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Abstract: Dark matter freeze-in is a compelling cosmological production mechanism in
which all or some of the observed abundance of dark matter is generated through feeble
interactions it has with the Standard Model. In this work we present the first analysis of
freeze-in dark matter fluctuations and consider two benchmark models: freeze-in through
the direct decay of a heavy vector boson and freeze-in through pair annihilation of Standard
Model particles in the thermal bath. We provide a theoretical framework for determining the
impact of freeze-in on curvature and dark matter isocurvature perturbations. We determine
freeze-in dark matter fluid properties from first principles, tracking its evolution from its
relativistic production to its final cold state, and calculate the evolution of the dark matter
isocurvature perturbation. We find that in the absence of initial isocurvature, the freeze-in
production of dark matter does not source isocurvature. However, for an initial isocurvature
perturbation seeded by inflation, the nonthermal freeze-in process may allow for a fraction of
the isocurvature to persist, in contrast to the exponential suppression it receives in the case
of thermal dark matter. In either case, the evolution of the curvature mode is unaffected by
the freeze-in process. We show sensitivity projections of future cosmic microwave background
experiments to the amplitude of uncorrelated, totally anticorrelated, and totally correlated
dark matter isocurvature perturbations. From these projections, we infer the sensitivity to the
abundance of freeze-in dark matter that sustains some fraction of the primordial isocurvature.
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1 Introduction

Cosmological and astrophysical observations provide incontrovertible evidence for the existence
of dark matter (DM) [1–3]. A cold and collisionless DM component of the Universe describes
the large-scale structure of the Universe remarkably well, as evidenced by the anisotropy of
the cosmic microwave background (CMB) [3] and galaxy clustering [4, 5], for example.

One of the prominent theoretical descriptions for the nature of DM is the weakly-
interacting massive particle (WIMP), for which DM has interactions with Standard Model
(SM) particles beyond gravity [6]. These interactions are weak enough for WIMPs to be
considered collisionless for the purposes of structure formation and yet substantial enough
for WIMPs to be in equilibrium with the bath of thermalized SM particles at very early
times in cosmic history. As the Universe expands and cools, WIMPs eventually undergo
thermal freeze-out, in which the comoving number density approaches a fixed value after
chemical decoupling from the SM bath.
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A compelling alternative scenario for the cosmological production of DM is freeze-in [7].
For instance, the annihilation of SM particles can generate an abundance of feebly-interacting
massive particles constituting DM, but the interaction strength is so weak that DM particles
never attain thermal equilibrium with the SM bath [7]. Alternatively, the feeble decay of
a heavy parent particle thermalized with the SM bath could generate the observed DM
abundance without the DM attaining thermal equilibrium. Beyond these examples there
exists a variety of well-motivated models that can give rise to freeze-in dynamics in the early
Universe that are compatible with the observed properties of DM [7–18].

On the experimental side, freeze-in DM sets an important cosmological benchmark for
direct detection experiments searching for evidence of DM interactions via electronic recoils [19–
32]. Typical WIMP-motivated nuclear-recoil experiments lose sensitivity for DM masses below
O(GeV), while electronic-recoil experiments can probe DM masses down to O(MeV). For
low masses, thermal WIMPs generate too much relativistic energy density during big bang
nucleosynthesis (BBN), altering predictions of the primordial element abundances [33–35].
Freeze-in provides a mechanism to produce such light DM candidates without running afoul
of BBN constraints [36–39].

The nonthermal nature of freeze-in production has been studied in the context of
their nonthermal phase space distribution (PSD) function and its impact on cosmological
observables [15, 16, 40–42]. These previous works considered the impact of out-of-equilibrium
production on only the background evolution of the Universe.

In this work we determine the properties of DM fluctuations during freeze-in and how
they influence the evolution of a primordial DM isocurvature perturbation. While single
field inflation fits CMB observations remarkably well [43] and only allows for adiabatic
perturbations, multi-field inflation is a theoretically well-motivated alternative that can give
rise to an initial isocurvature [44]. However, since isocurvature can evolve in a multi-fluid
system that exhibits energy exchange, the primordial value is not necessarily the one that
is constrained by cosmological observables. This effect has been studied explicitly in the
context of several scalar fields that exchange energy with one another (e.g. [45]). DM freeze-in
offers an alternative scenario of a post-inflationary process that exhibits energy exchange
between sectors, which do not reach thermal equilibrium, and thus does not automatically
wash out information about the state of an initial abundance of DM just after inflation. In
our work we study for the first time the impact of DM freeze-in on the evolution of the
adiabatic and isocurvature modes.

We focus on two DM freeze-in benchmark models, direct decay of a heavy parent
particle into two DM particles and 2-to-2 annihilation of SM particles into millicharged
DM, described in section 2.1. We define a theoretical framework that encompasses the
evolution of both the DM background phase space distribution (PSD) and its fluctuations
from first principles in sections 2.2 and 2.3, following the evolution of both the adiabatic
and isocurvature modes through the entire freeze-in process. We use the PSD to compute
both DM background and perturbed fluid properties, which we then use to investigate the
evolution of the DM isocurvature perturbation mode during DM freeze-in in section 3. We
find that, in presence of an initial fraction of DM characterized by an initial isocurvature
perturbation, the process of DM freeze-in leads to a suppression of the initial isocurvature
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but does not exponentially wash it away as in the case of thermal DM [46]. On the other
hand, in absence of a primordial isocurvature perturbation, no isocurvature is produced
by DM formation. Lastly, in section 4 we forecast the sensitivity of next-generation CMB
experiments to DM isocurvature perturbations and determine the corresponding sensitivity
to the maximum initial DM fraction with isocurvature perturbations that can be generated
during inflation, assuming the remaining DM abundance is generated via freeze-in. Although
we focus on freeze-in models in this paper, our roadmap is more general and can be applied
to other DM formation mechanisms.

2 Freeze-in cosmology

The evolution of the DM sector is described by the Boltzmann equation for the DM PSD fχ:

∂fχ

∂τ
+ dxi

dτ

∂fχ

∂xi
+ d(ap)

dτ

∂fχ

∂(ap) = a(τ)
E

C[fi] , (2.1)

keeping terms up to linear order in perturbation theory, where τ is the conformal time, a(τ)
is the scale factor, xj are comoving spatial coordinates, and mχ, p, and E =

√
p2 + m2

χ

are the DM mass, momentum, and energy, respectively. The collision term C[fi] sources
the production of DM from particle species i, with PSD fi, in the thermal bath. In this
work we choose to evolve the PSD directly, which has the advantage of not requiring the
introduction of additional equations to close the system, in contrast to, for instance, solving
Friedmann equations where an equation of state for the fluids has to be assumed. Instead,
any non-trivial dynamical evolution of macroscopic DM properties can be exactly derived
from a PSD approach, as we show in sections 2.2 and 2.3.

Typically, eq. (2.1) is solved only at the background level for freeze-in dynamics; however,
for the purpose of determining the evolution of isocurvature perturbations, we go one step
further and study the dynamics of perturbations. In other words, first we expand both the
DM PSD and the collision term as

fχ(x, p, τ) = f̄χ(p, τ) + δfχ(x, p, τ) , (2.2)
C(x, p, τ) = C̄(p, τ) + δC(x, p, τ) , (2.3)

where f̄χ and C̄ = C[f̄i] are the homogeneous and isotropic background components with
no spatial dependence, and δfχ ≪ f̄χ and δC ≪ C̄ are linear perturbations, which contains
spatial fluctuations. We then proceed by solving separately eq. (2.1) at the background and
perturbative level to determine both f̄χ and δfχ.

Throughout this study we approximate the early Universe to have two components: the
DM fluid and the SM bath, consisting of all relativistic SM particles in thermal equilibrium
at temperature T . We denote the SM bath sector with the subscript “r” for radiation. This
description of SM particles all in equilibrium at a single temperature breaks down when
neutrinos decouple around T ∼ 1 MeV; thus, we restrict our study to DM freeze-in scenarios
that conclude before neutrino decoupling. The energy density of the SM bath is

ρr = π2

30g∗(T )T 4 , (2.4)
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where g∗(T ) is the effective number of relativistic degrees of freedom at temperature T . Any
particle species in kinetic equilibrium has a PSD given by a Bose-Einstein or Fermi-Dirac
distribution

fi = 1
eEi/T ± 1

, (2.5)

depending on the spin statistics of the particle (− for bosons, + for fermions), where Ei

is the particle’s energy.

2.1 Dark matter production models

The collision term appearing on the right-hand side of eq. (2.1) dictates how the DM sector
is created. Here we analyze two representative DM freeze-in channels: DM production
through the direct decay of a heavy parent particle thermalized with the SM bath and
through the annihilation of SM particles. For both cases, we assume DM is a spin-1/2
fermion. The collision terms reported in section 2.1 are valid at all order in perturbation
theory, and we further specify them at the background and perturbative level in sections 2.2
and 2.3, respectively.

2.1.1 Direct decay

For the case of direct decay, we consider a vector particle Z ′ that is thermalized with the
SM bath in the early Universe1 such that its PSD is a Bose-Einstein distribution with
temperature T . The DM particle χ interacts with the Z ′ particle according to the Lagrangian

L ⊃ gχZ
′
µχγµχ + 1

2m2
Z′Z

′
µZ

′µ + χ̄(i∂ − mχ)χ , (2.6)

where mχ and mZ′ are the DM and Z ′ masses, respectively, and gχ is the coupling con-
stant for the interaction. The spin-averaged2 scattering amplitude squared for the decay
process Z ′ → χχ̄ is

|MZ′→χχ|2 =
g2

χ

24
(
m2

Z′ + 2m2
χ

)
. (2.7)

The inverse-decay process χχ̄ → Z ′ and effects coming from Pauli blocking factors are
negligible throughout freeze-in due to the small abundance of χ particles (i.e., fχ ≪ fZ′).
Under these approximations the collision term for the decay process simplifies to

Cd[fZ′ ] = 1
2

∫ 3d3pZ′

(2π)32EZ′

∫ 2d3pχ

(2π)32Eχ
(2π)4δ(4)(pZ′ − pχ − pχ)|MZ′→χχ|2fZ′ , (2.8)

where δ(n) is an n-th dimensional Dirac delta function.

1We remain agnostic on the interaction with the SM that lead to thermalization. While we note that the
addition of a Z′ may be subject to other constraints, we do not consider them in this work.

2We follow the convention in ref. [47] of averaging over initial and final states.
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2.1.2 2-to-2 annihilation

For 2-to-2 annihilation, we consider a millicharged DM particle χ with mass mχ > 1 MeV.
Millicharged DM could arise from a DM hypercharge or from coupling DM to an ultralight
dark photon mediator that mixes kinetically with the SM photon; for the purposes of this
work, we assume a pure millicharge scenario.

Freeze-in proceeds via electron-positron annihilation, characterized by the Lagrangian

L ⊃ eJµ
EMAµ + eQχχγµχAµ + χ̄(i∂ − mχ)χ − 1

4F µνFµν , (2.9)

where Aµ is the SM photon, F µν is the electromagnetic field strength, and Jµ
EM is the SM

electromagnetic current. The spin-averaged amplitude squared of the process e+e− → χχ̄ is

|Me+e−→χχ̄|2 =
e4Q2

χ

2s2

[
t2 + u2 + 4s

(
m2

e + m2
χ

)
− 2

(
m2

e + m2
χ

)2
]
, (2.10)

where s, t, and u are the Mandelstam variables, me is the electron/positron mass, and Qχe

is the DM millicharge. Similar to the decay case, the inverse process χχ̄ → e+e− and Pauli
blocking factors are highly suppressed due to the low DM abundance (i.e., fχ ≪ fe). We
estimate the relative suppression in abundance to be

fχ

fe
∼ zeq

zfi
∼ 10−6

(
MeV
mχ

)
, (2.11)

where zfi is the redshift at the end of the freeze-in process, zeq ≈ 3500 is the redshift of
matter-radiation equality, and we have assumed that DM is nonrelativistic at the end of
freeze-in at redshift zfi and that fe(zfi) ∼ fγ(zfi) for mχ ≳ 1 MeV. We use a Boltzmann
distribution to describe the PSD of the electrons and positrons such that fe ≈ e−Ee/T . The
collision term for annihilation simplifies to

Cann[fe− , fe+ ] = 1
2

∫ 2d3pe−

(2π)32Ee−

∫ 2d3pe+

(2π)32Ee+

∫ 2d3pχ

(2π)32Eχ

× (2π)4δ(4)(pe− + pe+ − pχ − pχ)|Me+e−→χχ̄|2fe−fe+ .

(2.12)

The Lagrangian in eq. (2.9) also allows for elastic scattering processes e−χ → e−χ with
a scattering amplitude squared of

|Me−χ→e−χ|2 =
e4Q2

χ

2t2

[
s2 + u2 − 4(m2

e + m2
χ)(s + u) + 6(m2

e + m2
χ)2
]

. (2.13)

Efficient elastic scattering can establish kinetic equilibrium and alter the DM PSD function.
By writing down the collision term for the elastic scattering process and comparing with
eq. (2.12), we find that the collision terms of the two processes obey

Cel ≲ Cann |Me−χ→e−χ|2

|Me+e−→χχ̄|2
fχ

fe
. (2.14)

At the end of freeze-in, we have

|Me−χ→e−χ|2

|Me+e−→χχ̄|2
≈ s2

t2 ≤ s2

m4
D

≈ 104 , (2.15)
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where m2
D = e2T 2/3 is the square of the Debye plasma mass, which accounts for screening

of the electromagnetic field in a charged, relativistic plasma [48]. Therefore, during the
DM creation process,

Cel/Cann ≲ 0.01
(

MeV
mχ

)(
s2/m4

D

104

)
, (2.16)

which indicates that the evolution of the PSD function in eq. (2.1) is dominated by the
s-channel annihilation collision term in eq. (2.12). Thus, we estimate that elastic processes
are subdominant to the leading collision term due to annihilations Cann for the mass range
we consider (mχ ≥ 1 MeV) and can be neglected when solving eq. (2.1).

After freeze-in, when DM is nonrelativistic, we expect the rate of momentum transfer
between DM and the baryon fluid to be sufficiently small, such that fχ remains unaltered.
Based on CMB studies of millicharged DM scattering [49–51], for mχ ≳ 1 MeV, the momentum-
transfer rate coefficient between DM and electrons/protons is ≲ O(0.01) of the Hubble
expansion rate pre-recombination for Qχ ≳ O(10−9). Since at least an order of magnitude
smaller millicharge Qχe is required to reproduce the observed DM abundance, we expect
elastic scattering to have a negligible impact on the DM velocity distribution. In summary,
we calculate fχ from the annihilation collision term Cann throughout freeze-in and assume
that it remains unaltered afterwards.

2.2 Background evolution

The Boltzmann equation (2.1) for the background PSD f̄χ simplifies to

∂f̄χ

∂τ
= a2

ϵ
C̄ , (2.17)

where ϵ ≡ aE =
√

q2 + m2
χa2 is the comoving energy, and q ≡ ap is the comoving momentum.

The background collision terms in eq. (2.8) and (2.12) depend only on the homogeneous
background temperature T̄ (τ), which coincides with the photon temperature in the early
Universe. Therefore, the background collision term in the decay case is

Cd[fZ′ ] =
g2

χ

64πpχ
(m2

Z′ + 2m2
χ)
∫ Emax

Emin
dE

1
eE/T̄ − 1

, (2.18)

where

Emin = m2
Z′

2m2
χ

(
Eχ−pχ

√
1−4m2

χ/m2
Z′

)
, Emax = m2

Z′

2m2
χ

(
Eχ+pχ

√
1−4m2

χ/m2
Z′

)
, (2.19)

and in the annihilation case is

Cann[fe− , fe+ ] = 2T̄α2Q2

3πpχ

∫ ∞

smin

ds

s2 e
− Eχs

2mχT̄ sinh

pχ

√
s(s − 4m2

χ)

2m2
χT̄

√1 − 4m2
e

s
(2m2

e + s)(2m2
χ + s) ,

(2.20)
where smin = max

[
4m2

e, 2mχ(Eχ + mχ)
]
.
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Macroscopic quantities like the DM number density, energy density, and pressure are
obtained from the PSD f̄χ by

n̄χ(τ) =
∫ 2d3p

(2π)3 f̄χ(p, τ) , (2.21)

ρ̄χ(τ) =
∫ 2d3p

(2π)3 Ef̄χ(p, τ) , (2.22)

p̄χ(τ) =
∫ 2d3p

(2π)3
p2

3E
f̄χ(p, τ) . (2.23)

Integrating eq. (2.17) recovers both the number density and energy density conservation
equations

dn̄χ

dτ
+ 3Hn̄χ = 1

a2

∫ 2d3q

(2π)3
C̄

ϵ
, (2.24)

dρ̄χ

dτ
+ 3Hρ̄χ(1 + wχ) = aQ̄ , (2.25)

where H = a−1 da
dτ is the conformal Hubble expansion rate, wχ = p̄χ/ρ̄χ is the DM equation

of state, and Q̄ is the energy exchange term defined as

Q̄ ≡ 1
a3

∫ 2d3q

(2π)3 C̄ . (2.26)

The last macroscopic DM property relevant for our analysis is the adiabatic sound speed c2
a,χ =

p̄′
χ/ρ̄′

χ. Freeze-in calculations of DM models [7, 8, 52] often entail solving eq. (2.24) or eq. (2.25)
to relate the predicted amount of DM for a given interaction and coupling strength to the
observed relic abundance of DM. However, in this work, we solve for the DM PSD directly.
Predictions for the shape of the nonthermal phase space are only accessible when solving
eq. (2.17) directly. Moreover, the evolution of macroscopic DM fluid properties, such as the
equation of state, can be only be derived from first principles using a PSD approach.

We solve eq. (2.17) in the interval [τini, τfin] for the collision terms in eq. (2.8) and
eq. (2.12), corresponding to our two models of interest. We choose the initial time such
that T̄ (τini) ≫ T̄ (zfi), while the final time τfin is chosen such that Q̄(τfin) = 0 and mχ ≫
pχ(τfin), i.e., well after DM has transitioned to become nonrelativitistic. We use 60 bins
of discrete comoving momenta spanning from qχ = 1.4 × 10−2 MeV to 14 MeV for all DM
masses considered, normalizing the scale factor to unity at T = 1 MeV. We take f̄χ(τini) = 0,
noting that the two classes of models we consider have an attractor solution. In other words,
irrespective of the exact initial condition for the DM PSD, the IR-dominated dynamical
evolution leads to the same final PSD; thus, we are not sensitive to the exact choice of
f̄χ(τini). Figure 1 shows the resulting PSDs for various choices of model parameters, along
with the Fermi-Dirac distribution for comparison. The peak of the PSD for more massive DM
candidates is shifted towards lower momenta with respect to the PSD of lighter ones. DM is
created relativistic, with a typical momentum of order pχ ∼ T̄ (zfi) = T̄fi. This shift in the PSD
peak between heavier and lighter species is approximately

[
g∗(T̄ lighter

fi )/g∗(T̄ heavier
fi )

]1/3
< 1.

In figure 2, we show the evolution of the background comoving number density n̄com
χ =

n̄χa3 as a function of mχ/T̄ . Note that temperature scales with a according to entropy

– 7 –
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f̄ χ
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mχ = 100 MeV

mχ = 1 GeV

Fermi-Dirac

Figure 1. Background PSD of freeze-in DM for the decay (left panel) and 2-to-2 annihilation (right
panel) scenarios, as a function of comoving momentum. The normalization for each PSD is set such
that it integrates to 1, and the scale factor is normalized to be unity at T = 1 MeV. The dashed, black
line represents the Fermi-Dirac distribution.

10−5 10−3 10−1 101

mχ/T̄

10−9

10−7

10−5

10−3

10−1

101

n̄
co

m
χ
/n̄

? χ

gχ = 4.2 × 10−12

gχ = 9.5 × 10−13

gχ = 4.4 × 10−12

QCD PTQCD PT

DECAY

mZ′ = 10 MeV, mχ = 0.1 MeV

mZ′ = 10 MeV, mχ = 2 MeV

mZ′ = 10 GeV, mχ = 2 GeV

10−2 100 102

mχ/T̄

10−5

10−4

10−3

10−2

10−1

n̄
co

m
χ
/n̄

? χ

Qχ = 2.2 × 10−11

Qχ = 3.7 × 10−11

Qχ = 9.1 × 10−11

QCD PTQCD PT

2-TO-2

mχ = 10 MeV

mχ = 100 MeV

mχ = 1 GeV

Figure 2. Background decay (left panel) and freeze-in millicharged DM (right panel) comoving number
density. Numbers are normalized by n̄⋆

χ = 1070 MeV Mpc−3. The kinks appear at the beginning of the
QCD phase transition (PT). Couplings are reported below each corresponding line.

conservation: T̄ −1 ∼ g∗(T̄ )1/3a.3 Therefore, T̄ decreases less slowly as a function of a when g∗
decreases, particularly after the QCD phase transition at temperature T̄ = 200 MeV, and this
effect is noted for the curves in figure 2. We fix the coupling constants gχ and Qχ by matching
the comoving number density abundance n̄com

χ = n̄χa3 such that freeze-in produces all of the
observed dark matter abundance today, requiring n̄com

χ (τfin) = n̄χ(τfin)a(τfin)3 = n̄χ,0.
While f̄(τfin) does not depend on f̄(τini), the required value of the coupling constant

needed to produce the observed DM abundance does depend on whether a fraction of DM

3Since we consider freeze-in processes that complete before neutrino decoupling, g∗ as defined in eq. (2.4)
coincides with g∗S , the effective number of relativistic degrees of freedom associated with entropy density.
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was created during reheating, yielding an initial DM abundance n̄ini
χ . Since the freeze-in DM

abundance scales approximately with the coupling constant squared, we have that Q
(f)
χ /Q

(0)
χ ≈

(1 − Fini)1/2 for the case of 2-to-2 annihilation, where Q
(f)
χ and Q

(0)
χ correspond to the

couplings for which f̄χ ̸= 0 and f̄χ = 0 at initial time τini, respectively. The parameter Fini =
n̄com

χ (τini)/n̄com
χ (τfin) quantifies the initial comoving abundance of DM.

2.3 Perturbative evolution

To solve for the spatial fluctuations of freeze-in DM, we choose to work in synchronous
gauge, in which the line element squared

ds2 = a2(τ)
[
−dτ + (δij + hij)dxidxj

]
(2.27)

contains the metric perturbation

hij(x, τ) =
∫

d3keik·x
[

kikj

k2 h(k, τ) +
(

kikj

k2 − 1
3δij

)
6η(k, τ)

]
. (2.28)

The Boltzmann equation in Fourier space for the perturbed PSD δ̂fχ reads [53]

∂δ̂fχ

∂τ
+ i

ϵ
(k · q)δ̂fχ + df̄χ

d log q

[
dη

dτ
− (k · q)2

2k2q2

(
dh

dτ
+ dη

dτ

)]
= a2

ϵ
δ̂C , (2.29)

where δ̂C is the perturbed collision term in Fourier space determined by

δ̂C
d
(k,p, τ) = 1

2

∫ 3d3pZ′

(2π)32EZ′

∫ 2d3pχ

(2π)32Eχ
δ(4)(pZ′ −pχ−pχ)|MZ′→χχ|2δ̂fZ′(k,pZ′ , τ) ,

(2.30)

δ̂C
ann

(k,p, τ) = 1
2

∫ 2d3pe−

(2π)32Ee−

∫ 2d3pe+

(2π)32Ee+

∫ 2d3pχ

(2π)32Eχ
(2π)4δ(4)(pe− +pe+ −pχ−pχ)

×|Me+e−→χχ̄|2
[
δ̂f e−(k,pe− , τ)f̄e+(pe+ , τ)+f̄e−(pe− , τ)δ̂f e+(k,pe+ , τ)

]
,

(2.31)

for the decay and annihilation freeze-in models, respectively. For a fixed wavenumber k,
eq. (2.29) depends on the conformal time τ , the magnitude of the comoving momenta q, and
k̂ · q̂ = k · q/(kq). We expand the perturbed PSD as a Legendre series:

δ̂fχ(k, p, τ) =
∑

ℓ

(−i)ℓ(2ℓ + 1)δ̂fχ,ℓ(k, p, τ)Pℓ(k̂ · p̂) , (2.32)

where Pℓ are Legendre polynomials. We similarly expand the perturbed collision term. The
resulting Boltzmann hierarchy is

∂δ̂fχ,0
∂τ

= −qk

ϵ
δ̂fχ,1 + 1

6
dh

dτ

df̄χ

d log q
+ a2

ϵ
δ̂C0,

∂δ̂fχ,1
∂τ

= qk

3ϵ

[
δ̂fχ,0 − 2δ̂fχ,2

]
+ a2

ϵ
δ̂C1,

∂δ̂fχ,2
∂τ

= qk

5ϵ

[
2δ̂fχ,1 − 3δ̂fχ,3

]
−
( 1

15
dh

dτ
+ 2

5
dη

dτ

)
df̄χ

d log q
+ a2

ϵ
δ̂C2,

∂δ̂fχ,ℓ

∂τ
= qk

(2ℓ + 1)ϵ
[
ℓδ̂fχ,ℓ−1 − (ℓ + 1)δ̂fχ,ℓ+1

]
+ a2

ϵ
δ̂Cℓ, for ℓ ≥ 3.

(2.33)
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We focus on deriving DM perturbations on the large scales probed by CMB experiments, so
we solve the Boltzmann hierarchy well before horizon crossing (i.e., kτ ≪ 1). In this limit,
δ̂fχ,ℓ≥3 ≃ (kτ)ℓ ≈ 0, which allows us to restrict our analysis to multipoles ℓ = 0, 1, 2.

To calculate the multipole moments of the collision term, we expand the perturbed
PSD in terms of temperature fluctuations δT (x, p̂, τ) in the SM bath. For the decay case,
the PSD for Z ′ is

fZ′(x, p, τ) ≈
(
eE/T̄ − 1

)−1
+ E

T̄ 2
eE/T̄

(eE/T̄ − 1)2
δT (x, p̂, τ) , (2.34)

assuming that rapid elastic processes in the thermal bath suppress any dependence on the
absolute value of the momentum [54–57]. With this simplification we find

δ̂C
d
0 =

g2
χ

(
m2

Z′ + 2m2
χ

)
δ̂T 0

64πpχ

[
Emin/T̄

eEmin/T̄ − 1
− Emax/T̄

eEmax/T̄ − 1
+ log 1 − e−Emax/T̄

1 − e−Emin/T̄

]
,

δ̂C
d
1 =

g2
χ

(
m2

Z′ + 2m2
χ

)
δ̂T 1

64πpχ

∫ Emax

Emin

dE

T̄

E

T̄

eE/T̄

(eE/T̄ − 1)2
2EEχ − m2

Z′

2pχ

√
E2 − m2

Z′

,

(2.35)

where the temperature fluctuation in Fourier space has also been expanded in a Legendre
series as

δ̂T (k, p̂, τ) =
∑

ℓ

(−i)ℓ(2ℓ + 1)δ̂T ℓ(k, τ)Pℓ(k̂ · p̂) . (2.36)

Anisotropic stress vanishes for a species in thermal equilibrium; thus, δ̂T 2 = 0 and δ̂C2 ∝
δ̂T 2 = 0. Therefore, eq. (2.33) together with eq. (2.35) specify the full Boltzmann hierarchy.
In a similar fashion, for millicharged DM we expand the electron/positron PSD as

fe(x, p, τ) ≈ e−E/T̄ + E

T̄ 2 e−E/T̄ δT (x, p̂, τ), (2.37)

to compute the multipole moments of the perturbed collision term and find

δ̂C
ann
0 =

Q2
χe4δ̂T 0

12(2π)3pχ

∫
smin

ds

[
e−Emin/T̄

(
Emin

T̄
+1
)

−e−Emax/T̄
(

Emax

T̄
+1
)]

×

√
1− 4m2

e

s

[
1+ 2m2

e

s

][
1+

2m2
χ

s

]
,

δ̂C
ann
1 =

Q2
χe4δ̂T 1

12(2π)3pχ

∫
smin

ds

√
1− 4m2

e

s

[
1+ 2m2

e

s

][
1+

2m2
χ

s

]

×
[
e−Emin/T̄

(
Emin

T̄
+1− s

2T̄Eχ

)
−e−Emax/T̄

(
Emax

T̄
+1− s

2T̄Eχ

)]
.

(2.38)

We report additional details of the calculation in appendix A.
We obtain the perturbed macroscopic fluid quantities — such as the energy density

fluctuation δρχ, pressure perturbation pχ, velocity divergence θχ, and anisotropic stress σχ —
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by integrating the Boltzmann hierarchy in eqs. (2.33) (see appendix B for details) [53, 58, 59]:

δρχ = δχρ̄χ = a−4
∫ 2d3q

(2π)3 ϵδ̂fχ,0 , (ρ̄χ + p̄χ)θχ = ka−4
∫ 2d3q

(2π)3 qδ̂fχ,1 ,

δpχ = a−4
∫ 2d3q

(2π)3
q2

3ϵ
δ̂fχ,0 , (ρ̄χ + p̄χ)σχ = a−4

∫ 2d3q

(2π)3
2q2

3ϵ
δ̂fχ,2 .

(2.39)

Since DM is created relativistic, the fluid equations during freeze-in can be approximated as

dδρχ

dτ
+3Hδρχ+3H(δρχ+δpχ)+ρ̄χ(1+wχ)

(
θχ+ 1

2
dh

dτ

)
= aδ̂Q0 ,

d[(ρ̄χ+p̄χ)θχ]
dτ

+4Hρ̄χ(1+wχ)θχ−k2δpχ+k2ρ̄χ(1+wχ)σχ = aδ̂Q1 ,

d[(ρ̄χ+p̄χ)σχ]
dτ

+4Hρ̄χ(1+wχ)σχ− 4
15 ρ̄χ(1+wχ)θχ−

( 8
15

dh

dτ
+ 16

5
dη

dτ

)
p̄χ = 0 ,

(2.40)

where the source terms on the right-hand side of the equations represent the energy and
momentum exchange, given by

δ̂Q0 ≡ a−3
∫ 2d3q

(2π)3 δ̂C0 and δ̂Q1 ≡ ka−3
∫ 2d3q

(2π)3
q

ϵ
δ̂C1 , (2.41)

respectively. We obtain δ̂Q0 and δ̂Q1 numerically by directly integrating the collision terms.
We also derive an analytic approximation of δ̂Q0 and δ̂Q1 (see appendix A for details) for
both models of interest in the regime where Z ′ and e+/e− are relativistic:

δ̂Q
d
0 ≈ C0,d

g2
χ(m2

Z′ + 2m2
χ)δ̂T 0

16(2π)3

√
1 −

4m2
χ

m2
Z′

∫
dE
√

E2 − m2
Z′

(
E

T̄

)2 eE/T̄

(eE/T̄ − 1)2
, (2.42)

δ̂Q
d
1 ≈ C1,d

g2
χ(m2

Z′ + 2m2
χ)kδ̂T 1

16(2π)3

√
1 −

4m2
χ

m2
Z′

∫
dE
(
E2 − m2

Z′

)3/2
(

E

T̄

)2 eE/T̄

(eE/T̄ − 1)2
,

(2.43)

δ̂Q
ann
0 ≈ C0,ann

e4Q2
χδ̂T 0

6(2π)5

∫
ds

√
1 −

4m2
χ

s

√
1 − 4m2

e

s

(
1 + 2m2

e

s

)(
1 +

2m2
χ

s

)

×
(

6 + 6
√

s

T̄
+ 3 s

T̄ 2 + s3/2

T̄ 3

)
e−

√
s/T̄ , (2.44)

δ̂Q
ann
1 ≈ C1,ann

e4Q2
χkδ̂T 1

6(2π)5

∫
ds

√
1 −

4m2
χ

s

√
1 − 4m2

e

s

(
1 + 2m2

e

s

)(
1 +

2m2
χ

s

)
3sK2(

√
s/T̄ ) ,

(2.45)

where K2(x) are modified Bessel functions of the second kind, and the temperature multipoles
are related to the overdensity and velocity divergence of the thermal species as δ̂T 0 = T̄ δZ′/4
(δ̂T 0 = T̄ δe/4) and δ̂T 1 = T̄ θZ′/(3k) (δ̂T 1 = T̄ θe/(3k)) for the decay (annihilation) case. To
align with the exact numerical results of integrating the collision terms, we introduce the
calibration constants C0d, C1d ≈ 2 and C0,ann, C1,ann ≈ 1.5. As these calibration constants are
O(1), the analytic approximations are broadly consistent with the numerical result; thus, we
surmise the approximations would be applicable to other models as well.
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2.4 Initial conditions for DM freeze-in perturbations

The last step required to solve the Boltzmann hierarchy is specifying the initial conditions
for the perturbed PSD. The most general solution of the perturbed Boltzmann equation
for a combination of multiple fluids is a linear combination of different modes, which evolve
independently. The observable modes for a two-component system, consisting of the SM bath
and DM, are the adiabatic and DM isocurvature modes. The adiabatic mode corresponds
to the energy density perturbations of the DM being in phase with the energy density
perturbations of the SM bath, such that a local overdensity in the SM bath corresponds to
an overdensity in the DM. The DM isocurvature mode describes the situation in which a
local overdensity in the SM bath corresponds to an underdensity in the DM, such that the
total energy density is homogenous. In principle, there is also a velocity isocurvature mode
for a relativistic species; however, such a mode rapidly decays as DM becomes nonrelativistic.

The classification into adiabatic and isocurvature modes is well-defined on super-horizon
scales (kτ ≪ 1), where they are characterized in terms of a regular (constant or growing in
the limit kτ → 0) or singular (decaying in the limit kτ → 0) modes, when properly accounting
for gauge modes [60]. We focus on the evolution of perturbations on cosmologically relevant
scales k ∈ [10−4, 10−1] Mpc−1, which remain in the super-horizon regime for the entire DM-
formation epoch (i.e., kτini ≪ kτfin ≪ 1). Our aim is to evolve the perturbed DM PSD
throughout freeze-in for both physical modes. To find the initial conditions at the beginning
of freeze-in for the multipoles in each mode, we consider

δ̂fχ,0 = −δχ

4
df̄χ

d log q
, δ̂fχ,1 = − ϵθχ

3qk

df̄χ

d log q
, δ̂fχ,2 = −σχ

2
df̄χ

d log q
. (2.46)

where the attractor solution for δ
ad/iso
χ , θ

ad/iso
χ , σ

ad/iso
χ at initial time τini is found using the

iterative procedure of ref. [61]. In particular, we relate the task of finding initial conditions and
observable modes to the language of eigenvectors and eigenvalues of the system of perturbed
Einstein equations for the metric variables (h, η) and conservation laws for the perturbed
variables describing the radiation (δr, θr) and DM (δχ, θχ, σχ) sectors:

dU

d log(kτ) = A(kτ)U , (2.47)

where U = (η, h, δr, θr, δχ, θχ, σχ) and A is a matrix encoding the evolution equations.
The general solution of eq. (2.47) reads

U(kτ) =
∑

j

Cj(kτ/kτ⋆)λj U (j), (2.48)

where the index j labels the different modes, Cj are constants, λj are the eigenvalues of
the modes, and τ⋆ is a reference time scale in which we assess the relative importance of
different modes. The matrix A is expanded in powers of kτ , i.e., A(kτ) =

∑
j=0 Aj(kτ)j ,

where Aj are constant matrices. Similarly, we also expand the vector U (j) =
∑

i=0 U
(j)
i (kτ )i,

where i labels the order of the expansion in kτ . Thus, λj and U
(j)
0 are the eigenvalues

and associated eigenvectors for A0. The eigenvalue determines whether the mode is regular
(λj ≥ 0) or singular (λj < 0).
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We identify the adiabatic mode as the one with constant η in the limit kτ → 0 (i.e.,
eigenvalue λad = 0). The amplitude of this mode is the curvature perturbation R. For the
DM attractor solution in the adiabatic mode, we find

had = 1
2(kτ)2R, (2.49)

ηad = 1 − 1
36(kτ)2R, (2.50)

δad
r = −1

3(kτ)2R, (2.51)

θad
r = − 1

36k(kτ)3R, (2.52)

δad
χ = −1

3
1 + 2qΓ̃ρr/Γ̄r

1 + 2q
(kτini)2R , (2.53)

θad
χ = −23 + 30qΓρr/Γ̄r + 20q(1 + 2qχ)Γθr/Γ̄r

180(1 + 2q)(3 + 4q) k(kτini)3R , (2.54)

σad
χ = 2

45 + 90q
(kτini)2R , (2.55)

where

q = aQ̄
3H(ρ̄χ + p̄χ) (2.56)

quantifies the efficiency of the energy transfer to DM in an expanding Universe, and

Γ̄r = Q̄/ρ̄r (2.57)
Γρr = δQ0/(ρ̄rδr) (2.58)
Γθr = δQ1/((ρ̄r + p̄r)θr) (2.59)

are the dimensionless background energy exchange, perturbed energy exchange, and perturbed
momentum exchange parameters, respectively. For the purpose of finding an analytical
solution of the system of equations, we assume that q, Γρr/Γ̄r, Γθr/Γ̄r are constant during
freeze-in. The true time-dependence of these quantities is showed in section 3, and is consistent
with the assumption made here. In the limit q → 0, (relativistic) DM energy density redshifts
as a−4; in the limit q → 1, DM maintains a constant energy density. The energy transfer
is negligible in the q → 0 limit, and the initial conditions simplify to δad

χ = −(kτini)2/3,
θad

χ = −23k4τ3
ini/540, and σad

χ = 2(kτini)2/45, consistent with the results expected from a
subdominant, non-interacting, free-streaming species [60, 62].

We identify the DM isocurvature mode as the mode that has constant overdensity δχ

when the energy exchange is negligible (i.e., in the q → 0 limit). In this case, at times
when DM is relativistic, we have λiso = 0, δiso

χ = 1, θiso
χ = k2τini/4, and σiso

χ = (kτini)2/30,
matching the isocurvature initial conditions for a subdominant free-streaming species [60, 62].
However, when the energy transfer is non-negligible, the isocurvature mode has a negative
eigenvalue; hence, the mode is decaying as long as the energy exchange proceeds. In this
scenario, λiso = −4q, which in the annihilation case with qann ≈ 1/4 simplifies to λiso ≈ −1

– 13 –



J
C
A
P
1
1
(
2
0
2
3
)
0
2
4

such that the DM isocurvature mode reads

hiso = −Γρr

Γ̄r
ϖ2

χkτiniSχr (2.60)

ηiso = −3Γθr + Γρr

12Γ̄r
ϖ2

χkτiniSχr (2.61)

δiso
r = −ϖχSχr (2.62)

θiso
r = −(ϖ2

χ/4)Sχr (2.63)
δiso

χ = (kτini)−1Sχ,r (2.64)
θiso

χ = (k/4)Sχr (2.65)

σiso
χ =

( 1
30 − Γθr + Γρr

10Γ̄r
ϖ2

χ

)
kτiniSχr , (2.66)

where ϖχ = H0Ωχ0/(
√

Ωr0k), and H0, Ωχ0 and Ωr0 are the present-day Hubble expansion
rate, DM relic abundance, and radiation relic abundance, respectively. The amplitude of the
isocurvature perturbation is Sχr. In the decay case we have qd ≈ 3/4 and

hiso = −1
5

(
1 + 2

3
Γρr

Γ̄r

)
ϖχ(kτini)3Sχr (2.67)

ηiso = −ϖχ

90 (kτini)2Sχr (2.68)

δiso
r = −ϖχSχr (2.69)

θiso
r = −(ϖ2

χ/4)Sχr (2.70)
δiso

χ = (kτini)−3Sχr (2.71)
θiso

χ = (k/4)(kτini)−2Sχr (2.72)

σiso
χ = (kτini)−2

30 kτiniSχr , (2.73)

where ϖχ = H0Ωχ0/(
√

Ωr0k3τ2
fi), where τfi is the conformal time at the end of the freeze-in.

Given the initial conditions for the DM PSD and the evolution of the other perturbed
variables, we can now solve the Boltzmann hierarchy in eq. (2.33) for each individual mode.
We show in figure 3 the ℓ = 0, 1, 2 multipoles of the adiabatic and DM isocurvature perturbed
PSD for the decay and annihilation freeze-in cases at the end of the freeze-in process.
The qualitative difference between decay and annihilation case is the shape of δ̂fχ,0: the
isocurvature mode of this PSD multipole does not evolve in time and thus remains imprinted
in the features of the background PSD (cfr. eq. (2.46)) at τini. In the decay case, at the initial
time, the background PSD at small momenta mχa(τini) ≲ qχ ≲ 1 scales as f̄χ ≈ −q−2

χ log qχ,
and thus q2

χδ̂fχ,0 ∝ −q2
χdf̄χ/d log qχ ≈ − log qχ, explaining the growth in figure 3. For

momenta qχ ≲ mχa(τini), the perturbed PSD tend to zero. On the other hand, in the
annihilation case the growth of the background PSD at low momenta is less steep; hence,
we recover a more familiar shape for δ̂fχ,0. As with the background PSD, the different
multipoles (and hence the total perturbed PSD) are peaked at lower momenta with respect
to the perturbed Fermi-Dirac distribution.
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Figure 3. Multipoles of the perturbed PSD of freeze-in DM for the decay (left panel) and 2-to-2
annihilation (right panel) scenarios as a function of comoving momentum. We show the adiabatic and
DM isocurvature modes for the decay case with mZ′ = 10 GeV, mχ = 4 GeV and the annihilation
case with mχ = 10 MeV. The normalization for each PSD is set such that it integrates to 1, and the
scale factor is normalized to be unity at T = 1 MeV. The dashed, black line represents the perturbed
Fermi-Dirac (FD) distribution.

3 Evolution of primordial perturbations

3.1 Kodama-Sasaki formalism

We employ the formalism developed by Bardeen [63] and extended by Kodama and Sasaki
(KS) [64, 65] to study the evolution of the amplitudes for the adiabatic and isocurvature
perturbations in our two-component universe, consisting of freeze-in DM and the SM bath.
In this framework the scalar metric perturbations are given in terms of four functions of
conformal time and comoving coordinates (A, B, HL, HT ), where the metric is

ds2 = a2(τ)
{

−(1 + 2A)dτ 2 − 2 ∂B

∂xi
dxidτ +

[
(1 + 2HL)δij + 2 ∂2HT

∂xi∂xj

]
dxidxj

}
. (3.1)

The KS formalism consists of four differential equations quantifying the evolution of four gauge
invariant variables: the total density perturbation ∆, the total velocity V , the isocurvature
perturbation amplitude Sχr, and the relative velocity Vχr. Our goal is to solve the KS equations
throughout the DM freeze-in process in order to track the evolution of amplitude of the
isocurvature mode Sχr. The gauge-invariant KS variables in our two fluid system are defined as

ρ̄∆ = ρ̄χ∆χ + ρ̄r∆r (3.2)
(ρ̄ + p̄)V = (ρ̄χ + p̄χ)Vχ + (ρ̄r + p̄r)Vr (3.3)

Sχr = ∆χ

1 + wχ
− ∆r

1 + wr
(3.4)

Vχr = Vχ − Vr , (3.5)
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where

∆χ = δχ + 3(1 + wχ)(1 − qχ)H
k

(θ/k − B) (3.6)

∆r = δr + 3(1 + wr)(1 − qr)
H
k

(θ/k − B) (3.7)

Vα = θα

k
− 1

k

dHT

dτ
(3.8)

(ρ̄ + p̄)θ = (ρ̄χ + p̄χ)θχ + (ρ̄r + p̄r)θr . (3.9)

The curvature perturbation R is related to the total density perturbation ∆ = −(2/3)(kτ)2R.
During freeze-in the Universe is radiation dominated such that qr ≪ qχ; hence, we neglect
qr when solving the KS equations. Furthermore, the radiation sector has equation of
state wr = 1/3 and adiabatic sound speed c2

a,r = 1/3; therefore, since we have ρ̄χ ≪ ρ̄r, the
total equation of state and adiabatic sound speed of the multi-fluid system is also w ≈ c2

a ≈ 1/3.
Performing a change of variables from τ to x ≡ kτ , the KS system of four differential
equations simplifies to

d∆
dx

=
∆ − 2

3Π
x

− 4
3V (3.10)

dV

dx
= −V

x
−
[ 3

2x2 − 1
4

]
∆ + 1

4(Γint + Γrel) −
[ 1

x2 + 1
6

]
Π (3.11)

dSχr
dx

= − 3
x

(1 + c2
a,χ)qχSχr − Vχr − 3

x

wχ

1 + wχ
Γχ + 3

x
Eχr (3.12)

− 3
4x

[
qχ + 3(1 + c2

a,χ)qχ

]
∆ − 3qχ

4 x

[
Γint + Γrel − 2

3Π
]

dVχr
dx

= − 3
x

[1
3 − c2

a,χ + (1 + c2
a,χ)qχ

]
Vχr +

(
c2

a,χ − 1
3

)3∆
4 + 1

x
Fχr (3.13)

+
[

wχ

1 + wχ
Γχ − 2

3
wχ

1 + wχ
Πχ

]
+ c2

a,χSχr , (3.14)

where we define the dimensionless perturbed energy and velocity exchange parameters in
the KS formalism in terms of the integrated background and perturbed collision terms we
derive in sections 2.2 such that

Eχr = Eχ − Er ≈ Eχ = qχ

(
δQ0

Q̄
− 1

HQ̄
dQ̄
dτ

H(θ/k − B)
k

)
, (3.15)

Fχr = Fχ − Fr ≈ Fχ = δQ1 − Q̄θ

aHk(ρ̄χ + p̄χ) . (3.16)

Additionally, the intrinsic non-adiabatic pressure perturbation Γint, the relative entropy
perturbation Γrel, and the anisotropic stress Π are

p̄Γ = p̄Γint + p̄Γrel , (3.17)

p̄Π = p̄χΠχ + p̄rΠr ≈ 3
2(ρ̄χ + p̄χ)σχ , (3.18)

p̄Γint = p̄χΓχ + p̄rΓr ≈
(
δpχ − c2

a,χδρχ

)
, (3.19)

p̄Γrel =
(
c2

a,χ − c2
a,r

)
(ρ̄χ + p̄χ)

[
Sχr + qχ

∆
1 + w

]
, (3.20)
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Figure 4. Evolution of the equation of state wχ (solid lines) and adiabatic sound speed c2
a,χ (dashed

lines) for the decay (left panel) and 2-to-2 annihilation (right panel) freeze-in scenarios.

respectively. The anisotropic stress Πr and internal pressure perturbation Γr of the thermal
radiation are negligible due to the fast interactions in the SM bath, which maintain equilibrium
and suppress deviations from a perfect fluid. Therefore, calculating the DM fluid macroscopic
properties is sufficient to quantify the global properties in equations (3.17)–(3.20).

Using the solutions of the perturbed and background evolution equations for the DM
PSD, we calculate the evolution of the quantities in eqs. (3.17)–(3.20), the DM equation
of state wχ, and the adiabatic sound speed c2

a,χ. In figure 4, we show the evolution of wχ

and c2
a,χ as a function of conformal time τ for various DM masses for freeze-in through decay

and annihilation. As expected, the DM is relativistic at early times with an equation of state
of wχ = 1/3, and it eventually transitions to cold DM with wχ(τfin) = 0. The adiabatic sound
speed tracks the evolution of the equation of state but with a small time delay.

In figure 5 we show the evolution of DM internal pressure and anisotropic stress fluid
properties for both the adiabatic and the isocurvature mode. We observe that all these fluid
properties are suppressed during the DM formation epoch by powers of kτ . In particular, we
find that during DM formation, the non-adiabatic pressure perturbations evolve as |Γad

χ |/R ∝
(kτ)4 and |Γiso

χ |/(Sχr(τ/τfi)−4qχ) ∝ (kτ)2, which are compatible with the theoretical scaling
with time that can be estimated as

Γad,iso
χ =

∫ 2d3q

(2π)3

(
q2

3ϵ
− c2

a,χϵ

)
δ̂f

ad,iso
χ,0 ≈ −

∫
d3q

q

3
m2

χa2

q2 δ̂f
ad,iso
χ,0 , (3.21)

where we keep only the leading order in expanding for qχ ≫ mχa. Therefore the expected
scaling with time of Γ is given by the scaling of δχ times the additional factor a2 ∝ τ2. On
the other hand, during freeze-in, when Πχ ≈ σχ, the anisotropic stress perturbation evolves
as Πad

χ /R ∝ (kτ)2 and |Πiso
χ |/(Sχr(τ/τfi)−4qχ) ∝ (kτ)2 as suggested by the mode evolution

described in section 2.4. These behaviours are common to both models. The relative entropy
perturbation Γrel vanishes during freeze-in, since c2

a,χ = c2
a,r. Note that all these properties

are gauge-invariant by construction; hence, they can be computed in any gauge of choice
when solving the perturbed PSD Boltzmann hierarchy.
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Figure 5. Evolution of the DM non-adiabatic pressure Γχ and anisotropic stress Πχ perturbations
for the DM adiabatic and isocurvature modes for k = 10−2 Mpc−1. Curves are normalized by the total
amplitude of their respective mode to represent the intrinsic value. We set mZ′ = 10 GeV and mχ =
4 GeV for the decay case (left panel) and mχ = 1 GeV for the 2-to-2 annihilation case (right panel).

We turn our attention to the non-zero energy exchange term Eχr. For the freeze-in
models we consider, the energy transfer term is a function of temperature of the thermal bath
such that Q = Qχ(T̄ ), where T̄ is determined by the radiation energy density ρ̄r = 30

π2 g∗(T̄ )T̄ 4.
The relative energy exchange term appearing in eq. (3.15) can be rewritten as

δQ0

Q̄
= d log Qχ

d log ρ̄r
δr = d log Qχ

Hdτ

(
d log ρ̄r
Hdτ

)−1[
∆r + d log ρ̄r

Hdτ

H(θ/k − B)
k

]
. (3.22)

Therefore, eq. (3.15) simplifies to

Eχr = (1 + wr)qχ
d log Qχ

d log ρ̄r

[ ∆
1 + w

− ρ̄χ + p̄χ

ρ̄ + p̄
Sχr

]
. (3.23)

In the case zero initial DM isocurvature Sχr = 0, consistent with single field inflation, the
energy exchange term vanishes in the large scale limit x → 0 (since ∆ ∼ x2) and thus
does not source isocurvature.

In figure 6 we show the evolution of qd
χ, qann

χ , and Γρr/Γ̄r, Γθr/Γ̄r defined in eqs. (2.56)–
(2.59) for a selection of DM masses in our two benchmark models. Regarding the parameters q
for decay and annihilation, we observe that their values do not vary significantly during
freeze-in, except during the QCD phase transition at τ ≃ 108 s for reasons discussed in
section 2.2. The initial steep phase of the curve corresponds to DM rapidly approaching its
background attractor solution, since we assume that at initial time f̄χ(τini) = 0. Conversely,
if a sizeable fraction of DM is already present at initial time, we would have observed qχ → 0
also at early times. On the other hand, we observe that our treatment of the Γρr/Γ̄r, Γθr/Γ̄r
coefficients in section 2.4 as effective constants is well-justified in the regime where T̄ ≫ mZ′

and T̄ ≫ mχ, me. When the temperature drops closer to the mass scales of the particles
involved in freeze-in, the evolution of these quantities is affected by the choice of mass
parameters. However, note that these differences appear only during the final stages of
freeze-in, when energy and momentum transfer start becoming inefficient.
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Figure 6. Top panels: relative background energy exchange parameter q for the decay (left panel)
and 2-to-2 annhilation (right panel) freeze-in models. Dashed lines corresponds to the values qd = 3/4
and qann = 1/4 which we used for analytical estimate of sections 2.4 and 3.2. The kinks correspond
to the beginning of the QCD phase transition (PT). Bottom panels: perturbed energy Γρr/Γ̄r (solid
lines) and momentum Γθr/Γ̄r (dashed lines) exchange coefficients.

3.2 Dark matter freeze-in with initial isocurvature

Generically, in a single-field slow-roll model of inflation, only the adiabatic mode is excited.
The perturbation in the inflaton field ϕ can be expressed in terms of a time shift δt of the
background scalar field such that [66]

δϕ = dϕ

dt
δt . (3.24)

After inflation, perturbations in the spatial distribution of different species are connected by

δt = δρχ

dρ̄χ

dτ

= δρr
dρ̄r
dτ

, (3.25)

which implies Sχr ≈ 0 due to the energy density continuity equation. Any contributions to
Sχr from the coupled evolution with R that vanish in the kτ → 0 limit are not fundamental
excitations of the isocurvature mode and thus are not observable [64].

However, in the presence of multiple fields during the inflationary era, the DM isocurvature
mode can be excited. For example, if a second subdominant scalar field is present during
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inflation, its fluctuations have non-zero power spectrum (e.g., see refs. [67–73]). We consider a
scenario in which a fraction of DM is present at the end inflation with an excited isocurvature
mode with amplitude Sini

χr > 0. The remaining fraction of DM is produced post inflation via
freeze-in. Note that we still assume there is a single species of DM particle.

To analyze this scenario, we solve the KS equations with the initial conditions Sini
χr = R

and initial fraction of DM abundance Fini (see section 2.2). In the context of reheating,
efficient energy exchange has been shown to lead to an exponential decay of isocurvature [46].
This scenario would apply, for example, if DM were a WIMP in thermal equilibrium with
the SM bath in the early Universe. Any initial DM isocurvature would be erased due to
DM becoming part of the thermal bath.

However, in the freeze-in scenario, the interactions are not efficient enough to erase
the initial isocurvature, as shown in figure 7. We find that the isocurvature perturbation,
despite being diluted, could still have an impact on late time observables. The evolution of
the energy and momentum source terms Eχr and Fχr depends not only on the properties of
DM, but also on the relative size of the primordial curvature and isocurvature perturbations.
For our benchmark models we have that

Eχr ≃ −4
3qχ

Γρr

Γ̄r

[3
4∆ − ρ̄χ

ρ̄r
Sχr

]
∝
{

x2R decay
xSχr ann.

,

Fχr ≃ 3qχ

[(4Γθr

3Γ̄
− 1

)
V − 4Γθr

3Γ̄
ρ̄χ + p̄χ

ρ̄ + p̄
Vχr

]
∝ xR decay, ann.,

(3.26)

at leading order during radiation domination. Both source terms are suppressed on super-
horizon scales. Since ρ̄d

χ/ρ̄r ∝ x3 and ρ̄ann
χ /ρ̄r ∝ x, the term proportional to ∆ dominates in

the decay case, while the isocurvature term dominates in the annihilation scenario, assuming
that curvature and isocurvature perturbations have comparable amplitudes. At leading order
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the evolution of isocurvature is governed by

dSχr
dx

≈ − 3
x

(1 + c2
a,χ)qχSχr . (3.27)

Thus, we have Sχr ∝ τ−3 for the decay case with qd
χ ≈ 0.75 and Sχr ∝ τ−1 for the annihilation

case with qann
χ ≈ 0.25. A rescaling of the initial value of the isocurvature perturbation Sini

χr
simply corresponds to vertical shift of the curves. In conclusion, the resulting isocurvature,
which is seeded during inflation, does not vanish on large scales and is subject to constraints
from the CMB. The degree of statistical correlation between the isocurvature and adiabatic
fluctuation is not affected by freeze-in, since in this scenario, the two perturbations do not mix.

4 Current and future constraints on isocurvature

Over the past two decades, CMB experiments have favored cosmological initial conditions
that are adiabatic and very nearly Gaussian [74–78]. The Planck collaboration constrains
the primordial isocurvature fraction parameter βiso and the degree of correlation δ between
the curvature and isocurvature perturbations, which are defined as [76–78]

βiso(k) = PSS(k)
PRR(k) + PSS(k) , cos δ = PRS√

PRR + PSS
. (4.1)

We forecast the reach of future CMB measurements with Simons Observatory (SO) [79]
and CMB-S4 [80] for three classes of a 1-parameter extension of the ΛCDM model: totally
correlated (cos δ = 1), anti-correlated (cos δ = −1), and uncorrelated (cos δ = 0) DM
isocurvature perturbations. We fix the spectral tilt of isocurvature power spectrum to
be nII = 1 (uncorrelated scenario) or nII = nRR (totally correlated/anti-correlated scenarios),
making the βiso parameter fundamentally scale-independent. If the spectral tilt of the
isocurvature power spectrum is left free to vary, data prefer nII ≳ 1, which corresponds
to a weaker bound on βiso [76–78].

Using the Boltzmann code CLASS [81], we compute the minimum level of isocurvature
perturbations detectable by next-generation experiments by through their impact on the
temperature and polarization anisotropies of the CMB. We perform a Fisher matrix analysis
to obtain estimates of the constraining power. Both SO and CMB-S4 are located in the
Southern Hemisphere, with fractional sky coverage of fsky = 0.4. For SO we consider the
goal configuration, characterized by a white instrumental noise for temperature of N T T =
6.3 µK−arcmin. For CMB-S4 we assume N T T = 1 µK−arcmin. The expected spatial
resolution for SO is θFWHM = 1.4 arcmin, and we use the conservative value of θFWHM =
3 arcmin for CMB-S4. For both experiments, the polarization noise is taken to be N EE =√

2N T T . The range of multipoles of interest is ℓ = [30, 3000] for SO and ℓT = [30, 3000] and
ℓE = [30, 5000] for temperature and polarization for CMB-S4, respectively.

Existing constraints for βiso and the results of our forecast are reported in table 1.
Improvements over Planck for upcoming experiments are driven mainly by improvements in
the polarization noise and provide up to one order of magnitude tighter upper bounds on the
amplitude of the isocurvature power spectrum. Given the time evolution of the isocurvature
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CMB probe Planck (TEL) SO (TE) SO (TEL) CMB-S4 (TE) CMB-S4 (TEL)

cosδ = 1
βiso 9.5×10−4 1.5×10−4 1.4×10−4 1.4×10−4 6.7×10−5

Fd
ini 9×10−3 3×10−3 3×10−3 3×10−3 2×10−3

Fann
ini 4×10−2 2×10−2 2×10−2 2×10−2 1.5×10−2

cosδ = 0
βiso 3.8×10−2 1.7×10−2 1.7×10−2 1.5×10−2 8.8×10−3

Fd
ini 0.12 0.07 0.07 0.06 0.04

Fann
ini 0.22 0.15 0.15 0.14 0.11

cosδ = −1
βiso 10.7×10−4 1.5×10−4 1.4×10−5 1.4×10−4 7.1×10−5

Fd
ini 9×10−3 3×10−3 3×10−3 3×10−3 2×10−3

Fann
ini 4×10−2 2×10−2 2×10−2 2×10−2 1.5×10−2

Table 1. Current upper limits and forecasted sensitivity on βiso for totally correlated (cosδ = 1),
uncorrelated (cosδ = 0), and totally anti-correlated (cosδ = −1) DM isocurvature perturbations. We
consider temperature and polarization anisotropies alone (TE), as well as including lensing (TEL).
Values of βiso are quoted at the 95%CL both for Planck [78] and for the forecasted values upper
bounds. We also include derived upper bounds and forecasted sensitivity on the initial DM abundance
for decay Fd

ini and annihilation Fann
ini DM freeze-in. In the decay case, we consider mZ′ = 10GeV

and mχ = 2GeV. In the 2-to-2 annihilation case, we set mχ = 100MeV.

perturbation in eq. (3.27), we can recast the final value of the isocurvature perturbation
in terms of the initial DM abundance as

Sfin
χr = AFini

(
Sini

χr
R

)
R, (4.2)

where A is numerical coefficient determined by the full evolution of the KS equations.
Therefore, constraints on βiso can also be recast in terms of constraints of initial DM
abundance as

Fini ≲
1

A(Sini
χr /R)

βiso
1 − βiso

. (4.3)

We also report upper bounds on the initial DM abundance in table 1 for the mZ′ = 10 GeV,
mχ = 2 GeV decay case and the mχ = 100 MeV annihilation scenario. For our choice
of Sini

χr /R = 1, we find upper bounds on the primordial DM abundance that are Fini ≲ O(10−2)
at 95% CL for totally correlated/anti-correlated isocurvature perturbations and Fini ≲
O(10−1) at 95% CL for uncorrelated ones, when considering temperature, polarization, and
lensing anisotropies. Upper bounds for the decay case are a factor O(2 − 5) tighter than
the annihilation scenario, and they are only slightly sensitive to the exact values of mZ′

and mχ. We find that the upper bounds from SO and CMB-S4 are very similar and are
typically a factor few better than those derived from Planck. Moreover, upper bounds on the
primordial DM abundance for other points of the parameter space differ by less than a factor
2 from the reported values. If the initial isocurvature-to-curvature ratio is different from
1, upper bounds on fini scale according to eq. (4.3); for instance, if Sini

χr /R = 10−1, upper
bounds are ten times weaker, regardless of the degree of correlation between isocurvature
and curvature perturbations.
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In this work we assumed for simplicity that primordial isocurvature has the same scale
dependence of the curvature perturbation. If they possess different scale dependencies, the
constraints are model-dependent; however, we speculate that our results remain valid for
nR ∼ nSχr assuming that curvature and isocurvature power spectra have the same pivot
scale, since the constraints mainly come from low multipoles, due to the high-ℓ suppression of
temperature fluctuations in the isocurvature mode [82, 83]. On the other hand, as suggested
by the Planck analysis [76–78], we expect constraints to be weaker (stronger) for blue (red)
tilted isocurvature primordial power spectra.

5 Conclusions

In this work we study the cosmological implications of a DM sector generated through a
freeze-in mechanism, a compelling alternative to the traditional WIMP scenario. In particular
we analyze under which conditions a primordial isocurvature perturbation of two classes of
freeze-in models would survive the formation of the DM sector. Because freeze-in DM never
achieves thermal equilibrium, an initial isocurvature is never exponentially washed out.

We develop a theoretical framework that allows for the rigorous determination of the
background and perturbed macroscopic properties of freeze-in DM, produced through direct
decay and 2-to-2 annihilation, starting from the DM PSD. In particular, we compute for the
first time the perturbed PSD from first principles. We note that this approach does not need
to assume how macroscopic properties evolve in time, as in the standard approach where
continuity equations are solved to determine the DM properties. Instead, these properties
are fully derived by the evolved PSD and its fluctuations, which are then used to determine
the isocurvature perturbation evolution.

Depending on the initial amount of DM generated at the end of inflation and on the
amount of primordial isocurvature, we calculate what the final residual isocurvature is at the
end of the DM creation epoch. We forecast the expected sensitivities of next-generation CMB
experiments, SO and CMB-S4, in detecting the effects of DM isocurvature on temperature,
polarization, and lensing two-point statistics. We consider different degrees of correlation
between the curvature and isocurvature perturbations, showing how future experiments can
constraint the presence of an initial freeze-in DM abundance at the percent/subpercent level
for a high degree of statistical correlation between curvature and isocurvature perturbations.

Our main findings are that no isocurvature is generated by DM freeze-in. We also find
that fluid properties such as shear, pressure, and entropy perturbations are suppressed at
large scales, and we quantify the degree of suppression for both the adiabatic and isocurvature
modes. In the presence of an initial isocurvature, freeze-in dynamics suppress isocurvature
inefficiently, compared to the exponential suppression of thermal DM, which allows an initial
isocurvature perturbation to persist. The degree of suppression is well-approximated by
background quantities only, with perturbed quantities giving higher order corrections that
are suppressed on large scales.

We present a road map that is applicable to a wide class of DM models. Beyond studying
the impact of DM formation on isocurvature, our treatment of analyzing fluctuations from
first principles may also be relevant for studying a dark sector that feebly couples to photons,
electrons, or neutrinos during the formation of the CMB. If DM isocurvature is ever detected,
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the methodology introduced here can serve as an useful tool to connect the dynamics of DM
formation with inflationary physics, a rather uncharted territory.
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A Perturbed collision terms

In this appendix we compute the perturbed collision term and its ℓ-th moments appearing
in the Boltzmann hierarchy. We also present an analytical approximation of the perturbed
energy and momentum exchange terms, appearing in eq. (2.40). We perform expansions
in terms of Legendre polynomials

Pℓ(x̂ · ŷ) = 4π

2ℓ + 1

ℓ∑
m=−ℓ

Yℓm(x̂)Y ∗
ℓm(ŷ), (A.1)

where Yℓm are spherical harmonics, which form an orthonormal basis, satisfying∫
dΩn̂Yℓm(n̂)Yℓ′m′(n̂) = δK

ℓℓ′δK
mm′ , (A.2)

where δK are Kronecker delta functions. Due to the orthonormality of the spherical harmonics,
we have∫

dΩk̂

4π
Pℓ(k̂ · p̂1)Pℓ′(k̂ · p̂2) = 4π

(2ℓ + 1)(2ℓ′ + 1)
∑
mm′

Y ∗
ℓm(p̂1)Yℓ′m′(p̂2)

∫
dΩk̂Yℓm(k̂)Y ∗

ℓ′m′(k̂)

= δK
ℓℓ′

2ℓ + 1Pℓ(p̂1 · p̂2).
(A.3)

We normalize the Legendre polynomials such that P0(x) = 1 and P1(x) = x.

A.1 Direct decay

For the case of freeze-in via decay of a heavy parent particle, the perturbed collision term is

δ̂C(k, pχ, τ)

= 1
2

∫ 3d3pZ′

(2π)32EZ′

∫ 2d3p3
(2π)32E3

(2π)4δ(4)(pZ′ − pχ − pχ)|M|2δ̂fZ′(τ, k, pZ′)

=
g2

χ

(
m2

Z′ + 2m2
χ

)
32(2π)2

∫
d3pZ′

EZ′Eχ(|pZ′ − pχ|)δ(1)
(
EZ′ − Eχ − Eχ(|pZ′ − pχ|)

)
δ̂fZ′(τ, k, pZ′)

=
g2

χ

(
m2

Z′ + 2m2
χ

)
64πpχ

∫
d cos θZ′dpZ′

pZ′

EZ′
δ(1)(cos θZ′ − cos θ⋆)δ̂fZ′(τ, k, pZ′) , (A.4)
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where cos θ⋆ = (2EZ′Eχ − m2
Z′)/(2pZ′pχ) and we choose a coordinate system such that

pZ′ = pZ′(0, sin θZ′ , cos θZ′), pχ = pχ(0, 0, 1) . (A.5)

Under our δ̂T ℓ(k, p, τ) ≈ δ̂T ℓ(k, τ) approximation, the ℓ-th moment of the collision term
is given by

δ̂Cℓ = iℓ

∫
dΩk̂

4π
Pℓ(k̂ · p̂χ)δ̂C(τ, k, pχ)

=
g2

χ

(
m2

Z′ + 2m2
χ

)
64πpχ

∫
d cos θZ′dpZ′

pZ′

EZ′
δ(1)(cos θZ′ − cos θ⋆)δ̂f ℓ(τ, k, pZ′)Pℓ(p̂Z′ · p̂χ)

=
g2

χ

(
m2

Z′ + 2m2
χ

)
64πpχ

δ̂T ℓ

∫
d cos θZ′dpZ′

pZ′

EZ′
δ(1)(cos θZ′ − cos θ⋆)EZ′

T̄ 2
eEZ′ /T̄

(eEZ′ /T̄ − 1)2
Pℓ(p̂Z′ · p̂χ) .

(A.6)
Therefore,

δ̂C0 =
g2

χ

(
m2

Z′ + 2m2
χ

)
δ̂T 0

64πpχ

∫
dEZ′

EZ′

T̄ 2
eEZ′ /T̄

(eEZ′ /T̄ − 1)2

∫
d cos θZ′δ(1)(cos θZ′ − cos θ⋆)

=
g2

χ

(
m2

Z′ + 2m2
χ

)
δ̂T 0

64πpχ

∫ Emax

Emin

dE

T̄

E

T̄

eE/T̄

(eE/T̄ − 1)2
, (A.7)

=
g2

χ

(
m2

Z′ + 2m2
χ

)
δ̂T 0

64πpχ

[
Emin/T̄

eEmin/T̄ − 1
− Emax/T̄

eEmax/T̄ − 1
+ log 1 − e−Emax/T̄

1 − e−Emin/T̄

]

δ̂C1 =
g2

χ

(
m2

Z′ + 2m2
χ

)
δ̂T 1

64πpχ

∫
dEZ′

EZ′

T̄ 2
eEZ′ /T̄

(eEZ′ /T̄ − 1)2

∫
d cos θZ′δ(1)(cos θZ′ − cos θ⋆) cos θZ′

=
g2

χ

(
m2

Z′ + 2m2
χ

)
δ̂T 1

64πpχ

∫ Emax

Emin

dE

T̄

E

T̄

eE/T̄

(eE/T̄ − 1)2
2EEχ − m2

Z′

2pχ

√
E2 − m2

Z′

. (A.8)

At the level of DM macroscopic properties, the perturbed energy exchange term, cor-
responding to the ℓ = 0 multipole, is

δ̂Q0 = δ̂T 0

∫ 3d3pZ′

(2π)32EZ′

2d3pχ

(2π)32Eχ

2d3pχ

(2π)32Eχ
Eχ(2π)4δ(4)(pZ′ −pχ−pχ)|M|2 EZ′

T̄ 2
eEZ′ /T̄

(eEZ′ /T̄ −1)2

≈
g2

χ(m2
Z′ +2m2

χ)δ̂T 0

16(2π)3

√
1−

4m2
χ

m2
Z′

∫
dE
√

E2−m2
Z′

(
E

T̄

)2 eE/T̄

(eE/T̄ −1)2
, (A.9)

where we take Eχ ≈ EZ′/2 and use

∫ 2d3pχ

(2π)32Eχ

2d3pχ

(2π)32Eχ
δ(4)(pZ′ − pχ − pχ) = 1

2π

√
1 −

4m2
χ

m2
Z′

. (A.10)
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For the ℓ = 1 multipole, we have

δ̂Q1 = kδ̂T 1

∫ 3d3pZ′

(2π)32EZ′

2d3pχ

(2π)32Eχ

2d3pχ

(2π)32Eχ
pχ(2π)4δ(4)(pZ′ − pχ − pχ)|M|2

× EZ′

T̄ 2
eEZ′ /T̄

(eEZ′ /T̄ − 1)2
2EZ′Eχ − m2

Z′

2pZ′pχ

≈
g2

χ(m2
Z′ + 2m2

χ)kδ̂T 1

16(2π)3

√
1 −

4m2
χ

m2
Z′

∫
dE
(
E2 − m2

Z′

)3/2
(

E

T̄

)2 eE/T̄

(eE/T̄ − 1)2
,

(A.11)

where we also assume pχ ≈ Eχ and pZ′ ≈ EZ′ .

A.2 2-to-2 annihilation

For the case of freeze-in via 2-to-2 annihilation of electron-positron pairs into millicharged
DM particles, the perturbed collision term is

δ̂C(k, pχ, τ) = 1
2

∫ 2d3pe−

(2π)32Ee−

2d3pe+

(2π)32Ee+

2d3pχ

(2π)32Eχ
(2π)4δ(4)(pe− + pe+ − pχ − pχ)|M|2

×
[
δ̂f e(τ, k, pe−)f̄e(τ, pe+) + f̄e(τ, pe−)δ̂f e(τ, k, pe+)

]
.

(A.12)
The ℓ-th moment of the perturbed collision term is thus

δ̂Cℓ = δ̂T ℓ

2

∫ 2d3pe−

(2π)32Ee−

2d3pe+

(2π)32Ee+

2d3pχ

(2π)32Eχ
(2π)4δ(4)(pe− + pe+ − pχ − pχ)|M|2

×
Ee−Pℓ(p̂e− · p̂χ) + Ee+Pℓ(p̂e+ · p̂χ)

T̄ 2 e−(Ee− +Ee+ )/T̄ .

(A.13)

Therefore,

δ̂C0 =
Q2

χe4δ̂T 0

12(2π)3pχ

∫
smin

ds

[
e−Emin/T̄

(
Emin

T̄
+ 1

)
− e−Emax/T̄

(
Emax

T̄
+ 1

)]

×

√
1 − 4m2

e

s

[
1 + 2m2

e

s

][
1 +

2m2
χ

s

]
,

δ̂C1 =
Q2

χe4δ̂T 1

12(2π)3pχ

∫
smin

ds

[
e−Emin/T̄

(
Emin

T̄
+ 1 − s

2T̄Eχ

)
− e−Emax/T̄

(
Emax

T̄
+ 1 − s

2T̄Eχ

)]

×

√
1 − 4m2

e

s

[
1 + 2m2

e

s

][
1 +

2m2
χ

s

]
, (A.14)

where for δ̂C1 we assume Ee− ≈ Ee+ ≈ pe− ≈ pe+ ≈ T̄ and use u = 2m2
e + 2m2

χ − t − s

to approximate

E1 cos θ1 + E2 cos θ2

T̄
≈ cos θ1 + cos θ2

=
t − m2

1 − m2
3 + 2Ee−Eχ

2pe−pχ
+

u − m2
2 − m2

3 + 2Ee+Eχ

2pe+pχ

≈
2(Ee− + Ee+)Eχ − s

2T̄ pχ
.

(A.15)
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For the perturbed energy and momentum exchange terms, we have

δ̂Q0 = δ̂T 0

∫
d3qee

2Eee
dsee × I × 1

2

(
Eee

T̄

)2
e− Eee

T̄ × J

≈
e4Q2

χδ̂T 0

6(2π)5

∫
dsee

√
1 −

4m2
χ

see

√
1 − 4m2

e

see

(
1 + 2m2

e

see

)(
1 +

2m2
χ

see

)

×
∫

dEee

√
E2

ee − see

(
Eee

T̄

)2
e− Eee

T̄

≈
e4Q2

χδ̂T 0

6(2π)5

∫
ds

√
1 −

4m2
χ

s

√
1 − 4m2

e

s

(
1 + 2m2

e

s

)(
1 +

2m2
χ

s

)

×
(

6 + 6
√

s

T̄
+ 3 s

T̄ 2 + s3/2

T̄ 3

)
e−

√
s/T̄

(A.16)

and

δ̂Q1 ≈
e4Q2

χkδ̂T 1

6(2π)5

∫
dsee

√
1 −

4m2
χ

see

√
1 − 4m2

e

see

(
1 + 2m2

e

see

)(
1 +

2m2
χ

see

)

×
∫

dEee(E2
ee − see)3/2e−Eee/T̄

≈
e4Q2

χkδ̂T 1

6(2π)5

∫
ds

√
1 −

4m2
χ

s

√
1 − 4m2

e

s

(
1 + 2m2

e

s

)(
1 +

2m2
χ

s

)
3sK2(

√
s/T̄ ) ,

(A.17)

where in both cases we use pχ ≈ Eχ ≈ Eee/2,

I = 4
∫

d3pχ

(2π)32Eχ

d3pχ

(2π)32Eχ
δ(4)(qee − pχ − pχ) ≈ 1

(2π)5

√
1 −

4m2
χ

s
,

J =
e4Q2

χ

6π

√
1 − 4m2

e

s

(
1 + 2m2

e

s

)(
1 +

2m2
χ

s

)
.

(A.18)

B Fluid perturbations

By integrating ℓ= 0,1,2 equations of the Boltzmann hierarchy in eqs. (2.33) over 2d3qϵ/(2π)3a4,
2kd3q|q|/(2π)3a4, and 2d3q|q|2/

[
(2π)33ϵa4], we obtain the evolution equations of the energy

density fluctuation δρχ, velocity divergence θχ, and anisotropic stress σχ, respectively:

dδρχ

dτ
+3H(δρχ+δpχ)+(ρ̄χ+p̄χ)

(
θχ+ 1

2
dh

dτ

)
= aδQ0

d[(ρ̄χ+p̄χ)θχ]
dτ

+4H(ρ̄χ+p̄χ)θχ−k2δpχ+k2(ρ̄χ+p̄χ)σχ = aδQ1

d[(ρ̄χ+p̄χ)σχ]
dτ

+H(ρ̄χ+p̄χ)
(
5σχ−Σ̃χ

)
− 4

15(ρ̄χ+p̄χ)Θ̃χ−
( 2

15
dh

dτ
+ 4

5
dη

dτ

)
(5p̄χ−p̃χ) = 0 ,

(B.1)
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where we introduce a higher moment of pressure p̃χ, velocity divergence Θ̃χ, and anisotropic
stress Σ̃χ defined as [53, 58, 59]

p̃χ = 1
a4

∫ 2d3q

(2π)3
q4

3ϵ3 f̄χ (B.2)

(ρ̄χ + p̄χ)Θ̃χ = k

a4

∫ 2d3q

(2π)3
q3

ϵ2 δ̂fχ,1 (B.3)

(ρ̄χ + p̄χ)Σ̃χ = 1
a4

∫ 2d3q

(2π)3
2q4

3ϵ3 δ̂fχ,2 . (B.4)

For relativistic DM with q2 ∼ ϵ2, we can safely make the approximations p̃χ ∼ p̄χ, Θ̃χ ∼ θχ,
and Σ̃χ ∼ σχ, thus recovering eq. (2.40).

C Kodama-Sasaki notation

It is useful to map equations (B.1) into the same equations in the Kodama-Sasaki (KS)
notation [64]. In KS notation, the evolution equations for any given species, without
specifying any gauge, are

δρ′
α + 3H(δρα + p̄απLα) + (ρ̄α + p̄α)(kvα + 3H ′

L) = a(εα − A)Q̄α

[(ρ̄α + p̄α)(vα − B)]′ + 4H(ρ̄α + p̄α)(vα − B) − kp̄απLα − k(ρ̄α + p̄α)A

+ 2
3kp̄απT α = aQ̄α(v − B) + aH(ρ̄α + p̄α)fα .

(C.1)

Matching notations, we have vα = θα/k, πLα = δpα/p̄α and πT α = 3
2(ρ̄α + p̄α)σα/p̄α. There-

fore, in the case of DM in the synchronous comoving gauge (A = B = 0, HL = h/6), we have

δρ′
χ+3H(δρχ+δpχ)+(ρ̄χ+p̄χ)

(
θχ+ h′

2

)
= aεχQ̄χ,

[(ρ̄χ+p̄χ)θχ]′+4H(ρ̄χ+p̄χ)θχ−k2δpχ+k2(ρ̄χ+p̄χ)σχ = aQ̄χθ+aHk(ρ̄χ+p̄χ)fχ,

(C.2)

from which we derive that

εχ = δQ0

Q̄χ
, fχ = δQ1 − Q̄χθ

Hk(ρ̄χ + p̄χ) . (C.3)

The conservation of the stress-energy tensor imposes the constraints Q̄r = −Q̄χ, εr = εχ,
and fr = −(ρ̄χ + p̄χ)fχ/(ρ̄r + p̄r). Finally, under a gauge transformation characterized by the
two free functions T and L [64], the metric scalar variables transform as

Ã = A − T ′ − HT, B̃ = B + L′ + kT, H̃L = HL − (k/3)L − HT, H̃T = HT + kL, (C.4)

while the species fluctuations and energy-momentum four-vector transform as

δ̃α = δα + 3H(1 + wα)(1 − qα)T, ṽα = vα + L′,

π̃L = πL + 3
c2

a,α

wα
(1 + wα)(1 − qα)HT, π̃T = πT ,

ε̃α = εα − Q̄′
α

HQ̄α
HT, f̃α = fα,

(C.5)

respectively. Given these definitions, we verify the gauge invariance of the isocurvature
perturbation we employ in this work.
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D Comment on the KS formalism

Alternative definitions of the isocurvature perturbation have been proposed in the literature
(e.g., see refs. [45, 64, 84, 85]). In this appendix, we compare definitions and comment on
their interpretations.

In the KS formalism, the amplitude of the isocurvature mode [cf., eq. (3.4)] has a simple
interpretation in the comoving orthogonal gauge, in terms of the background energy or
number density and its fluctuation:

SKS
χr = δρχ

ρ̄χ(1 + wχ) − δρr
ρ̄r(1 + wr)

= δnχ

n̄χ
− δnr

n̄r
, (D.1)

for standard non-interacting DM and radiation sectors. In the alternative formalism introduced
by Malik and Wands (MW) [45, 84, 85], the amplitude is instead defined to be

SMW
χr = −3H

(
δρχ

dρ̄χ/dτ
− δρr

dρ̄r/dτ

)
= δρχ

ρ̄χ(1 − qχ)(1 + wχ) − δρr
ρ̄r(1 − qr)(1 + wr)

. (D.2)

This latter definition ensures that if the single clock condition in eq. (3.25) is fulfilled,
then SMW

χr = 0. In the absence of energy transfer, the definitions from KS and MW
coincide [45, 84, 85]. However, when qχ, qr ̸= 0, the two definitions differ by

SMW
χr − SKS

χr ≈ 3
4

qχ

1 − qχ
∆ ∝ x2 ≪ 1 (D.3)

during radiation domination (qr ≪ 1, ρ̄χ/ρ̄r ≪ 1).
Both definitions of isocurvature in eq. (3.4) and eq. (D.2) are gauge invariant4 and thus

take the same value in every coordinate system [87]. However, the KS definition SKS
χr is

constructed as a linear combination of gauge-dependent perturbations [88], which obfuscates
its interpretation in terms of physical quantities; the interpretation only becomes apparent in
gauges with a particular choice of physical time slicing, such as comoving orthogonal gauge.
On the other hand, the MW definition of isocurvature has a clear geometric interpretation [88].
In the large scale limit k → 0, which is relevant for CMB observations, the evolution of
SKS

χr coincides with SMW
χr ; however, there are differences at finite k. The redefinition of

the isocurvature variable by MW changes the evolution eq. (3.12) for the amplitude of the
isocurvature SMW

χr , such that the source terms proportional to the adiabatic perturbation ∆
vanish, both in eq. (3.12) explicitly and in the energy exchange term Eχr in eq. (3.23) [84].
The remaining energy exchange term sourcing isocurvature, EMW

χr , can be written explicitly
in terms of the non-adiabatic part of the perturbed energy transfer:

EMW
χr ∝

(
δQ − Q′

ρ′
χ

δρχ

)
. (D.4)

In the MW formalism, it is then straightforward to show that the non-adiabatic part of
the perturbed energy transfer is zero in a universe with zero initial isocurvature, SMW

χr = 0,
4It has been claimed that the isocurvature definition of Kodama and Sasaki is not gauge invariant [84, 86].

To clarify, eq. (3.4), the definition used by Kodama and Sasaki, is gauge invariant, as can be seen by using the
transformations in eq. (C.5); however, the definition in terms of perturbed number densities in eq. (D.1) is not.
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given that the energy transfer is a function of the radiation density Q(ρr), such that δQ =
(dQ/dτ)/(dρr/dτ) × δρr during freeze-in. This argument has been presented in [86, 89]. Yet,
in the KS formalism, source terms proportional to the adiabatic perturbation ∆ remain,
yielding nonzero, scale-dependent contributions to isocurvature on super-horizon scales. This
effect is not observable: it is an artifact of the KS formalism introducing a small mixing
between the curvature and isocurvature perturbations. Regardless, both formalisms are
consistent with each other, since differences are highly suppressed.

In conclusion, on large scales both formalisms are consistent with each other since
differences are highly suppressed, thus our results from section 3.2 are applicable to describe
the amplitude of the isocurvature mode constrained by the Planck satellite.
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