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Abstract—Randomness extractors provide a generic way of
converting sources of randomness that are merely unpredictable
into almost uniformly random bits. While in general, determinis-
tic randomness extraction is impossible, it is possible if the source
has some structural constraints.

While much of the literature on deterministic extraction
has focused on sources with strong independence properties,
a natural class where deterministic extraction is possible is
sources that can sampled by a polynomial size circuit, Levin
[SIAM J Comp’86]. Trevisan and Vadhan [FOCS’00] explicitly
constructed deterministic randomness extractors for this class of
sources, assuming very strong circuit lower bounds.

We suggest that there is perhaps an even more reasonable
model of natural sources of randomness than Levin’s: sources
sampled by polynomial size quantum circuits. Under a suitable
circuit lower bound, we show that Trevisan and Vadhan’s
extractor indeed works for this class.

Along the way, we substantially improve their analysis in
the classical case, showing that a circuit lower bound against
NP-circuits suffice in the classical case (as opposed to a lower
bounds on Σ5-circuits, as shown by Trevisan and Vadhan).
Moreover, we show that under this assumption, it is possible
to handle sources sampled by postselecting circuits (a variant of
nondeterministic circuits). We show that this model is sufficient
to capture randomness extraction in the presence of efficiently
computable leakage.

Index Terms—average-case complexity, quantum computing,
randomness in computing

I. INTRODUCTION

Randomness is an essential resource in computing. It is
necessary for nearly all cryptographic tasks, such as achiev-
ing semantically secure symmetric key encryption. Similarly,
many fundamental tasks in the domain of distributed comput-
ing, such as byzantine agreement or testing equality of two
strings with low communication, are impossible to achieve
deterministically. In a similar vein, certain tasks in differential
privacy are also impossible without randomness.

Yet, where do these random bits come from? When
constructing randomized protocols or procedures, the pro-
tocol/procedure designer almost always assumes access to
independent, unbiased random bits. However, natural sources
of randomness available to our machines are almost invariably
far from such idealized sources of randomness, and more-
over the particulars of their distributions are unknown to us.
The question then becomes what algorithmic tasks can be
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accomplished with access to weakly random sources. Random-
ness extractors provide a generic means of deterministically
converting a weakly random source into (almost) uniformly
random independent bits, so that we may use constructions
in our idealized models. This motivates the following general
question:

Can we deterministically extract uniformly ran-
dom bits from naturally occurring weakly random
sources?

It is well known that deterministic extraction from arbi-
trary weakly random sources is impossible, but is possible
if the sources have some structure. While one rich line of
work on deterministic (or seedless) randomness extractors has
studied sources with strong independence properties (known
as two-source extractors), it is unclear if naturally occurring
sources can be assumed to be independent.1 The extended
Church-Turing thesis motivates another model for naturally
occurring entropic sources: sources sampled by polynomial
size circuits. [Lev86] Indeed, Trevisan and Vadhan constructed
efficient extractors for such classes. [TV00]

The starting point of the present work is the simple ob-
servation that the universe, and hence natural sources, are
generated by quantum phenomena. And even if quantum
computing never materializes in practice, it is quite plausible
that local natural physical phenomena cannot be efficiently
simulated by classical circuits, but can be efficiently simulated
by theoretical quantum circuits.

A. Our Results

We demonstrate that it is possible to deterministically
(classically) extract random bits from weakly random sources
sampled by polynomial size quantum circuits, assuming lower
bounds on quantum circuits with postselection, a nondeter-
ministic analog of quantum circuits. In fact, we show it is
possible to deterministically extract random bits from a signif-
icantly larger, nondeterministic class of sources. Importantly,
this implies the ability to extract randomness after observing
arbitrary efficiently computed leakage on the source (provided
some entropy remains after seeing the leakage).

1Moreover, even very limited quantitative relaxations of independence
quickly render extraction impossible. [CG85], [BGM22]



Additionally, we improve what is known in the classical
case. We show that it is possible to extract randomness from
sources that are samplable by polynomial size circuits assum-
ing lower bounds on nondeterministic circuits (as opposed to
circuits with gates computing Σ5-complete problems, as is the
case in [TV00]).2 Again, we show that indeed it is possible
to extract from a larger class that includes sources uniform
over a set recognized by a polynomial size circuit (also known
as recognizable sources [Sha09]), from the same assumption.
Prior to our work, similar results were only known assuming
lower bounds on Σ3-circuits. [AASY16]3

In all cases, we can extract almost all the randomness from
sources with linear min-entropy (there exists γ > 0 such that
for all x, Pr[X = x] ≥ 2(1−γ)n, where n is the length of the
source). Unfortunately, like all prior work, the output of our
extractors is only inverse-polynomially close to uniform.4

a) Classical and quantum postselecting samplers.: We
consider a notion of nondeterministic samplers that generalizes
samplable sources. We say that a source X (supported on
{0, 1}n) is sampled by a postselecting circuit C (in a class C),
if C outputs n+1 bits, C → (x, b) such that X is identically
distributed to the distribution sampled by C, conditioned on
b = 1, namely Pr[X = x′] = Pr

C→(x,b)
[x = x′|b = 1] for all x′.

In particular, we are concerned with the case that the class C is
either (randomized) polynomial size classical circuits, in which
case we say the source is samplable by postselecting circuits,
or C is polynomial size quantum circuits (with sufficient min-
entropy), in which case we say the source is samplable by
postselecting quantum circuits.

Note that sources sampled by postselecting classical poly-
nomial size circuits correspond to sources sampled by polyno-
mial size circuits whose random bits may themselves be drawn
uniformly from a set recognized by a polynomial size circuit.
Clearly, this class generalizes both samplable and recognizable
sources.5

A motivation for considering such classes of sources is that
they capture samplable sources induced by external observa-
tion or side-channel leakage. For example, it is unlikely that
a physical source exists in a vacuum and is only observed by
the extractor itself. If the extractor works for nondetermnistic
samplable sources, then so long as the source has enough
conditional min-entropy, then the output of the extractor will
be independent of the leakage (and safe to use in a sensitive
task).

b) Nondeterministic circuit models and hardness.: Be-
fore stating our results, we must briefly describe the circuit

2If the samplable source has very high min entropy, n − O(logn),
then it was known how to extract from hardness against non-deterministic
circuits. [TV00]

3Again, if the recognizable source was known to have very high min-
entropy, n − O(logn) it is known how to extract from lower bounds on
deterministic circuits. [LZ19].

4Applebaum et al. showed that this inherent in all black-box nondetermin-
istic reductions. [AASY16]

5Guo et al. [GVJZ23] consider a similar analog in the algebraic setting:
sources sampled by polynomials evaluated on varieties (generalizing polyno-
mial sources [DGW07] and variety sources [Dvi09].

classes we assume hardness against.
A classical nondeterministic circuit, C can be thought of as

a deterministic circuit C ′ that takes input, x and a witness, w:
for any input x, C(x) = 1 if and only there exists w such that
C ′(x,w) = 1.

In the quantum regime, we are concerned with a fairly
strong analog of nondeterminism: quantum circuits with post-
selection [Aar04]. These are quantum circuits (with classical
description) that can condition on a measurement being 1
before the output is measured. We say that such a circuit
decides a language if such a circuit (conditioned on the first
measurement outcome being 1) disagrees with the language
on any input x with probability at most 1/3.

Both of these circuit classes are quite strong. In particular,
uniform polytime quantum computation with postselection,
PostBQP is known to be equivalent to PP [Aar04]. How-
ever, it is nonetheless reasonable to conjecture that there
are classical deterministic computations which do not admit
superpolynomial speedups even if the computation is both non-
uniform and nondeterministic or non-uniform, quantum, and
postselecting.

The former classical assumption has been considered before
in the context of derandomizing AM. [MV99a] We are not
aware of a situation where the latter assumption has been
made, but the connection with PP gives a classical interpreta-
tion: a set admits a postselecting quantum circuit family if and
only if there is a family of randomized classical circuits that
accept every string in the language with probability strictly
greater than 1/2, and reject every string not in the set with
probability at least 1/2.

c) Main Theorems.: Now we can state our results. Our
main classical result is the following:

Informal Theorem 1 (Extractors for Classical Sources (Theo-
rem II.4)). If there is a problem in E = DTIME(2O(n)) with
nondeterministic circuit complexity 2Ω(n), then for any con-
stant c, there is an explicit deterministic extractor for sources
samplableable by size nc postselecting circuits with linear
min-entropy (whose output is 1/poly(n)-close to uniform).

Our main quantum theorem is the following:

Informal Theorem 2 (Extractors for Quantum Sources (The-
orem II.5)). If there is a problem in E = DTIME(2O(n))
with postselecting quantum circuit complexity 2Ω(n), then for
any constant c, there is an explicit deterministic extractor for
sources samplable by size nc postselecting quantum circuits
with linear min-entropy (whose output is 1/poly(n)-close to
uniform).

We remark that regardless of whether this strong hardness
assumption is true, explicit hard functions for postselecting
quantum circuits are required to extract from this source class.

In both cases, our extractor is essentially the same extractor
as that of Trevisan and Vadhan. [TV00] If f is an E-
complete problem, f̃ is its low degree extension, and 2Ext
is a sufficiently good two-source extractor, our extractor will



simply be
EXT (x, i) = 2EXT (f̃(x), i).

Where our result differs from Trevisan and Vadhan’s is that
we give a novel analysis of the extractor. At the core of our
analysis are new nondeterministic algorithms for an optimal
parameter agnostic learning problem we call gap probability
maximization. We refer the reader to the detailed technical
overview below for details. For a complete proof, see the full
version of our paper [BDSGM23].

II. DETAILED TECHNICAL OVERVIEW

In this section, we explain in detail our approach to lifting
Trevisan and Vadhan’s proof that a hard function for Σ5-
circuits gives a good extractor for samplable sources [TV00]
to the quantum realm. Through this explanation, it will be-
come clear how we extend this result to nondeterministically
samplable sources, as well as how we reduce the Σ5 hardness
requirement all the way to Σ1.

As a warmup, we will describe how to lift Trevisan and
Vadhan’s proof that a boolean function f hard on average for
NP-circuits is itself a good extractor [TV00]. The classical
argument for this goes as follows: Let S be a flat (i.e. all
outputs in the support have equal probability) source biasing
f to 1. Then the following NP-circuit can compute f(x):

On input x, nondeterministically check if x is in the range
of S, and if so output 1. Otherwise, output a random bit.

This approach can be augmented to non-flat S as long as
we can solve the probability estimation problem, which asks
that given a randomized circuit C and an output x, compute
Pr
r
[C(r) → x] up to (1 ± ϵ) multiplicative error. However, it

is known that NP-circuits can solve the probability estimation
problem in size polynomial in size(C). This means that if
f is hard for NP-circuits of size s, then it is an extractor for
sources samplable by s−O(n)-size circuits for some concrete
polynomial.

To extend this argument to the quantum world, all that
is necessary is that we be able to do quantum probability
estimation. That is, we need some model that can solve the
following problem: given a quantum circuit C and an output
x, compute Pr

r
[C(r)→ x] up to (1± ϵ) multiplicative error.

It turns out that to solve this problem for quantum circuits,
we require quantum circuits with postselection. Postselection
refers to the ability for algorithms to conditionally sample.
In the quantum setting, this refers to the ability for quantum
algorithms to produce the residual state resulting from mea-
suring in the standard basis and receiving result 1. Thus, a
postselecting circuit is a quantum circuit with the additional
ability to postselect.

Quantum circuits with postselection are considered in depth
by Aaronson in [Aar04]. It is not known how to imple-
ment postselection with a quantum computer, but it does
not directly contradict the laws of quantum mechanics. In

particular, Aaronson shows that PostBQP, the class of uniform
postselecting circuits, is equivalent to PP.

Solving probability estimation using postselecting circuits
implies that if a function is hard on average for quantum
circuits with postselection, then it is an extractor for quantum
samplable sources. However, it would be better to be able
to show extraction from a worst-case assumption. In fact,
Trevisan and Vadhan were able to extend their average case
classical result to a worst-case hardness assumption, resulting
in the following theorem

Theorem II.1. If there is a problem in E = DTIME(2O(n))
with Σ5-circuit complexity 2Ω(n), then for every sufficiently
small δ and for every s, there is a (1−δ, 1/n)-extractor EXT :
{0, 1}n → {0, 1}1−O(δ)n against sources samplable by size s
circuits. Furthermore, EXT is computable in time poly(s)
(with exponent depending on δ).

As postselecting hardness was enough to lift the average
case variation of this theorem to the quantum setting, we
postulate (and will later prove) the following quantumization:

Proposition II.2. If there is a problem in E =
DTIME(2O(n)) with postselecting quantum circuit complex-
ity 2Ω(n), then for every sufficiently small δ and for every
s, there is a (1 − δ, 1/n)-extractor EXT : {0, 1}n →
{0, 1}1−O(δ)n against sources samplable by size s quantum
circuits. Furthermore, EXT is computable in time poly(s)
(with exponent depending on δ).

One would hope that the same technique as in the average
case hardness argument would apply when quantumizing this
result. However, the proof for Theorem II.1 relies strongly on
the fact that Σi circuits can do probability estimation for Σi−1

circuits. In fact, the proof involves several instances of such
“ladder-climbing”, accomplishing some task on Σi−1 circuits
using Σi circuits.

It is not clear how one would do “ladder-climbing” for
postselecting quantum circuits. One may hope that posts-
electing quantum circuits themselves can accomplish tasks
like probability estimation for postselecting quantum circuits.
Unfortunately, this seems unlikely to be true. We note that
since PostBQP = PP , PH ⊆ PPostBQP = P#P . This
doesn’t say anything definitive, but it is not clear how to
reduce adaptive counting queries to a single threshold query.
To provide more concrete evidence, we show in the full
paper a concrete problem on quantum circuits, solvable by
postselecting quantum circuits, for which the natural approach
will not extend to a solution for postselecting quantum circuits.

One may wonder whether “ladder-climbing” is necessary
to construct extractors from worst-case hardness assumptions.
We show that it is not necessary, giving us the following
improvement to Trevisan and Vadhan’s classical result.

Proposition II.3. If there is a problem in E =
DTIME(2O(n)) with nondeterministic circuit complexity
2Ω(n), then for every sufficiently small δ and for every s, there
is a (1 − δ, 1/n)-extractor EXT : {0, 1}n → {0, 1}1−O(δ)n



against sources samplable by size s circuits. Furthermore,
EXT is computable in time poly(s) (with exponent depending
on δ).

Our proof for this improvement will indeed lift easily to the
quantum setting, allowing us to prove Proposition II.2. In fact,
in our main body we will prove both theorems simultaneously.

Note that Theorem II.1 has a nondeterminism gap. That is,
we require hardness against Σ5-circuits to obtain extractors
for deterministic sources.

In fact, a small modification to our proof technique improves
the result so that it provides extractors for postselecting
(classically) samplable sources, and this improvement trivially
lifts to the quantum setting. Informally, we call a source S
a postselecting samplable source if there exists a circuit C
outputting x, b such that S is the distribution on x conditioned
on b = 1. That is, if b = f(r) for some efficient f , we give the
circuit the ability to uniformly sample from f−1(1). In general,
this task can be implemented by an NP-circuit [JVV86],
[BGP00], and so this class of sources is slightly weaker than
those samplable by NP-circuits.6

We observe that both samplable and recongnizable sources
are samplable by postselecting circuits. Any sampling circuit
C gives a postselecting sampling circuit C ′ by setting C ′(r) =
(C(r), 1). Any recognizing circuit C gives a postselecting
sampling circuit C ′ by setting C ′(r) = (r, C(r)).

Formally, our main results are captured by the following
theorems:

Theorem II.4. If there is a problem in E = DTIME(2O(n))
with nondeterministic circuit complexity 2Ω(n), then for every
sufficiently small δ and for every s, there is a (1 − δ, 1/n)-
extractor EXT : {0, 1}n → {0, 1}1−O(δ)n against sources
samplable by size s postselecting circuits. Furthermore, EXT
is computable in time poly(s) (with exponent depending on δ).

Theorem II.5. If there is a problem in E = DTIME(2O(n))
with postselecting circuit complexity 2Ω(n), then for every suffi-
ciently small δ and for every s, there is a (1−δ, 1/n)-extractor
EXT : {0, 1}n → {0, 1}1−O(δ)n against sources samplable
by size s postselecting quantum circuits. Furthermore, EXT
is computable in time poly(s) (with exponent depending on
δ).

[Aar04] shows that a PP oracle can simulate postselecting
quantum computation. Thus, we get the following corollary

Corollary II.6. If there is a problem in E = DTIME(2O(n))
with PP-circuit complexity 2Ω(n), then for every sufficiently

6In fact, it turns out that our notion of postselecting samplable sources
is more powerful than sources samplable by “single-valued nondeterministic
circuits,” [MV99b], [SU01] a generalization of NP∩ coNP to (a) computing
functions, and (b) the non-uniform setting (which we won’t formally define
here). A simple rejection sampling argument implies that any extractor for the
class of sources samplable by single-valued nondeterministic sources must be
a hard to compute function for this class. It follows that hardness for this
computational is indeed necessary in order to extract from postselecting sam-
plable sources. Moreover, E being hard for exponential size nondeterministic
circuits is in fact equivalent to E being hard for exponential size single-valued
nondeterministic circuits. [SU01], [AKRR03]

small δ and for every s, there is a (1 − δ, 1/n)-extractor
EXT : {0, 1}n → {0, 1}1−O(δ)n against sources samplable
by size s postselecting quantum circuits. Furthermore, EXT
is computable in time poly(s) (with exponent depending on
δ).

A. Classical extractors from ladder-climbing

To generate an extractor from worst-case hardness, Trevisan
and Vadhan rely on two ladder climbing techniques:

1) Probability estimation: Given a Σi−1-circuit C, there
is a Σi-circuit estimating Pr

r
[C(r) → x] to a (1 ± ϵ)

multiplicative factor.
2) Uniform sampling: Given a boolean Σi−1-circuit C,

there is a Σi-circuit sampling uniformly from C−1(1).
These ladder climbing techniques can prove the following

two claims:
1) There is a very good worst-to-average case reduction for

polynomial evaluation stepping up the ladder.
2) For functions T (·, ·) satisfying a ”combinatorial list-

decoding” property, there is a very efficient way to find
points biasing T (·,S) for samplable S

Stated more formally,
1) For a degree d polynomial p : Ft → F, given a size-s

Σi which computes p correctly on a c
√
d/|F| fraction

of points, there is a size-poly(s) Σi+2 circuit which
computes p everywhere.

2) There exists a probabilistic Σi+2-circuit DECODE of
polynomial size such that the following holds: Let S be
a source of density δ samplable by size-s Σi-circuits.
Let T (·, ·) be a boolean function computable by size-
poly(n) circuits satisfying combinatorial list-decoding.
If T (w,C(r)) is ϵ-biased to 1, then C(S, ϵ) = w with
probability Ω(δϵ2)

Trevisan and Vadhan use these claims to show that if you
have a samplable distribution (X, I) of density δ which biases
T (p(x), i), then there is a Σ5-circuit computing p(x) every-
where. The approach here is simple: if Ix is the distribution I
conditioned on X = x, then DECODE(Ix) is a Σ3-circuit
computing p(x) with some small probability. Then, the very
efficient worst-to-average case reduction gives a Σ5-circuit
computing p(x) everywhere. It also turns out that a sufficiently
good two-source extractor 2EXT satisfies combinatorial list-
decoding.

Putting all this together, we get that

EXT (x, i) := 2EXT (p(x), i)

is a good 1-bit extractor. Some additional care (but no further
levels of nondeterminism) are required to extend this proof to
multi-bit outputs.

For the proof of both of these claims, the two ladder
climbing techniques described at the beginning of this section
are used in sequence. For expository purposes, we will sketch
the proof of the worst to average reduction for polynomial
decoding.



B. Strong worst to average case reductions from ladder climb-
ing

The proof they use for this claim relies on the following
lemma from [STV99].

Lemma 1. Let C be any function and let Lz,x := (1−t)z+x
denote the line between z and x. Then there exists a z ∈ F,
γ > 0, such that for 15/16 of the values of x,
- Pr
F→u

[p(Lz,x(u)) = C(Lz,x(u))] ≥ γ

-For all univariate degree d h : F→ F such that h ̸= p ◦Lz,x,
either h(0) ̸= z or Pr

F→u
[h(u) = C(Lz,x(u))] ≤

γ

2
.

Let C be a Σi circuit evaluating p(x) on a c
√
d/|F| fraction

of points.
We define C ′ to be the circuit which takes in a univariate

h, chooses a random u from F, and outputs 1 if h(0) = z
and h(u) = C(Lz,x(u)).

We further define C ′′ to be the Σi+1-circuit which takes an
input x, gets an estimate γ̃ for Pr[C ′(x) = 1], and outputs 1

if γ̃ ≥ 3

4
γ. The key lemma immediately shows that the only

input accepted by C ′′ is p ◦ Lz,x

It is then clear that running uniform sampling on C ′′ will
find p ◦ Lz,x with high probability, and so outputting (p ◦
Lz,x)(1) will find p(x) with high probability.

C. Our techniques

As stated earlier, we will show that the extractor

EXT (x, i) = 2EXT (p(x), i)

defined by Trevisan-Vadhan still works when assuming hard-
ness against nondeterministic circuits, and if we assume hard-
ness against postselecting quantum circuits, this function will
extract from quantum samplable sources.

Our key observation comes from the fact that the purpose
of running uniform sampling and probability estimation
in sequence is to solve a task we call the gap probability
maximization problem. We define this problem as follows:

Say we are given a boolean randomized algorithm C̃ and a
constant γ with the following promise:

1) There exists some x∗ such that Pr[C̃(x∗)→ 1] ≥ γ

2) For all x ̸= x∗, Pr[C̃(x)→ 1] ≤ γ

2

The GPM problem asks us to find x∗.

We show in Section III-F that the gap maximization problem
can be solved for an input circuit C̃ by an NP-circuits C.
Moreover, this circuit C only needs non-adaptive calls to the
NP gates. This means that one only needs to step up the
hierarchy once in order to achieve highly efficient worst to
average case reductions for polynomial decoding, as well as
bias finding for codes satisfying combinatorial list decoding.
Thus, this observation immediately reduces our hardness as-
sumption to hardness for Σ3-circuits.

To get us all the way down to nondeterministic circuits, we
note that gap probability maximization can be used to directly
compute p(x) using a source which biases our extractor.
Once we have trimmed the layers nondeterminism produced
by stacking uniform sampling and probability estimation,
the extra layers of nondeterminism are purely an artifact of
modularity. This gets us to NP-circuits that use their NP
gates non-adaptively. From there, we can apply a result of
Shaltiel and Umans [SU06] that implies that if E is hard for
exponential size nondeterministic circuits, then E is hard for
exponential size non-adaptive NP-circuits.

The essential ingredient for combining the two claims used
by Trevisan and Vadhan is the following improved key lemma

Lemma 2. Let p : Ft → F be any function, let T : F ×
{0, 1}s → {0, 1}m satisfy sufficiently strong combinatorial
list decoding, and let S be any distribution of density δ such
that ∣∣∣∣ Pr

S→(u,i)
[T (p(u), i) = 1]− 1

2

∣∣∣∣ ≥ ϵ.

There exists constants c0, c1 such that if ϵc0δc1 ≤

√
d

q
then

the following holds: There exists a z such that for
15

16
values

of x,

-
∣∣∣∣ Pr
S→(u,i)

[T (p(u), i) = 1|u ∈ Lz,x]−
1

2

∣∣∣∣ ≥ ϵ

3
- For all h : F → F such that h ̸= p ◦ Lz,x, either∣∣∣∣ Pr
S→(u,i)

[T (h(L−1
z,x(u)), i) = 1|u ∈ Lz,x]−

1

2m

∣∣∣∣ ≤ ϵ

6
or

h(0) ̸= p(z).

Once this lemma has been proved, a gap probability maxi-
mization solver immediately gets us the result. Let S be some
distribution of density δ biasing EXT (x, i) = T (p(x), i). Our
algorithm for evaluating p(x) on operates as follows:

Algorithm 1: GPM evaluator for p(x)

1 We will define C ′(h) as follows: if h(0) ̸= p(z) then
2 output 0.
3 end
4 Sample S → (u, i).
5 Say the test passes if u lies on the line and

T (h(L−1
z,x(u)), i) = 1.

6 Output 1 if and only if the test passes O(1/ϵ) times.
7 The key lemma tells us that we can run gap

probability maximization on C ′ to compute p ◦ Lz,x.
8 Output (p ◦ Lz,x)(1) = p(x).

We remark that the proof of this key lemma is highly
non-trivial. Full details are included in the full version
[BDSGM23]. Roughly, the first half of this lemma comes from
a double application of Chebyshev’s inequality. The second
half of the lemma comes from proving a list decoding property,



which implies that the number of univariate polynomials which
bias T (h(L(u)), i) on a random line L is small.

To lift this result, all we need to do is show that gap
probability maximization can be solved for quantum circuits
using postselecting quantum circuits. We show this in the full
paper.

D. Improvement to postselecting samplers

We remark that it is easy to extend our result to postselecting
samplers. We simply replace the line ”sample S → (u, i)”
with ”sample S → (u, i, b) and fail if b = 0”. The idea here is
that nondeterminism allows us to condition our distribution for
free, and so it costs nothing to add in the additional condition
stemming from using a nondeterministic sampler.

E. Leakage Resilience

Finally, we consider a notion of leakage-resilient extractors
against samplable sources. Informally, leakage resilience re-
quires that the output of the extractor remain close to uniform
even when some side information about the underlying source
is revealed. Note that arbitrary leakage resilience is impossible,
as the leakage could be the output of the extractor itself.
However, as our goal is to model physical extractors, it is
natural to consider leakage which is itself samplable.

It is natural to consider leakage any samplable function of
the randomness source. However, we choose to consider a
stronger notion, where the leakage is provided by the sampling
circuit itself. This way, the leakage can depend on the random-
ness used to generate the source (including in the quantum
setting). Note that providing resilience against arbitrary length
leakage, even in this restricted model, is impossible as the
leakage may simply be the underlying randomness used to
generate the source. Thus, we additionally require that the
source have high min-entropy conditioned on its leakage.

We show that given a deterministic extractor against nonde-
terministic samplable sources, either classical or quantum, then
we get a leakage-resilient deterministic extractor for free. To
show this, we rely on the fact that our extractor works against
the source defined by conditioning the original source on the
leakage being any particular value.

Theorem II.7. Let EXT be a (k, ϵ)-deterministic extractor
against nondeterministic sources samplable by size-s (quan-
tum) circuits. Then, for all c > 0, EXT is a leakage-
resilient (k+c, ϵ+2−c)-deterministic extractor against sources
samplable by size-O(s) postselecting (quantum) circuits.

We remark that in our notion of leakage-resilience, we
only consider classical leakage. In the quantum setting, there
is also a notion of min-entropy, which was defined origi-
nally in [Ren06]. This definition has been previously been
used to capture randomness extraction [BFW12], [DPVR12],
[BFSS14] in the presence of quantum side-information.

We do not make any claims about quantum leakage-
resilience. If quantum computers do not exist, the power of
quantum computing must come only from the real world.

Therefore, any adversary wishing to use quantum side in-
formation to distinguish the output of an extractor from
random must first make some efficient measurement, which
equivalently could be made by the source directly. Never-
theless, constructing deterministic extractors against quantum
samplable sources secure even in the presence of quantum side
information is an interesting open question.

III. PRELIMINARIES

A. Types of Nondeterministic Circuits

Let P be any complexity class and fix some P-complete
problem πP . A P-circuit is a circuit with access to oracle gates
for πP . We will primarily be concerned with Σi circuits. We
will refer to Σ1-circuits primarily as NP-circuits. The class of
circuits that has all its Σ1 gates in the same layer, i.e. circuits
making SAT queries non-adaptively, is referred to as NP||-
circuits.

We rely on a collapse theorem for E due to Shaltiel and
Umans [SU06] of which the following is a special case:

Theorem III.1 (Corollary of [SU06, Theorem 3.2]). If every
language in E has NP||-circuits of size s(n), then every
language in E has non-deterministic circuits of size s(n)O(1).

A quantum circuit of size s is a sequence of unitaries
U1, . . . , Us where each Ui is taken from some universal gate
set. A quantum circuit has an input register of length m,
ℓ ≤ s ancilla qubits, and an output register of length n. We
use C(x) to refer to the distribution on the output register of
(Us . . . U1)(|x⟩⊗|0⟩⊗ℓ⊗|0⟩⊗n

) after measuring in the standard
basis.

We will use the following formulation of postselecting
quantum circuits. A postselecting quantum circuit C has the
same format as a quantum circuit, except it has an additional
postselection register. We use C(x) to refer to the distribution
on the output register of (Us . . . U1)(|x⟩ ⊗ |0⟩⊗ℓ ⊗ |0⟩⊗n

)
after measuring in the standard basis, conditioned on the
measurement of the postselection register being 1. Note that
here the size of a postselecting quantum circuit is the size of
the corresponding quantum circuit.

Aaronson proved in [Aar04] that this model is equivalent
to the model of quantum circuits with the ability to perform
arbitrary postselections. Note that we must be somewhat care-
ful here, as it is necessary that postselecting quantum circuits
not be allowed to intersperse measurement and postselection.

Definition III.2. The Σi-circuit complexity of a boolean
function f is the size of the smallest Σi-circuit C such that
C(x) = f(x) for all x.

Definition III.3. The postselecting quantum circuit com-
plexity of a boolean function f is the size of the smallest
postselecting quantum circuit C such that for all x,

f(x) = 1⇒ Pr[C(x) = 1] ≥ 2

3

f(x) = 0⇒ Pr[C(x) = 1] ≤ 1

3



Definition III.4. Let C be a circuit model of computation and
let L be a language. We define fL

n : {0, 1}n → {0, 1} by
fL
n (x) = 1 ⇐⇒ x ∈ L. The C-complexity of L is the

function s(n) := the C-complexity of fL
n .

B. Min-entropy and density

Definition III.5. Let X,Y be random variables. We define the
min-entropy of X conditioned on Y :

H∞(X|Y ) := − logEY→y[max
x

Pr[X = x|Y = y]]

The unconditional min-entropy of X is the min-entropy of
X conditioned on a constant. That is,

H∞(X) := − log(max
x

Pr[X = x])

Oftentimes, it is more convenient for us to reframe min-
entropy from the framework of density. Formally,

Definition III.6. Let X be a random variable over some space
X . We say X has density δ if

max
x

Pr[X = x] ≤ 1

δ |X |

Note that a random variable X over {0, 1}n has density δ

if and only if the min-entropy of X is ≥ n − log
1

δ
. Density

also satisfies the following useful property.

Proposition III.7. Let (X,Y ) be a random variable over some
product space X ×Y . If (X,Y ) has density δ, then X and Y
both have density δ.

To see this, observe that

Pr[X → x] =
∑
y

Pr[(X,Y )→ (x, y)]

≤ |Y | 1

δ|X||Y |
=

1

δ|X|
C. Classes of sources

A randomness source S is a distribution over some space
X . A class of sources S is a set of randomness sources. We
define several relevant classes of sources.

Definition III.8. We say that a distribution S is samplable by
size-s circuits if there exists a circuit C of size s such that

Pr
r
[C(r) = x] = Pr[S → x]

for all x.

Definition III.9. We say that a distribution S is samplable by
size-s quantum circuits if there exists a quantum circuit C of
size s such that

Pr[C → x] = Pr[S → x]

for all x.

Note that as quantum circuits can sample their own ran-
domness, we no longer need to quantify the probability that
C outputs x by some randomness space.

We also define a notion of postselecting samplable sources.
A source is samplable by postselecting circuits if we allow the
circuit to condition on one of its outputs being 1.

Definition III.10. Let S be a class of sources over X×{0, 1}.
We define a new class of sources Snd over X , which we call
postselecting S. We say that S ′ ∈ Snd if there exists a source
(S, b) ∈ S such that for all x′,

Pr
S′→x

[x = x′] = Pr
S→(x,b)

[x = x′|b = 1].

Observe that when S is the class of sources samplable by
size-s quantum circuits, we see that Snd is the class of sources
samplable by size-s postselecting quantum circuits.

D. Statistical Distance and Extractors

Definition III.11. For two distributions X,Y , the statistical
distance between X and Y is

SD(X,Y ) :=
1

2

∑
x

|Pr[X = x]− Pr[Y = x]|

We say that X and Y are ϵ-close if SD(X,Y ) ≤ ϵ.

Definition III.12. Let S be some class of sources. We say
that a function EXT : {0, 1}n → {0, 1}m is a (k, ϵ)
(deterministic) extractor against S if for every distribution
S ∈ S such that H∞(S) ≥ k, EXT (S) is ϵ-close to Um.

Definition III.13. Let S be some class of sources. We say
that a function EXT : {0, 1}n → {0, 1}m is a (k, ϵ) leakage-
resilient extractor against S if for every distribution (S, L) ∈
S such that H∞(S|L) ≥ k, EXT (S) is ϵ-close to Um.

E. Combinatorial list decoding

Definition III.14. We say that a function E : {0, 1}n
′
×

{0, 1}n
′
→ {0, 1}m satisfies (ϵ, δ, t)-combinatorial list decod-

ing if, for all a ∈ {0, 1}m, the following holds:
Let S be any distribution over {0, 1}n

′
of density δ. Then,∣∣∣∣{ω :

∣∣∣∣ PrS→i
[T (w, i) = a]− 1

2m

∣∣∣∣ ≥ epsilon

}∣∣∣∣ ≤ t

Note that functions satisfying combinatorial list-decoding
have been constructed in [TV00], [AASY16]. In particular,
we have the following proposition

Claim 3 (Lemma 7.7 from [AASY16]. Also [DEOR04]). For
all constants c > 0, there exists a constant α > 0 such that for
every sufficiently large n′, for every m ≤ αn′ and ϵ ≥ 2−cm,
there exists a function E : {0, 1}n

′
→ {0, 1}n

′
→ {0, 1}m

satisfying (ϵ, 2−0.1n′
, 20.2n

′
)-combinatorial list decoding.

F. The Gap Probability Maximization Problem

We repeat our definition of the gap maximization problem
(GPM) from the technical overview:

Say we are given a boolean randomized algorithm C̃ and a
constant γ with the following promise:
- There exists some x∗ such that Pr[C̃(x∗)→ 1] ≥ γ



- For all x ̸= x∗, Pr[C̃(x)→ 1] ≤ γ

2
The GPM problem asks us to find x∗.

We remark show that the GPM problem can be efficiently
solved for classical circuits using NP-circuits. Formally,

Theorem 4. Let γ, s > 0, and let C be the class of boolean
valued circuits of size s with input space X such that there
exists an x∗ ∈ X satisfying
- Pr[C̃(x∗)→ 1] ≥ γ,
- For all x ̸= x∗, Pr[C̃(x)→ 1] ≤ γ

2
.

Then C(C̃) = x∗. There exists a poly(s)-size NP||-circuit C
such that for all C̃ ∈ C, C(C̃) = x∗.

In fact, the size of C will be polynomial in γ and s. But
since γ ≤ 1, we can thus upper bound the size of C by a
polynomial in s. Note that this means the problem is easier
for small values of γ. Intuitively, this is because the difficulty
lies in reducing the number of witnesses for ”bad” x ̸= x∗.

Note that nondeterminism is indeed necessary to solve this
problem, as such a C can be used to solve SAT. In particular,
if C̃ϕ(x; r) is a circuit evaluating ϕ on input x, then for all ϕ
with exactly one witness x∗, C1(C̃ϕ) = x∗.

A quantum analogue of this theorem also holds.

Theorem III.15. Let γ, s > 0, and let C be the class of
boolean valued quantum circuits of size s with input space
X and ℓ ancilla qubits such that there exists an x∗ ∈ X
satisfying
- Pr[C̃(x∗)→ 1] ≥ γ,
- For all x ̸= x∗, Pr[C̃(x)→ 1] ≤ γ

2
.

Then there exists a poly(s)-size PostBQP-circuit C such that

for all C̃ ∈ C, Pr[C(C̃)→ x∗] ≥ 2

3
.

We also remark that it is not necessary that these algorithms

be given γ, since they can try every γ =
1

2i
for each 1 ≤ i ≤ s

in time poly(s).
Proofs of both these statements are included in the full

version of the paper [BDSGM23].

IV. EXTRACTORS FROM HARDNESS ASSUMPTIONS

In this section, we will prove the following theorem by
relying on a key lemma.

Theorem IV.1. Let p : Ft → F be any polynomial of degree
d with |F| = q. Let T : F × {0, 1}s → {0, 1} satisfy(
ϵ, δ,

1

δ · ϵ2

)
-combinatorial list decoding.

There exists constants c0, c1 such that if ϵc0δc1 ≤

√
d

q
then

the following holds:
If there exists a size-s postselecting (quantum/classical)

samplable source S of density δ with output space Ft×{0, 1}s
such that ∣∣∣∣ Pr

S→(x,i)
[T (p(x), i) = b]− 1

2

∣∣∣∣ ≥ ϵ

then there exists a (postselecting/NP||)-circuit C of size

poly

(
s,

1

ϵ

)
computing p everywhere.

This theorem is enough for us to build extractors from
the hardness of E, netting us Theorems II.4 and II.5. First
we instantiate Theorem IV.1 with the T from Proposition 3.
Theorems II.4 and II.5 then follow by applying the same
argument used by [TV00] in proving Theorem 5.8 from The-
orem 5.3. For the classical case (Theorem II.4), Theorem IV.1
is about NP||-circuits, but Theorem II.4 assumes hardness
against nondeterministic circuits. To close this gap, we apply
Theorem III.1 that says: if E is hard for exponential size
nondeterministic circuits, then E is hard for exponential size
NP||-circuits.

To prove Theorem IV.1, we will rely on the following
(restated) key lemma as well as the existence of an efficient
implementation of a circuit solving the gap probability maxi-
mization problem. The proof of the key lemma is deferred to
the full version [BDSGM23].

Lemma 5. KEY LEMMA:

Let p : Ft → F be any function, let T : F × {0, 1}s →
{0, 1}m satisfy

(
ϵ, δ,

1

δ · ϵ2

)
-combinatorial list decoding, and

let S be any distribution of density δ such that∣∣∣∣ Pr
S→(u,i)

[T (p(u), i) = 1]− 1

2

∣∣∣∣ ≥ ϵ.

There exists constants c0, c1 such that if ϵc0δc1 ≤

√
d

q
then

the following holds: There exists a z such that for
15

16
values

of x,

-
∣∣∣∣ Pr
S→(u,i)

[T (p(u), i) = 1|u ∈ Lz,x]−
1

2

∣∣∣∣ ≥ ϵ

3
- For all h : F → F such that h ̸= p ◦ Lz,x, either∣∣∣∣ Pr
S→(u,i)

[T (h(L−1
z,x(u)), i) = 1|u ∈ Lz,x]−

1

2m

∣∣∣∣ ≤ ϵ

6
or

h(0) ̸= p(z).

We now prove Theorem IV.1 from Lemma 5.

Proof. Without loss of generality, assume that

Pr
S→(x,i)

[T (p(x), i) = 1] ≥ 1

2
+ ϵ.

Let z be as in the key lemma applied to p,S. We will
develop a randomized algorithm C̃x of size poly(s, 1/ϵ) taking
in a univariate polynomial h : F → F of degree d such that
Pr

S→(x,i)
[C̃x(p ◦ Lz,x) → 1] ≥ 2Pr[C̃x(h) → 1] for all h ̸=

p◦Lz,x. Then, our circuit C will simply run a GPM solver on

C̃ to find p◦Lz,x with probability
15

16
, and then will output (p◦



Lz,x)(1) = p(x). This gives us an efficient circuit evaluating

p(x) with probability
15

16
with a circuit of size poly(s, 1/ϵ).

We define C̃x(h) as follows:

Algorithm 2: C̃x(h)

0: If h(0) ̸= p(z), output 0.
0: Sample (u1, i1, b1), . . . , (uk, ik, bk)

$←− SAMP .
0: Output 1 if and only if for all j:

- bj = 1
- uj ∈ Lz,x(F) or
- T (h(L−1

z,x(uj)), ij) = 1.

The key lemma implies that

Pr[C̃x(p ◦ Lz,x)→ 1] ≥ Pr[PASS]

(
1

2
+

ϵ

3

)k

and

Pr[C̃x(h
′)→ 1] ≥ Pr[PASS]

(
1

2m
− ϵ

6

)k

for all h′ ̸= p ◦ Lz,x. Then, for some k = O(n2), we can say
that (

1

2
+

ϵ

3

)k

≥ 2

(
1

2m
− ϵ

6

)k

So nonuniformly fixing γ = Pr[PASS]

(
1

2m
+

ϵ

3

)k

in

Theorem 4 (or Theorem III.15 for the quantum case) gives
us the result.

Observe that, C̃x is of size poly

(
s,

1

ϵ

)
, and so we are

done. Note that in order to run the GPM solver, we need C to
be a NP||-circuit or a PostBQP-circuit, depending on whether
we are operating in the classical or quantum world.
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