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Abstract

Beyond glycemic control, SGLT2 inhibitors (SGLT2i) have protective effects on cardiorenal
function. Renoprotection has been suggested to involve inhibition of NHE3 leading to reduced
ATP-dependent tubular workload and mitochondrial oxygen consumption. NHE3 activity is also
important for regulation of endosomal pH, but the effects of SGLT2i on endocytosis are
unknown. We used a highly differentiated cell culture model of proximal tubule (PT) cells to
determine the direct effects of SGLT2i on Na*-dependent fluid transport and endocytic uptake in
this nephron segment. Strikingly, canagliflozin but not empagliflozin reduced fluid transport
across cell monolayers, and dramatically inhibited endocytic uptake of albumin. These effects
were independent of glucose and occurred at clinically relevant concentrations of drug.
Canagliflozin acutely inhibited surface NHE3 activity, consistent with a direct effect, but did not
affect endosomal pH or NHE3 phosphorylation. Additionally, canagliflozin rapidly and selectively
inhibited mitochondrial complex | activity. Inhibition of mitochondrial complex | by metformin
recapitulated the effects of canagliflozin on endocytosis and fluid transport, whereas modulation
of downstream effectors AMPK and mTOR did not. Mice given a single dose of canagliflozin
excreted twice as much urine over 24 h compared with empagliflozin-treated mice despite
similar water intake. We conclude that canagliflozin selectively suppresses Na*-dependent fluid
transport and albumin uptake in PT cells via direct inhibition of NHE3 and of mitochondrial
function upstream of the AMPK/mTOR axis. These additional targets of canagliflozin contribute
significantly to reduced PT Na*-dependent fluid transport in vivo.

New and Noteworthy

Reduced NHE3-mediated Na® transport resulting in lower mitochondrial burden has been
suggested to underlie the cardiorenal protection provided by SGLT2 inhibitors. We found that
canagliflozin, but not empagliflozin, reduced NHE3-dependent fluid transport and endocytic
uptake in cultured proximal tubule cells. These effects were independent of SGLT2 activity and
resulted from inhibition of mitochondrial complex | and NHE3. Studies in mice are consistent
with greater effects of canagliflozin vs empagliflozin on fluid transport. Our data suggest that
these selective effects of canagliflozin contribute to reduced Na’-dependent transport in
proximal tubule cells.

Introduction

A major function of the proximal tubule (PT) is the comprehensive recovery of glucose from the
tubular ultrafiltrate. This is accomplished by the concerted functions of the two sodium glucose
transporters SGLT2 and SGLT1, which are expressed in the S1 and S2/S3 segments of kidney
PTs, respectively (1). SGLT2 functions as a low-affinity, high-capacity transporter with
equimolar Na':glucose stoichiometry. Under normal conditions, SGLT2 transport capacity is
sufficient to recover nearly all of the filtered glucose. SGLT1, which maintains a 2:1 Na*:glucose
stoichiometry, generally serves as a high-affinity, low-capacity reserve transporter to recover
residual glucose in later PT segments. SGLT1’s role in recovery increases when glucose
concentrations exceed the capacity for retrieval by SGLT2, as in diabetic states (2).

SGLT2 inhibitors (SGLT2i) are a clinical game changer for the treatment of Type 2 diabetes.
These drugs, known collectively as gliflozins, are structurally based on the glycoside phlorizin,
and exhibit nanomolar affinity for either or both SGLTs (3, 4). Gliflozins act by competing with
glucose binding to SGLTs to prevent PT glucose uptake and thus normalize plasma glucose
levels. Numerous studies have demonstrated attenuated declines in kidney function and
cardiovascular health in diabetic patients treated with empagliflozin, canagliflozin, dapagliflozin,
or tofogliflozin, among others (5-8).
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Remarkably, gliflozins also show cardiorenoprotective effects in non-diabetic individuals (9—14).
In the DAPA-HF study, dapagliflozin improved heart failure outcomes and slowed progression of
chronic kidney disease and death in individuals with or without diabetes (15). Cassis and
colleagues similarly showed that dapagliflozin has renoprotective benefits in non-diabetic mice
with progressive proteinuric nephropathy caused by repeated BSA injections (16).

The complexity of SGLT2i effects in animal models makes it challenging to determine the direct
effects of SGLT2i on PT cells. SGLT2i treatment induces sustained glucosuria, diuresis, and
natriuresis and induces urea transporter UT-A1 expression in the medulla to drive water
reabsorption in both diabetic and normal rats (17-20). Signaling from later nephron segments,
such as the macula densa, or extrarenal effects may preserve PT function by limiting GFR.
Slower progression of glomerular disease and associated albuminuria may also protect PT cells
from oxidative damage and other insults (14). Inhibition of PT NHES3 activity by SGLT2i has also
been implicated as a protective mechanism to increase diuresis and natriuresis (17, 18). How
this occurs is unknown, but it is observed in the absence of glucose and has been speculated to
involve interaction of NHE3 and SGLT2 via MAP17 (21). Direct interaction of empagliflozin with
NHE1 in human atrial cardiomyocytes, which do not express SGLT2, has also been reported,
although recent studies argue against this possibility (22—24). Other off-target effects of some
gliflozins, including activation of AMPK, have also been suggested to contribute to cardiorenal
protection of this class of drugs (25-28).

A confounding issue in many studies examining the effects of treatment with SGLT2i are the
relatively high concentrations of drug commonly administered to rodents, in part because of
more extensive catabolism in these models (29). For example, rat studies have typically used
daily oral dosages of 1.5-2 mg/kg dapagliflozin, whereas the recommended daily human dosage
is ~30-fold lower (16, 30). Thus, off-target effects of gliflozins and their metabolites may
contribute variably to renal and extrarenal function in cell culture, animal models, and diabetic vs
nondiabetic humans.

We have developed optimized culture conditions for the opossum kidney (OK) cell line that
recapitulate key morphological and functional features of the PT, including high expression of
the megalin and cubilin receptors that retrieve filtered proteins from the tubule lumen, robust ion
and fluid transport, and reliance on oxidative phosphorylation as a primary metabolic pathway
(31, 32). These cells most closely resemble those of the PT S1 segment, based in part on their
selective expression of SGLT2 (33, 34). Here we utilized this powerful and physiologically
relevant system to dissect the direct and immediate effects of SGLT2i on PT cell functions.

Results

A subset of SGLT2 inhibitors inhibit PT fluid transport and albumin uptake.

We compared the effects of canagliflozin and empagliflozin on Na*-dependent fluid transport
across monolayers of filter-grown OK cells over a 6 h incubation. Under our culture conditions,
OK cells exhibit robust apical-to-basolateral transport of fluid, amounting to ~10 uL/h, of which
roughly half is inhibited by the selective NHE3 inhibitor S3226 (Fig. 1A). S3226 has a similar
maximal effect on NHE3 activity in LLC-PK; cells (35). Inhibition of the Na'K*-ATPase using
ouabain (10 pM) inhibited fluid transport by ~70% (Fig. 1A). Canagliflozin, but not empagliflozin,
inhibited fluid transport across OK cell monolayers to a similar extent as S3226, and transport
was not further reduced by combined addition of the two drugs (Fig. 1A). Tofogliflozin had
effects similar to canagliflozin (Fig. S1A). The effects of canagliflozin on fluid transport did not
depend on glucose in the media, consistent with the demonstration by Malnic and colleagues of
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glucose-independent inhibition of Na* transport by phlorizin in microperfused rats [Fig. 1B; (17)].
These data suggest an SGLT2-independent mechanism.

To examine whether the different effects of canagliflozin and empagliflozin on fluid transport
stemmed, at least in part, from NHE3 inhibition, we measured the effect of these drugs on
intracellular pH (pHi) recovery rates after an acid load. In the presence of extracellular Na®,
NHE3 accelerates pH recovery. We incubated cells overnight with each compound, induced
acid loading using NH,CIl, and then measured pHi recovery rates after NH,Cl removal by
fluorescence. In OK cells, canagliflozin reduced H* transport rates compared to untreated cells,
and resulted in rates similar to those measured in the absence of extracellular Na* or the
presence of S3226 (Fig. 2A). In contrast, recovery rates in the presence of empagliflozin were
similar to untreated cells.

We also measured the acute effect of these drugs on the activity of rabbit NHE3 heterologously
expressed in NHE1-null Chinese hamster ovary cells (AP-1 cells). Heterologous expression of
NHE3 increased acid load pHi recovery rates and was sensitive to the NHE3 inhibitor
ethylisopropylamiloride (EIPA). When we tested SGLT2 inhibitors added simultaneous to NH,CI
removal, results paralleled those in OK cells: canagliflozin reduced pH recovery rates while
empagliflozin had little effect (Fig. 2B). These results suggest that canagliflozin rapidly and
directly inhibits surface NHE3 from both opossum and rabbit, whereas empagliflozin does not.

Acute reductions in NHE3 activity reduce the efficiency of endocytic uptake in the PT (36-38).
Confocal imaging revealed that uptake of a fluorescent albumin conjugate was considerably
reduced in cells pre-treated with 25 yM canagliflozin, but not empagliflozin (Fig. 3A). We
assessed the dose-dependent effects of these drugs on albumin uptake using
spectrofluorimetry. Canagliflozin inhibited albumin uptake in a dose-dependent manner,
whereas empagliflozin had no effect on endocytic uptake, even at concentrations up to 50 uyM
(Fig. 3B), or after 48h preincubation with 50 uyM empagliflozin (Fig. S2A). By contrast,
canagliflozin inhibited albumin uptake after as little as 15 min pretreatment (Fig. S2B), and its
effect was fully reversed by 45 min of washout (Fig. S2C). As with fluid transport, the effects of
canagliflozin on albumin uptake were independent of glucose (Fig. 3C). Tofogliflozin also
inhibited albumin uptake in a dose-dependent manner (Fig. S1B).

Addition of canagliflozin to either the apical or basolateral surface produced a partial response,
suggesting that the drug acts intracellularly and gains entry from both plasma membrane
domains (Fig. S3A). The organic anion transporter inhibitors probenecid and cimetidine did not
blunt the effect of canagliflozin on albumin uptake, suggesting an alternative pathway for drug
entry into PT cells (Fig. S3B). Because canagliflozin binds to serum proteins including albumin,
we tested whether serum affected canagliflozin-inhibited uptake of dextran, a fluid-phase marker
that accompanies albumin into endocytic vesicles (39). Inclusion of 5% serum with canagliflozin
did not alter the inhibitory effect of 25 yM canagliflozin on the uptake of dextran, a fluid phase
marker that enters apical endocytic vesicles together with filtered ligands (Fig. S3C).

NHE3 inhibitors synergize with canagliflozin to impair albumin uptake.

The difference in dose dependence profiles of gliflozins on albumin uptake versus fluid transport
led us to ask whether inhibition of NHE3 activity contributes to reduced albumin uptake in
canagliflozin-treated cells. A role for NHE3 in PT megalin/cubilin-mediated endocytosis is well-
established in cultured cells and in vivo. Nhe3" and heterozygous mice exhibited higher
proteinuria than wild-type mice, and inhibition of NHE3 impairs endocytosis in OK cells (36, 38).
Consistent with previous studies, S3226 and EIPA inhibited albumin uptake when added
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individually to OK cells. However, uptake was further reduced when these were added together
with canagliflozin [Fig. 4A, (37, 40)].

Pharmacologic studies suggest that NHE3 regulates membrane traffic via effects on endosomal
pH, although its specific role in this process is unresolved (37, 41, 42). We used ratio imaging to
measure the effects of adding canagliflozin, S3226, or both drugs together, on endosomal pH in
OK cells. Canagliflozin had no effect on endosomal pH (pH 6.38 vs 6.33 in control cells, Fig.
4B), whereas S3226 reduced the pH of early endosomes to 6.12 and 6.06 in the absence or
presence of canagliflozin, respectively. This suggests that NHE3 activity attenuates acidification
in the PT apical endocytic pathway, as previously suggested (42).

Phosphorylation of the Ser-552 in mouse NHE3 does not affect NHE3 activity per se but is
increased under physiological and pathological conditions where NHE3 activity is reduced (35,
43-45). EIPA and S3226 reduced NHE3 phosphorylation at this site, suggesting a
compensatory response to the inhibitory action of these drugs (Fig. 4C). By contrast,
canagliflozin had no effect on NHE3 phosphorylation (Fig. 4C). Similar results were obtained
using tofogliflozin (Fig. S4).

Canagliflozin effects on fluid transport and albumin uptake are independent of the
AMPK/mTOR axis. Canagliflozin and empagliflozin have been previously noted to increase
phosphorylated AMPK levels in cells, consistent with the known role of glucose suppression in
activating AMPK (25)(26, 28). Western blotting confirmed that, similar to the AMPK activator
AICAR or the mTOR inhibitor rapamycin, exposure of OK cells to canagliflozin or empagliflozin
for 6 h robustly increased phosphorylated AMPK levels (Fig. 5A). However, whereas
canagliflozin concomitantly inhibited mTOR activity (measured as reduced phosphorylation of
mTOR and its downstream effector S6), empagliflozin did not (Fig. 5A). Although AMPK and
mTOR activities are usually coordinately regulated in opposing directions, AMPK activation can
be uncoupled from mTOR inhibition under some conditions (46).

Treatment with AICAR (1 mM) for 6 h had no effect on either fluid transport or albumin uptake,
whereas rapamycin (10 uM) inhibited both fluid transport and uptake by 20-25% (Fig. 5B and
5C). No further reductions were observed after 24 h of treatment (not shown). We conclude that
the rapid effect of canagliflozin on albumin uptake does not depend on AMPK activation or
mTOR inhibition. Consistent with this, canagliflozin-mediated reductions in phosphorylated S6
(pS6) occurred more slowly than its effect on albumin uptake, as changes in pS6 levels were
observed only when cells were treated with drug for >1 h (Fig. S5).

Canagliflozin inhibits mitochondrial complex I-supported respiration. The effects of
canagliflozin on AMPK activity are thought to reflect upstream changes in energy levels and O,
consumption mediated by inhibition of mitochondrial complex | (25, 47). Metformin, a known
inhibitor of mitochondrial complex |, inhibited fluid transport (Fig. 4B) and albumin uptake to
levels comparable to those in canagliflozin-treated cells [Fig. S6A, Fig. 4C; (48, 49)]. Rotenone
similarly inhibited albumin uptake (Fig. S6B). To evaluate the effect of SGLT2i on mitochondrial
respiratory capacity supported by complex | activity, we performed high resolution respirometry
using permeabilized OK cells treated with canagliflozin or empagliflozin. NADH-dependent
(complex I-supported) mitochondrial respiration was measured in the presence of pyruvate,
malate, and glutamate. Prior to addition of ADP to stimulate ATP synthesis and electron
transport chain activity, (referred to as state 4 or leak respiration), there were no differences in
mitochondrial respiration between groups (Fig. 6). Following addition of ADP to stimulate
oxidative phosphorylation and ATP synthesis, (referred to as state 3, or OXPHOS respiration),
there was a significant reduction in mitochondrial respiratory rates in canagliflozin- but not
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empagliflozin-treated cells compared with vehicle (Fig. 6). Maximum electron transport chain
activity supported by complex | activity measured in the uncoupled state following FCCP
treatment was similarly reduced in canagliflozin but not empagliflozin-treated cells (Fig. 6).
Together, our data suggest that rapid changes in mitochondrial activity contribute to
canagliflozin-mediated inhibition of albumin uptake and fluid transport.

Effect of a single dose of canagliflozin and empagliflozin on urine volume and albumin
excretion in mice. Treatment of nondiabetic mice and humans with gliflozins increase diuresis
over the short term, an effect thought to reflect inhibition of Na* reabsorption by SGLT2i to
which the kidney adjusts over time. We wondered whether the distinct effects of canagliflozin
and empagliflozin we observed in PT cells would translate to physiologically relevant changes in
Na* reabsorption and albumin excretion in mice treated acutely with drug. To this end, 12 male
mice acclimated to metabolic cages were maintained for 24 h without drug (baseline) and then
given empagliflozin (10 mg/kg) or canagliflozin (50 mg/kg) by oral gavage. Water consumption
was measured and urine was collected over each 24 h period for quantitation of albumin and
creatinine concentrations. A week after gavage, the mice were reacclimated to metabolic cages
and the treatment was repeated, but with mice receiving the other drug. Because there was
some variation in baseline albumin and creatinine levels measured during the first vs second
trials of the experiment, we normalized the data to average baseline levels in each trial and
combined the data for statistical analysis. As shown in Table 1, mice treated with either
empagliflozin or canagliflozin consumed ~40% more water over the 24 h treatment period.
However, mice treated with canagliflozin excreted roughly twice as much urine during this
period (~4-fold over baseline) compared with empagliflozin-treated mice (Table 1). In contrast to
the well documented effect of these drugs in reducing albuminuria over long treatment periods,
24 h albumin excretion increased substantially (114 and 72% increase over baseline) in mice
treated with canagliflozin or empagliflozin, respectively (Table I). Urine albumin/creatinine ratios
(uUACR) were unchanged under all treatment conditions, suggesting that albumin uptake
efficiency remains constant, and that total urinary albumin excretion is dependent on filtration
rate.

Discussion

Our studies demonstrate dramatic effects of specific gliflozins on essential functions of PT cells.
We observed selective, glucose-independent inhibition of Na*-dependent fluid transport and
endocytic uptake of albumin by canagliflozin and tofogliflozin, but not by empagliflozin. The
effects of canagliflozin reflected a direct inhibition of surface NHE3, as well as rapid reduction in
mitochondrial complex | activity. Urine volume in mice treated with a single dose of canagliflozin
was double that of empagliflozin-treated mice despite comparable water intake, confirming
acute physiologically relevant differences in fluid reabsorption. The results of our work have
significant implications for the design and interpretation of human and animal studies aimed at
deciphering the protective effects of gliflozins on both renal and extrarenal tissues.

Canagliflozin targets in PT cells. Our studies also show that while canagliflozin rapidly inhibits
surface NHE3 activity, it does not alter endosomal pH. We interpret this to mean that
canagliflozin readily enters the cytoplasm, but that membrane permeability requires a currently
unknown transporter(s) that is absent or inactive in endosomes. Alternatively, it is possible that
canagliflozin does not bind well to NHE3 at acidic pH. Future studies are clearly needed to
understand this differential effect of canagliflozin on surface versus intracellular NHE3 activity.

The effects of gliflozins on NHE3 activity have previously been suggested to occur via
interactions with MAP17, a protein that interacts with SGLT2, although direct evidence is lacking
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(21, 50, 51). By contrast, our data here suggest that the effects of canagliflozin on surface NHE3
activity are independent of SGLT2 expression.

Beyond direct inhibition of NHE3, our studies demonstrate that the effect of canagliflozin on
mitochondrial activity contributes to its effect on Na*-dependent fluid transport. The reductions
we observed in fluid transport and albumin uptake were recapitulated by metformin, a known
inhibitor of mitochondrial complex I, but not by AICAR or rapamycin. In longer term studies, loss
of mMTORC1 or prolonged inhibition of mTOR function has been associated with reduced
endocytic uptake in the PT and in OK cells (32,52, 53). We conclude that canagliflozin-
mediated changes in mitochondrial function and in consequent downstream effector activities
likely contribute to the well-known protective effects of some gliflozins on renal and extrarenal
tissues, and may explain the greater efficacy of canagliflozin over other SGLTZ2i in preserving
kidney and cardiac function noted in some meta-analyses of clinical studies (54, 55). Metformin,
which is commonly prescribed together with gliflozins, may be acting via similar mechanisms to
further improve glycemic control in T2DM patients (56, 57). Thus, whereas gliflozin-mediated
reductions in Na® reabsorption have been commonly suggested to protect PT cells from
damage by reducing the ATP-dependent tubular workload and mitochondrial oxygen
consumption, our data suggest that the opposite is also true, namely that reduced mitochondrial
function in canagliflozin-treated animals may slow Na*-dependent transport along the entire
nephron (58-60).

At first glance, the lack of synergy between canagliflozin and NHE3 inhibitors on fluid transport
seems counterintuitive, because fluid transport in the PT and in OK cells is only partially driven
by NHE3 under normal conditions. We hypothesized that reduced ATP generation in
canagliflozin-treated cells lowers the driving force for Na* flux. Under these conditions, other
Na*-dependent transporters can accommodate the demand when NHE3 activity is inhibited by
S3226. This would not necessarily be the case when mitochondrial function is high. Moreover,
the additional effect of canagliflozin on mitochondrial function provides a possible explanation
for why this drug, in contrast to NHE3 inhibitors EIPA and S3226, does not alter NHE3
phosphorylation.

Gliflozin access to PT cells. Given its mechanisms of action, both tubular and plasma
concentrations of canagliflozin contribute to its effect on PT cells. In order to impact
mitochondrial activity and the AMPK/mTOR axis, canagliflozin presumably has to enter cells,
and perhaps even concentrate there. We found that canagliflozin inhibited albumin uptake
equally well when added to the apical or basolateral medium. The reported peak plasma
concentration of canagliflozin in humans is 6-30 uM, although a considerable fraction of drug is
bound to serum proteins and thus reaches the tubular lumen slowly (29, 61-64). On the other
hand, gliflozins have been shown to accumulate in the kidney, and high concentrations may
persist there even after drug clearance from the plasma. Kidney drug concentrations were 10-
fold higher than the 1 uM peak plasma concentration (measured in mice given a very low dose
of canagliflozin (3 mg/kg) (65)]. Even higher kidney:plasma ratios of other gliflozins have been
reported in rats (66). The organic anion transporter OAT3 has previously been demonstrated to
enhance the glucosuric effect of empagliflozin (67). However, inhibitors of organic anion
transport did not affect canagliflozin-mediated inhibition of albumin uptake in our hands. The
mechanism of canagliflozin entry into PT cells remains to be addressed.

Relevance to in vivo studies. We observed a large difference in 24 h urine excretion, despite

comparable water intake, between male mice given a single oral dose of canagliflozin vs
empagliflozin. Differences in drug availability or stability that affect SGLT2 activity directly are
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unlikely to account for the discrepant effects at the high doses we used. Because we observed
no effect of empagliflozin on fluid transport, we presume that the diuretic effect of this drug is
due to downstream effects of high tubular glucose as previously suggested (68).

Reduced Na® reabsorption consequent to inhibition of both NHE3 activity and mitochondrial
function presumably accounts for the two-fold greater urine output in canagliflozin-vs
empagliflozin-treated mice in our study. Because these effects are independent of SGLT2
activity, Na* transport is presumably inhibited along the entire PT axis. Inhibition of SGLT1
might also contribute to the increased diuresis in canagliflozin-treated mice, as canagliflozin is
the least selective inhibitor of SGLT2 (SGLT2:SGLT1 =160). Modeling studies estimate that a
significant fraction of renal SGLT1 is inhibited in humans taking standard doses of canagliflozin
(64, 69). Whether SGLT1 inhibition occurs under our dosing conditions is difficult to assess, and
highlights the complications in interpreting studies in rodent models and humans, as well as the
need for complementary studies to evaluate direct effects of these drugs in PT cells.

A slower decline in glomerular health, rather than effects of gliflozins on PT endocytic uptake is
likely to be the primary reason for the slower progression of albuminuria documented in the
patients with T2DM or CKD (6, 70) (5, 71). At first glance it is perhaps surprising that 24 h
albumin excretion was elevated in mice given a single dose of either canagliflozin or
empagliflozin, but similar results have been reported previously in rats dosed acutely with
phlorizin (72). Total albumin excretion tracked closely with urine output, as the uUACR remained
constant. This supports the idea that the PT maintains consistent fractional retrieval of filtered
albumin regardless of urinary output endocytic uptake efficiency along the PT axis. Thus, flow-
dependent modulation of endocytic capacity, which we previously documented in OK cells,
appears to operate in vivo, in parallel with the glomerulotubular balance mechanisms that
preserve reabsorption efficiency of Na* and water (32, 73)(74).

Limitations of our study. Our study also leaves several questions unanswered. The mechanism
by which canagliflozin enters cells, and how it perturbs mitochondrial complex | function remain
unknown. Additionally, our studies examined only short treatment regimens and thus may not
reflect longer term physiological adaptations to SGLT2i.

Our data provide foundational knowledge of how gliflozins acutely and directly affect PT
function, but they are not necessarily relevant in determining best options for long term
treatment. It is possible that the SGLT2-independent effects of canagliflozin we observed
contribute to renal and extrarenal protection in diabetic and nondiabetic patients. Whether these
potentially beneficial effects of canagliflozin outweigh other specific risks of this drug in humans
remains to be determined (75). Our data also emphasize the need to consider species-specific
differences in the mechanisms and efficiency of drug entry or accumulation into cells when
translating studies in rodent and cell models to clinical benefit in humans. Given the enormous
interest in these drugs, future studies using a variety of model systems, including OK cells, are
certain to shed new light on the myriad mechanisms by which gliflozins impact cell function.

Methods

Cell culture.

Opossum kidney cells (OK-P subclone) were cultured on 10-cm dishes in DMEM/F12 (Sigma;
RNBL4456) with 5% FBS and 5mM Glutamax (Gibco, 35050061) at 37°C in 5% C0,-95% air.
For experiments, cells were dissociated from plates using Accutase (BD Biosciences, 561527)
and seeded at 4x10° on 12-mm Transwell® inserts in 12-well dishes (Corning, 3401) with 0.5 mL
and 1.5 mL of medium in the apical and basolateral chambers, respectively. After overnight
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incubation, filters were transferred to an orbital platform shaker in the incubator and rotated at
146 rpm for 72 h with daily medium changes as previously described (32).

Quantitation of fluid transport.

Duplicate filters of OK-P cells cultured as described above were quickly rinsed with serum free-
DMEM/F12 medium (17 mM glucose, supplemented with 25 mM HEPES, and 5 mM Glutamax)
and incubated with vehicle, SGLT2i [canagliflozin hemihydrate (Adooq Bioscience, A16817),
empaglifiozin (Cayman Chemical, 17375), tofogliflozin (Cayman Chemical, 23509)] and/or
NHE3i [EIPA (Tocris Bioscience, 3378), S3226 (Millipore Sigma, SML1996)] added in 300 pL
apical and 1 mL basolateral serum-free medium. After 6 h, the residual apical volume was
carefully collected and measured. For experiments to measure the effect of 0- or 5-mM glucose
on fluid transport or albumin uptake, incubations were performed in glucose-free Dulbecco’s
Modified Eagle’s Medium (Sigma-Aldrich, D5030), supplemented with 0.2 g/L sodium
bicarbonate, 25 mM HEPES, 5 mM Glutamax) or in equal volumes of this DMEM mixed with
Ham’s F-12 media (10 mM glucose, supplemented with 25 mM HEPES, 5 mM Glutamax, and
0.2 g/L sodium bicarbonate; Thermo Fisher, 21700). Ham's F-12 Nutrient Mix powder (Gibco,
21700075) was used to prepare Ham'’s F-12 media.

PH; recovery rate measurement.

Intracellular pH measurement in OK cells.

OK cells were seeded at 2.4x10° cells/well in a 24-well dish (Corning, 3526). After overnight
incubation, the plate was transferred to an orbital platform shaker in the incubator and rotated at
146 rpm for 48 h with daily medium changes. Cells were then incubated overnight with S3226
(50 uM), canagliflozin (25 uM), or empagliflozin (25 uM). The following day, cells were loaded
with 2 yM BCECF-AM (Invitrogen, B1170) in DMEM/F12 (Sigma; RNBL4456) with 5% FBS and
5 mM Glutamax and incubated in the dark at 37°C in 5% CO,-95% air for 30 min. Prior to
baseline measurements, cells were washed three times for 5 min with bicarbonate buffer pH-
7.40 (25 mM NaHCO3;, 115 mM NaCl, 5 mM KCL, 10 mM glucose, 1 mM MgSO,4, 1 mM KHPO,,
2 mM CaCl,). Cells were then loaded with NH4Cl in HEPES buffer pH-7.4 (30 mM HEPES pH-
7.4, 115 mM NaCl, 30 mM NH,CI, 5 mM KCI, 10 mM glucose, 1 mM MgSQO,4, 1 mM KHPO,, 2
mM CacCl,) and incubated for 5 min at ambient temperature. An acid load recovery was then
induced by replacing the NH,CI buffer for the control and treated cells with the HEPES buffer
pH-7.4 (30 mM HEPES pH-7.4, 145 mM NaCl, 5 mM KCI, 10 mM glucose, 1 mM MgSO,4, 1 mM
KHPO,, 2 mM CaCl,). For the Na*-free condition, NH,CI buffer was replaced with Na*-free
HEPES buffer (30 mM HEPES pH-7.4, 145 mM NMDG", 5 mM KCI, 10 mM glucose, 1 mM
MgSO,4, 1 mM KHPO,4, 1.8 mM CacCl,). Another set of control cells were maintained in NH,CI
buffer. Cells were imaged every 15 seconds for 5 min throughout the protocol. A calibration
curve for each well was obtained by imaging the cells in nigericin buffer [25 mM HEPES, 105
mM KCI, 1 mM MgCl, 100 uM nigericin (Invitrogen, N1495)] at the various pHs: 7.5, 7.0, and 6.5
(pH was adjusted with 10 mM KOH). The standard curve was then used to convert fluorescent
signals measured during the experiment to intracellular pH (pH;). Individual recovery curves
were fitted using a single exponential function (pH = A-e* + C). Initial rates were calculated
using the value of the derivative (dpH/df) at =0 (i.e., -k-A). Recovery curves were plotted after
data for each curve were normalized to the first measurement collected following NH,CI
removal.

Intracellular pH measurement in AP1 cells. NHE1-null Chinese hamster ovary cells (AP-1 cells;
4x10%/well; gift of John Orlowski, McGill University) were plated in the first two rows of a 24-well
plate one day prior to transfection. Cells were co-transfected with cDNAs encoding rabbit NHE3
(gift of Mark Donowitz, Johns Hopkins School of Medicine) and BFP (blue fluorescent protein)
using Lipofectamine LTX and PLUS reagent (Invitrogen, 15338100) following manufacturer’s
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instructions using 500 ng DNA per well. Cells were loaded with 10 yM SNARF in serum free
media and incubated in the dark at 37°C for 30 min. SNARF (Molecular Probes, C1272) was
used to measure intracellular pH and BFP was used to identify cells expressing NHE3. Cells
were imaged using a BioTek Cytation5 and SNARF (531x/586m), TexasRed (586x/647m), and
DAPI (377x/447m) cubes. Baseline measurements were made in a HEPES buffer (30 mM
HEPES pH-7.4, 11 5 mM NacCl, 5 mM KCI, 10 mM glucose, 1 mM MgSQO,, 1 mM KHPO,, 2 mM
CacCl,) after 3x wash at 37°C for 5 min. Cells were then loaded with NH,CI in HEPES buffer (30
mM HEPES pH-7.4, 30 mM NH4CI, 115 mM NaCl, 5 mM KCI, 10mM glucose, 1 mM MgSOQO,, 1
mM KHPO,4, 2 mM CaCl,). An acid load recovery was then induced by replacing the NH,CI
buffer with the HEPES buffer with or without EIPA (10 pM), canagliflozin (25 uM), or
empagliflozin (50 uM). Cells were imaged approximately every 2.5 min throughout the protocol.
For each condition, triplicate wells were plated for each condition and averaged for each
biological replicate. A calibration curve was obtained by imaging the cells in nigericin containing
buffers at the various pH’s: 7.5, 7.0, and 6.5. The standard curve was then used to convert
fluorescent signals measured during experiment to pH;. Individual recovery curves were fitted
and plotted as described above.

Albumin uptake.

Cells were pre-treated with drug as above and then incubated with 40 ug/mL Alexa Fluor 647-
albumin (Invitrogen, A34785) for 15 min at 37°C on an orbital shaker in the continued presence
of drug. Filters were washed with cold phosphate-buffered saline containing MgCl, and CaCl,
(PBS; Sigma, D8662), cut out of their inserts with a clean razorblade, and shaken at 4°C for 30
min in Eppendorf tubes containing 250 yL detergent solution (50 mM Tris pH 8.0, 62.5 mM
EDTA, 1% IGEPAL, 4 mg/mL deoxycholate) to solubilize the cells. Cell-associated fluorescence
was quantified by spectrofluorimetry using the GloMax Multi-Detection System (Promega) as
described previously (32).

For fluorescence imaging, filter-grown cells treated with drug and Alexa Fluor 647-albumin as
above were washed twice in warm PBS and fixed in warm 4% paraformaldehyde in 100 mM
sodium cacodylate, pH 7.4, 3 mm CacCl,, 3 mm MgCl, and 3 mm KCI for 15 min at ambient
temperature. After two washes in PBS, the filters were quenched in PBS/20mM Glycine/75mM
ammonium chloride for 5 min, cut, and mounted onto glass slides with ProLong Glass Antifade
Mountant. Cells were imaged on a Leica Stellaris-8 inverted confocal microscope using a 63X
oil immersion objective. Images were collected using the same settings and processed
identically using Photoshop to enhance their brightness for easier visualization.

Quantitation of endosomal pH.

Endosomal pH in cells treated with vehicle, S3226, canagliflozin, or both drugs was quantified
by ratiometric imaging as described previously (76). Briefly, cells were preincubated for 2 h with
or without drugs, followed by 3 min incubation with a mixture of AlexaFluor 647 (Invitrogen,
D22914) - and FITC- dextran (Invitrogen, D1820), washed, and rapidly imaged on a Leica SP8
confocal microscope using a 40x water objective (1.1 N.A.). Masks of endosomal compartments
were generated from deconvolved images and overlaid onto the raw images to specifically
quantify fluorescence in endosomal compartments. A calibration curve of FITC to 647 intensity
ratios over a range of known pH values was generated using the intracellular pH calibration
buffer kit (Invitrogen, P35379) according to manufacturer’s instructions.

SDS-PAGE and immunoblotting.

OK cells cultured as described above were treated as indicated in figure legends. Cells were
rinsed and solubilized in 250 yL detergent solution with protease and phosphatase inhibitors
(0.5 pg/mL leupeptin, 0.7 ug/mL pepstatin A, 40 uM PMSF, 50 mM NaF, 15 mM sodium
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pyrophosphate, and complete protease Inhibitor EDTA-Free [Roche, 04693159001; 1 tablet/10
ml of buffer]). Protein concentration was measured by Lowry assay. Equal amounts of total
protein (12-15 ug/sample) were separated on 4-15% SDS-polyacrylamide gels, transferred to
polyvinylidene fluoride membranes, blocked with 10% milk in Tris-buffered saline with 0.05%
Tween-20 (TBST) and then incubated at 4°C overnight with the following primary antibodies:
NHE3 (1:10, 3H3 hybridoma, graciously provided by Orson Moe, UTSW), anti-phospho-Ser552
NHE3 (1:3000, Sigma Aldrich; MABN2415), phospho-S6 (1:1000, Cell Signaling Technology;
2211), B-tubulin (1:500, Cell Signaling Technology; 86298), phospho-AMPK (1:1000, Cell
Signaling Technology, 2535), AMPKa (1:1000 , Cell Signaling Technology, 2532), mTOR
(1:1000, Cell Signaling Technology, 2983), and phospho-mTOR (Ser2448) (1:1000, Cell
Signaling Technology, 5536). The membranes were washed 3 times with TBST prior to
incubation for 1 h with horseradish peroxidase-conjugated goat anti-mouse IgG (1:10,000,
Jackson ImmunoResearch, 115-035-166) or peroxidase-conjugated goat anti-Rabbit 1gG
(1:10,000, Jackson ImmunoResearch, 111-035-144) and detected with chemiluminescence. All
blots were imaged using the Bio-Rad ChemiDoc Touch Imaging System, and bands were
quantitated using the Bio-Rad Image Lab software.

Mitochondrial respirometry.

Cells were seeded at 1.6x10° on 24-mm Transwell® inserts in 6-well dishes (Corning, 3412) with
1.5 mL and 2.0 mL of medium in the apical and basolateral chambers, respectively. After
overnight incubation, filters were transferred to an orbital platform shaker in the incubator and
rotated at 146 rpm for 72 h with daily medium changes as previously described (32). Following
72 h incubation, cells were pre-treated with or without canagliflozin (25 uM) or empagliflozin (25
pMM) for 30 min at 37°C on an orbital shaker. Cells were then disassociated from filter supports
using Accutase and total cell count and viability were assessed with Trypan blue (Sigma T-
0776). Next, cells were resuspended in mitochondrial respiration medium (MiR05) (Oroboros) in
the presence or absence of drug.

Mitochondrial respiration was assessed in digitonin-permeabilized OK cells using an Oroboros
O2K High-Resolution Respirometer. Respirometry was performed in MiR05 at 37°C under
constant mixing in a sealed, 2-ml chamber containing 1x10° OK cells/ml. The respirometry
protocol consisted of sequential additions of substrates, uncouplers, and inhibitors using
corresponding Hamilton syringes for manual titrations as follows: digitonin (16.2 pM); complex 1
substrates pyruvate (5 mM), malate (2 mM), and glutamate (10 mM); adenosine diphosphate
(ADP, 0.5 mM); cytochrome C (10 uM); carbonyl cyanide 4-(trifluoromethoxy); phenylhydrazone
(FCCP,; titrations of 0.5 yM until maximal respiration reached); rotenone (0.5 yM); and antimycin
A (2.5 uM) (77). Protein concentration of the permeabilized cells was determined by BCA
protein assay (Fisher Scientific, 23227), and oxygen flux was expressed per mg protein. Assays
were done in the continued presence or absence of drug.

Effects of canagliflozin and empagliflozin on urine output and albumin excretion in mice.
All experimental procedures conform to the NIH Guide for the Care and Use of Laboratory
Animals and were approved by the Institutional Animal Care and Use Committee of the
University of Pittsburgh (IACUC approval no. 21079537). Ten-week-old male C57BL/6 mice
(n=12) acclimated to metabolic cages for 24 h without drug (baseline) and then given
empagliflozin (10 mg/kg) or canagliflozin (50 mg/kg) by oral gavage. Water consumption was
measured daily, and urine was collected over the 24 h period prior to and after drug treatment.
Albumin levels in diluted urine samples (1:500) were measured by ELISA according to the
protocol provided by the discontinued mouse albumin ELISA kit from Bethyl Laboratories
(Worthington, TX) and using the same primary and secondary antibodies [affinity-purified goat
anti-mouse albumin antibody (Fisher Scientific, NC9197876) and HRP-conjugated detection
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antibody (Fisher Scientific, NC9617149)]. Creatinine levels were quantitated using the
Creatinine Enzymatic Reagent Set (Pointe Scientific C7548-480, creatinine standard: C7513-
STD). Albumin/creatinine ratios were calculated as albumin (mg)/creatinine (mg) for each
sample.

Statistics.
Experimental data were analyzed using one-way ANOVA in GraphPad Prism with additional
tests as noted. P- value < 0.05 was considered statistically significant.
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570 Table l. Single dose effects of canagliflozin and empagliflozin on urine output and
571  albumin excretion in mice.

572
573
Baseline Empagliflozin- Baseline Canagliflozin- P value
(normalized) treated (norm (normalized) treated (horm canavs
to baseline) to baseline) empa
Water intake/24h 100+/-35.9  138.5+/-63.8 100+/-27.8  144+/-44.3 NS
(0.996)
Urine output/24h 100+/-54.7  194+/-88.8 **** 100+/-63.6  409+/-201 ****  *(0.03)
Albumin/24h 100+/-31.0  172+/-67.8 *** 100+/-60.8  214+/-96.1 *** NS
(0.699)
Creatinine/24h 100+/-39.0  180+/-78.6 *** 100+/-60.6  229+/-116 *** NS
(0.710)
Albumin/Creatinine  100+/-25.6  92.9+/-21.5 100+/-32.3  96.6+/-25.4 NS
(0.995)
574
575

576  ***p<0.001, ****p<0.0001 vs baseline by two-way ANOVA with Tukey’s multiple comparisons
577  test. All baseline comparisons NS except urine output p 0.03. n=12 mice per condition, two trials
578  per mouse.

579

580

581

582
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Figure Legends

Figure 1. Canagliflozin inhibits fluid transport across PT cell monolayers in a glucose-
independent manner. (A) Filter-grown OK cells were pretreated with vehicle (Ctrl) with the
indicated concentrations of canagliflozin (cana) or empagliflozin (empa), or with S3226 (30 uM)
plus or minus canagliflozin (25 pM) for 6 h. The volume of apical fluid remaining above the cells
was measured and normalized to that of untreated controls in each experiment. Average fluid
transport in control cells was 10.3+/- 1.57 yL/h. (B) Cells were incubated for 6 h with or without
canagliflozin (25 puM) in medium containing the indicated concentration of glucose. Fluid
transport was quantified as in panel A and normalized to control conditions (17 mM glucose).
Each point in panels A and B represents data from an individual experiment where the average
of replicate values was normalized to the control uptake. Statistical significance was determined
by ordinary one-way ANOVA with Dunnett’'s multiple comparisons test in panel A and with
Sidak's multiple comparisons test in panel B. Asterisks above each column denote significance
relative to control (* p<0.05, **<0.01, ***<0.001, ***<0.0001).

Figure 2. Canagliflozin inhibits endogenous and heterologously expressed NHE3. (A) OK
cells cultured on 24-well plates were incubated overnight with S3226 (50 uM), canagliflozin
(cana, 25 uM), or empagliflozin (empa, 25 uM), and drugs were included in subsequent steps.
The following day, cells were loaded with 2 yM BCECF for 30 min, and subjected to acid load as
described in Methods. The acid load buffer was aspirated and intracellular pH (pHi) recovery
was monitored under control or Na'-free conditions. (B) Individual recovery curves were
calculated as mentioned in the methods. Each point in panel B represents data from an
individually calibrated well (n=8). Statistical significance was determined by ordinary one-way
ANOVA with Dunnett's multiple comparisons test. (C) AP-1 cells transfected with rabbit NHE3
cDNA as described in Methods were loaded with 10 yM SNARF for 30 min. After baseline
measurements and incubation with NH4Cl, acid load recovery was induced by replacing the
NH,4CI buffer with the HEPES buffer with or without drug [EIPA (10 uM), canagliflozin (25 uM),
or empagliflozin (50 pM)]. (D) Individual recovery curves were calculated as described in
Methods. All technical replicates from three independent experiments are shown. Statistical
significance was determined by ordinary one-way ANOVA with Dunnett's multiple comparisons
test.

Figure 3. Glucose-independent inhibition of albumin uptake in PT cells by canagliflozin.
(A) Filter-grown OK cells were pretreated for 2 h with vehicle or with canagliflozin (cana, 25 uM),
or empagliflozin (empa, 25 uM), then incubated with apically added AlexaFluor-647 albumin (40
pg/mL) for 15 min before fixing and imaging. Representative fields are shown. Scale bar: 25 um.
(B) OK cells were pretreated for 6 h with vehicle (Ctrl) or with the indicated concentrations of
canagliflozin or empagliflozin, and then incubated for 15 min with AlexaFluor-647 albumin prior
to quantifying cell-associated albumin by spectrofluorimetry. (C) Cells were preincubated for 6 h
with or without canagliflozin (25 pM) in medium containing the indicated concentration of
glucose and albumin uptake measured as in panel B. Each point in panels B and C represents
data from an individual experiment where the average of replicate values was normalized to the
control uptake. Statistical significance was determined by ordinary one-way ANOVA with
Dunnett’'s multiple comparisons test in B and with Sidak's multiple comparisons test in C
Asterisks above each column denote significance relative to control (****p<0.0001).

Figure 4. Inhibition of albumin uptake by canagliflozin is independent of NHE3. (A)
Duplicate filters of OK cells were incubated for 6 h with NHE3 inhibitors EIPA (25 uM) or S3226
(30 uM) in the presence or absence of canagliflozin (cana, 25 uM) before quantitation of
albumin uptake. Statistical significance was determined by ordinary one-way ANOVA with
Tukey’s multiple comparisons test multiple comparisons. Asterisks above each bar represent
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significance relative to control and horizontal bars denote statistically significant differences
between other conditions (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001). (B) Duplicate filters of
OK cells were treated for 2 h with vehicle (control), canagliflozin (25 pM), S3226 (30 uM), or
both drugs, and the pH of early endosomes was quantified by ratio imaging as described in
Methods. Each point represents a single endosome and the mean +/- SEM (in gray) for each
condition is plotted (***p<0.001, ****p<0.0001 by two-way ANOVA with Tukey’s multiple
comparisons test.) (C) Duplicate filters of OK cells were incubated with EIPA (25 pM), S3226
(30 uM), or canagliflozin (25 pM) for 6 h, then solubilized. Equal protein loads were western
blotted with antibodies against NHE3 and phospho-S580 NHE3 (pNHE3). A representative gel
is shown. Migration of molecular mass standards (in kDa) is indicated on the right. (D) The ratio
of pNHE3/NHE3 (control ratios normalized to 100% in each experiment) from 3-4 independent
experiments for each condition is plotted. *p<0.05 by one-way ANOVA vs control.

Figure 5. Canagliflozin inhibition of albumin uptake is independent of the AMPK/mTOR
axis. (A) Duplicate filters of OK cells were treated with vehicle (Ctrl), S3226 (30 pM),
canagliflozin (cana, 25 yM), empagliflozin (empa, 25 yM), rapamycin (rapa, 10 yM), or AICAR
(1 mM) for 6h, and then solubilized. Equal protein loads were blotted to detect AMPK and
phospho-AMPK (p-AMPK) mTOR, phospho-mTOR (pmTOR), and phospho-S6 (pS6). Migration
of molecular mass standards (in kDa) is indicated on the right. Similar results were obtained in
three independent experiments. Duplicate filters of OK cells were treated with vehicle (Ctrl),
canagliflozin (25 uM), AICAR (1 mM), rapamycin (10 uM), or metformin (met, 1 mM) for 6 h and
(B) fluid transport or (C) albumin uptake was quantified. Each point represents data from an
individual experiment where the average of replicate values was normalized to the control
uptake. Statistical significance was determined by ordinary one-way ANOVA with Dunnett’s
multiple comparisons test. Asterisks above each column denote significance relative to control
(** p< 0.01, ***p<0.001, ****p<0.0001).

Figure 6. Canagliflozin selectively inhibits mitochondrial complex | activity. Filter-grown
OK cells were pre-treated with or without canagliflozin (25 uM) or empagliflozin (25 pM) for 30
min. Mitochondrial respiration was measured in the continued presence of drug as described in
Methods. State 4 represents routine respiration in the presence of complex | substrates, State 3
represents complex | ADP-stimulated activity (OXPHOS), and Max ETC represents the
maximum electron transport chain activity supported by complex | activity measured in the
presence of the uncoupler FCCP. Data from five independent experiments are plotted.
Significance was assessed by two-way ANOVA with Dunnett's multiple comparisons test
(****p<0.0001).
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Table I. Single dose effects of canagliflozin and empagliflozin in mice.

Baseline Empagliflozin- Baseline Canagliflozin- P value
(normalized) treated (normto (normalized) treated (norm to canavs
baseline) baseline) empa

Water intake/24h 100+/-35.9 138.5+/-63.8 100+/-27.8 144+/-44.3 NS (0.996)

Urine output/24h 100+/-54.7  194+/-88.8 **¥**  100+/-63.6  409+/-201 **** *(0.03)
Albumin/24h 100+/-31.0 172+/-67.8 *** 100+/-60.8  214+/-96.1 *** NS (0.699)
Creatinine/24h 100+/-39.0  180+/-78.6 *** 100+/-60.6 229+/-116 *** NS (0.710)
Albumin/Creatinine 100+/-25.6  92.9+/-21.5 100+/-32/3 96.6+/-25.4 NS (0.995)

***¥P<0.001, ****p<0.0001 vs baseline by two-way ANOVA with Tukey’s multiple comparisons test. All
baseline comparisons NS except urine output p 0.03. n=12 mice per condition, two trials per mouse.
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Canagliflozin but not empagliflozin inhibits Na*-dependent fluid
transport and endocytosis in proximal tubule cells
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