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Bats carry many zoonotic pathogens without showing pronounced pathology,
with a few exceptions. The underlying immune tolerance mechanisms in bats
remain poorly understood, although information-rich omics tools hold promise
for identifying a wide range of immune markers and their relationship with
infection. To evaluate the generality of immune responses to infection, we
assessed the differences and similarities in serum proteomes of wild vampire
bats (Desmodus rotundus) across infection status with five taxonomically distinct
pathogens: bacteria (Bartonella spp., hemoplasmas), protozoa (Trypanosoma
cruzi), and DNA (herpesviruses) and RNA (alphacoronaviruses) viruses. From 19
bats sampled in 2019 in Belize, we evaluated the up- and downregulated
immune responses of infected versus uninfected individuals for each
pathogen. Using a high-quality genome annotation for vampire bats, we
identified 586 serum proteins but found no evidence for differential abundance
nor differences in composition between infected and uninfected bats. However,
using receiver operating characteristic curves, we identified four to 48 candidate
biomarkers of infection depending on the pathogen, including seven overlapping
biomarkers (DSG2, PCBP1, MGAM, APOA4, DPEP1, GOTI1, and IGFALS).
Enrichment analysis of these proteins revealed that our viral pathogens, but
not the bacteria or protozoa studied, were associated with upregulation of
extracellular and cytoplasmatic secretory vesicles (indicative of viral replication)
and downregulation of complement activation and coagulation cascades.
Additionally, herpesvirus infection elicited a downregulation of leukocyte-
mediated immunity and defense response but an upregulation of an
inflammatory and humoral immune response. In contrast to our two viral
infections, we found downregulation of lipid and cholesterol homeostasis and
metabolism with Bartonella spp. infection, of platelet-dense and secretory
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granules with hemoplasma infection, and of blood coagulation pathways with T.
cruzi infection. Despite the small sample size, our results suggest that vampire
bats have a similar suite of immune mechanisms for viruses distinct from
responses to the other pathogen taxa, and we identify potential biomarkers
that can expand our understanding of pathogenesis of these infections in bats. By
applying a proteomic approach to a multi-pathogen system in wild animals, our
study provides a distinct framework that could be expanded across bat species to
increase our understanding of how bats tolerate pathogens.
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Introduction

Bats are widely known to be reservoir hosts of various zoonotic
pathogens, including viral [e.g., Nipah (1), Hendra (2), and
Marburg (3)] and non-viral infections [e.g., Bartonella spp (4),
Trypanosoma spp (5) and hemoplasmas (6)]. Interestingly, despite
the presence of these pathogens, bats generally do not suffer from
clinical disease, with a few documented exceptions [e.g., rabies virus
(7)]. Although the immune mechanisms by which bats tolerate a
wide range of infections remain unsolved, in part because
immunological studies have been limited to a few bat species (8),
an increasing body of evidence suggests that bat tolerance of
infection is likely due to distinct aspects of immunity that evolved
alongside their unique ability to fly among mammals and their
exceptionally long lifespans (9-11). Here and throughout, our
discussion of tolerance refers to that of infection [i.e (12)] rather
than to immunological tolerance [i.e., mechanisms that limit
response against self-antigens (13)].

Flight is highly metabolic demanding and generates harmful
free-radical byproducts that damage biologically relevant molecules
such as DNA (14). To reduce self-DNA-mediated
immunopathology, bats have evolved DNA repair mechanisms
(9) and dampened endogenous DNA-sensing pathways (15, 16).
In addition, genome-wide comparisons across bat species have
revealed unique gene losses in bats that downregulate
inflammasome pathways in three main areas: the natural killer
(NK) gene complex, epithelial defense receptors, and the interferon
(IFN)-y-induced pathway (9, 15, 17, 18). These findings suggest
that bats developed mechanisms that suppress virus-induced
inflammatory responses relative to human immunopathology
(19-21). Moreover, the dampened inflammasome response of
bats has shown to have minimal effects on viral replication (22),
revealing adaptations to control viral infections. For instance, some
bats maintain constitutive type I IFN responses, limiting virus
propagation and responding rapidly to infections (23, 24).

Because bat tolerance to pathogens may result from adaptations
to cope with flight-induced cellular stress, it has been hypothesized
that bats can elicit defenses against intracellular pathogens more
effectively than extracellular pathogens (25). However, most
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research on the bat immune response to intracellular pathogens
has focused on RNA viruses, whereas DNA viruses remain poorly
understood. Although sensing mechanisms for DNA viruses may be
dampened in bats [PYHIN family (15) and STING (16)], bats must
evolve new ways of detecting exogenous and endogenous DNA, as
DNA viruses have been detected and isolated in many bat species
(26, 27). Additionally, bat immune responses against other
intracellular pathogens (e.g., many bacteria) and extracellular
pathogens (e.g., many protozoa) are even less studied. Because
these non-viral infections are common and highly prevalent in wild
bats (28, 29), distinct mechanisms may potentially exist to cope with
these infections.

Here, we aimed to assess differences and similarities in the
immunology of wild bats infected and uninfected with five distinct
types of pathogen taxa: RNA (coronavirus) and DNA (herpesvirus)
viruses, bacteria (Bartonella spp. and hemotropic mycoplasmas),
and protozoa (Trypanosoma cruzi). In addition to spanning
multiple pathogen taxa (and thus potentially eliciting different
immune responses), these pathogens are sufficiently common in
bats to test for immunological differences (5, 30-34). To
comprehensively characterize bat immune phenotypes, we used
serum proteomics, which provides a unique perspective into the
immune system of bats given the small sample volumes required
and the profiling of proteins informative of cellular responses in
blood as well as proximal organs and tissues (35, 36). Proteomic
tools are also a promising method to study bat immunology more
broadly, expanding from the few bat colonies, cell lines, and species-
specific reagents currently available to conduct such research (8).
However, proteomics has only been applied to a few bat systems
(33, 36-38). We expanded a previous proteomic study of common
vampire bats (Desmodus rotundus), an epidemiologically relevant
species due to their tendency to feed on blood of livestock, wildlife,
and occasionally humans (33, 39, 40). Vampire bats are infected by
a wide variety of pathogens and, importantly, have a high-quality
genome annotation available for protein identification (41, 42). We
evaluated up- and down-regulated immune responses of infected
and uninfected individuals within each pathogen and compared
responses across pathogen taxa. Although we expected to find some
general protein markers of infection, we predicted that bats would
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elicit differential immune responses according to the type of
pathogen (ie., DNA and RNA viruses, bacteria, or protozoa).

Methods
Vampire bat sampling

As described previously (33), and as part of long-term studies of
vampire bat diet, immunity, and infection (43, 44), we captured 19
vampire bats in 2019 in the Lamanai Archeological Reserve in
northern Belize using mist nests and a harp trap placed at a tree
roost entrance. After recording morphometric data and sex, age,
and reproductive status, we lanced the propatagial vein with a sterile
23G needle and collected blood into a serum separator tube (BD
Microtainer) with a heparinized capillarity tube. We centrifuged the
sample to separate serum from blood cells and inactivated the
serum heating at 56°C for one hour before storing at -80°C until
further analyses. We also collected whole blood on Whatman FTA
cards as well as oral and rectal swabs in DNA/RNA Shield (Zymo),
stored at -20°C and -80°C, respectively. We followed guidelines for
the safe and humane handling of bats from the American Society of
Mammalogists (Sikes & Gannon 2011), and our methods were
approved by the Institutional Animal Care and Use Committee of
the American Museum of Natural History (AMNHIACUC-
20190129). Sample collection was authorized by the Belize Forest
Department (permit FD/WL/1/19(09). Serum samples for
proteomic analysis were approved by the National Institute of
Standards and Technology Animal Care and Use Coordinator
under approval MML-AR19-0018.

Pathogen detection

We previously used RT-PCR to screen oral and rectal swabs
from these bats for coronaviruses (targeting the RNA-dependent
RNA polymerase [RdRp] gene), finding relatively moderate
prevalence (4/19) of viruses in the genus Alphacoronavirus (33).
Here, we used additional molecular tests to screen paired blood
samples for Trypanosoma cruzi, hemotropic mycoplasmas
(hereafter hemoplasmas), and Bartonella spp., as well as the same
oral swabs for herpesviruses. These pathogens have been
characterized in vampire bats specifically, for which they can
obtain moderate-to-high prevalence (30, 45, 46). Following
manufacturer protocols, we extracted DNA from blood on FTA
cards using QIAamp DNA Investigator Kits (Qiagen) and total
nucleic acids from oral swabs using a Quick-DNA/RNA Viral Kit
(Zymo). Using previously published protocols, we used PCR to
screen for T. cruzi (targeting two regions, the Satellite DNA
(SatDNA) (47) and the minicircle kinetoplast DNA Miniexon
gene [(kDNA; 48)], hemoplasmas [(targeting the 16S rRNA gene;
30)], Bartonella spp. [(nested PCR targeting the gltA gene; (45, 49)]
and herpesviruses [nested PCR targeting the DNA polymerase gene
(50)]. We used nuclease-free water as a negative control; for
protozoan and hemoplasma PCRs, we included T. cruzi and
Candidatus Mycoplasma haemozalophi as positive controls. PCR
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products were visualized by electrophoresis (1.5-3% agarose gel
containing SYBR Safe (ThermoFisher Scientific) or GelRed
(Biotum) nucleic acid gel stain. The T. cruzi primers used are
highly specific and do not require sequencing confirmation,
whereas all hemoplasma PCR-positive amplicons were submitted
to Psomagen for sequence confirmation. To reduce risks of cross-
contamination from nested PCRs, we did not include positive
controls for Bartonella spp. and herpesviruses; instead, amplicons
of expected size (approximately 300 bp and 200 bp, respectively)
were submitted to the NCSU Genomic Sciences Laboratory for
sequence confirmation.

Protein digestion and proteomic profiling

We processed bat serum samples using the S-Trap method for
digestion with the S-Trap micro column (ProtiFi, < 100 pig binding
capacity), as described in full detail previously (33). Briefly, 2 uL of
serum (= 100 pg protein) was reduced with DL-Dithiothreitol
(DTT) and alkylated with 2-chloroacetamide (CAA). Proteins
were digested with trypsin (1:30 mass ratio), followed by a one-
hour incubation at 47°C. After reducing the resulting peptides to
dryness in a vacuum centrifuge at low heat, we reconstituted the
samples with 100 pL 0.1% formic acid before being analyzed using
an UltiMate 3000 Nano LC coupled to a Fusion Lumos Orbitrap
mass spectrometer (ThermoFisher Scientific). After using the trap
elute setup PepMap 100 C18 trap column (ThermoFisher
Scientific), peptides were separated on an Acclaim PepMap RSLC
2 um C18 column (ThermoFisher Scientific) at 40°C. Full details on
the LC-MS/MS method applied and the data-independent
acquisition (DIA) settings used are provided previously (33).

As described before (33), we used the DIA-NN software suite
and used the NCBI RefSeq Desmodus rotundus Release 100
GCF_002940915.1_ASM294091v2 FASTA (29,845 sequences) to
search the vampire bat samples. We mapped identified bat proteins
to human orthologs using BLAST+ (51) and custom python scripts
(36) for downstream analyses using human-centric databases (33).
When human orthologs did not exist, we used ad hoc
ortholog identifiers.

Data analysis

Our analyses included 19 samples and a pooled serum sample as
a quality control. The digestion was evaluated by the number of
peptide spectral matches. Considering the limitations of working
with a small sample size from wild animals, we established
conservative cut-offs for data interpretation. For proteomic data
analyses, we imputed missing abundance values by estimating half
of the minimum observed intensity of each protein (52). Missing
values were excluded for descriptive presentation of means and
log,-fold change (LEC).

For pathogen infection analyses, we used principal component
analysis (PCA) to reduce the dimensionality of our identified
protein dataset, using abundances scaled and centered to have
unit variance. For each of our five pathogen types (including
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coronaviruses), we used a permutation multivariate analysis of
variance (PERMANOVA) with the vegan R package (53). To
identify differentially abundant proteins between uninfected and
infected bats, we used a two-sided Wilcoxon rank sum, using the
Benjamini-Hochberg (BH) correction to adjust for the inflated false
discovery rate (54). Next, we calculated the LFC as the difference in
mean log,-transformed abundance between uninfected and infected
bats. To identify candidate biomarkers of infection, we used receiver
operating characteristic (ROC) curve analysis using the pROC
package (55). We generated the area under the ROC curve
(AuROC) to measure classifier performance and estimated their
95% confidence intervals (CI) with the pROC package using 2000
stratified bootstrap replicates. We considered proteins with
AuROC = 09 to be strict classifiers of pathogen positivity,
whereas proteins with AuROC = 0.8 but less than 0.9 were
considered less conservative (56). Only proteins with a lower CI
bound above 0.5 were classified as strict or less conservative
classifiers, as an AuROC of 0.5 suggests no discrimination (56).
All other proteins were treated as poor dassifiers (57). To visualize
the matrix of candidate serum biomarkers, we used the pheatmap
package with scaled and centered log,-transformed protein
abundances and Ward's hierarchical clustering method (58, 59).
Finally, we evaluated and compared up- and down-regulated
responses to all pathogen infections using gene ontology (GO) and
enrichment analysis. The gprofiler2 package was used as the
interface to the g:Profiler tool g:GOSt (60, 61). Our enrichment
analysis was limited to candidate protein biomarkers with an
AuROC = 0.8 (i.e., less conservative candidates). We determined
the up- and down-regulated proteins using LCF. Using the AuROC
value, we ranked proteins and performed incremental enrichment
testing, with the resulting p-values adjusted by the Set Counts and
Sizes (SCS) correction. We restricted our data sources to GO
biological process (BP), cellular component (CC), molecular
function (MF), the Kyoto Encydopedia of Genes and Genomes
(KEGG), and WikiPathways (WP). None of the eight bat proteins
lacking human orthologs were candidate biomarkers (AuROC <
0.8). Hence, manual GO and pathway mapping were not required.

Results

From our previous study (33), we identified 586 proteins in
these vampire bat serum samples using bottom-up proteomics with
DIA. Four of the 19 bats sampled were positive for o-CoVs, 16 for
herpesviruses, ten for hemoplasmas, 11 for Bartonella spp., and
seven for Trypanosoma cruzi. Most bats were infected by at least
one pathogen (95%), with 79% of bats having two or more
infections; one bat was negative for all pathogens, and another
bat was co-infected by all pathogens (Figure 1).

Contrasting proteomic profiles with
pathogen infection

We used multivariate tests to evaluate differences in serum
proteomes between infected and uninfected bats for each of our five
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pathogen types. The first two principal components (PCs)
explained 29.8% of the variance of the plasma proteome
(Figure 2). For all pathogens, we found no difference in proteome
composition by infection status (0-CoVs: F, ;, = 0.348, R* = 0.020,
p = 0.767; herpesviruses; F;;; = 1.167, R* = 0.064, p = 0.290;
hemoplasmas: F, ;; = 1.513, R* = 0.082, p = 0.211; Bartonella spp.:
Fy,7= 1.730, R* = 0.092, p = 0.168; and T. cruzi: F, ;; = 0395, R* =
0.023, p = 0.720). Similarly, Wilcoxon rank sum tests (BH adjusted
p < 0.05) found no proteins with significant differential abundance
between infected and uninfected bats for any pathogen (Figure 3).

However, using less-conservative dassifier cutoffs (AuROC =
0.8), ROC curve analyses identified 92 candidate proteins across
pathogens, ranging from four for T. cruzi to 48 for herpesviruses,
and provided strong discriminatory power to differentiate between
proteomic profiles of uninfected and infected bats (Figure 4). In
addition, seven putative biomarkers of herpesvirus infection
overlapped with putative biomarkers of all other pathogens except
T. cruzi (Table 1; Figure S1). All shared putative protein biomarkers
tended to predict infection in the same direction for both
pathogens, except MGAM, which was elevated in herpesvirus
infections but reduced in hemoplasma infections (Table 1). When
using stricter classifier cutoffs (AuROC = 0.9), we only identified
seven putative biomarkers for o-CoV infection, eight for
herpesviruses, two for hemoplasmas, and none for T. cruzi or
Bartonella spp. (Figure 3; Table 2; Figure S2).

Enrichment analyses reveal distinct
pathways across pathogens

Using GO terms, we assessed and compared up- and down-
regulated responses to each pathogen type. Enrichment analyses of
the less-conservative putative biomarkers (AuROC 2 0.8) revealed
multiple functional proteomic differences between infected and
uninfected bats and across pathogen taxa. Infected bats with our
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Hierarchical cluster of the 19 vampire bat samples based on their
serumn proteome and infection heatmap showing which individuals
are PCR-positive (red) for the five selected pathogens.
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viral pathogens, but not our bacterial or protozoan pathogens, had
upregulation of extracellular and cytoplasmatic secretory vesicles
and downregulation of complement activation and coagulation
cascades (Figure 5). Moreover, herpesvirus infections elicited
downregulation of leukocyte-mediated immunity but upregulation
of MAPK cascades and the inflammatory and humoral response

infeclion stales = 0 ® 1
a-CoVs Herpesviruses Hemoplasmas Bartonella spp. Trypanosoma cruzi
amn n n 20 20

2

1o

<t . . .

= 10 . 10 — 10 »

-

o . l/ \I -

[®] . . .

o oi# . . oe a o e .

@ . . . .

E - - -

o -

9 -10 10] * -10-

=

a

E -20 -20 -20 20 204

=

@

0

a0 au - -3 -3
- - - - -
-10 o 10 20 -0 o 10 0 ] -0 Q@ 10 20 -0 a 10 20 -10 o 10 20
serum proteome PC1 (15.3%)

FIGURE 2
Biplot of the first two principal components (PCs) from the PCA of the 586 identified serum proteins in vampire bats. Individual bats are colored by
their infection status, where red represents PCR-positive for any of the five selected pathogens. Ellipses display the standard error of infected or
uninfected group centroids using the ggordiplot package. Missing abundance values were imputed as half the minimum intensity per protein.

(Figure 5). In contrast to our two viral infections, we found
downregulation of platelet-dense and secretory granules with
hemoplasma infections, lipid and cholesterol homeostasis as well
as metabolism with Bartonella spp. infection, and blood coagulation
pathways with T. cruzi (Figure 6). Interestingly, T. cruzi infections
also elicited upregulation of neurotransmitter pathways, including
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FIGURE 3
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Mean protein abundance across the 586 identified proteins for uninfected and infected bats for the five selected pathogens. The dashed lines show
the 1:1 reference for comparison. Strict candidate biomarkers (AuROC > 0.9) were only found in «-CoVs (n=7), herpesviruses (n=8), and
hemoplasmas (n=2), and are labeled with gene symbols (Table 2). Missing values were excluded prior to determining mean abundances.
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S
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FIGURE 4

Heatmaps of log,-transformed abundance scaled to a mean of zero for candidate serum biomarkers (AUROC = 0.8) for a-CoV (n=32), herpesvirus
(n=48), hemoplasma (n=8), Bartonella spp. (n=7) and T. cruzi (n=4) infections. Columns display individual bats and rows represent proteins as gene
symbols. Infection status is indicated at the top of the heatmap, where red represents PCR-positive status for any given pathogen. Ward's
hierarchical method was used for clustering (58),

TABLE 1 Shared candidate serum biomarkers (AuROC > 0.8) between two pathogen infections.

UniProt Gene Name Protein description Pathogen LFC | AuROC | 95% CI
Herpesviruses 0.831 0.812 0.690-0.935
DSG2 desmoglein-2-like
a-CoVs 0921 0.900 0.753-1.000
Herpesviruses 1.048 0.812 0.690-0.935
PCBP1 poly(rC)-binding protein 1
o-CoVs 1.173 0.867 0.698-1.000
Herpesviruses 0534 0.833 0.611-1.000
MGAM ltase-glucoamylase, intestinal
Hemoplasmas -0.423 0.833 0.632-1.000
Herpesviruses -0.558 0.833 0.614-1.000
APOA4 apolipoprotein A-IV
Bartonella spp. -0.618 0.898 0.748-1.000
Herpesviruses -1.703 0.896 0.677-1.000
DPEP1 Dipeptidase 1
Bartonella spp. -1.461 0.852 0.657-1.000
Herpesviruses -0.754 0.833 0.586-1.000
GOT1 aspartate aminotransferase, cytopl
Bartonella spp. -0.602 0.812 0.593-1.000
Herpesviruses 0526 0.854 0.656-1.000
IGFALS insulin-like growth factor-binding protein complex acid labile sub
Bartonella spp. 0.440 0.807 0.596-1.000

The loga-fold change (LFC) and AuROC with its associated 95% confidence interval (CI) of each of the seven proteins are given per pathogen.
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TABLE 2 Strict candidate serum biomarkers (AuROC > 0.9) found for a-CoV, herpesvirus, and hemoplasma infections.

10.3389/fimmu.2023.1281732

Pathogen UniProt Gene Name Protein description LFC AuROC | 95% ClI
AHSG 0-2-HS-glycoprotein isoform X1 0,525 0.908 0.719-1.000
C4A complement C4-A-like -0.455 0.967 0.888-1.000
DsG2 desmoglein-2-like 0921 0.900 0.753-1.000
o-CoVs F12 coagulation factor XIT -0.512 0933 0.814-1.000
GPI glucose-6-phosphate isomerase -2.358 0.958 0.875-1.000
GSTO1 glutathione S-transferase -1 1.288 0.900 0.746-1.000
RNH1 ribonuclease inhibitor 1.682 0.967 0.888-1.000
AMY2ZA pancreatic ot-amylase -0.397 0938 0.815-1.000
FCGR2B low affinity immunoglobulin y Fc region receptor II-b 1.664 0.979 0.921-1.000
LDHB L-lactate dehydrogenase B chain -0.782 0917 0.773-1.000
LMNA lamin -1.402 0917 0.784-1.000

Herpesviruses

PAFAH1B2 platelet-activating factor acetylhydrolase IB subunit B isoform X1 1.898 0917 0.778-1.000
RNASE4 ribonuclease 4 1.132 0938 0.798-1.000
TSPAN2 tetraspanin-2 1438 0938 0.824-1.000
VNN3 vascular non-inflammatory molecule 3-like 0.688 0917 0.778-1.000
; E5 coagulation factor V 0.346 0922 0.806-1.000
o TCN2 transcobalamin-2 0371 0911 0.784-1.000

The log-fold change (LFC) and AuROC with its associated 95% confidence interval (CI) are given for each protein.

choline and drug metabolic processes, such as cocaine, heroin, and
alcohol (Figure 6).

Discussion

In recent decades, there has been an increasing interest in
understanding bat immune responses to infections, particularly
those involving viruses (17, 62, 63). However, insights into how
bat immune systems respond to other pathogen taxa (e.g., bacteria
and protozoa) are also relevant given their high infection prevalence
and zoonotic potential (25, 28). Proteomic tools have provided
valuable insights into how bats cope with infections, espedally in
wild populations (33, 36-38). Here, we assessed the differences and
similarities in serum proteomes of wild vampire bats infected and
uninfected with five divergent pathogen taxa: RNA and DNA
viruses (0-CoVs and herpesviruses, respectively), bacteria
(hemoplasmas and Bartonella spp.), and protozoa (T. cruzi). By
evaluating potential protein biomarkers of infection as well as the
up-and down-regulated physiological responses of infected vampire
bats, our approach identified interesting differences and similarities
across pathogen taxa.

Although none of our five pathogens were significantly
associated with serum protein composition nor abundance, we
identified 17 (strict) to 92 (less-conservative) candidate protein
biomarkers across pathogen taxa using ROC curve analyses. From
these 92 biomarkers, DSG2 and PCBP1 were shared positive
predictors, with both proteins elevated in bats infected with o-
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CoVs or herpesviruses. Both proteins are involved in the mediation
of cell-cell adhesion and innate antiviral responses. PCBP1 is
produced by activated T cells to stabilize the innate immune
response (64, 65) via mitochondrial antiviral signaling and
prevents virus-related inflammation (66), whereas DSG2 is a
known receptor of adenovirus in humans (67) that, in response to
pro-inflammatory cytokines, induces epithelial cells to apoptosis
(68). We also identified shared biomarkers between herpesvirus and
bacterial (Bartonella spp.) infections; APOA4, DPEP1, and GOT1
were negative predictors while IGFALS was a positive predictor.
The decreased abundance of APOA4, DPEPI, and GOT1 shows
downregulation of a pro-inflammatory response. In humans,
APOA4 is upregulated in severe adenovirus community-acquired
pneumonia (69), and plasma concentrations of the protein increase
in inflammatory disorders during hepatitis B virus infections (70).
However, COVID-19 patients also show downregulation of the
apolipoprotein, possibly associated with macrophage function (71).
DPEPI, conversely, is associated with neutrophil-mediated
inflammatory responses, facilitating neutrophil recruitment from
to bloodstream to inflamed tissue by acting as a physical adhesion
receptor (72). GOT1 plays a role in T cell exhaustion, as it maintains
chronic immune responses by regulating CD8+ effector and
memory T cell generation (73, 74). In contrast, upregulation of
IGFALS shows activation of the innate immune response. In mice,
IGFALS is virus-inducible and is essential in antiviral responses by
enhancing interferon production (75).

Both herpesvirus and hemoplasma infections also shared
MGAM as a putative biomarker, but this protein was a positive

frontiersin.org


https://doi.org/10.3389/fimmu.2023.1281732
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Vicente-Santos et al

10.3389/fimmu.2023.1281732

biological process @ downwegulsted @  upregulsted

datasource @ GOBF A GOCC @ GOMF 4+ KEGOD B WP

- Cove Herpesyinizes

ry

A—A

spacs

»

A

»>

4

ragion

oo

wesice

organede |

3 3

237
S333
33 3%

L
wvesicle
mambrane altack comglex
e ermnles
ficalin-1-rich granua
compiemant actvation, aliemative patiway
secralony granule
ficalin-1-rich granule lumen
pasitive regulation of mapk cascade
homaotypic call-call edhesion |
amoebiasis | '
complement activatian, classical patway |

sstratory vesicle | ——d
secratary granuls lumen
cytoplasmic vesiche luman
wesicho lumen
compiement activation |
blood micropartice 1
pmitRaRamA comalas 1
humeral immene maponsa mackated by cirewating mmunagishisin | )
camplement and coaguialion cascades | i

reguiation of spoptolic signaing pattway !
posilive requiation of signaling i
positive reguiaton of call communicaton | "
el adhesion malecule hinding
regulasian of mapk cascads |
proleasame cone complax, beta-subund complex i
positive regulation of rasponee to stimulus '
posiive ragidation of intracefuli signal fransduction 1 t
endopeptidase complex '
mainlenanice of location T
releasa of saquestared calcium lon into cytosal

binkogical process imwabear in i i batwaen argant

negalive reguiation of sequestering of calcium ion |
srganele lumen !
memibrane-anclosed lumen 1
Intracellular crosnesa lumen I
reguiation of saquastering of calcium ion
mapk cascade y
segueslaring of calcium ien
oytoplasmic vesichs
ntracelular vesicia
humaral immune rsponse |
hypertrophic cardiomyapathy |
extracel|utar matrix
extomal encapsulating structiee
dilated cardinmyopathy 1
positive raguliation of signad fransducsion |
sarcamens |
peptidase complas
eytasal

complemant systam

pratein hetaredimerzation ackvity !

miyiibel ]

call periphary 1 |

piatait aggragaton | :

proteasome core complex '

kiling of cabs of another organism |

disruption of cedl In anathier crganism 4 '

inflammatory rasponsa i

memitriane | !

oonlractile fiber i

dianiption of anatomical struchure in another crganism | 1
calcium lon transmembrane Imoort inlo cysosal
7311.23 distal copy rumber variaton

anticuddant activity

celuler responas o amyloid-bela -

Sow-Mirsty Ig recapior activiy

ghucose-B-phosphate Isomerase activiy

other organism call membrana |

prafve regulalion of releass of sequestared caleium ien inlo eytasal
sacond-messenpar-madiated signaling

syatemic lupus arythematosus

staphyiacoccus awmeus infaction
rairdenance of kealion @ call

complement system in neuronal devalcament and pHasticly ¥
Igg racaplor actviy !

raspensa o amyloid-bata |

ey 3

TN
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predictor for these viruses and a negative predictor for these
bacteria. MGAM is involved in breaking down carbohydrates in
the small intestine, and its deficiency has been linked to
gastrointestinal diseases (76, 77). Although MGAM seems to have
a role in neutrophil biology (78) and may have a role in regulating
inflammatory responses in the gastrointestinal tract, which contains
the largest population of mast cells in the body (79), little is known
about its immune function, and our results highlight a potential
distinction between viral and bacterial infections.

When focusing on strict biomarkers in this analysis, we
confirmed the same seven proteins for o-CoVs as in our prior
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Enrichment analyses of the 32 and 48 candidate serum biomarkers of ¢-CoV and herpesvirus infections, respectively. Up- (red) and downregulation
(blue) of biological processes are displayed. Processes are labeled by source: gene ontology (GO) biological process (BP), cellular component (CC),
and molecular function (MF), the Kyoto Encyclopedia of Genes and Genomes (KEGG), and WikiPathways (WP).

study (33) and added eight (positive biomarkers: FCGR2B,
PAFAH1B2, RNASE4, TSPAN2, and VNN3; negative biomarkers:
AMY2A, LDHB, and LMNA) for herpesvirus infections and two
(F5 and TCN2, both positive) for hemoplasma infections. Vampire
bats likely respond to herpesvirus infections in multiple ways,
possibly due to the ability of these viruses to persist as latent
infections that can reactivate periodically (80). By increasing
abundance of FCGR2B, bats are apparently mounting humoral
immune responses against herpesviruses, as this protein is
expressed in mature neutrophils in charge of removing
spontaneously forming immune complexes to dampen Fc-
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Enrichment analyses of the seven, eight, and four candidate serum biomarkers of Bartonella spp.. hemoplasma, and 7. cruzi infections, respectively.
Up- (red) and downregulation (blue) of biological processes are displayed. Processes are labeled by source: gene ontology (GO) biological process
(BP), cellular component (CC), and molecular function (MF), the Kyoto Encyclopedia of Genes and Genomes (KEGG), and WikiPathways (WP)

dependent immune reactions (81). This mechanism may possibly
arise to prevent the potentially toxic side effects of systemic innate
interferon (IFN) responses, especially important for chronic
infections or secondary exposure to the virus (82). However, the
up-regulation of PAFAHI1B2, which induces large amounts of
platelets to aggregation, may instead indicate acute viral
infections, as it has been documented in patients with avian
influenza (HIN9) acute-phase infections (83) that show high
levels of inflammatory cytokines and induce vascular permeability
(84, 85). Moreover, RNases, such as RNASE4, are acutely induced
during infection and downregulated during prolonged infection
periods (86). The increased abundance of RNASE4 also shows that
bats present immunoprotective responses that directly degrade viral
RNA to prevent viral replication or prompt host cell apoptosis (87).
Cell-mediated responses also likely play a major role in herpesvirus
infections, as we observed upregulation of both TSPAN2, a
transmembrane protein expressed in neutrophils that modulates
the inflammatory response, cell migration, and differentiation (88),
and VNN3, an ectoenzyme secreted by neutrophils that is involved
in oxidative stress and inflammation (89, 90). Finally, the
downregulation of LDHB and LMNA may further indicate active
viral replication. Decreased abundance of LDHB has been reported
in human HIV infections, and the reduced abundance of this
protein is hypothesized to give virions a higher probability of
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survival and intercellular transmission (91). Nuclear lamins, such
as LMNA, normally impede viral infectivity and replication (92),
and viruses, such as herpes simplex virus, induce lamin
alterations (93).

By contrast, the strict biomarkers we identified for hemoplasma
infections suggest these pathogens only activate cellular pathways.
To impede bacterial dissemination, bats upregulate F5, a central
regulator of hemostasis involved in dotting and macrophage and
neutrophil reclusion (94). This protein is also involved in forming
neutrophil extracellular traps, which intensify an inflammatory
response (95, 96). On the other hand, the role of the upregulation
of TCN2, a protein involved in vitamin B12 metabolism, is not clear
(97). However, a recent study shows that B12 levels are significantly
decreased in patients with tuberculosis infections (98), underlying a
potential avenue of future research in bacterial infections.

Enrichment analysis on the 32 and 48 putative biomarkers from
0.-CoV- and herpesvirus-infected bats displayed strong
upregulation of extracellular and cytoplasmatic secretory vesicles
and downregulation of complement activation and coagulation
cascades. These observations further indicate active viral
replication, as the exosome and other extracellular vesicles are
known to be exploited by both DNA and RNA to facilitate spread
among cells (99-101). These mechanisms can also mediate
intercellular communication during innate and adaptive immune
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responses. The secretion of vesicles from leucocytes with immune
modulatory properties, such as NK cytotoxicity, T cell activation
and proliferation, and the ability of cells to produce IFN-y, or
delivering innate immune effectors (e.g., interleukins), are well-
documented host responses to viral infections that these specific
viruses could also hijack to evade the same responses [reviewed in
(102)]. Unfortunately, without antibody-based depletion, our
analyses could only characterize the most abundant proteins
found in serum, limiting our ability to detect low-abundant
proteins such as cytokines that could give us a better
understanding of host-virus interactions (103).

Interestingly, herpesvirus infections, but not o-CoV infections,
also elicited downregulation of leukocyte-mediated immunity and
upregulation of mitogen-activated protein kinase (MAPK) cascades
and the inflammatory and humoral response. Besides the
particularity of herpesviruses to persist in the host as latent
infections (80), studies suggest that bat responses to DNA viruses
are dampened in contrast to RNA viruses (15, 16, 104), potentially
explaining our observed patterns. DNA viruses are known to usurp
the MAPK signaling pathway to exploit DNA replication
machinery, induce cell proliferation, and prevent cell death in
response to pathogen recognition (105). Herpesviruses,
particularly, have evolved their ability to manipulate the host’s
cell mechanisms to achieve enhanced permissiveness and endure
latent infections, including the MAPK pathways (106). In addition,
the upregulation of the MAPK pathway by viruses seems to be
involved with the downregulation of IFN production and the
consequent impairment of the cellular innate immune response,
benefiting viral replication (107, 108). Our results here suggest that
bats also respond to DNA viruses by increasing their inflammatory
and humoral response.

In contrast, enrichment analyses on the eight putative
biomarkers of hemoplasma infection showed downregulation of
platelet-dense and secretory granules. Platelets play a crudial role in
the innate immune system by being the first responders to an injury
and directing the immune response to any pathogen that may be
present due to the injury (109). It is undclear, however, if their
downregulation here indicates a bacterial evasion mechanism or if it
is elicited by the host to limit pro-inflammatory damage. For
Bartonella spp., the seven candidate biomarkers indicated
downregulated lipid metabolic processes. Although, to our
knowledge, there are no studies specifically evaluating host-
Bartonella spp. interactions in lipid metabolism, studies of
another intracellular bacteria, Mycoplasma spp., show that
bacterial infections can manipulate host lipid metabolic processes
in many ways (110-113). Lipids play important roles in pathogen
docking, invasion, and intracellular trafficking as well as membrane
synthesis during pathogen replication and persistence (114).
Therefore, mycoplasmas have developed mechanisms sequestering
host cell lipids, such as cholesterol, to promote survival (112). These
include inhibiting the degradation of bacteria in lysosomes as well
as using host lipids as an energy source and providing the building
blocks for pathogen assembly (112). Simultaneously, the
downregulation of lipid metabolism (sterol) modulates host
immune responses to mycobacterial infections mediated by IFN-y
(113, 115). Thus, evidence shows that the downregulation of
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mechanisms involved in lipid metabolism could act as a double-
edged sword favoring the persistence of bacterial infections (113).
Interestingly, lipid metabolic processes were not altered for
hemoplasmas, suggesting high variance in the bat immune
response to intracellular bacteria.

Finally, enrichment analysis on the four identified biomarkers
of T. cruzi infections showed downregulation of blood coagulation
and upregulation of neurotransmitter pathways, including choline
and drug metabolic processes. Downregulation of blood
coagulation pathways coincides with T. cruzi infections in
humans and mice showing anemia, leukocytosis (i.e., increased
white blood cell counts), and thrombocytopenia (i.e., low count of
platelets in blood), especially in acute infection phases (116-120).
On the other hand, while the upregulation of neurotransmitter
pathways is not described in human or mice T. cruzi infections,
another trypanosome (T. brucei, which causes sleeping sickness)
does show neurological manipulations of the host (121, 122). This is
an intriguing finding that reveals a potential avenue for
future research.

Overall, our findings show that a multi-pathogen approach can
reveal a similar suite of immune mechanisms responding to select
viral infections that is distinct from those to other studied pathogen
taxa. These distinct immune responses to viral and non-viral
infections are consistent with classic and recent findings in
vertebrates (123, 124) as well as in other bat species (125).
Further, we identify potential biomarkers that could expand our
understanding of pathogenesis in bats. However, we recognize that
our small sample size may limit the precision and generality of our
findings, and larger sample sizes moving forward will allow similar
studies to more robustly identify biomarkers through cross-
validation approaches (126). Moreover, working with free-ranging
animals presents intrinsic limitations, While in experimental
laboratory settings, researchers can often use a few model animals
by minimizing heterogeneity in their genetic structure and
treatments (127), this is virtually impossible with wild animals.
Likewise, even as we screened for five divergent and common
pathogens in vampire bats, these animals could also be infected
by other pathogens not considered in our study, possibly
confounding results. Additionally, while the timing of infections
and co-infections is known to influence immune response [e.g (128,
129)], such data are typically not available for wildlife. Despite these
limitations, we show that information-rich approaches such as
proteomics show promise in interrogating the bat immune
response in the wild. This is particularly important for future
studies, as our understanding of bat immunology has been
restricted to a few species from which we have bat colonies, cell
lines, or species-specific reagents (8). The field of bat immunology
will advance greatly when expanding proteomics approaches to
controlled experimental settings and comparing these responses
across multiple bat species and diverse ecological settings.
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