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Two of the conditions that have been suggested to determine the lower boundary of the conformal
window in asymptotically free gauge theories are the linear condition, yg, r = I, and the quadratic
condition, ¥, (2 =75, 1r) = 1, Where y;,, g is the anomalous dimension of the operator yy at an

infrared fixed point in a theory. We compare these conditions as applied to an N' = 1 supersymmetric

gauge theory with gauge group G and N pairs of massless chiral superfields @ and & transforming

according to the respective representations R and R of G. We use the fact that Yowr and the value
Ny = Ny, at the lower boundary of the conformal window are both known exactly for this theory. In
contrast to the case with a nonsupersymmetric gauge theory, here we find that in higher-order calculations,
the linear condition provides a more accurate determination of N ¢ ., than the quadratic condition when both

are calculated to the same finite order of truncation in a scheme-independent expansion.
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I. INTRODUCTION

There has been considerable interest in asymptotically
free gauge theories that have matter content such that they
exhibit renormalization-group flows from the deep ultra-
violet (UV) to infrared (IR) fixed points (IRFPs) [1,2]. At
the infrared fixed point, the beta function vanishes, so the
theory is scale-invariant and is inferred to be conformally
invariant [3], whence the term “conformal window.” With
no loss of generality, one may restrict to massless matter
fields, since if a matter field had a nonzero mass m,, one
would integrate it out of the effective low-energy theory
that is relevant for momentum scales below m, in the flow
to the infrared limit. The properties of a theory at an
infrared fixed point in this conformal window are of
fundamental interest. Among these are the scaling dimen-
sions Dy of various (gauge-invariant) local operators, O,
such as yy and Tr(F,, F*), where y and F,, denote
fermion and gauge field-strength operators. Owing to the
gauge interactions, the scaling dimension of an operator O
differs from its free-field value, Do free: Do = Do free — Y0
where yo is the anomalous dimension of O. Higher-loop
calculations of anomalous dimensions at an IR fixed point
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in the conformal window have been performed in a number
of works, including [4-16], using both conventional series
expansions in powers of the gauge coupling at the IR fixed
point and in powers of a scheme-independent expansion
variable. Inputs for renormalization-group functions utilized
in this work included those in [17-20]. Extensive measure-
ments of anomalous dimensions have been carried out using
lattice simulations; some of these works are [21-32].

As one decreases the matter content, the value of the
gauge coupling at the IRFP, apR, increases, and eventually
the theory changes qualitatively with the disappearance of
this conformal IR fixed point. A commonly studied
example is a non-Abelian gauge theory (in d = 4 spacetime
dimensions at zero temperature) with gauge group G and
Ny copies (“flavors”) of massless Dirac fermions trans-
forming according to a representation R of G. One arranges
that N, is smaller than an upper () bound, N ,, depending
on G and R, so that the theory is asymptotically free. As N,
decreases below Ny ,, the theory exhibits the aforemen-
tioned conformal IRFP, and the lower boundary of the
conformal window occurs as N decreases through a
critical value denoted Ny, [33]. Generalizations of this
with several fermions transforming according to different
representations have also been studied [13-16,28-30], but
here it will be sufficient for our analysis to restrict our
consideration to the case of matter fields transforming
according to a single representation of the gauge group.

In addition to its importance in the context of formal
quantum field theory, a determination of N, is important
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for the analysis of gauge theories with N slightly less than
N o> since in choosing such a theory to study, one needs to
know at least the approximate value of N . A theory with
Ny slightly below Ny has a gauge coupling that runs
slowly over a large range of momentum scales, due to an
approximate IR zero in the beta function, but eventually
becomes large enough to produce spontaneous chiral
symmetry breaking and associated dynamical breaking
of the approximate dilatation invariance. As a result, these
theories (often called “walking” or quasiconformal theo-
ries) feature an approximate Nambu-Goldstone boson, the
dilaton, as has been confirmed by lattice simulations
[24,26,27]. Since the mass of a Nambu-Goldstone boson
is protected against large radiative corrections, models
incorporating this physics thus have the potential to address
the Higgs mass hierarchy problem [34].

Two of the conditions that have been suggested to
determine the lower boundary of the conformal window in
asymptotically free gauge theories are the linear critical
condition (yCC), yg,r =1, and the quadratic critical
condition, ¥;, R(2 = 7gyr) =1 [35-38]. As is evident
from the fact that the quadratic critical condition can be
rewritten equivalently as (y;,, x — 1) = 0, it has a double
rootatyy, r = | and hence is formally identical to the linear
yCC. However, these two critical conditions yield different
predictions for N;. when using, as input, a finite-order
series expansion for yy, r. In nonsupersymmetric gauge
theories, the quadratic condition has been found to converge
faster as a function of the order to which this series for y,, r
is computed [14,15]. An interesting question concerns how
general this difference is; i.e., is it the case that the quadratic
critical condition will also yield more rapid convergence than
the linear critical condition in other theories?

In this paper we investigate this question, using as our
theoretical laboratory an N =1 supersymmetric gauge
theory with gauge group G and N pairs of massless chiral
superfields @ and ® transforming according to the respec-
tive representations R and R of G. We take advantage of
the key fact that for this theory one has exact results for
},WV/sIR and Nf,Cl” [39—42]

This paper is organized as follows. In Sec. II we review
some relevant background concerning the N' = 1 super-
symmetric gauge theory and our calculational methods.
Section III contains a discussion of the linear and quadratic
critical conditions on y,, r. Our calculational results on
the comparison of these conditions for the supersymmetric
theory are presented in Sec. IV. Our conclusions are
summarized in Sec. V.

II. BACKGROUND ON THE N =1
SUPERSYMMETRIC GAUGE THEORY
AND CALCULATIONAL METHODS

In this section we briefly review some relevant back-
ground and our calculational methods. We consider a

vectorial A" =1 supersymmetric gauge theory (in d = 4
spacetime dimensions) with gauge group G and matter
content consisting of N flavors of massless chiral super-
fields @ and @ transforming according to the respective
representations R and R of G (with color and flavor labels
implicit here). In terms of component fields, the chiral
superfield @ has the decomposition

® = ¢+ V2l + F0, (2.1)

where y is taken as a left-handed Weyl fermion, 6 is an
anticommuting Grassmann variable, and F' is a nondynam-
ical auxiliary field.

We denote the running gauge coupling as g = g(u), where
u is the Euclidean energy or momentum scale at which this
coupling is measured, and define a(u) = g(u)?/(4x). As
noted above, we restrict consideration of this theory to the
range of Ny where it is asymptotically free. Owing to this, its
properties can be computed perturbatively in the UV limit at
large u, where a(u) — 0. The dependence of a(u) on y is
described by the renormalization-group beta function:

da(p)

b=t

(2.2)

The argument i will generally be suppressed in the notation.
The series expansion of f in powers of « is

p=-2a bea’, (2.3)
=1
where
2
g a
=97 _ % 2.4
=162 an (2:4)

and b, is the Z-loop coefficient. We restrict here to mass-
independent, supersymmetry-preserving regularization and
renormalization schemes and to gauge-independent scheme
transformations. The first two coefficients in (2.3) are [43]

and [44-46]

where Cy, Ty, and Cy are group invariants [47]. These
coefficients b; and b, are scheme-independent, while the b,
with Z > 3 are scheme-dependent. With an overall minus
sign extracted, as in Eq. (2.3), the condition of asymptotic
freedomis that b; > 0, and thus Ny < N ,, where the upper
bound on N is

_3Ca

= . 2.7
Sou 2Tf ( )
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Note that if Ny = Ny, so that b; = 0, then the two-loop
coefficient has the negative value b, = —12C;Cy, so [with
the minus sign prefactor in Eq. (2.3)] the theory is not
asymptotically free. This is the reason that we require the
strict inequality N, < N, for asymptotic freedom rather
than the condition Ny < N ,,.

A number of additional exact results have been estab-
lished about the IR phase structure of the theory [39—42].
We briefly summarize some relevant properties here. For a
general gauge group G and representation R, if N is in the
conformal-window (CW) interval

. . Nj}u
CW: Nf,cr SN]‘ <Nf.u7 1.€., TSNf <Nf.u7 (28)
where
3¢, Ny,
N, =—2=_—/% 2.9
fier 4‘Tf D) ( )

the theory flows from the UV to an IR fixed point of the
renormalization group. (The CW interval is also commonly
called the non-Abelian Coulomb phase.)

In general, the expressions in Eqs. (2.7) and (2.9) for
Ny, and Ny, are not necessarily integers. In cases where
Ny, or Ny, is not an integer, one implicitly treats it as a
formal result applicable in the framework in which one
generalizes N, from the non-negative integers to the
non-negative real numbers. This will not be important
for our present analysis, which focuses on a comparison of
the relative accuracies of linear and quadratic y critical
conditions when used with finite-order perturbative anoma-
lous-dimension inputs. However, for reference, we give
some illustrative examples for the case G = SU(N,.). If
R =F, the fundamental representation, then Ny, =
(3/2)N., which is integral if and only if N, is even. If
R = Adj, the adjoint representation, then N, = 3/2 and
Ny = 3/4. Finally, if R is the rank-2 symmetric or
antisymmetric tensor representation (denoted S, and A,,
respectively), then N, = 2Ny = 3N./(N, £ 1), where
the upper (lower) sign applies for S, and A,.

With b; > 0 for asymptotic freedom, the condition that
this two-loop beta function should have an IR zero is that
b, <0, which is that Ny > N, where

N = — G (2.10)
T02 0T (Ch +2C)) '
As we discussed in [48] (see also [49,50]), N . may be
larger or smaller than N, depending on the chiral
superfield representation R.
For a general gauge group G, the N’ = 1 theory under
consideration here, with N flavors of chiral superfields ®

and @ in the representations R and R, respectively, is

invariant under a classical continuous global (cgb) sym-
metry

Gegr = U(Ny) @ UINy) @ U(1)g
= SU(N;) ® SU(N;) @ U(1)y, ® U(1),, ® U(1)p,
(2.11)

where the first and second U(N,) groups consist of
operators acting on @/ and ®;, respectively, with
i,j=1,....Ny;, and the R-symmetry group U(1)p is
defined by the following commutation relations:

[Qa’R] = Qa? [le’ R] = _QIU

where the Q, and QJ are the generators of the super-
symmetry transformations (with a spinor index here). The
U(1), symmetry is anomalous, due to instantons, so
the actual nonanomalous continuous global symmetry of
the theory is

(2.12)

G,y = SU(N,) ® SUN,) ® U(1)y ® U(1)p. (2.13)

This symmetry is exact at an IR fixed point in the conformal
window. The representations of the matter chiral superfields
under the gauge and global symmetry groups are listed in
Table I for the generic case in which the representation R
is complex.

We will focus on the gauge-invariant quadratic operator
products of the “meson” type,

Ml = o,d/, (2.14)
where, as above, i and j are flavor indices and the group
indices are implicit, with it being understood that they are
contracted in such a way as to yield a singlet under the
gauge group G. As a holomorphic product of chiral
superfields, M{ is again a chiral superfield. The bilinear
fermion operator product in M{ is gy =g, Cl,l/i, where
C is the conjugation Dirac matrix, and we use the
convention of writing ; ; and y/i as left-handed Weyl
fermions. Because the global symmetry (2.13) is exact in
the conformal window, the meson-type quadratic chiral
superfields transform according to (irreducible) represen-
tations of the group G,. The anomalous dimension of this

TABLE 1. Matter content of a vectorial NV = 1 supersymmetric
gauge theory with gauge group G and matter content consisting
of N massless chiral superfields ® and @ transforming accord-
ing to the representations R and R, respectively. The symmetry
groups correspond to those in Eq. (2.13).

SU(N.) SU(N,) SUNN,) U(1)y U
® R O 1 I 1=[Ca/(2T;N/)]
& ® I O -1 1=[Ch/QTNy)]
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operator is independent of the flavor indices i and j [51], so
in [52] and here, we denote its value at the superconformal
IRFP simply as y,, g. Using the fact that §7; ; = (y%)¢, the
fermion bilinear in ®;®’ can be rewritten in the standard
form ;' of a mass term in a nonsupersymmetric theory.
Denoting yg,, r as the anomalous dimension of the latter
bilinear, it follows that

YMIR = Yy IR: (2-15)

A closed-form expression for the beta function of this
theory was derived by Novikov, Shifman, Vainshtein, and
Zakharov (NSVZ) [39]:

0{2 bl - ZNfo}/M
= |—2L—. 2.16
prove =5 "ot 216
It is convenient to introduce the notation
N,
x=—1 (2.17)
Nf,u
and
N 1
fier
== 2.1
=y =5 (218)
Thus, the conformal window is the interval
1
3 <x<l. (2.19)

One can express the anomalous dimension of an operator
such as a fermion bilinear yy in a gauge theory as a series
expansion in the squared gauge coupling,

0

— ¢
Yoy = E Cea,

=1

(2.20)

where ¢, is the Z-loop coefficient. As noted above, the
value of this anomalous dimension at an IRFP is written as
Yoy ir- The one-loop coefficient ¢, is scheme-independent,
while the ¢, with £ > 2 are scheme-dependent.

Physical quantities such as anomalous dimensions at an
IRFP clearly must be scheme-independent. In conventional
computations of these quantities, one first writes them as
series expansions in powers of the coupling, as in (2.20),
and then evaluates these series expansions with a set equal
to apg, calculated to a given loop order. However, a (finite-
order) series expansion of this type is scheme-dependent
beyond the leading terms. Scheme dependence is also
present in higher-order perturbative calculations in quan-
tum chromodynamics (QCD), and its effects have been
routinely addressed in studies comparing perturbative QCD
predictions with experimental data. Formally speaking,
these studies were on scheme dependence in the vicinity
of the UV fixed point at zero coupling in QCD. Studies of

scheme dependence in the different context of an IR fixed
point located away from zero coupling have been carried
out in [50,53-58]. For perturbative series calculations of
anomalous dimensions, it is desirable to use a formalism
in which results calculated to each order are scheme-
independent.

Since g — 0as by — 0 at the upper end of the conformal
window, it follows that one can reexpress the series expan-
sion for y;,, g in terms of a variable that is proportional to b,
namely, the scheme-independent variable [2,59]

In the present theory,
b
Ap=—1. (2.22)

Scheme-independent calculations of anomalous dimensions
of various operators at an IRFP were carried out in [8—12] for
nonsupersymmetric gauge theories, and results were com-
pared with measured values from lattice simulations. In [52]
we carried out corresponding scheme-independent calcula-
tions of anomalous dimensions of several composite super-
field operator products in the present ' = 1 supersymmetric
theory. In general, the scheme-independent series expan-
sion for a (gauge-invariant) operator O at an IRFP in the
conformal window can be written as

o]

Yo = Y Ko

J=1

(2.23)

The truncation of this series to O(A) inclusive is denoted

YOR AP
p .
Yoral = ZKO,jA§f~ (2.24)
j=1
Thus, for the operator M we write
P .
YMIRAD = VipwIRAL = ZKM,jAf (2.25)
Jj=
with
KM,j = KV_/lI/aj' (226)

It is convenient to define the reduced scheme-independent
expansion variable

Ny
Ny,

A
fo_g -

= =1-ux
Ny

y= (2.27)

Since 1/2 < x < 1 in the conformal window [cf. Eq. (2.19)],
it follows that in the conformal window y takes values in
the range
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1
CW:0<y<s. (2.28)

and we denote y,, = 1 — x,, = 1/2 at the lower end of the
conformal window.

In the conformal window, the anomalous dimension at
the IRFP in the conformal window, the exact expression for

Ypw IR = VM IR> 1S

3C N¢,
=37 N, =y !
Yy f
1
=——1. 2.29
- (229)

This can be seen, for example, by solving for y,, at the IR
zero of the NSVZ beta function in Eq. (2.16), which is thus
ym.r- (Another derivation makes use of the R charges of
the ® and ® chiral superfields, as discussed in [52].) This
anomalous dimension y,, g can be expressed in terms of y
as follows:

A A N
f f Y Vi
YMR = = = = g y. o (2.30)
Nf NfM_Af l—y =

Thus, the coefficient k), ; in Eq. (2.25) has the value

1

KM.j = Kl/_/l//,j = m . (2.31)
\u

The finite sum (2.25) was evaluated in our previous work
[52], yielding

yr=1

VMR A = Viy R AL =Y < y—1 ) . (2.32)

Note that the numerator of the expression on the right-hand

side of Eq. (2.32) contains a factor (y — 1) which cancels the

denominator in Eq. (2.32), so that the resulting expression

is a polynomial, as is clear from its definition (2.25) or
from Eq. (2.30).

In [11] we showed that, for a given N in the conformal

window, ¥, Ir. A approaches the exact result in Egs. (2.29)

and (2.30) exponentially rapidly [see Eqgs. (2.37)—(2.41) in
[11]]. We recall this result, since it is relevant here. As in
[11], we define the fractional difference

YMIR — VM.IR,A';
€ _

(2.33)

P
VM IR

Using yy g from Egs. (2.29) or (2.30) and YMIRA? from
Eq. (2.32), this is
(2.34)

Since y? = e~?"(1/y) and 0 < y < 1/2 in the conformal
window, this fractional difference evidently approaches
zero exponentially rapidly as a function of the truncation

order, p. This is true for any value of y in the conformal
window, and, as a special case, it is true in the limit

y_’ycrzl/z'

III. ANOMALOUS DIMENSION CONDITIONS
IN CONFORMAL WINDOW

From analyses of the Schwinger-Dyson equation for the
fermion propagator, of operator product expansions, and
other arguments [35-38], it has been suggested that the
upper bound

Yopr <1 (3.1)

applies for an IRFP in the conformal window. Since yg,, r
increases as one decreases N, throughout the conformal
window, it follows that the lower end of this conformal
regime occurs when the inequality (3.1) is saturated, i.e.,
when the following condition holds:

(3.2)

Yy R = L.

That is, Eq. (3.2) determines the value of N ., demarcating
the lower end of the conformal window. We denote Eq. (3.2)
as the linear y critical condition, denoted as LyCC. Note that
this condition is in accord with the exactly known value of
Yoy R = Yur 10 the present N = 1 supersymmetric gauge
theory, as is clear from the exact result (2.29).

The quadratic condition

71/71//,IR(2 - 71/71//,IR> =1 (33)

was discussed as a critical condition for fermion condensa-
tion, and its connection with the condition (3.2) was noted in
[35] [see also [60]; we are not aware of any analysis that
suggests the use of a critical condition (y;,, g —1)° with
s > 3]. We denote Eq. (3.3) as the quadratic y critical con-
dition, QyCC. As is obvious from the fact that Eq. (3.3) can
be rewritten as (y;,, r — 1)* =0, it has a double root at
Yok = 1. Hence, an exact solution of the quadratic equa-
tion (3.3) yields the same result as the linear condition (3.2).
However, when applied in the context of series expansions
such as Eq. (2.23), as calculated to finite order, the results
differ from those obtained with the linear condition (3.2). This
difference arises because the quadratic condition (3.3) gen-
erates higher-order terms in powers of the scheme-indepen-
dent expansion variable and leads to different coefficients of
lower-order terms [14,15]. As our calculations below dem-
onstrate, this difference, in conjunction with the exponentially
rapid approach of the O(A?) series in Eq. (2.25) to the exact
expression noted above, lead to the linear yCC yielding a
more accurate determination of Ny for p >3 than the
quadratic yCC in this supersymmetric theory.

In a nonsupersymmetric gauge theory with N, fermions
transforming according to a single representation of the
gauge group, the use of the quadratic condition (3.3) was
found [14,15] to (i) show better convergence as a function
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of increasing order of truncation of the series (2.23) than the
linear condition (3.2) and (ii) predict a larger value of N
than the linear yCC. This work in [14,15] used the general
results [9,10] for yy,, &, A? to the highest order that we had

calculated them, namely, p = 4.

As noted in the introduction, an interesting question
that we will investigate here is whether the quadratic yCC
also converges more rapidly than the linear yCC in the
above-mentioned A/ = 1 supersymmetric gauge theory. An
additional question that we will also investigate concerns
whether the values of Ny, obtained from the LyCC and
QyCC approach the exact value Ny, = 3N, from above or
below. Equivalently, we will determine whether the corre-
sponding values of x, approach the exact value x,, = 1/2
from above or from below. It is worthwhile to mention that
a rigorous upper bound on yg, r in a conformal field
theory is that [61-63]

yll_/l//,IR < 2. (34)

This is evidently less restrictive than the bound (3.1).

IV. CALCULATIONAL RESULTS

The linear yCC equation yg,r —1 =0 with y5, r
calculated to order O(A}) inclusive is Eq. (3.2).
Substituting Eq. (2.32), this becomes

y=1
—-1=0, 4.1
= (@.1)
or, equivalently,
p .
LyCC,: <Z yf> —1=0. (4.2)
j=1

This LyCC,, condition is a polynomial equation of degree p
in the variable y, or equivalently in the variable x = 1 — y.
We denote the (physical) solution of the LyCC equa-
tion (4.2), expressed in terms of the variable x, as x s .
For 1 < p <3, we give the analytic solutions below, with
floating-point values displayed to the indicated number of
significant figures:

Xer L1 = 0, (43)

345

Xer,L2 = B

= 0.38197, (4.4)

and

1
xcr,L,3 = § [_(17 + 3\/§>1/3 + 2(17 + 3@)_1/3 + 4]
= 0.456311. (4.5)

Although the LyCC,, condition (4.2) has p formal solutions,
in each case, there is no ambiguity concerning which of these

is the physical solution. For example, for p = 2, the other
solution, namely, x = (1/2)(3 + v/5) = 2.618 is outside the
conformal-window range, 1/2 < x < 1; for p = 3, the other
two solutions form an unphysical complex-conjugate pair,
and so forth for higher p.

The quadratic yCC condition (3.3) with y,, g calculated
to O(A]’?) is (yu-,,,,,IR,A; — 1) = 0. If one takes the square
root of this equation to begin with, one simply recovers the
linear yCC equation. If, instead, one evaluates terms at
O(A]”c) resulting from the quadratic expression, then one
obtains the equation

S—-1=0, (4.6)
where the sum S has the form
p .
S=Y AA] (4.7)
j=1

where the coefficients 4; will be discussed shortly. Given
an input for y, g calculated to O(A%), the quadratic
yCC generates terms up to O(Ai.p ); however, for self-

consistency, one performs the corresponding truncation of
terms to O(Af), since this is the accuracy of the input

expressions for y,, g Al For the coefficients 1; we calculate
that

Ay = 2k, (4.8)

Ay = 2Ky — K3, (4.9)

A3 = 2(k3 — k1K), (4.10)

Ay = 2k4 — 2K1K3 — K3, (4.11)
As = 2(k5 — K1ky — KoK3), (4.12)

and so forth for higher ;. In general, we find that 4; contains a
term 2«; and then (a) if j is odd, a sum of terms of the form
—2K,k;_,, where 1 < r < (j—1)/2, and (b) if j is even, a
sum of terms of the form —2«,x;_, with 1 <r < (j/2) -1,
together with a term —K? /- Substituting the expression k; =
1/(Ny,)’ from Eq. (2.31), we find

(4.13)
and hence

S:

J

(G- (4.14)

P
=1

116021-6
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Calculating this sum in closed form, we obtain

oy
S_(l—y)2

2-3y+(p=2)y"+ (3-p)y**].

(4.15)

The numerator of the expression on the right-hand side of Eq. (4.15) contains a factor of (1 — y)? which cancels the factor in the
denominator, so that the result is a polynomial in y, as is obvious from its definition, Eq. (4.7), or from Eq. (4.14). The resultant

quadratic yCC condition, evaluated to O(A’;), is

1
QyCC,: S—1=——
P (1-y)?

Since S is a polynomial in y, it follows that § — 1 is also,
and hence the expression in square brackets in Eq. (4.16)
contains a factor of (1 —y)?, which cancels with the (1 —y)?
in the denominator. We denote the (physical) solution of the
QyCC equation (4.16), expressed in terms of the variable x,
as X p- As is clear from Eq. (4.14), if p # 3, then the
QyCC,, condition is a polynomial equation of degree p in
the variable y, or equivalently in the variable x, while if
p =3, then the coefficient of the highest-power term
vanishes, so the resultant equation is of degree 2 in y.
Indeed, with this cancellation, the QyCC; equation is
identical to the QyCC, equation. As was the case with
the LyCC,, condition, although for p > 2, there are several
solutions, there is no ambiguity concerning which is the
physical solution; for example, for p = 2, the other solution
is x =2 4 /2 = 3.414, which is outside the conformal-
window range of x. The analytic solutions to the lowest
cases are

(4.17)

Xer,0,1 = E
and

Xergo =2 — V2 =0.58579. (4.18)

It happens that the lowest-order result x., o ; is exact, but
this is not generic; for p > 2, the QyCC,, equation yields a
value of x. p , > 1/2.

In Table II, we list the results of the calculations with the
linear yCC with the input value of yg,, g A7 for1 < p <10,
yielding the LyCC,, condition. Table II includes

(1) the value of x 1 ,;

(2) the ratio of x.; , to the exact value x, =1/2,

denoted as

xcr,L,p
Xer

Ter,Lp = 2xcr.L.p; (419)

[—1 44y —4y> 4+ (p —2)yP™ + (3 — p)y**?] = 0.

(4.16)

(3) the fractional difference with respect to the exact
value,

. xcr,L,p
lefcr.L.p =1- X =1- 2xCl’,L$p;
cr

(4.20)

(4) the fractional difference with respect to the next
lower-order value,

. xcr,L,p—l
lefcr,L,p,p—l =l-—
xcr,L,p

(4.21)

In Table III, we list the results of the calculations with
the quadratic yCC with the input value of Vi IR.A for

1 < p <10, yielding the QyCC, condition. This table
includes
(1) the value of x g 3

TABLE II. In this table, the columns list (1) the value p
specifying the order O(A;’.) to which the linear (L) criticality
condition LyCC is evaluated, yielding the LyCC,, condition (4.2);
(2) the value of Ny /N, calculated from this LyCC,, condition,
denoted x.,; ,; (3) the ratio 7, ; , in Eq. (4.19); (4) the fractional
difference with respect to the exact value, Diff, ; , in Eq. (4.20);
and (5) the fractional difference with respect to the next lower-
order value, Diff,; , ,_; in Eq. (4.21). The abbreviation NA
means “not applicable”.

p xcr.L,p rcr.L,p Diffcr,L.p Diffcr.L,p.p—l

1 0 0 1 NA

2 0.38197 0.76393 0.23607 1

3 045631 091262 0.087378 0.16293

4 048121 0.96242 0.037580 0.051742

5 049134  0.98268 0.017321 0.020616

6 049586 099172 0.82765x 1072  0.91197 x 102
7 049798 099597  0.40342 x 1072 0.42596 x 1072
8  0.49901 0.99801 1.98836 x 1073  2.0498 x 1073
9 049951 0.99901 0.98624 x 103 1.0031 x 1073
10 049975  0.99951  0.49092 x 10~ 0.49556 x 1073
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TABLE III. In this table, the columns list (1) the value p
specifying the order O(Aﬁ) to which the quadratic criticality
condition QyCC is evaluated, yielding the QyCC, condition
(4.16); (2) the value of Ny /N, calculated from this QyCC,
condition, denoted xy g ,; (3) the ratio ryp , in Eq. (4.19);
(4) the fractional difference with respect to the exact value,
Diff, o, in Eq. (4.20); and (5) the fractional difference with
respect to the next lower-order value, Diff, o , ,_; in Eq. (4.21).
Other notation is as in Table II

Feroup Diff Diff

P xcr.Q.p cr,Q,p cr.Q,p,p—1
1 0.5 1 0 NA

2 0.58579 1.17157 —0.17157 0.14644

3 0.58579 1.17157 —-0.17157 0

4 0.57421 1.14843 —0.14843 —0.020155

5 0.56145 1.12289 —0.12289 —0.022738

6 0.54982 1.09964 —0.09964 -0.021147

7 0.53985 1.07969 —0.079692 —0.018475

8 0.53153 1.06305 —0.063050 —0.0156545
9 0.52470 1.04940 —0.049404 —0.013004

10 0.51918 1.03836 —0.038361 —0.010635

(2) the ratio of x,
denoted as

or.0,p 0 the exact value x, =1/2,

_ Xer0.p
Fer0p = X
Ccr

= 2Xer,0.ps (4.22)

(3) the fractional difference with respect to the exact
value,

Diffy, = 1 - 522 _ | _ 0y (4.23)

cr,Q,p;
'xCl'

(4) the fractional difference with respect to the next
lower-order value,

Xer.0.p-1

Xer,0.p

Diff =1- (4.24)

cr.0,p.p—

We see that in this theory, (i) for a given order O(A})
with p > 3, the linear yCC yields a value of x.; , that is
closer to the exact value x., = 1/2 than the value x¢ ¢ ,
obtained from the quadratic yCC, so that the linear yCC
yields an estimate of x. that approaches the exact value
more rapidly than the estimate from the quadratic yCC.
This is our main result. This result can be understood as a
consequence of the exponentially rapid approach of the
O(A}’) series in Eq. (2.25) to the exact expression (2.29) for
Yoy r that enters in the linear yCC, together with the fact
that the quadratic yCC, when expanded out, introduces
different coefficients 4; # «; in an expansion in powers of
A in Eq. (4.7). Furthermore, while the linear yCC yields a
value of x, s , that approaches the exact value from below,
the quadratic yCC at order p > 2 yields a value of x o ,
that approaches the exact value from above. These findings

are evident in Tables II and III. We have checked that these
properties also hold at higher truncation order beyond the
highest order, p = 10, shown in these tables.

Contrasting these results with those in the corresponding
nonsupersymmetric gauge theory, one must first recall that
the value of N . (depending on the gauge group G and the
fermion representation R) is not known exactly, so that one
cannot make a precise comparison with it. However, one
can, at least, determine the fractional changes in the values
of the solutions for x. ; , and x o , as functions of the
order O(A}’) to which one has calculated y,, |r. At an IRFP
in a nonsupersymmetric gauge theory with fermions in one
representation, the maximum order to which the scheme-
independent calculations have been performed is p = 4,
with results given in our Refs. [9,10]. It was found in
[14,15] (and confirmed in [16]), using these results for
VAl from [9,10], that the quadratic yCC converges more

rapidly than the linear yCC. Thus, for p > 3, the relative
accuracies and convergence rates of the linear versus the
quadratic yCC that we find for this A/ = 1 supersymmetric
theory are opposite to the behavior that was found in the
nonsupersymmetric theory. Moreover, in the nonsupersym-
metric gauge theory, the linear and quadratic yCC con-
ditions yield estimates of N, that increase as a function of
the truncation order, p [14,15]. This is also true for the
values of Ny, and thus x; , obtained from the LyCC,
equation in the supersymmetric gauge theory studied
here; i.e., x. , approaches the exact value x. = 1/2
from below. In contrast, in this supersymmetric theory, for
p =2 the value of x,, , calculated from the QyCC,
equation approaches the exact value of x. from above.

V. CONCLUSIONS

In conclusion, in this paper we have performed a
comparison of the linear and quadratic critical conditions
Yowr = 1 and vz, r(2 =y, k) = 1, Where y;,, g is the
anomalous dimension of the fermion bilinear yy at an
infrared fixed point in the conformal window in an A/ = 1
supersymmetric gauge theory with N, pairs of chiral
superfields ®; and ®; transforming according to the R
and R representations of the gauge group G, respectively.
This theory has the appeal that both y;, r and the value
N at the lower boundary of the conformal window are
known exactly. We find that, as a function of the order
O(A]’Z) to which one uses the truncated calculation of y;,, |r
as input, for p >3, the linear critical condition yields
an estimate of x, = Ny /Ny, that is more accurate
than the quadratic critical condition. This behavior is
opposite to what was found for nonsupersymmetric gauge
theories. It should be emphasized that the use of both the
linear and quadratic critical conditions with finite-order
inputs for y;,, g, ap are approximate perturbative methods.

Thus, differences between predictions for the lower end of
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the conformal window obtained with these methods pro-
vide one measure of the importance of higher-order terms

. . L : .
in the inputs, Yow R, A’;’ with p’ > p. Studies that elucidate

the properties of IR-conformal gauge theories and, in
particular, the location of the lower boundary of the
conformal window in these theories are of continuing
interest, both for basic quantum field theory and for
possible phenomenological applications. The comparative

analysis reported herein provides some further insight into
predictions from different critical conditions for the lower
boundary of the conformal window.
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