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We present scheme-independent calculations of the anomalous dimensions y,, ;g and y;, ;g of fermion
bilinear operators yy and yy at an infrared fixed point in an asymptotically free SU(N.) gauge theory with
massless Dirac fermion content consisting of N fermions y{ in the fundamental representation and N4,
fermions )(;fb in the antisymmetric rank-2 tensor representation, where i, j are flavor indices. For the case
N.=4, Np =4, and N4, =4, we compare our results with values of these anomalous dimensions

measured in a recent lattice simulation and find agreement.
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I. INTRODUCTION

An asymptotically free gauge theory with sufficiently
many massless fermions has an infrared zero in its beta
function, which is an infrared fixed point (IRFP) of the
renormalization group [1-3]. At this IRFP the theory is
scale-invariant and is inferred to be conformally invariant
[4], whence the commonly used term “conformal window”
(CW). Because of the asymptotic freedom, one can use
perturbation theory reliably in the deep ultraviolet (UV)
where the gauge coupling approaches zero, and then follow
the renormalization-group flow toward the infrared. These
statements apply to both vectorial and chiral gauge theo-
ries; here we restrict our consideration to vectorial gauge
theories. As the fermion content is reduced, the gauge
coupling at the IRFP increases in strength and eventually
exceeds a value such that there is generically spontaneous
chiral symmetry breaking and dynamical fermion mass
generation. This defines the lower end of the conformal
window. Theories that lie slightly below this lower end
exhibit quasiconformal behavior over a large interval of
Euclidean energy/momentum scales, over which the gauge
coupling runs slowly due to a small beta function. Such
theories just below the lower end of the conformal window
can be relevant to approaches to composite-Higgs scenarios
and associated physics beyond the Standard Model (BSM).
Considerable progress has been made in studies of
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quasiconformal vectorial gauge theories with several fla-
vors of fermions transforming according to a single
representation of the gauge group, e.g., SU(3) with Np =8
Dirac fermions in the fundamental representation [5-7].

For an operator O, the full scaling dimension is denoted
as Dy and its free-field value as Do ge.. The anomalous
dimension of this operator, denoted y, is defined via the
relation Dy = Dp e — 700- The anomalous dimensions of
gauge-invariant operators at an IRFP are of basic physical
interest. While the simplest gauge theories have used
fermions transforming according to a single representation
of the gauge group, a natural generalization is to study
theories with multiple fermions transforming according to
different representations of the gauge group. In previous
work [8], we presented scheme-independent perturbative
calculations of anomalous dimensions of fermion bilinears
at an IRFP in the conformal window in a theory of this type
(in d = 4 spacetime dimensions at zero temperature), with
a general non-Abelian gauge group G and massless fermion
content consisting of N, fermions f in a representation
R and Ny fermions f’ in a representation R" of G [9].
Our calculational method applies at an exact IRFP in the
conformal window (sometimes called the non-Abelian
Coulomb phase). In [10] with S. Girmohanta we studied
theories of this type with G = SU(N,), R equal to the
fundamental representation, and R’ equal to the adjoint
or rank-2 tensor representation and investigated a type of
’t Hooft-Veneziano limit, Ny — co, N, — co with N;/N,
and Ny fixed.

We denote a gauge theory with gauge group
G = SU(N,.) and (massless) fermion content consisting
of Ny Dirac fermions in the fundamental representation,
denoted F, and N A, Dirac fermions in the antisymmetric
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rank-2 tensor representation, denoted A,, as (N., Ny, N,,)
for short. Recently, Ref. [11] reported interesting results
from lattice simulations of the (N.,Np,N,,) = (4.4.4)
theory (for theoretical motivations, see [12]). Since the A,
representation in SU(4) is self-conjugate, the N, Dirac
fermions are equivalent to 2N,, Majorana fermions.
Reference [11] finds evidence for an IRFP inferred to lie
in the conformal window, near its lower end, and presents

measurements of the anomalous dimensions of the F and

A, fermion bilinears yﬁf) and yg,?) (where the superscripts

refer to the dimensionalities of these representations of
SU(4)), and of gauge-singlet composite-fermion operators.
Given the conclusion in [11] that this theory is in the
conformal window, a relevant question is whether our
general higher-order perturbative calculations of anoma-
lous dimensions of fermion bilinears in [8], when special-
ized to this theory, yield results in agreement with the
values measured in [11]. To our knowledge, this question
has not been previously investigated in the literature.

In the present work we address and answer this question

for the anomalous dimensions yfff) and yf,?) by extracting the

requisite special case of our general calculations of anoma-
lous dimensions of fermion bilinears in [8] for the
(N..Np,Ny,) = (4,4,4) theory. To state our conclusions
in advance, to within the uncertainties in our finite-
order perturbative calculation, we find agreement with
the lattice results in [11]. The authors of Ref. [11] also
observed that their conclusion that the (4,4,4) theory is in
the conformal window disagreed with a calculation in [13]
(denoted KHL) of the lower boundary of this conformal
window in the (4,Np,N,,) theory based on a critical
condition on max(yﬁf ), yff))
this further here.

As noted above, our calculations of anomalous dimen-
sions of fermion bilinears in [8] were for a general non-
Abelian gauge group G and fermion representations R
and R'. Before presenting our calculations for SU(4) theory,
we will first specialize the results from [8] to the case of the
gauge group G = SU(N,.) with massless fermion content
consisting of Ny Dirac fermions in the fundamental
representation and N 4, Dirac fermions in the antisymmetric
rank-2 tensor representation of SU(N,.), i.e., theories of the
type (N.,Np,Ny4,) in our shorthand notation. We then
further specialize to the case N, = 4, and then finally to
the (4,4,4) theory.

We denote the massless Dirac fermions in the " and A,
representations as w¢ and ){7” = —)(j?“, where a, b are
SU(N,) gauge indices, and i, j are flavor indices
with i=1,...,Np and j = 1,...,NA2. We shall use our
general results in [8] to calculate scheme-independent
series expansions for the anomalous dimensions at the
IRFP, denoted yy,, 1z and vy, jg, of the respective (gauge-
invariant) fermion bilinears

, denoted yCC. We investigate

Ny
= Wi (1.1)
i=1

and

Na,

=) Tai?,
j=1

(1.2)

where the sums over color indices are understood and
run from 1 to N,.. Although we take the fermions to be
massless, the operators (1.1) and (1.2) would be mass
operators (with all fermion flavors taken to have equal
mass) if these fermions were massive, and for this reason
another common notation for the anomalous dimensions is
7/5,,” = Yy g and 7/5,? ) = Y7y.1r- In the special case N = 4,
these are also written with reference to the respective
dimensionalities 4 and 6 of the F and A, representations

as yﬁ,f) = yyy.r and yﬁ,?) = yy,.ir- The color and flavor
indices will often be suppressed in the notation.

It should be mentioned that studies were also performed
of the (4,2,2) theory, due to its possible role as a model
for a composite Higgs boson and a partially composite top
quark [14-16]. However, as we noted in [8], the (4,2,2)
theory is in the chirally broken phase, where there is no
exact IRFP and hence where our calculations are not
directly applicable. In general, BSM theories with fermions
in higher-dimensional representations have long been of
interest; in addition to Refs. [11] and [14—16], some of the
many works include [12,17,18].

This paper is organized as follows. In Sec. II we briefly
discuss some relevant background and our general calcula-
tional methods. Section III contains our results for the
anomalous dimensions for SU(N,.) with general N and
N,, in the conformal window, while Sec. IV presents the
corresponding formulas for N. =4 and for the specific
(No.Np,Ny,) = (4,4,4) theory. Our conclusions are
given in Sec. V.

II. CALCULATIONAL METHODS

In this section we briefly review our calculational
methods and relevant notation. In the context of the general
SU(N.) gauge group, we first mention two degenerate
cases. If N. = 2, then the A, representation is a singlet and
hence decouples from the dynamics, so the theory reduces
to one with fermions in just the fundamental representation.
Hence, in all expressions involving the number Ny, this
number always occurs multiplied by the factor (N, — 2).
If N, =3, then A, = F, i.e., the A, representation is the
conjugate fundamental representation of SU(3). Taking
into account the fact that a Dirac fermion f has a
decomposition into chiral components f = f; + fr and
the property that a left-handed chiral component of a
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fermion can be equivalently written as the charge conjugate
of a right-handed antifermion, it follows that if N. = 3,
then the theory reduces to one with Ny + N, fermions in
the fundamental representation. If N, > 4, then the F and
A, representations are distinct.

A. Relevant range of Ny and Ny,

We denote the running gauge coupling as g = g(u),
where y is the Euclidean energy/momentum scale at which
this coupling is measured. We define a(u) = g(u)?*/(4x).
As noted before, since we require the theory to be
asymptotically free, its properties can be computed per-
turbatively in the UV limit at large u, where a(u) — 0. The
dependence of a(u) on u is described by the renormaliza-
tion-group (RG) beta function,

_ da(p)
dlnp’

p (2.1)

The argument u will generally be suppressed in the
notation. The series expansion of f in powers of « is

p==2a E bea’, (2.2)
/=1
where
2
g a
= =—, 2.3
a 1622 4z (2.3)

and b, is the /-loop coefficient. For a theory with a
gauge group G and Dirac fermions f and f’ in respective
representations R and R’ of G, the one-loop coefficient in
the beta function is [1]

by = % [“CA —4(N; Ty + Nf’Tf’)}’ (2.4)
and the two-loop coefficient is [2]
by = % [34C% = 4N, T4(5C, + 3C))
4N Ty (5C4 +3Cp)] (2.5)

where Cy, Cy, and T are group invariants (see [19] and the
Appendix). With an overall minus sign extracted, as in
Eq. (2.1), the condition of asymptotic freedom is that
by > 0. Setting R = F and R’ = A, and substituting the
values of the group invariants for G = SU(N,.), the con-
dition b; > 0 reads

1IN,
>

N+ (N, —2)N,, < (2.6)

The resultant upper (u) limits on N and N4, imposed by
the requirement of asymptotic freedom are thus

11

NF,MZENC_(NC_Q’)NAZ (27)
and
11N, — 2N
N = 2.8
Aru 2(NC _ 2) ( )

The maximal order to which the beta function is indepen-
dent of the scheme used for regularization and renormal-
ization is the two-loop order. With b; > 0, the condition
that this two-loop beta function should have an IR zero is
that b, < 0. For the SU(N,.) theory, this is the condition

Np(13N2 =3) + 2N (N, —2)(8N2 = 3N, — 6) > 34N3.
(2.9)

The region of the first quadrant in the (Np,N,,) plane
where the inequalities (2.6) and (2.9) are both satisfied will
be denoted Iz, where the subscript refers to the existence
of an IR zero (IRZ) in the beta function. We label the upper
and lower boundaries of the Iz, region as Bz, and
Birz.s, respectively. In plotting these boundaries, one
formally generalizes Ny and N,, from positive integers
(or half-integers for N,, if N.=4) to positive real
numbers, with the understanding that the physical cases
are integral (or half-integral for N, if N.=4).
Analogously, we denote the upper and lower boundaries
of the conformal window as By, and Bcy ,, respectively.
The upper boundary Bew ,, = Birz,, is the solution locus to
the condition b; = 0. The lower boundary Bcy , is not
exactly known even for the case of theories with fermions
transforming in only one representation; indeed, much
work using lattice simulations has been, and continues
to be, devoted to determining the approximate location
of this lower conformal-window boundary [20,21]. We
discuss this lower boundary Bew , further below for the
N. =4 theory.

Following our labeling convention in [8], we take the
horizontal and vertical axes of the first quadrant of the
(Np.Ny,) plane to be the Ny and Ny, axes, respectively.
The boundaries of the Iz region given by the equations
b; =0 and b, =0 are both line segments in this first
quadrant of the (N, N4,) plane. In general, the slope of the
line by =0 is

dN,, 1

— , 2.10
dN  N,-2 (2.10)
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and the slope of the line b, = 0 is

dN,,
dNp

B (13N2 - 3)
" 2(N,-2)(8N2-3N,—6) 211)

B. Higher-order terms in beta function

For a theory with a general gauge group G and Ny
fermions in a single representation, R, the coefficients b,
and b, were calculated in [1,2], while bs, by, and b5 were
calculated in the commonly used MS scheme [22] in
[23,24,25,26], respectively (see also [27]). For the analysis
of a theory with fermions in multiple different representa-
tions, one needs generalizations of these results. These are
straightforward to derive in the case of b; and b,, but new
calculations are required for higher-loop coefficients. These
were performed in [28] (again in the MS scheme) up to
four-loop order, and we used the results of Ref. [28] in [8].

C. Anomalous dimensions

The conventional expansion of the anomalous dimension
77, of the fermion bilinear ff in a gauge theory, in terms of
the squared gauge coupling, is

Vi = Z cb(ﬂf)af, (2.12)
/=1

where cg ) is the ¢-loop coefficient, and correspondingly

for Yip in a theory with both f and f’ fermions. These

expansions apply, in particular, at an IRFP. They may
also be useful in the analysis of a quasiconformal field
theory with parameters such that it lies slightly below the
lower end of the conformal window and hence exhibits UV
to IR evolution over an extended interval of i governed by

an approximate IRFP. The one-loop coefficient cgf )

is
scheme-independent, while the c;f ) with #>2 are
scheme-dependent, and similarly with the c(ff ). For a
general gauge group G and N, fermions in a single

representation R of G, the céf ) have been calculated up

to loop order #Z = 4 in [29,30] and # = 5 in [31]. For the
case of multiple fermion representations, the coefficients

cg ) have been calculated up to four-loop order in [32] in

the MS scheme.

Physical quantities such as anomalous dimensions at an
IRFP clearly must be scheme-independent. In conventional
computations of these quantities, one first writes them as
series expansions in powers of the coupling as in (2.12),
and then evaluates these series expansions with a set equal
to ar, calculated to a given loop order. These calculations
have been performed for anomalous dimensions of gauge-
invariant fermion bilinears in a theory with a single fermion
representation up to the four-loop level [33-35] and to the

five-loop level in [36]. However, as is well known, these
conventional (finite-order) series expansions are scheme-
dependent beyond the leading terms. Studies of scheme
dependence in the context of an IRFP have been carried out
in [37-42]. The fact that the conventional series expansions
for physical properties are scheme-dependent does not,
by itself, reduce the usefulness of these expansions. For
example, this scheme dependence is also true of higher-
order calculations in quantum chromodynamics (QCD),
which were used to analyze data from hadron colliders such
as the Tevatron at Fermilab and the Large Hadron Collider
at CERN. Considerable effort has been, and continues to
be, expended to construct and apply schemes that minimize
higher-order contributions in these QCD calculations [43].
Indeed, in QCD, because the RG fixed point is an ultra-
violet fixed point at the origin in coupling constant space, it
is, in principle, possible to transform to a scheme where the
beta function has no terms higher than two-loop order (the
’t Hooft scheme) [44]. However, as was shown in [37,38], it
is considerably more difficult to try to carry out such a
scheme transformation to remove terms at loop order 3 and
higher for a fixed point away from the origin.

Thus, in the analysis of the properties of a theory at a
fixed point away from the origin, as in the case of the IRFP
of interest here, it is useful to employ a series expansion
method for calculating physical quantities, such as anoma-
lous dimensions, with the property that the results to each
order are scheme-independent. A simple fact makes this
possible: at the upper end of the conformal window,
as b; — 0, this implies that ag — 0. Hence, one can
reexpress a series expansion at an IRFP in the conformal
window as an expansion in the manifestly scheme-
independent variable ;. For a theory with fermions f in
a single representation, it is natural to use the scheme-
independent Banks-Zaks variable [3,45] Ay = Ny, — Ny.
Such calculations were carried out in [46-54].

In [8] we generalized this analysis to theories with
fermions f and f’ in different representations R and R’
of a general gauge group, G. The corresponding expansion
variables for the scheme-independent series expansions of
physical quantities at an IRFP are

Ay =Nysu—=Ny
N 4T,
3b,
=27 2.13
AT, (2.13)

and similarly for Ay with f <> f’. Note that these expan-
sion variables satisfy the relation

T
_f
Ap=—LA;.

’ (2.14)
T
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The scheme-independent expansion for y7, 1 is

rim = Y AL (2.15)
=

and similarly for y 7R with f — f’. The calculation of the

coefficient K'j-f )in Eq. (2.15) requires, as inputs, the values
of the b, in Eq. (2.2) for 1 < < j+ 1 and the ¢, for
1 <7 < j. We refer the reader to our previous papers for
further details of the calculations.

Using the calculation of the beta function for multiple
fermion representation to four-loop order in [28],
together with the calculation in [32] of the anomalous
dimension coefficients in (2.12) up to £ = 3 loop order,
we can calculate y; g to order O(A}) and y i g to order
O(A;,). Parenthetically, note that we cannot make use of

the four-loop calculation of the c(ff ) in [32] to compute

Y77.1r to order O(A}) and 7, to O(AY,), because this
would require, as an input, the five-loop coefficient bs
in the beta function for this case of multiple fermion
representations, and, to our knowledge, this has not been
calculated.

In our specific application here, where the f and f’
fermions transform according to the representations R = F
and R’ = A, of SUW,), we will write these scheme-
independent series expansions as

}/l/_/l,ll,lR = ZK;-F) A;: (216)
=1
and
YigIR = ZKE-AZ)A{;Z, (2.17)
=1
where
11
AF:7]\/C—]VF—(Ivc—z)lvA2 (218)
and
1IN, —2Np —2(N.—=2)N,
= : 2.19
A, 2(NL _ 2) ( )
For this (N, Np,Ny,) theory, Eq. (2.14) reads
T A
Ay =L Ap=—" (2.20)

R VA

The truncation of the series (2.16) to order O(AL) is
denoted as yy, 1k, AP and similarly, the truncation of the

series (2.17) to order O(Aﬁz) is denoted y5, g a7 - In accord

with the remarks on the N, = 3 special of the theory at the
beginning of this section, we note the identities

N, =3 = K;-F) = KEAZ),
AF - AAZ’
(2.21)

Yoy IR AL = V;z;(,IR,Aﬁ;Z-

In general, series expansions in powers of interaction
couplings in quantum field theory are asymptotic expan-
sions rather than Taylor series. As we discussed in [52],
the scheme-independent expansion (2.15) is also generi-
cally an asymptotic expansion rather than a Taylor series
expansion with finite radius of convergence. This is a
consequence of the property that in order for a series
expansion of a function f(z) in powers of z to be a Taylor
series with finite radius of convergence, it is necessary
(and sufficient) that f(z) must be analytic at the origin of
the complex z plane. With z = A, this means that the
properties of the theory should remain qualitatively similar
for small positive and negative real A,. However, as A,
passes from real positive values through zero to negative
real values, i.e., as Ny increases through the value Ny,
the theory changes qualitatively from being asymptotically
free to being IR-free. Nevertheless, just as with perturba-
tive calculations in quantum electrodynamics, one may
still use the scheme-independent expansions (2.16)
and (2.17) to get approximate information about
these anomalous dimensions. In our previous works,
e.g., [46-49,51,52], we have carried out the requisite
assessment of higher-order contributions, up to order
O(A}) for y7;r and O(A}) for fiiz in theories with
fermions in a single representation. These showed that
the scheme-independent series expansions are reasonably
convergent throughout the conformal window, although,
of course, the higher-order terms make relatively larger
contributions as one approaches the lower end of this
window. The curves that we will show below for y;,, g a?

and yz, g, AL for 1 < p <3 provide an analogous quanti-

tative measure of the effective convergence of these
expansions.

Interestingly, in [50] we studied the N" = 1 supersym-
metric SU(N ) theory with matter content consisting of Ny
copies of chiral superfields and their conjugates, for which
the anomalous dimension of the gauge-invariant chiral
superfield bilinear is exactly known [55,56], and we
showed (a) that the «; coefficients precisely reproduce
the series expansion coefficients of the exact results to all
orders, and (b) the scheme-independent expansion of this
anomalous dimension is convergent throughout the full
non-Abelian Coulomb phase, which corresponds to the
conformal window in that theory.
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D. Condition on anomalous dimensions
for conformal window

On the basis of analyses of the Schwinger-Dyson
equation for the propagator of a fermion f, operator product
expansions, and other arguments [57-60], it has been
suggested that an upper bound

yff,lR < 1 (222)
applies for an IRFP in the conformal window. In view of the
uncertainties pertaining to strong coupling and nonpertur-
bative effects, this bound is also sometimes stated as
Y7rr S 15 here we will take this as implicit in our
discussions. Since yj7, g increases as one moves down
through the conformal window from the upper end where
by =0, it follows that when the inequality (2.22) is
saturated, i.e, when the critical condition (denoted yCC)

Yirr =1 (2.23)
holds, this defines the lower end of the conformal window,
Bew ¢. As we discussed in [50], this is true in the case of an
N =1 supersymmetric theory with gauge group SU(N,.)
and a set of chiral superfields in the F and F representa-
tions, where the anomalous dimension of the gauge-
invariant chiral superfield bilinear is exactly known
[55,56]. The occurrence of the quadratic equation

7R = rpm) =1 (2.24)
as a critical condition for fermion condensation and its
connection with the condition (2.23) was noted in [57].
This quadratic equation (2.24) has a double root at
Y7rr = 1, and hence an exact solution of the quadratic
equation (2.24) yields the same result as the linear con-
dition (2.23). However, when applied in the context of
series expansions such as Eq. (2.16) and (2.17), as
calculated to finite order, the results differ from those
obtained with the linear condition (2.23). This difference
arises because the quadratic condition (2.26) generates
higher-order terms in powers of the scheme-independent
expansion variable, and leads to different coefficients of
lower-order terms [13,61]. In a theory with N, fermions
transforming according to a single representation of the
gauge group, the use of the quadratic condition (2.24) was
found [13,61] to (i) show better convergence as a function
of increasing order of truncation of the series (2.15) than
the linear condition (2.23) and (ii) predict that the lower
boundary Bew , of the conformal window occurs at a
higher value of N than the linear condition.

In a theory with multiple fermions in different repre-
sentations of the gauge group, the generalization of the
condition (2.23) for the lower boundary Bcw, of the
conformal window is that this lower boundary is reached

when the larger of the anomalous dimensions increases
through unity, since this would be expected to result in the
dynamical mass generation for the fermion with the larger
anomalous dimension, thereby driving the system out of the
conformal window. Thus, in our present theory, this lower
end of the conformal window occurs if

max(]’y?y/,IR’y)?;(,IR) = 1. (2-25)
In this type of theory, the quadratic form of the critical
condition is Eq. (2.24) with yz,r being given by
max (¥, R> Y7, )- SINCE 77, 1R > Ygyr here, Eq. (2.24)
reduces to

V;z;(,IR(z - 7;?;(,IR) =L (2.26)
Because of the approximations involved in applying either
the linear condition (2.23) or the quadratic condition (2.24)
in the context of finite-order series expansions, it is useful
to compare the lower boundary By » predicted by each of
these for the present theory. The difference gives a measure
of the uncertainties involved in the determination of this
lower boundary using the yCC condition. The boundary
Bew» was calculated in [13] using the quadratic yCC
condition. We have checked and confirmed the result for
Bew o obtained in [13] with the quadratic yCC condition.
For the comparison, here we will calculate the prediction
for this boundary using the linear condition.

As a side note to our study, it may be recalled that
the conditions (2.22) and (2.25) have a connection to
approaches to physics beyond the Standard Model involv-
ing dynamical electroweak symmetry breaking (EWSB). In
such approaches there has been interest in models featuring
a new gauge interaction that becomes strongly coupled on
the TeV scale, producing fermion condensates and thus
EWSB. Models with the property of having a slowly
running gauge coupling and approximate scale invariance
over an extended interval of Euclidean energy/momentum
scales, due to an approximate zero of the relevant beta
function, have been of particular interest. One reason for
this is that when the approximate scale invariance in the
theory is dynamically broken by the formation of fermion
condensates, this gives rise to an approximate Nambu-
Goldstone boson, namely a dilaton [62]. In turn, insofar as
the observed Higgs boson is modeled as a composite
particle, at least partially dilatonic in nature, this can
provide a means of helping to protect its mass against
large radiative corrections. Although the observed proper-
ties of the Higgs boson, including the production cross
section and couplings to the W and Z vector bosons and to
Standard-Model fermions, are in excellent agreement with
SM predictions [63,64], experimental work will continue to
search for, and set constraints on, Higgs compositeness and
possible deviations from SM predictions. A second reason
is that a renormalization-group flow from the UV to the IR
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that is influenced by an approximate IRFP can naturally
give rise to large anomalous dimension(s) y7, g = 1 for the
fermions f subject to the strongly coupled gauge inter-
action. This has been useful in the effort to produce
a realistically large top quark mass while suppressing
flavor-changing neutral-current processes and minimizing
corrections to precision electroweak observables. (In this
model-building effort, one must also confront the challenge
of producing the requisite large splitting between the r and
b quark masses.) Examples of reasonably UV-complete
models with dynamical EWSB that also feature sequential
breaking of an extended gauge symmetry to produce a
generational hierarchy in quark and charged lepton masses,
as well as neutrino masses, and make use of this y7, g = 1
property, are discussed, e.g., in [65]. With fermions in a
single representation of the gauge group, such as SU(3)
with Np = 8 fermions in the fundamental representation,
lattice simulations [5—7] have found an anomalous dimen-
sion y,, ~ 1 for the strongly coupled fermion and have
shown that the spectrum of the theory includes a light 0™
state consistent with being an approximate dilaton. Lattice
simulations have also been carried out for other models,
including an SU(3) theory with two flavors of fermions in
the sextet representation [18].

We recall that a rigorous upper bound on y7, g in a
conformal field theory is that [66-68]

YR <2, (2.27)
where here, f refers to any fermion in the theory. This is
evidently less restrictive than the bound (2.22) and need
not be saturated at the lower boundary Bcy, of the
conformal window.

In passing, it should be mentioned that an approximate
condition for spontaneous chiral symmetry breaking via
formation of the condensate (ff) derived from analysis of

from the beta function (2.2), is scheme-dependent.
Furthermore, as one approaches the strongly coupled
regime near the lower end of the conformal window, the
value of the IR zero of the n-loop beta function, ayg s,
changes substantially as one goes from two-loop order to
higher-loop order. For example, as listed in Table II of [47],
for SU3) with N =9 fermions in the fundamental
representation, ag,, = 5.24, while ajg 5, = 1.03, as cal-

culated in the widely used MS scheme. Consequently, here
we focus on the yCC condition (2.25), since it can be
applied in a scheme-independent manner.

III. SCHEME-INDEPENDENT CALCULATION
OF ANOMALOUS DIMENSIONS OF FERMION
BILINEAR OPERATORS

In this section, for a theory with an SU(N,.) gauge group
and (massless) fermion content consisting of Ny fermions
in the fundamental representation, F, and N, fermions in
the antisymmetric rank-2 representation, A,, we present
explicit calculations of the coefficients K';F) and K§A2> with
j=1,2,3 using the scheme-independent expansions of
the anomalous dimensions y;,, r and 73, g in Egs. (2.15)
and the analog for y;, g with 1 < j < 3. These yield the
anomalous dimensions 7, r and 75, r up to O(A}) and
O(A},), respectively.

It is convenient to define factors that occurs repeatedly in
the denominators of yig  and yg 4,, namely

Dy = N (25N?=11) + 2N, (N, = 2)(N. + 1)(N. = 3)
(3.1)

and

Dy, = No(18N2 = 1IN, = 22) = Np(N, = 3)(N, + 1).

the Schwinger-Dyson equation for the f fermion propa- (3.2)
gator is that this occurs as the coupling a exceeds the value
a., = n/(3Cy). As applied to estimate the lower boundary For the first two coefficients we calculate
of the conformal window, this would be a condition on o AN2—1)
the value of oy at the IRFP as one approaches this lower KE ) = 7;—, (3.3)
boundary. While this is a reasonable rough guide, the F
maximal scheme-independent level to which it can be 2
4(N.—-2)*(N.+1
applied is the two-loop level, since the value of the n-loop Kt = (Ne D) (Ne+1) , (3.4)
(n?) IR coupling ajg ,,» at higher-loop level, as calculated| A
(F) 4(N e 1) 2 2
K =T {Nc(9NC —2)(49N; —44) + 4N, (N, = 2)(N. + 1)(N. = 3)(3N. = 2)(5N . + 3)} (3.5)
F
and
N.—2)3(N.+1
o) (Ve 3)D§ et1) [V (11N ~4N —8) (93N2 88N, ~176) 2N, (N, ~3)(N, + ) (3TN~ 16N, ~33)|.  (3.6)
Ay
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Following our notation in [8], we write the third-order coefficients in the form

P 8INE=1)1,(F F F £
F
and
N.—=2)3(N.+1
) _ (N SiD(S ¢+ 1) [A(()Az) +A§A2)NF+AEA2)N%+AgA2)N%}7 (3.8)
A,

and we calculate

Al = N2 [(2742431\7% — 455426N® — 114080N* + 47344N2 + 35574) — 4224N?(4N? — 11)(25N? — 11)@} . (3.9)

AP —aN (N, -2)(N, - 3) {(16981NZ + 35460NS + 42927N3 + 47342N% + 9432N3 — 12849N2 — 18843N,, — 11616)

— 5762 (25Ng‘ + 198N 4+ 187N2 — 121N, — 121)@} : (3.10)

A =8(N,—2)(N,—3) {(689N§ — 1402N7 — 9208NS — 15693N3 — 9219N* + 16662V + 19860N2 + 10617N,, + 5598)
— 19272 (31\72 — 65N+ —238N3 — 165N2 + 231N, + 198) g] : (3.11)
A = 128N, (N, = 2)3(N, = 3)2(N. + 1)(3N? + TN, + 6)(=11 + 24¢5), (3.12)

AL = N2 [(1670571N2 — 7671402N8 + 2181584N7 + 25294256N6 — 13413856N3 — 17539136N* + 167073283

+ 3046912N2 — 27320832N,, — 18213888) — 8448N2(N, + 2)(18N2 — 11N, — 22)(3N3 — 28N2 + 176)53} ,

(3.13)
A% = AN (N, - 3) {(60552N§ — 150015N? — 373894N% + 138737N?3 + 300380N¢ + 421197N? + 768345N2

+ 858660N,, + 435468) — 19202 (141N§ —2075N* — 6226N? + 1056N2 + 17424N,, + 11616) @} . (3.14)

AL =g(N, - 3) [(1 148N8 — 3919N7 — 17365N8 — 5724N? + 35724N* + 84915N3} + 70641N? + 32928N, + 15588)
— 192N2 (3N§ — 164N+ = 271N3 + 396N2 + 1320N, + 792) @} : (3.15)

and
AL = Z128N (N, + 1)(N, = 3)2(3N2 + TN, + 6)(~11 + 24¢5). (3.16)

Here, {, = > % , n™* is the Riemann zeta function, and {3 = 1.2020569... We have remarked above on the reason for the
occurrence of (N, — 2) factors (or powers thereof) in conjunction with the numbers N, . The occurrence of (N, — 3) factors
in various expressions reflects the reduction of the theory to one with N + N4, fermions in the fundamental representation
in the case N, = 3. We straightforwardly check that our general-N, results above satisfy the identities (2.21).
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IV. SU4) THEORY
In this section, for the case N. = 4, i.e., G = SU(4), we
list the special cases of the general-N . expressions for the
coefficients K;F) and K}AZ) with 1 < j < 3 and the resultant
expressions for yg, g oz and yy, r A? with 1 < p < 3.
IR, AL IR.AY

A. Direct calculations of anomalous dimensions

For N. =4, the upper end of the conformal window,
defined by the condition b; > 0, is

has slope dN,,/dNp = —41/88 = —0.4659. Regarding
the figures to be presented below, we note that if one sets
Np =4, then the gy interval in Ny, is 3.082 < Ny, <9
and if one sets Ny, =4, then the Iy interval in Np is

2.029 < Np < 14. In the (4,4,4) theory, Ap =10
and Ay, =5.
Substituting N. = 4 in the results for K5~F> and K‘;AZ) given

for G =SU(N,) in the previous section, we find the
following:

(F) — _ 15 4.3
Np+2N,, <22, (4.1) 7380+ 5Ny, (43)
and the condition that the two-loop beta function should
have an IR zero is ) 25(5254 + 115N ,,) (4.4)
2 (389 + 5N, )3 ‘
205N + 440N, > 2176. (4.2)
As before, we denote the region in the first quadrant of the KEA2> — 80 ’ (4.5)
(Np,N,,) plane where the inequalities (4.1) and (4.2) are 888 — SNp
simultaneously satisfied as Ijzy. The lines that are the upper
and lower boundaries of the Iz, region have slopes that  and
are almost equal. From Eq. (2.10), the upper boundary,
i.e.,, the solution to the condition b; =0 has slope (4,) _ 400(19456 — 165N )
dN,,/dN = —1/2, while from Eq. (2.11), the lower Ky = (888 — 5N, )’ (4.6)
IRz boundary, i.e., the solution to the condition b, = 0, g
|
(F) = > [ 8039476475 — 696689664 479848740 — 197766144¢5)N
5 = 360389 + 5N, L S e,
+ (—16264767 + 465684484’3)fo2 + (—288640 + 629760C3)N;}2] , (4.7)
and
() 640 [ 28645111296
= + 7201751040¢53) — (120552246 + 10553425925)N
+ (=12526131 + 33675264¢3)N% + (72160 — 15744053)N}]. (4.8)
|
For the theory with N. = 4,i.e.,G = SU(4), N = 4, and 4) 20
N,, = 4, our general expressions yield the following (where KT T 0.092166, (4.12)
floating-point values are quoted to the indicated precision):
117475
w15 . K = Gy - 1497 102, (4.13)
=—=13.6675 x 1077, 4.9
T 409 ) (49)
142850 and
K = 2 —2.0879 x 1073, (4.10)
(409) (1) _ 17479439035 | 3368960 ,
k3 = = 5 363
(7 _ 48400811015 _ 715520 27- (2177 9-(217)
37 36- (409  3-(409)*°? = 1.5484 x 1073, (4.14)
= 2.37475 x 1074, (4.11)

where partial factorizations are shown for denominators.
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Substituting these coefficients into Egs. (2.16) and (2.17),
with Ap =2A,, = 10 for this (4,4,4) theory, we have

Yoy R A, = 0.367, (4.15)
Viyparaz = 0.576, (4.16)
Viyparas = 0.683, (4.17)
YirIRA,, = 0.461, (4.18)
ViRay, = 0.748, (4.19)
and
ViR, = 0.942. (4.20)
Because K;F) and K';-AZ) are positive for all of the orders

j=1,2,3 for which we have calculated them, several
monotonicity relations follow. These are the analogs, in the
current theory, of the relations noted in [8]. First, for these
orders, with fixed Ap = 2A,,, the anomalous dimensions
Yy IR AL and vy, g, A are monotonically increasing func-

tions of p. Second, for a fixed p, Vi IRA? is a monoton-
ically increasing function of Ap and y;, R A? is a
T Ay

monotonically increasing function of A, .

Since finite-order perturbative calculations of this
type tend to become progressively less accurate as one
approaches the lower boundary Bcyw , of the conformal
window, one is motivated to assess the effect of higher-
order corrections. One approach for this purpose is to
perform a rough extrapolation (ext) of our results for p =
1,2,3to p = co. This yields values for y;,, g and y;, g that
we estimate to be approximately 10%—20% larger than our
respective yg,, g, A and v, R, A values, namely 7, 1R ext =
0.7-0.8 and 7y, 1R ex = 1.0-1.1. We next compare these
results with the values obtained from lattice simulations in

Ref. [11], namely 7 ~0.75 and 7 ~ 1.0. [Recall the

equivalences of notation for this SU(4) theory: yf,f) = Yy IR

and y© = Y7rr-] To within the uncertainties in our
extrapolation and in the lattice measurements, our calcu-
lations are in agreement with these values of anomalous
dimensions obtained in [11]. This agreement between our
perturbative calculations, which require an IR fixed point in
the conformal window, and the values of these anomalous
dimensions measured in the lattice simulations, is consis-
tent with the conclusion in [11] that this theory is in the
conformal window (near the lower boundary, since the

measured 7/5,?) ~1 and our yz, Rexx = 1). A cautionary

remark is that the uncertainties in the perturbative calcu-
lation of anomalous dimensions are substantial at the lower

end of the conformal window, as are the uncertainties in our
rough extrapolation.

B. Calculation of Padé approximants
for anomalous dimensions

Another useful approach to estimating anomalous
dimensions from finite series expansions is the use of
Padé approximants, and we have used these in our earlier
work for theories with fermions in a single representation
[36,47-49,52]. Given a series expansion calculated to a
finite order, a [p, ¢] Padé approximant is a rational function
with numerator and denominator having respective degrees
p and ¢ in the expansion variable and satisfying the
property that the Taylor series expansion of this rational
function fits all of the coefficients in the original series
expansion [69,70]. In our present context, for a given
fermion f (equal to y in the F representation or y in the A,
representation of SU4)), let us consider the scheme-
independent expansion calculated to order s:

y.i_‘f.IR,A;_ = ZKEf)Aj;
j=1
_ N 1 <& 5o

We calculate the [p, ¢] Padé approximant to the expression
in square brackets, which has the form

1+ Zf:l Nf.iAj‘“:|
14+59, D,,,Aj;. '

VirR[p.g] = K(lf) Ay [ (4.22)

where p+qg=s—1. With s =3, the possible Padé
approximants to the expression in square brackets are then
[2,0], [1,1], and [0,2]. The [2,0] approximant is just the
original series, which we have already used to calculate
VifIRAY for f =y and f =y, so we focus on the [1,1]

and [0,2] approximants here. In addition to providing a
closed-form rational-function approximation to the finite
series (4.21), a Padé approximant also can be used in
another way, namely to yield an estimate of the effects of
higher-order terms.

By construction, the [p, g] Padé approximant in (4.22)
is analytic at A =0, and if it has ¢ > 0, then it is a
meromorphic function with ¢ poles. The radius of con-
vergence of the Taylor series expansion of the [p, ] Padé
approximant is set by the magnitude of the pole nearest
to the origin in the complex A, plane. Consequently, a
necessary condition that must be satisfied for a Padé
approximant to be useful for our analysis here is that,
considered as a function of the general variable Ag, it
should not have a pole at any Ay . that is closer to the
origin than the actual value of A in the theory of interest.
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We recall that for the (4,4,4) theory, Ay = 10 and A4, = 5.
A further caveat with this method is that if a [p, g] Padé
approximant has a pole that is near to the physical value of
the expansion parameter, even if it is farther from the origin,
this might produce a spuriously large value of the anoma-
lous dimension.

We focus here on approximants for y;, g, since it is
larger than yg, r. We calculate the following [1,1] and
[0,2] Padé approximants for this anomalous dimension:

1 —0.0099444A A,
y)_{)(,IR,[l,l] = 0092166AA2 ] _ O 13468AA P} (423)
: 2
and
Yy IR, [0,2]

1
= 0.092166A ,
4 [1 —0.124744,, — 0.0012404A§2]

(4.24)

The approximant yz, g [1,1] has a pole at Ay, = 7.42492,
and yz, 1r [02) has poles at Ay, = 7.46299 and —108.022.
These are farther from the origin than the physical value
A,, =5, although the poles at 7.42 and 7.46 are moder-
ately close to the physical value, A4, = 5. Evaluating these
approximants at this value of A, , we obtain yz, g 1,1 =
1.34 and 75, 1r j0.2) = 1.33, somewhat larger than our rough
extrapolations discussed above.

C. Estimates of lower boundary of conformal window

Reference [11] observed that its conclusion that the
(N..Np,Ny,) = (4,4, 4) theory has an IRFP, and is thus in
the conformal window, disagreed with the lower boundary
Bew o of the conformal window presented in [13] on the
basis of the yCC condition in quadratic form (2.24). As
noted in [I1], the (4,4,4) theory is below the lower
boundary of the conformal window from the yCC condition
shown in Fig. 4 of [13] as a function of (N, Ny,) and
reproduced in Fig. 1 of [11]. (In referring to Fig. 4 in [13],
we remind the reader that the symbol N, used in that
figure is the number of Majorana A, fermions and hence is
equal to 2N, in our notation, where our N, is the number
of Dirac A, fermions.) So the implication from the lower
boundary Bew . in [13] is that the (4,4,4) theory is in the
chirally broken phase, not in the conformal window.

To investigate this further, we have performed an
alternative calculation of Bcw, using our results for
Viparas and yz g a3 in conjunction with the linear yCC
critical condition,

maX(YW,IR,A;,’ y}x,IR,Af‘z ) =1 (4.25)

Su()
10
8
6

Na,
4
2
0 .
0 5 10 15 20
Ne

FIG. 1. Plot of regions and boundaries in the (Np, N4 ) plane
for G = SU(4). The upper solid line (blue) is the solution locus
of the equation b; = 0 and is the upper boundary Bcy , of the
conformal window. The plot shows the locations of the boundary
Bew s, as calculated in [13] from the quadratic yCC condition
(green), and as calculated here from the linear yCC condition
(red). The theory (Ng,N,,) = (4.4) and some others near to
Bew o are indicated with dots. The dashed line is the solution
locus of the equation b, = 0 and is the lower boundary Bigy , of
the IRZ region.

In applying this condition, the maximal anomalous dimen-
sionis 7z, g a3 » which is larger here, for a given (Np,Na,),

than v, g, Aizj Therefore, Eq. (4.25) reduces to

}/)?X'IR’A;ZZ — 1 (426)

We show our results in Fig. 1. The uppermost line (blue)
is the upper boundary Bew, = Bz, of the conformal
window, given by the condition b; = 0. The locations of
the lower boundary Bcyw . as calculated in [13] from the
quadratic yCC condition (green), and as calculated here
from the linear yCC condition (4.25), which reduces
to (4.26) (red), are shown. Both of these calculations of

Bew ¢ use the K§F> and x\"?)

;  calculated to order j = 3 from
the general results in [8]. The dashed line is the solution
locus of the equation b, = 0 and is the lower boundary
Birz.¢ of the IRZ region. For general N and, in particular,
for N, = 4, the conditions (4.25) and (4.26) are nonlinear
equations in the variables N and N ,, but the coefficients
of the nonlinear terms are small compared to the coef-
ficients of the linear terms and get smaller as the total
degree s + tof aterm N ;Ngz increases, so that the solution

locus is close to being linear in the (Np, N,,) plane. As is
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evident in Fig. 1, the use of the linear form of the yCC in
Eq. (4.26) yields a boundary By , that lies to the lower
left of the boundary Bcw , obtained with the use of the
quadratic yCC condition in the (Np,N4,) plane. As was
discussed in Sec. II D, this is a consequence of the fact that
the quadratic yCC condition (2.24) generates higher-order
terms in powers of the scheme-independent expansion
variables and leads to different coefficients for lower-order
terms. With By , as determined from (4.26) and shown in
Fig. 1, the (4,4,4) theory is within the conformal window,
close to the lower boundary. Along the diagonal Ny = N,
the boundary Bcyw . calculated from (4.26) crosses the
point (Np, Ny, ) = (3.88,3.88), slightly to the lower left of
the point (Np,Ny,) = (4,4). [We indicate this point (4,4)
with a dot and also indicate some other SU(4) (Np,N,,)
theories close to Bcyw » with dots.] Therefore, with Bey »
computed via the linear form of the yCC condition, (4.25)
or (4.26), the (4,4,4) theory is in the conformal window.
This is in accord with our result that at cubic order in the
scheme-independent expansion coefficients, the values of
anomalous dimensions that we obtain, namely y;, g, N =
0.942 in Eq. (4.20) and y;,, g a3 = 0.683 in Eq. (4.17) in
the (4,4,4) theory, are both less than 1. Our comparative
analysis showing the difference in the location of the
boundary Bcw, as computed via the quadratic yCC
condition in [13] and as computed via the linear yCC
;Az) ;F )

condition here (with inputs for the «} >’ and «; ’ calculated

up to the same maximal order, j = 3) provides a quanti-
tative measure of the importance of higher-order terms in
the scheme-independent expansions and hence the uncer-
tainty in the determination of the location of Bcy .. This
comparison makes it clear that these higher-order correc-
tions are significant.

Since the anomalous dimensions increase as one moves
downward within the conformal window toward the lower
boundary Bcw,, the linear form of the yCC condition
implies that for any theory below this lower boundary, at
least some fermion f has an anomalous dimension y7/ g
that is larger than 1, where here, {f} = {w,y}, ie.,
{F,A,}. A peculiar feature of the quadratic form of the
yCC condition is that if one uses it to determine Bew » with
input coefficients K;-f ) calculated to the same maximal order
as with the linear yCC condition, then this boundary Bcy »
from the quadratic yCC condition has the property that
there are theories that lie outside the conformal window but
in which all fermions f have anomalous dimensions y7/ g
that are less than 1. This situation occurs here; our direct
calculation of yy, r and yz, g in the (4,4,4) theory, with

(F) (42)

input values for the x; * and ;" computed to the j =3

order, yields values for y;, g a3 and 7y, 1r a3 that are both
IRAY IRA}

less than 1, but the point (N, N,) = (4, 4) lies outside the
conformal window, as calculated in [13] via the quadratic

1.0

0.8
0.6
You

0.4

0.2

0.0
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»
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o
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FIG. 2. Plot of Yy IR AL calculated to order p =1, 2, 3 for
G =SU(4), and N4, =4, as a function of Ny &I gy. From
bottom to top, the curves refer to yg, ra, (red), Yy IR A2
(green), and y,, g, Al (blue). The vertical axis is simply labeled
as yy,, for short.

yCC condition with the same inputs for K;-F)

computed up to order j = 3.

To investigate the behavior of yg,, k. AP and 75, 1r, A? for
p =1, 2, 3 further in this SU(4) theory, we calculate how
they vary as functions of Ny and N,,, in particular, when
one sets Ny = 4 and varies N, or one sets Ny, = 4 and
varies Np. These intervals are, respectively, a vertical
and a horizontal line segment in the (Np,N,,) plane,
which both pass through the point of primary interest,
(Np,Ny4,) = (4,4). Our results are presented in Figs. 2-5.
As one can see from Figs. 4 and 5, for N = 4, this yields
the value N,, = 3.8 as being on By , calculated from the
linear yCC condition (4.26), and for N, = 4, it yields the
value N = 3.6 as being on this boundary. These calcu-
lations thus serve as a check on our calculation of the

and K§»A2>

1.0

0.8
0.6
Yoy

0.4

0.2

0.0

FIG. 3. Plot of Yy IR AL calculated to order p =1, 2, 3 for
G =SU(4), and Ny =4, as a function of N, € Ijry. From
bottom to top, the curves refer to vy, 1r.a, (t€d), 75, v, A (green),

and yll_/l/’vIRvA:;: (blue).
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FIG. 4. Plot of YyriRar > calculated to order p =1, 2, 3 for
G =SU(4), and Ny, = 4, as a function of Ny € Izy. From

bottom to top, the curves refer to vy, R a " (red), VIR,
(green), and y;, 1, A (blue). The vertical axis is simply labeled
2

as yy, for short.

1.4

1.2

1.0

0.8

Yxx
0.6
0.4

0.2
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w
N
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6 7 8 9
Ny,
FIG. 5. Plot of YR AL > calculated to order p =1, 2, 3 for

G =SU(4), and N, =4, as a function of Ny €I, From
bottom to top, the curves refer to yy,ra, (ted), vy, r A
2 .' 2

(green), and vy, g, A (blue).

boundary B¢y, from the linear yCC condition (4.26), since
one can verify that this boundary does pass through the
points (N, Ay,) = (4.0,3.8) and (3.6,4.0).

One of the interesting features of this SU(4) theory is that
the gauge-singlet particle spectrum contains composite
fermion(s), {f,}. The lattice simulations in [11] yield
anomalous dimensions for several composite-fermion oper-
ators, which are found to be <0.5, smaller than desired for
models of a partially composite top quark. Comparison is
made with one-loop perturbative calculations of the anoma-
lous dimensions for these gauge-singlet composite fermion
operators. In future work, it could be useful to carry out
higher-order scheme-independent perturbative calculations

of the anomalous dimensions for these composite-fermion
operators. This is beyond the scope of our present work,

since the requisite higher-order coefficients Y in the
conventional series expansions (2.12) have not, to our
knowledge, been calculated.

V. CONCLUSIONS

In this paper we have used our general results in [8] to
calculate scheme-independent expansions for anomalous
dimensions yy, r and yz, g of the fermion bilinear
operators iy and jyy at an infrared fixed point in an
asymptotically free SU(N,.) gauge theory with massless
fermion content consisting of Ny fermions y¢{ in the
fundamental representation and N,, fermions ;(}4" in the
antisymmetric rank-2 tensor representation. These calcu-
lations were performed to the highest order, namely cubic
order in the respective expansion variables Ay and A, ,
for which the necessary inputs are available. We have
taken the special case N, = 4 and compared the results
with values of these anomalous dimensions in an SU(4)
theory with Ny = 4 and N, = 4 from a lattice simulation
in [11]. We find agreement with these measured values at
the cubic order to which we have performed the pertur-
bative calculations, and we have given estimates of
higher-order corrections to our results. More generally,
we have studied the dependence of y;, r and yy, r as
functions of Ny and Ny, in the SU(4) theory and have
compared different ways of calculating the lower boun-
dary of the conformal window.
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APPENDIX: GROUP INVARIANTS

In this appendix we identify our notation for various
group invariants. Let T% denote the generators of the Lie
algebra of a group G in the representation R, where a is a
group index, and let di denote the dimension of R. The
Casimir invariants C,(R) and Ty are defined as follows:
T%T% = Cy(R)I, where here I is the dyp x dy identity
matrix, and Trg(7%T%) = T(R)5°. For a fermion f trans-
forming according to a representation R, we often use the
equivalent compact notation 7y = T(R) and C; = C,(R).
We also use the notation C4 = C,(A) = C,(G). Thus, e.g.,
for the F and A, representations of SUN,), T(F) = 1/2,
C(F) = (N2 = 1)/(2N,),  T(A;) = (N, =2)/2, and
CZ(A2) = (Nc - 2)(Nc + 1)/Nc
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The coefficients K‘ﬁf )

order group invariants. In general, for a given representa-
tion R of G,

with j > 3 also involve higher-

1
ﬂW:§H4WWWW+WWF+FWW

+Wﬂﬂ+ﬂﬂw+ﬂwﬂﬁ (A1)

In [8] we use the notation dg’*? = d*** and for R = Adj,

we write deed = gebed The Y coefficients contain
dependence upon products of these d%°“ of the form
dgbeddiped = d;ib“’d‘;f’ ¢d summed over the group indices a,
b, ¢, d. For further details on these higher-order group
invariants, see [19] and references therein.
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