specialize in
targeting the immune system of specific hosts. This implies a low
likelihood of infecting novel hosts but, once locally introduced into
anew host (either a new species, or an immunologically naive pop-
ulation), the specialized virus could spread relatively easily due to
encountering little immune resistance (Plowright et al. 2011). With
the right combination of viral traits, such as low disease-induced
mortality or high transmission rate, this could lead to successfully
spread within the new host community. However, while high adap-
tation to a specific host can be advantageous, it may also lead to
maladaptation when the pathogen encounters a new unsuitable
host, potentially resulting in its extinction.

Bats—and the spillover of their viruses—are also sensitive
to anthropogenic factors others than climate change, including
deforestation and other kinds of habitat loss, increased stress,
and greater contact with potential bridge hosts like domesticated
species (Mendenhall et al. 2014; Treitler et al. 2016; Alves et al.
2018; Rulli et al. 2021). This represents a challenge for both con-
servation strategies and pandemic prevention (Amman et al. 2011)
butidentifying areas at risk, and protecting the health of bats and
ecosystems within those zones, can be a win-win intervention for
both (Hopkins et al. 2021’ Plowright et al. 2021; Adisasmito et al.
2022). As we scale these predictions down in space to finer spatial
resolutions to guide public health actions (Muylaert et al. 2022),
the incorporation of human activity predictors will become more
importyant (Ka-Wai Hui 2006).

Methods
Known Betacoronavirus hosts

We downloaded the data on bats hosts of Betacoronavirus from
https://www.viralemergence.org/betacov on Apr 2022 (Becker
et al. 2022), and filtered it to ‘known’ hosts (established before the
emergence of SARS-CoV-2) and ‘novel’ hosts (confirmed through
sampling and competence assays since the initial data collection).
The original database was assembled by a combination of data
mining and literature surveys, including automated alerts on the
‘bats’ and ‘coronavirus’ keywords to identify novel empirical evi-
dence of bats-betacoronaviruses associations; this yielded a total
of 126 known hosts, 47 of which were novel hosts. This host-virus
list of interactions was obtained through a comprehensive aggre-
gation of GenBank data as well as systematic literature searches
(Becker et al. 2022; Cohen et al. 2022), such that we have high con-
fidence in its fitness for the purpose of inference at a large spatial
scale.
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Bat occurrences

We downloaded the rangemap of every current bat species that
was classified as an empirically documented host of Betacoron-
avirus from the previous step, according to recent IUCN data (IUCN
2021). The IUCN data have been assembled to support wildlife con-
servation efforts, and therefore we do not expect that they are
biased by wildlife disease sampling efforts or priority. The range
maps were subsequently rasterized using the rasterize function
from GDAL (Rouault et al. 2022) at a resolution of ~100 km x100km
at the equator. For every pixel in the resulting raster where at least
one bat host of Betacoronavirus was present, we extract the species
pool (list of all known bat hosts), which was used to calculate the
following risk assessment components: bat phylogenetic diversity,
bat compositional uniqueness, and predicted viral sharing risk.

Bat phylogenetic diversity

For every pixel, we measured Faith’s Phylogenetic Diversity (Faith
1992) based on a recent synthetic tree with robust time calibration,
covering about 6000 mammalian species (Upham, Esselstyn, and
Jetz 2019). Faith’s PD measures the sum of unique branches from
an arbitrary root to a set of tips, and comparatively larger values
indicate a more phylogenetic diverse species pool. We measured
phylogenetic diversity starting from the root of the entire tree (and
not from Chiroptera); this bears no consequences on the result-
ing values, since all branches leading up to Chiroptera are only
counted once per species pool, and (as we explain when describ-
ing the assembly of the composite risk map), all individual risk
components are ranged in [0,1]. This measure incorporates a rich-
ness component, which we chose not to correct for; therefore, the
interpretation of the phylogenetic diversity is a weighted species
richness that accounts for phylogenetic over/under-dispersal in
some places.

Bat compositional uniqueness

For every species pool, we measured its Local Contribution to Beta-
Diversity (LCBD) (Legendre and De Céaceres 2013) works from a
species-data matrix (traditionally noted asY), where species are
rows and sites are columns, and a value of 1 indicates occurrence.
We extracted the Y matrix assuming that every pixel represents a
unique location, and following best practices (Legendre and Con-
dit 2019) transformed it using Hellinger’s distance to account for
unequal bat richness at different pixels. The correction of raw
community data is particularly important for two reasons: first,
it prevents the artifact of richer sites having higher importance;
second, it removes the effect of overall species richness, which
is already incorporated in the phylogenetic diversity component.
High values of LCBD indicate that the pixel has a community that
is, on an average, more dissimilar in species composition than
what is expected knowing the entire matrix, i.e. a more unique
community. Recent results by Dansereau, Legendre, and Poisot
(2022) show that LCBD measures are robust with regards to spatial
scale, and are therefore applicable at the global scale.

Viral sharing between hosts

For all bat hosts of Betacoronavirus, we extracted their predicted
viral sharing network, generated from a previously published
generalized additive mixed model of virus sharing by a tensor
function of phylogenetic distance and geographic range overlap
across mammals (Albery et al. 2020). This network stores pair-
wise values of viral community similarity, measured for all hosts
(to maintain consistency with the phylogenetic diversity mea-
sure) across all viruses; therefore, we consider that it accounts for
some overall similarity in the way hosts deal with viruses, and not

only betacoronaviruses. There is empirical evidence that capacity
for cross-species transmission even between divergent species is
generally high (Mollentze and Streicker 2020), especially for beta-
coronaviruses (Latinne et al. 2020). To project viral sharing values
into a single value for every pixel, we averaged the pairwise scores.
High values of the average sharing propensity means that this spe-
cific extant bat assemblage is likely to be proficient at exchanging
viruses.

Composite risk map

To visualize the aggregated risk at the global scale, we combine
the three individual risk components (phylogenetic diversity, com-
positional uniqueness, and viral sharing) using an additive color
model (Seekell, Lapierre, and Cheruvelil 2018). In this approach,
every risk component gets assigned a component in the RGB color
model (phylogenetic diversity is green, compositional uniqueness
is red, and viral sharing is blue). In order to achieve a valid RGB
measure, all components are re-scaled to the [0,1] interval, so that
a pixel with no sharing, no phylogenetic diversity, and no compo-
sitional uniqueness is black, and a pixel with maximal values for
each is white. This additive model conveys not only the intensity
of the overall risk, but also the nature of the risk as colors diverge
towards combinations of values for three risk components. Out of
the possible combinations, the most risky in terms or rapid diver-
sification and spillover potential is high phylogenetic diversity and
low viral sharing (Gomulkiewicz et al. 2000) in that this allows
multiple independent host-virus coevolutionary dynamics to take
place in the same location. In the colorimetric space, this cor-
respond to yellow—because the HSV space is more amenable to
calculations for feature extraction (Keke, Peng, and Guohui 2010)
we measured the risk level by calculating the angular distance
of the hue of each pixel to a reference value of 60 (yellow), and
weighted this risk level by the value component. Specifically, given
a pixel with colorimetric coordinates (h,s,v), its ranged weighted
risk value is

_ |atan(cos(rad(h)), sin(rad(h))) - X

ux |1
x 2r ’

where X is atan(cos(rad(60)),sin(rad(60))), a constant ~ 0.5235.

Viral phylogeography and evolutionary
diversification

To next represent phylogeography of betacoronaviruses in bats, we
aggregated and analyzed betacoronavirus sequence data. We used
the following query to pull all Betacoronavirus sequence data from
the GenBank Nucleotide database except SARS-CoV-2; (‘Betacoro-
navirus’'[Organism] OR betacoronavirus[All Fields]) NOT ('Severe
acute respiratory syndrome coronavirus 2’[Organism] OR sars-
cov-2[All Fields]). We added a single representative sequence for
SARS-CoV-2 and manually curated to remove sequences with-
out the RNA-dependent RNA polymerase (RARp) sequence or that
contained words indicating recombinant or laboratory strains
including ‘patent’, ‘mutant’, ‘GFP’, and ‘recombinant’. We filtered
over-represented taxa including betacoronavirus 1, hCoV-OC43,
Middle East respiratory syndrome coronavirus, Murine hepatitis
virus, and hCoV-HKU1. Curated betacoronavirus RdRp sequences
were then aligned using MAFFT (Katoh and Standley et al. 2013)
v1.4.0 (Algorithm FFT-NS-2, Scoring matrix 200PAM/k=2, gap
open penalty 1.53 metre offset value 0.123) and a maximum like-
lihood tree reconstructed in IQ-TREE (Nguyen et al. et al. 2015)
v1.6.12 with ModelFinder (Kalyaanamoorthy et al. 2017) ultra-
fast bootstrap approximation (Hoang et al. 2018) with a general
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time reversible model with empirical base frequencies and the 5-
discrete-rate-category FreeRaye model of nucleotide substitution
(GTR+F +R5).

We first tested the hypothesis that hotspots of viral diversifi-
cation would track hotspots of bat diversification. To do so, we
plotted the number of known bat hosts (specifically only those
included in the phylogeny, so there was a 1:1 correspondence
between data sources) against the ‘mean evolutionary distinctive-
ness’ of the associated viruses. To calculate this, we derived the
fair proportions evolutionary distinctiveness (Isaac et al. 2007) for
each of the viruses in the tree, then averaged these at the bat
species level, projected these values onto their geographic dis-
tributions, and averaged across every bat found in a given pixel.
As such, this can be thought of as a map of the mean evolution-
ary distinctiveness of the known viral community believed to be
associated with a particular subset of bats present.

Co-distribution of hosts and viral hotspots

Subsequently, we tested the hypothesis that the biogeography
of bat betacoronaviruses should track the biogeography of their
hosts. To test this idea, we loosely adapted a method from, (Kreft
and Jetz 2007 2010) who proposed a phylogenetic method for
the delineation of animal biogeographic regions. In their original
method, a distance matrix—where each row or column repre-
sents a geographic raster’s grid cell, and the dissimilarity values
are the ‘beta diversity similarity’ of their community assemble—
undergoes non-metric multidimensional scaling (NMDS); the first
two axes of the NMDS are projected geographically using a four-
color bivariate map. Here, we build on this idea with an entirely
novel methodology. First, we measure the phylogenetic distance
between the different viruses in the betacoronaviruses tree by
using the cophenetic function in ape; (Paradis and Schliep 2019)
subsequently, we take a principal components analysis of that dis-
tance matrix (readily interchangeable for NMDS in this case) to
project the viral tree into an n-dimensional space. We then take
the first two principal components and, as with the evolutionary
distinctiveness analysis, aggregated these to a mean host value
and projected them using a four-color bivariate map.

Data availability

The code to reproduce these analyses, as well as the data (with
the exception of the IUCN rangemaps, which must be downloaded
from their website) are available in the viralemergence/betamap
repository on GitHub.
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