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We derive model-independent quantization conditions on the axion couplings (sometimes known as the
anomaly coefficients) to the standard model gauge group ½SUð3Þ × SUð2Þ × Uð1ÞY �=Zq with q ¼ 1, 2, 3,
6. Using these quantization conditions, we prove that any QCD axion model to the right of the E=N ¼ 8=3
line on the jgaγγ j-ma plot must necessarily face the axion domain wall problem in a postinflationary
scenario. We further demonstrate the higher-group and noninvertible global symmetries in the standard
model coupled to a single axion. These generalized global symmetries lead to universal bounds on the
axion string tension and the monopole mass. If the axion were discovered in the future, our quantization
conditions could be used to constrain the global form of the standard model gauge group.
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Introduction.—Axions have long been a major target in
particle phenomenology. Originally emerging as an elegant
solution to the strong CP problem [1–4], axions have since
been identified as one of the most well-motivated dark
matter candidates [5–8], appearing in a number of extensions
of the standard model (SM). They have motivated dozens of
unique experimental searches bridging a wide variety of
disciplines such as collider physics, astrophysics, condensed
matter physics, and quantum optics [8]. Axionlike particles
can provide a natural candidate for the inflaton [9,10] and
may also play a central role in a variety of important
cosmological effects such as the cosmological constant
problem [10]. Axionlike particles also exist ubiquitously
in string theory [11–16]. See, for example, [10,17–21] for
various reviews.
In this Letter, we derive model-independent quantization

conditions imposed on the coupling constants K3, K2, and
K1 [defined in (2)] between the axion field and instanton
number densities of the suð3Þ × suð2Þ × uð1ÞY gauge fields
in the SM and discuss their physical implications on the
relation between the axion-photon effective coupling and
domain wall number. The precise quantization conditions
depend on the global form of the SM gauge group, which is
summarized in Table I. It is known that a Z6 center
subgroup of SUð3Þ × SUð2Þ × Uð1ÞY acts trivially on all
the SM particles. Therefore, the SM gauge group need not
be a product group but can be one of the following:

GSM¼ ½SUð3Þ×SUð2Þ×Uð1ÞY �=Zq; q¼ 1;2;3;6: ð1Þ

More physically, the global form of GSM depends on what
gauge charges are allowed or introduced in physics beyond
the standard model. For example, in the SUð5Þ and many
other grand unified theories (GUTs), all new particles carry
vanishing Z6 charges, and q ¼ 6. In other UV models for
the axion (such as the simplest version of the Kim-Shifman-
Vainshtein-Zakharov model [22,23]), the heavy fermions
may carry nontrivial Z6 charges, and the corresponding
global form of GSM is different. See Ref. [24] for more
discussions.
Furthermore, we discuss the generalized global symmetry

structure of the model, summarized in Table II, which
allows us to constrain the tension of axion strings as well as
the mass of monopoles. Many generalized global sym-
metries in models of axions have been discussed in the past,
including noninvertible symmetries [25–28] as well as
higher-group symmetries [29–34]. See Refs. [35–40] for
reviews on generalized global symmetries.
Quantization of the axion couplings to gauge fields.—

The axion field θðxÞ is a periodic scalar field whose
periodicity is given by θ ∼ θ þ 2π, which should be viewed
as a gauge symmetry. We consider a generic coupling of the
axion field to the SM gauge fields given by

K3

8π2
θTrF3 ∧ F3 þ

K2

8π2
θTrF2 ∧ F2 þ

K1

8π2
θF1 ∧ F1; ð2Þ

where F3, F2, and F1 are the field strengths for the SU(3),
SU(2), and U(1) gauge fields, respectively, and we have
adopted the differential form notation. Without loss of
generality, we assume K3 ≥ 0, which can always be
achieved by a field redefinition θ → −θ. Throughout,
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we normalize our fields so that the instanton number
ð1=8π2Þ R TrFi ∧ Fi is a quantized number independent of
the gauge coupling. See Supplemental Material [41] for the
relation to the standard notation in particle physics where
the fields have canonical kinetic terms. Below the electro-
weak symmetry breaking (EWSB) scale, (2) reduces to

N
4π2

θTrF3 ∧ F3 þ
E
8π2

θF ∧ F: ð3Þ

Here, we follow the standard convention in the literature
[42] to denote the axion-gluon coupling by N. It is related
to K3 (which equals the number NDW of axion domain
walls) as

K3 ¼ NDW ¼ 2N: ð4Þ
The (bare) axion-photon coupling E is related to K1, K2 as
E ¼ ð1=36ÞðK1 þ 18K2Þ, which can be obtained from the
standard relations between the electromagnetic, SU(2), and
Uð1ÞY gauge fields.
The allowed values of the quantized coupling constants

K3, K2, and K1, as well as N and E, which depend on the
global form of the SM gauge group (1), are summarized in
Table I. We now provide a rigorous, model-independent
derivation of the quantization conditions from the fractional
instanton numbers. This derivation is universal and does
not require any assumption about the UV origin of the
axion. The fractional instantons on T4 of the SM gauge
group have been previously studied in [69] by imposing the
’t Hooft twisted boundary conditions [70,71].
The periodic identification of the dynamical axion field

θ ∼ θ þ 2π is a gauge symmetry, and the exponenti-
ated action eiS should be gauge invariant. In the pres-
ence of the axion coupling (2), eiS transforms under
θ ∼ θ þ 2π by a phase expð2πiPi KiniÞ, where ni’s are
the instanton numbers defined by n3≡ ð1=8π2ÞR TrF3 ∧F3,
n2 ≡ ð1=8π2Þ R TrF2 ∧ F2, and n1 ≡ ð1=8π2Þ R F1 ∧ F1.
The quantization of the instanton numbers (which depends
on the global form of the SM gauge group) then gives the
quantization of the Ki’s as well as E and N. We focus on the

q ¼ 6 case, while the other values of q as well as alternative
derivations are discussed in Supplemental Material [41].
Also, we work under the minimal setup where the only
degrees of freedom are the SM fields and a single axion field.
In the presence of additional topological degrees of freedom,
the axion-gauge couplings Ki can be further fractionalized
[43], which we review in Supplemental Material [41].
For q ¼ 6, the allowed values of the fractional instanton

numbers and their correlations are

n3 ∈
1

3
Z; n2 ∈

1

2
Z; n1 ∈

1

36
Z;

n3 − 24n1 ∈Z; n2 − 18n1 ∈Z: ð5Þ
One can derive (5) as follows. Since now the SM gauge
group is ½SUð3Þ × SUð2Þ × Uð1ÞY �=Z6, we may view the
gauge fields A3, A2, and A1 as PSU(3), SO(3), and Uð1Þ=Z6

gauge fields, respectively, where the various characteristic
classes are related by [30,44]Z

c1ðF1Þ ¼
Z

w2ðA2Þ mod 2;
Z

c1ðF1Þ ¼
Z

w2ðA3Þ mod 3: ð6Þ

Here, c1ðF1Þ ¼ ð6F1=2πÞ is the first Chern class, and w2 is
the second Stiefel-Whitney class [45]. The conditions in (6)
imply that the transition functions of PSU(3), SO(3), and
Uð1Þ=Z6 bundles are correlated in such a way that they
consistently combine into a ½SUð3Þ × SUð2Þ × Uð1ÞY �=Z6

bundle.
On spin manifolds, 1

2
c1ðF1Þ2 has integral periods, which

gives the condition n1 ∈ ð1=36ÞZ. Furthermore, the frac-
tional parts of n2 and n3 are [30,44–48]

n2 ¼
1

4

Z
P½w2ðA2Þ� mod 1;

n3 ¼
1

3

Z
w2ðA3Þ ∪ w2ðA3Þ mod 1; ð7Þ

from which we obtain n2 ∈ 1
2
Z and n3 ∈ 1

3
Z. Here,

P∶ H2ðX;Z2Þ → H4ðX;Z4Þ is the Pontryagin square,
which is reviewed, for instance, in [44], and the value ofR
P½w2ðA2Þ� is 0 or 2 mod 4 on spin manifolds. The

correlated quantization conditions n3 − 24n1 ∈Z and
n2 − 18n1 ∈Z are obtained by taking (Pontryagin)
squares of the two sides of equations in (6) and then
integrating them over the spacetime manifold. To ob-
tain the quantization condition of Ki ’s, we can rewrite
K3n3 þ K2n2 þ K1n1 as K3ðn3−24n1ÞþK2ðn2−18n1Þþ
ð1=36ÞðK1þ18K2þ24K3Þð36n1Þ. We see that the expo-
nentiated action eiS is single valued if and only if the
conditions for q ¼ 6 in Table I are satisfied.

In some axion models, such as the Dine-Fischler-
Srednicki-Zhitnitsky (DFSZ) model [72,73], the axion
coupling (3) below the EWSB scale is a valid description,

TABLE I. Quantization conditions of the axion couplings to the
gauge fields for the possible global forms of the SM gauge group,
GSM ¼ ½SUð3Þ × SUð2Þ × Uð1ÞY �=Zq with q ¼ 1, 2, 3, 6.

q Quantization of Ki ’s Quantization of N and E

1 K3; K2; K1 ∈Z N ∈ 1
2
Z, E∈ Z

36

2 K3; K2 ∈Z, K1 ∈ 2Z,
2K2 þ K1 ∈ 4Z

N ∈ 1
2
Z, E∈ 1

9
Z

3 K3; K2 ∈Z, K1 ∈ 3Z,
6K3 þ K1 ∈ 9Z

N ∈ 1
2
Z, E∈ Z

12
,

4N þ 12E∈ 3Z
6 K3; K2 ∈Z, K1 ∈ 6Z,

24K3 þ 18K2 þ K1 ∈ 36Z
N ∈ 1

2
Z, E∈ 1

3
Z,

4N þ 3E∈ 3Z
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but at higher energy scales the UV theory is different from
the one we consider in (2). In such cases, our results on the
quantization conditions of E and N are still valid.
Constraints on the effective axion-photon coupling

gaγγ .—We now discuss model-independent constraints on
the axion physics from the quantization of the axion
couplings to the SM gauge fields. We assume that we
have a single QCD axion whose mass ma comes from the
coupling to QCD. We focus on the effective axion-photon
coupling gaγγ defined as Laγγ ¼ − 1

4
gaγγaFEM;μνF̃

μν
EM. Here,

FEM;μν is the field strength for the canonically normalized
EM gauge field, and a ¼ fθ is the canonically normalized
axion. The effective coupling gaγγ receives contribution
from the bare coupling E as well as the mixing with π0 [74]:

gaγγ ¼
�
0.203ð3Þ E

N
− 0.39ð1Þ

�
ma

GeV2
; ð8Þ

where ma is the axion mass.
The quantization condition in Table I implies that the

value of gaγγ=ma cannot be an arbitrary real number but is
subject to some rationality constraint from the ratio E=N.
While any given real number can be approximated arbi-
trarily well by a rational number, an accurate approximation
requires a large denominator N, which is related to the
number of axion domain walls NDW ¼ 2N. In the absence
of other mechanisms, stable domain walls formed after
inflation will survive till today and are inconsistent with
current observations. Therefore, to avoid the axion domain
wall problem in cosmology, the value ofNDW is preferred to
be small in realistic, postinflationary axion models. For any
given upper bound on NDW, there is a strict lower bound on
jgaγγj=ma from the quantization conditions on E and N.
Another cosmological constraint on UV completions of

the axion is the stable relic problem [75,76]. There are
typically new heavy GSM charged particles in UV models.
If ever in thermal equilibrium after inflation, unless they
can decay to SM states, these particles would freeze out and
become exotic stable relics, which would be ruled out.
Since all SM particles have trivial Z6 charge, in order for
these heavy states to decay away, they must also have trivial
Z6 charge. Therefore, the global form of the SM gauge
group is preferred to have q ¼ 6 in any postinflationary
axion model to avoid exotic stable relics. This is also the
gauge group that is compatible with various GUT models
such as SU(5), Spin(10), and E6. See, for example, [18] and
references therein for an extensive discussion on the
phenomenological criteria for axion models. For this
reason, we focus on the q ¼ 6 case below.
The quantization conditions in Table I for E and N in

the q ¼ 6 case are 4N þ 3E∈ 3Z, N ∈ ð1=2ÞZ, and
E∈ ð1=3ÞZ. If we want to avoid the domain wall problem,
i.e., NDW ¼ 2N ¼ 1, then gaγγ in (8) cannot be arbitrarily
small because of the quantization condition. This leads to
the following model-independent lower bound:

jgaγγj
ma

≥ 0.15ð1Þ GeV−2; if NDW ¼ 1: ð9Þ

The lower bound is saturated by

E
N

¼ 8

3
; NDW ¼ 2N ¼ 1; E ¼ 4

3
; ð10Þ

which is the closest rational number E=N to 1.92 subject to
the condition in Table I andNDW ¼ 1. This ratio is famously
realized by one of the classic DFSZ models [72,73]. (It is
worthwhile noting that the standard DFSZ models have
NDW ¼ 3 or 6, while NDW ¼ 1 can be achieved by relaxing
PQ charge universality such as in [77].) It is also the ratio
realized by the SU(5), Spin(10), and E6 GUT models
[42,78]. In other words, the region to the right of the E=N ¼
8=3 line on the jgaγγj-ma plot must necessarily face the
domain wall problem in a postinflationary scenario (see
Fig. 1). This provides an invariant meaning to the ratio
E=N ¼ 8=3 in the landscape of axion models.

There are many proposed solutions to the axion domain
wall problems in the literature, so models with NDW > 1
are still potentially phenomenologically viable. Here, we
merely point out that those QCD axion models violating (9)
must necessarily have NDW > 1.
As we increase the allowed tolerance of NDW, eventually

the lower bound will be smaller than the uncertainty in (8)
and cease to be meaningful. For instance, the lower bound
with NDW ≤ 2 is ðjgaγγj=maÞ ≥ 0.05ð1Þ GeV−2, which is
saturated byE=N ¼ 5=3. For other values of q ¼ 1, 2, 3, the
lower bounds on jgaγγj=ma are instead saturated by
E=N ¼ 35=18; 2; 13=6, respectively. However, these lower
bounds with q ≠ 6 are of the same order as the uncertainty
in (8).

FIG. 1. Constraints on the effective axion-photon coupling gaγγ
versus the axion mass ma, modified from [79]. The model-
independent quantization conditions in Table I imply that any
QCD axion model in the gray region below the E=N ¼ 8=3 line
necessarily faces the axion domain wall problem in a postinfla-
tionary scenario, i.e., NDW > 1.
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Higher symmetries of the standard model coupled to an
axion.—The SM coupled to an axion enjoys a myriad of
generalized global symmetries, which are summarized in
Table II, and more detailed descriptions are presented in
Supplemental Material [41].
The generalized global symmetries we discuss are

typically emergent in the IR, and they are, therefore,
broken as we go to higher energies. However, as a
consequence of the higher-group and noninvertible sym-
metries, they are not all on the same footing. Sometimes a
“child” symmetry GC is subordinate to a “parent” sym-
metry GP, in the sense that the former symmetry cannot
exist without the latter. For instance, the child noninvertible
symmetry GC is typically tied to a parent invertible
symmetry GP, and the algebra of symmetry elements of
GC contains those of GP. This hierarchical structure
constrains the renormalization group flows, since it is
not possible to have an effective field theory at an
intermediate scale where the child symmetry is preserved
while the parent one is broken. This gives universal
inequalities on the energy scales where the symmetries
become emergent. These inequalities take the form
EC ≲ EP, where EC and EP are the energy scales above
which the child and parent symmetries are broken, respec-
tively. Since the symmetries are emergent, the inequalities
we derive are approximate.
Let us first consider the case where there is a nontrivial

higher-group symmetry. There are two invertible
symmetries of interest: the Uð1Þð2Þ winding 2-form sym-

metry and the Zð1Þ
K=q electric 1-form symmetry, where

K ≡ gcdð6; K1Þ. We denote Ewinding and Ecenter as the

energy scales below which Uð1Þð2Þ and Zð1Þ
K=q become

emergent, respectively. Now suppose we flow to a scale
below Ecenter. Because of the higher-group symmetry
structure, turning on the background gauge field for the

Zð1Þ
K=q electric symmetry automatically activates the back-

ground gauge field for the Uð1Þð2Þ winding symmetry as
well, which makes sense only if we are also below the
scale Ewinding [49]. We conclude that

Ecenter ≲ Ewinding: ð11Þ

When we have a noninvertible symmetry, we obtain
stronger bounds. We denote the emergence scale for the
noninvertible 1-form symmetry again as, by an abuse of
notation,Ecenter, since it acts on theWilson lines in the same
way as the ordinary center 1-form symmetry. In addition,
we also associate an emergence energy scale Emagnetic to the
Uð1Þð1Þ magnetic 1-form symmetry. The fusion algebra of
the noninvertible 1-form symmetry operator explained in
Supplemental Material [41] shows that it cannot exist
without the winding 2-form symmetry and the magnetic
1-form symmetry. Therefore,

Ecenter ≲min fEmagnetic; Ewindingg: ð12Þ

Let us now discuss the physical implications. Ewinding
physically corresponds to the energy scale at which
axion strings become dynamical and may unwind.
This is naturally associated with the string tension
Ewinding ∼

ffiffiffiffi
T

p
, although it may be quite a bit smaller thanffiffiffiffi

T
p

depending on the UV theory [33].
Emagnetic is most naturally associated with the mass of

the lightest hypercharge monopole Emagnetic ∼mmonopole,
although, depending on the UV theory, it may again be
significantly smaller. For example, if the dynamical
monopole is an ’t Hooft-Polyakov monopole associated
with a UV non-Abelian gauge group G, then the magnetic
symmetry breaking scale is instead the Higgsing scale
v ∼ Emagnetic at which G is broken to Uð1ÞY , while
mmonopole ∼ v=g ≫ v for a weakly coupled theory.
Similarly, Ecenter can be associated with the mass of the

lightest particle charged under the center of the gauge
group, which we denote as Ecenter ∼mcenter. To be more
precise, for the case of higher-group symmetry, mcenter is
the mass of the lightest particle charged under the ZK=q

subgroup of the center of the gauge group. For the case of
noninvertible symmetry, mcenter is the mass of the lightest
particle charged under the Z6=q center of the gauge group.
In both cases, we refer to mcenter loosely as the mass of the
lightest “Z6-charged particle.” We emphasize that such a
particle can be either a new fundamental field with Z6

gauge charge or a solitonic excitation of the monopole and
axion string dictated by the anomaly inflow.
Combining these interpretations, our inequalities imply

mcenter ≲
ffiffiffiffi
T

p
ð13Þ

whenever the higher-group symmetry exists and

TABLE II. Summary of the higher group for the center 1-form
and winding 2-form symmetries and noninvertible 1-form sym-
metries of the SM coupled to an axion, written in terms of both
ðK3; K2; K1Þ and ðN;EÞ. Whenever an entry in one of the
columns is nonzero, there exists the corresponding symmetry.
Here, K ≡ gcdð6; K1Þ ¼ gcdð6; 36EÞ. Note that K1 and K are
always integer multiples of q due to the quantization condition in
Table I. The q ¼ 6 case does not have these generalized global
symmetries.

q Higher group Noninvertible

1
½ð24K3 þ 18K2 þ K1Þ=K� mod K K1 mod 6

½ð48N þ 36EÞ=K� mod K 36E mod 6

2
½ð6K3 þ K1Þ=ðK=2Þ� mod ðK=2Þ ðK1=2Þ mod 3
½ð12N þ 36EÞ=ðK=2Þ� mod ðK=2Þ 18E mod 3

3
½ð2K2 þ K1Þ=ðK=3Þ� mod ðK=3Þ ðK1=3Þ mod 2

½36E=ðK=3Þ� mod ðK=3Þ 12E mod 2
6
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mcenter ≲min
n
mmonopole;

ffiffiffiffi
T

p o
ð14Þ

whenever the noninvertible 1-form symmetry exists. In
short, the tension of axion strings and the mass of
hypercharge monopoles are generically bounded from
below by the mass of the lightest particle charged under
the center of the SM gauge group.
Conclusions.—The ambiguity in the global form of the

SM gauge group generally has few experimentally observ-
able effects and is not often discussed as a result. However,
for an axion, we have shown that this global structure is of
central importance in dictating the allowed values of its
quantized couplings to the SM gauge fields, which has
immediate phenomenological consequences. In particular,
for q ¼ 6—the phenomenologically preferred value from
the perspective of GUTs and the nonobservation of
cosmologically stable exotic relics—the smallest allowed
effective coupling to photons jgaγγj for a postinflationary
QCD axion with domain wall number NDW ¼ 1 is realized
by the ratio E=N ¼ 8=3, which should be taken as an
experimental target. We have additionally shown that
certain values of E and N admit higher-group and non-
invertible symmetries, which result in model-independent
constraints between the masses of Z6-charged particles, the
masses of hypercharge magnetic monopoles, and the axion
string tension.
There are several avenues for further study. We have

considered the simplest case of a single axion coupled only
to the SM gauge group. However, in recent years, there have
been a number of axion models developed going beyond
these minimal assumptions [18]. A clear next step would be
to generalize these results to theories of multiple axions or
extended gauge groups, which may have more complicated
symmetry structures and quantization conditions. We have
also neglected discussing the 0-form shift symmetry of the
axion. However, it is known that the shift symmetry can also
lead to a higher-group symmetry [31–33,50,51] or become
noninvertible [25–27], which would then lead to additional
inequalities. These may be relevant for axions that do not
couple to QCD or for theories with multiple domain walls.
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